
 
Installing ALGOL68C on an IBM System/360 or /370 
------------------------------------------------ 
 
 
            Contents 
 
            1.  General 
 
            2.  Portability 
 
            3.  Maintenance 
 
            4.  Documentation 
 
            5.  Tape Format 
 
            6.  Character Codes 
 
            7.  Installation 
 
            8.  Catalogued Procedures 
 
            9.  Testing the System 
 
           10.  Writing ALGOL68C Programs 
 
           11.  Separate Compilation 
 
           12.  Overlays 
 
           13.  Example Program 
 
           14.  Error Messages 
 
  (These installation instructions are only valid for compiler version 
   247, translator version 119, ALGOL 68 library version 107 and 370 
   assembler library version 127.) 
 
 
1. General 
---------- 
 
    ALGOL68C has been developed for the 360/370 range of computers with 
the universal instruction set running OS/MVT Release 21.  It has also 
been successfully installed on systems running OS/MFT, OS/VS1, and 
OS/VS2 (SVS).  It is also believed to run under OS/MVS. 
 
    No 370-only instructions are used except for STCK (store clock) 
which is only executed if the CVT indicates that the time of day clock 
is supported.  The boundary alignment feature is not needed. 
 
    The currently distributed versions of ALGOL68C are known as 
"Prerelease" as the system does not implement the full ALGOL68C 
language.  The currently unimplemented features are described in a 
separate document. The current state of ALGOL68C precludes its use by 
other than the dedicated user.  The full implementation is expected to



be available in the late summer of 1976. 
 
    The distribution package consists of a magnetic tape, the printer 
output of the job that wrote the tape, and printouts of various 
documents (including this document).  Note that, as the tapes are 
prepared in batches, and the source copies of the documents are 
updated from time to time, the printed copies may differ from the 
corresponding copies of those documents on the tape.  In case of 
discrepancy, the printed version is likely to be the most correct. 
 
 
2. Portability 
-------------- 
 
    The ALGOL68C system is designed so that implementing it on a new 
machine range is straightforward.  The compiler produces code in an 
intermediate language, ZCODE.  ZCODE is a simple assembly language for a 
machine with conventional arithmetic and index registers and a 
conventional storage addressing scheme. 
 
    The compiler reads a simple description of the target machine (e.g. 
the number and type of registers, the size of INTs, etc.) so that the 
ZCODE produced is tailored for the target machine. 
 
    An implementor of ALGOL68C on a new machine range must write a 
translator (or an interpreter) for ZCODE, and also must write a run time 
system.  Three to nine man-months are usually needed. 
 
    (It should take only a few hours to install the ALGOL68C system on a 
/360 or a /370 from the distribution tape.) 
 
 
3. Maintenance 
-------------- 
 
    ALGOL68C is maintained as indicated in the Conditions of 
Distribution by the University of Cambridge Computing Service. 
 
    We would be grateful to be notified of any bugs, infelicities, or 
other helpful suggestions.  Please send all material (e.g. program 
sources, compiler output - messages and ZCODE, dumps, JCL, and the 
version numbers of the system being used) to 
 
               ALGOL68C Maintenance, 
               Computing Service, 
               Computer Laboratory, 
               University of Cambridge, 
               Corn Exchange Street, 
               CAMBRIDGE, CB2 3QG, 
               England. 
 
    Existing installations will be notified of major new releases of the 
system. A standard charge is made for each copy of the system sent out 
(this charge is currently not greater than 15 pounds Sterling and 
depends on the postal rate).  Please do not send money with the order 
for the system: an invoice will be sent when the system is dispached. 
 
    Requests for the system should be sent to 
 
                ALGOL68C Distribution,



                Computing Service, 
                Computer Laboratory, 
                University of Cambridge, 
                Corn Exchange Street, 
                CAMBRIDGE, CB2 3QG, 
                England. 
 
 
 
4. Documentation 
---------------- 
 
    The ALGOL68C language is described by "The ALGOL68C Reference 
Manual" by S.R. Bourne, A.D. Birrell, and I. Walker.  The manual is 
copyright; it may be obtained from 
 
                 The Computing Service Bookshop, 
                 Computer Laboratory, 
                 University of Cambridge, 
                 Corn Exchange Street, 
                 CAMBRIDGE, CB2 3QG, 
                 England. 
 
and costs 2 pounds (Sterling).  Bulk orders can be considered.  Section 
8.2 (on transput) is not yet complete but it will be forwarded to 
purchasers of the manual when it is available. 
 
    An introduction to ALGOL68C is being prepared. 
 
    A Users' Guide to running ALGOL68C programs on the Cambridge 370/165 
is in preparation.  It is suitable for modification by other 
installations for describing what JCL to use, etc. 
 
    This document is known as the 360/370 installation guide, and may be 
copied from the distribution tape. 
 
    An Implementors' Guide describing how to implement ALGOL68C on a new 
machine range is in preparation.  Two documents describing ZCODE are 
available from the distribution address given in 3 above - one of these 
describes ZCODE as it is currently ("old ZCODE"), the other gives a very 
brief description of the proposed new ZCODE. 
 
    The following documents are included on the distribution tape and 
are also supplied as printouts with the tape: 
 
    Character set, 
    Differences from ALGOL 68, 
    Features currently unimplemented, 
    Bugs known and bugs mended, 
    Changes from previous releases. 
 
    It is regretted that no estimates can be given for the availability 
of any of the above documentation that is in preparation. 
 
 
5. Tape Format 
-------------- 
 
    The following tape recording parameters are possible: 



 9 track, 800 bpi NRZI or 1600 bpi PE, unlabelled or IBM standard 
 labels; 
 
 7 track, 556 bpi NRZI or 800 bpi NRZI, odd parity, "data convert", 
 unlabelled or IBM standard labels.  (Data convert causes three (8 bit) 
 bytes to be written as four 6 bit characters on the tape.  If the 
 number of bytes written is not a multiple of three, the record is 
 padded with zeros to fill the last 6 bit character; note that it is not 
 padded to a multiple of three bytes.) 
 
    Files are recorded on the tape in fixed length blocked records with 
a logical record length of 80.  The blocksize (physical record length) 
may be specified by the recipient and it must be a multiple of 80 and 
not greater than 16320.  Carriage controls are not used. 
 
    The standard recording parameters for System/360 are: 
 
        9 track, 800 bpi NRZI, 
        3200 bytes maximum block size, 
        no labels. 
 
    The standard recording parameters for System/370 are: 
 
        9 track, 1600 bpi PE, 
        3200 bytes maximum block size, 
        no labels. 
 
    Please note that it is particularly inconvenient to write the 
ALGOL68C tapes with standard labels so they should only be requested if 
absolutely necessary. 
 
        Files on the tape are in one of three forms: 
 
    a) simple - the file consists of only one subfile.  One record of 
       the subfile occupies precisely one record of the file.  The file 
       may be copied by using a standard IBM utility (e.g. IEBGENER). 
 
    b) UPDTE format - there are a number of subfiles in the file. 
       One record of a subfile occupies precisely one record of the 
       file.  Documents are preceded by a record starting ./ this 
       being a control record for the IBM IEBUPDTE utility program. 
       IEBUPDTE may be used directly to make a partitioned dataset 
       from this file.  Sample JCL for doing this is included on the 
       tape. 
 
    c) packed format - there are normally a number of subfiles to 
       such a file.  The records of the file and the records of the 
       subfiles do not correspond.  A subfile starts with hexadecimal 
       01.  A string enclosed in double quotes follows, this string is 
       the subfile identification, and, for OS/360, is a ddname followed 
       by a parenthethised member name.  The string is followed by 
       hexadecimal 02 and this is followed by the text of the subfile. 
       The subfile is terminated by hexadecimal 03.  Records of the 
       subfile are separated by the character represented by hexadecimal 
       1E. 
 
       The object modules for the program to unpack (and pack) these 
       files are included on the tape. The subfile idf strings for 
       material on tapes distributed by Cambridge are of the form 
       "UNPACKED(membername)", and the membername will vary.



 
       The record lengths in the subfiles do not exceed 136. 
 
    The precise layout of the tape is described by comments at the start 
of the job that wrote the tape.  That job is file 3 on the tape and a 
printout accompanies the distribution tape. 
 
 
6. Character codes 
------------------ 
 
    Characters on the tape are in a extension of the EBCDIC code 
differing from that described in the IBM manual "System/370 Principles 
of Operation" (GA22-7000-3) in that 
 
     "ƒ" (opening square bracket) is represented by hexadecimal 42, 
     "„" (closing square bracket) is represented by hexadecimal 43, 
     "Ž" (logical or) is represented by hexadecimal 63, 
     "Û" (logical and) is represented by hexadecimal 64, 
     "Ü" (uparrow) is represented by hexadecimal 65, 
     "Ý" (backarrow) is represented by hexadecimal 66. 
 
(The compiler also accepts the following EBCDIC codes: 
 
    "ƒ" (opening square bracket) hexadecimal AD, 
    "„" (closing square bracket) hexadecimal BD.) 
 
    The characters "Ž", "Û", "Ü", and "Ý" are available for use as 
operators.  None of these characters need to be represented at an 
installation. 
 
    Similarly, square brackets need not be represented at an 
installation as round brackets are equally acceptable in every syntactic 
position except in row declarations.  If round brackets are to be used 
instead of square brackets, a row declaration should be preceded by the 
row-symbol, e.g. instead of "ƒ„AMODE a" use "ROW()AMODE a". 
 
    However, if square brackets are not available, care must be taken 
when transcribing material from the tape as square brackets are used as 
the standard sub- and bus-symbols. 
 
    The first file on the tape gives details of the character set, and a 
printout of this file is supplied with the distribution tape. 
 
 
7. Installing the ALGOL68C system from tape 
------------------------------------------- 
 
7.1 Installation 
 
    File 5 on the tape is a job to install the ALGOL68C system from the 
tape.  The following job should be run to copy files 5 and 6 to disc: 
 
    //ALGOL68 JOB (,),'JOB CARD TO SUIT INSTALLATION' 
    //* 
    //* COPY FB80 DATA SET 
    //* 
    //F PROC N=,                  DATA SET NAME 
    //       L=,                  TAPE FILE NUMBER 
    //       SER=<TAPE>,UNIT=TAPE<TRKS>, TAPE SERIAL AND UNIT NAME



    //       DEN=<DEN>,LAB=<LAB>, TAPE DENSITY AND LABEL TYPE 
    //       BLKSIZE=<BLK>,       TAPE BLOCKSIZE 
    //       TRAN='<TRAN>'        7TRACK RECORDING TECHNIQUE 
    // EXEC PGM=IEBGENER,REGION=80K 
    //SYSPRINT DD SYSOUT=A 
    //SYSIN DD DUMMY 
    //SYSUT1 DD UNIT=&UNIT,VOL=(,RETAIN,SER=&SER), 
    //          LABEL=(&L,&LAB),DISP=OLD,DSN=A68C&L, 
    //          DCB=(LRECL=80,BLKSIZE=&BLKSIZE,RECFM=FB,DEN=&DEN&TRAN) 
    //SYSUT2 DD UNIT=SYSDA, 
    //          DISP=(,KEEP),DSN=&N, 
    //          SPACE=(TRK,(1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=2480) 
    // PEND 
    //* 
    // EXEC F,L=5,N='AL68.D.JOB' 
    // EXEC F,L=6,N='AL68.D.JOB1' 
 
The disposition of SYSUT2 may need to be changed from KEEP to CATLG if 
this is a requirement in the receiving installation.  Almost certainly, 
the data set names 'AL68.D. ... ' will need changing to suit the 
installation's requirements.  The DCB characteristics may need changing 
for discs other than 3330s. 
 
    The job from file 5 (copied to AL68.D.JOB) contains comments 
describing in detail how to install the system; this description is 
reproduced here: 
 
//* 
//* 1. Make the job card suitable for your installation. 
//* 
//* 2.1 This job constructs the ALGOL68C system on the following data 
//*     sets: 
//*                A68LIB.OBJ   object module data set 
//*                A68LIB.MOD   load module data set 
//*                A68LIB.SYS   initialisation and library environments 
//*                A68LIB.PROCS catalogued procedures 
//*                A68LIB.TESTS tests 
//* 
//*     The blocksizes for these data sets are optimised for 3330 discs 
//*     and should be changed if other discs are used.  Similarly, 
//*     the space allocations will need changing for other discs. 
//*     These changes should be made in the first step, "X", of the 
//*     job. 
//* 
//* 2.2 If you wish to change the names of these data sets, change only 
//*     the dsnames in the first step, "X".  The other steps obtain 
//*     the dsnames by using JCL refer-back, e.g. DSNAME=*.X.OBJ . 
//*     The data sets are allocated as (NEW,PASS) in the first step 
//*     and are kept in the last step, "KEEP", only if the return codes 
//*     from the previously executed steps are 4 or less.  Thus, if 
//*     the job fails for some reason, correct the reason for the 
//*     failure, and run the complete job again. 
//* 
//* 2.3 If you wish to have the data sets catalogued, change the DISP 
//*     in the last step from (OLD,KEEP) to (OLD,CATLG). 
//* 
//* 2.4 If you already have an ALGOL68C system with data sets of 
//*     the same names as those used in the job, you should either 
//*     make a new system with different data set names (2.2 above) 
//*     or change the data set names in the first step to be



//*     the temporary data set names 
//* 
//*                 &&OBJ 
//*                 &&MOD 
//*                 &&SYS 
//*                 &&PROCS 
//*                 &&TESTS 
//* 
//*     and remove the CONDX parameter from the penultimate step, 
//*     "COPY".  This will cause the system to be constructed on the 
//*     temporary data sets, then to be copied (with the replace 
//*     option) to the existing data sets. Because the replace option 
//*     is used, the default names, e.g. A68C, Z370, will be replaced 
//*     by aliases describing the new system. Execution of the COPY 
//*     step will cause the last step, "KEEP", to be omitted, and so 
//*     the temporary data sets will be correctly deleted at the end of 
//*     the job. 
//* 
//*     N.B. Ensure that the existing data sets have sufficient space 
//*     and directory blocks to receive the new members.  See the first 
//*     step, "X", for estimates of requirements.  Note also that all 
//*     the data sets must exist before the job is run. 
//* 
//* 3.  The data set "S.FORTLIB" (see the JCL procedures) is not 
//*     distributed as it contains the proprietry FORTRAN routines used 
//*     for sin, cos, tan, arcsin, arccos, arctan, exp, sqrt.  It is up 
//*     to the installation to arrange linkage to a suitable set of 
//*     routines. 
//* 
//*     ALGOL68C versions of these routines are being developed and 
//*     will be distributed with future releases of the system. 
//* 
//* 4.  Stropping:  The standard job constructs an ALGOL68C system 
//*     that supports "case stropping" (that is, tags are written 
//*     with lower case letters and digits, and indicants are written 
//*     with upper case letters).  The alternative, "prefix-quote 
//*     stropping", has tags written with upper or lower case letters 
//*     or digits and indicants must be immediately preceded by a 
//*     single quote (apostrophe) and are written in upper case 
//*     letters.  TO construct a system for prefix-quote stropping, 
//*     change the default value for the "Q" symbolic parameter in 
//*     the "P" procedure (unpack to pds) from null to Q (i.e. instead 
//*     of "Q=,", use "Q=Q,") and in the step LKA68C to link-edit the 
//*     compiler, change "INCLUDE(EBCDIC)" to "INCLUDE(QEBCDIC)". 
 
7.2 Other files 
 
    The job from file 6 (copied to AL68.D.JOB1) may be edited to extract 
other material from the tape as required. 
 
 
8. Catalogued Procedures 
------------------------ 
 
    The job to construct the ALGOL68C system will have built the data 
set A68LIB.PROCS.  This contains JCL procedures suitable for 
SYS1.PROCLIB (or whatever happens to be the installation's catalogued 
procedure data set).  Of course, the procedures may also be used 'in 
stream' if a // PEND card is added to the end of each procedure. 



     The JCL procedures supplied with the library are those used on the 
370/165 at Cambridge, and may need to be changed for other 
installations. Each procedure contains one or more steps, of which there 
are four types, i.e. compile, translate, link edit and go. There is 
never any need for users to separate the compile and translate steps. 
 
    Because of the difficulties involved in overriding JCL cards, a 
large number of symbolic parameters are used in the procedures so that 
overriding JCL cards should not normally be necessary. 
 
 
 
8.1 Compile step: 
 
    The symbolic parameter &SYSLIB, defaulting to A68LIB.MOD, specifies 
the load module library to be used for loading modules for execution. 
 
    The dataset refered to by DDname INIT is defined as a PDS member 
with name given by &IDSN(INIT&SYSI), which defaults to A68LIB.SYS(INIT). 
This dataset contains definitions of the target machine, the default 
environment, and the strops of reserved words in ALGOL68C source 
programs. The name of this dataset will normally not be changed by 
users, but its default value can be changed if a new version of the 
dataset is to be used. 
 
    The dataset referred to by DDname SYSENV contains details of the 
library environments. It is a PDS with default name A68LIB.SYS. Again, 
this will not usually need to be changed by users. 
 
    Additional environments can be supplied by the user including DD 
cards in the JCL, e.g. 
 
          //A68.MYENV DD DSN=MYFILE.ENVIRON,DISP=SHR 
 
would be picked up by an ALGOL68C using-directive such as 
 
          USING FRED FROM "MYENV" 
 
An environment dataset defined in this way can be a PDS containing one 
environment in each member. The using-directive would then take the form 
 
          USING FRED FROM "MYENV(membername)" 
 
    The dataset referred to by DDNAME XREF receives cross reference 
information if the CROSSREF keyword has been included in the PARM field 
of the EXEC statement. This information can be processed by a seperate 
program (see 8.5 below) to produce an identifier cross reference 
listing. 
 
    The dataset referred to by DDname CODE receives the ZCODE output 
from the compiler. The block size of 2498 is a suitable value for 3330s 
but should be changed for other devices. 
 
    The dataset referred to by DDname ENVOUT receives the environment 
data from 'handles' defined in the source program. It must be defined in 
the JCL as a physical sequential dataset, and, for programs without any 
handle in their source text, will most usefully be DSN=NULLFILE (i.e. DD 
DUMMY) or otherwise a member of a PDS. Note that its disposition is OLD. 
 
    The source program is read from the dataset defined by the SYSIN DD



card and compiling information and diagnostics is written to the dataset 
defined by the SYSPRINT DD card. 
 
 
8.2 Translate step: 
 
    The STEPLIB DD card is as for the compile step. 
 
    The dataset referred to by the SYSIN DD card contains the ZCODE 
output from the compile step. In the procedures, this is always the 
temporary file &ZCODE. 
 
    The object module is written to the dataset defined by the SYSGO DD 
card which must have DCB parameters acceptable to the linkage editor. 
 
    Translation information and diagnostics are written to the dataset 
defined by the SYSPRINT DD card. 
 
 
8.3 Link edit step: 
 
    The dataset referred to by DDname SYSLIB defines a set of libraries 
containing modules which may be called by the ALGOL68C program, 
including the ALGOL68C runtime system.  The first library is defined by 
the symbolic parameter &SYSLIB which also defines the STEPLIB of the 
compile and translate steps, and is described above. The second library 
is S.FORTLIB, which contains modules for computing sine, cosine, 
exponential, etc. It is suggested that IBM FORTRAN double precision 
routines are used with an interface module, a suitable example of which 
is to be found on the ALGOL68C distribution tape. Eventually suitable 
routines will be provided as part of the ALGOL68C system. 
 
    If the module being linked had a named parent module, then that 
module will be included from the user's own library, which must be 
concatenated to the system libraries. 
 
    SYSLMOD, SYSPRINT and SYSUT1 are the same as for any run of the 
linkage editor, so should require no explanation. 
 
    The output from the translation step is contained in the dataset 
referred to by the SYSLIN DD card. If a SYSIN DD card is supplied by the 
user then the dataset it refers to will be concatenated to that referred 
to by the SYSLIN DD card. This can be used to provide linkage editor 
control cards and thus pick up routines from specified libraries rather 
than the defaults. 
 
 
8.4 Go step: 
 
    This is very simple. The only DD card supplied in the procedure is 
SYSPRINT, to which run-time error messages are written; other datasets 
may be supplied from the calling job stream. 
 
 
8.5 Cross reference program: 
 
    The information written by the compiler to the dataset referred to 
by the DDNAME XREF can be processed to produce an identifier cross 
reference listing. The JCL procedure A68XREF is provided to run this 
program. Its parameters are similar to those of the compiler procedures.



The cross reference information from the compiler must be supplied on 
DDNAME FROM. The formatted listing is written to the dataset referred to 
by the DDNAME TO, and any diagnostics are sent to the dataset referred 
to by DDNAME SYSPRINT. For a normal run, no parameters or overriding DD 
cards need be specified. 
 
 
9. Testing the system 
--------------------- 
 
    The data set A68LIB.TESTS contains a number of tests.  The members 
JOB1, JOB2, JOB3, JOB4 are jobs to run the tests.  The job cards of 
these jobs will need modifying to suit the installation.  On a 370/165, 
a cpu time of 75 seconds is sufficient to run each of the jobs.  The 
results of the jobs may be compared with members RESULTS1, RESULTS2, 
RESULTS3, RESULTS4. 
 
 
10. Writing ALGOL68C programs 
----------------------------- 
 
    This will be covered more fully by the Users' Guide (in 
preparation). 
 
    Programs may be written using either 'case stropping' or 
'prefix-quote stropping' depending on how the system has been 
constructed (7 above). 
 
    With case stropping, indicants and reserved words are written in 
upper case, and tags are written in lower case, e.g. BEGIN MODE FRED = 
STRUCT(INT a); REAL b. 
 
    With prefix quote stropping, indicants and reserved words are 
written in upper case and are preceded by a single quote, tags are 
written in either case. For example 'BEGIN 'MODE 'FRED = 
'STRUCT('INT A); 'REAL B. 
 
    Note that if prefix quote stropping is used, the case of a letter is 
significant (but this is likely to change to provide compatibility with 
dot stropping). 
 
    In both cases, only letters are allowed in indicants. 
 
    It is intended that prefix-quote stropping should be superceded by 
(prefix) point stropping (which is identical to prefix-quote stropping 
except that a point is used instead of a single quote). For example, 
.BEGIN .MODE .FRED = .STRUCT(.INT A); .REAL B .  This stropping is the 
standard accepted by IFIP WG 2.1.  With point stropping, the case of a 
letter is not significant. 
 
    The compiler reads a program heading from the parameter channel. The 
program heading on the parameter channel must be preceded by a single 
"/" which is used to separate run time options from parameter channel 
input.  For example 
 
    // EXEC A68CLG,PARMC='/XREF USING USER FROM "SYSENV(REAL)"' 
 
(No run-time options are implemented yet.) 
 
    The program heading may also precede the program which is read from



SYSIN. 
 
    The program heading may consist of any combination of 
 
    USING directive: this specifies to the compiler how the program 
                     segmentation is to be used (see 11 below). 
 
        example:  USING FRED FROM "MYENV(FRED1)" 
 
    TRACE directive: this is used for debugging the compiler. An integer 
                     must follow specifying the level of compiler trace. 
 
        example:  TRACE 63 
 
    KEY directive:   This is not useful at present. It must be followed 
                     by an integer. 
 
        example:  KEY 4 
 
    XREF directive:  This specifies that the compiler is to produce 
                     output on the data set specified by the XREF DD 
                     card for later processing by the crossreference 
                     program. 
 
        examples: XREF 
                  CROSSREF 
 
    NAME directive:  This allows a name to be given to the control 
                     section (CSECT) produced by the translator.  It 
                     also causes an external reference to be constructed 
                     when any daughter module is translated.  The name 
                     is specified as a string of up to eight characters 
                     that must form a legal OS CSECT name. 
 
        example:  NAME "MODULE1" 
 
    TITLE directive: This causes the title to be included as part of the 
                     compiler output to SYSPRINT to enable multiple 
                     compilations in the same job to be distinguished. 
 
        example:  TITLE this is a title it is syntactically a tag 
 
    STRICT directive: The intention of this is to give a warning message 
                     if any extensions from ALGOL 68 are used. 
 
        example:  STRICT 
 
    The words USING, FROM, TRACE, KEY, XREF, CROSSREF, NAME, TITLE and 
STRICT must be stropped. 
 
 
    The program consists of a serial clause. 
 
 
11. Separate compilation 
------------------------ 
 
    The language mechanism for supporting separate compilation is 
described in the ALGOL68C Reference Manual section 5.5.5 ('handles'). It 
allows a program to be segmented in a tree-structured manner.  a



segmented program must be compiled from the root first (in order that 
the environments are available in a tree-structured manner).  The 
environment produced by compiling a module which includes a 'handle' is 
written to the data set described by the DD card with the DDNAME ENVOUT. 
This data set is most usefully a member of a partitioned data set so 
that the perhaps many environments for a large program can be 
conveniently stored together. 
 
    When an inner (in the sense of block structuring) module is 
compiled, all the environments for the more outer modules must be 
available.  The most immediately outer environment is specified in a 
using directive when the current module is compiled.  The more outer 
modules are accessed by the previous using directives that were "copied" 
to the environment files when those modules were compiled. Thus the same 
input DDnames must be available for all compilations of the various 
segments of the program. 
 
    A USING directive has the following form: 
 
        USING handle FROM string 
 
where handle is the 'handle identification' (an indicant) and string is 
a string denotation.  The string is the idf used for opening the file 
containing the previous environment. 
 
    This sounds very complicated, but is in fact very simple, especially 
when a pds is used for saving environments - see the example in 13 
below. 
 
 
12. Overlays 
------------ 
 
        Separately compiled segments may be overlaid using the 
facilities of OS/360 and its linkage editor.  However, overlaying must 
be done with some care as it is possible for objects in the store that 
is being overlaid to be pointed at from somewhere else in the store.  It 
is difficult to describe formally when this condition could arise as it 
is highly dependent on the implementation of copying of items (which 
could change from one version of the compiler to another).  In general, 
it will not be safe if 
 
        a) the object is yielded by the overlayable segment or the 
           object is assigned within the overlayable segment to a name 
           having a scope greater than that segment, 
 
   and  b) the object occurs within an overlayable segment and the 
           object is a STRING denotation or a routine text, or if it is 
           a row- or a structure-display, or it derives from one of 
           these (e.g. by ascription), 
 
   or   c) control is transferred between overlayable segments other 
           than by elaborating ENVIRON (e.g. a segment is entered by 
           elaborating ENVIRON, but return from a segment does not). 
 
Examples: 
 
        1) containing assignments: 
 
        PROC INT p;



        ENVIRON ONE; 
 
        when the segment associated with the handle contains 
 
        p := INT:( ... ); 
 
        such a segment cannot be safely overlaid within the scope of p. 
 
        2) yielding values: 
 
        PROC INT p = ENVIRON TWO; 
 
        The segment associated with the handle cannot be safely overlaid 
        within the scope of p. 
 
        Note that in 
 
        PROC p = INT: ENVIRON THREE; 
 
        the segment associated with the handle yields an INT value and, 
        other things being equal, may be overlaid safely within the 
        scope of p. 
 
        It is intended that, in future, overlays will be implemented 
correctly or that a message will be issued when any unsafe condition 
arises. 
 
 
13. Example job using separate compilation and overlays 
------------------------------------------------------- 
 
 
//* 
//* PREALLOCATE DATA SETS 
//* 
// EXEC PGM=IEFBR14,REGION=8K,TIME=(,1) 
//A DD DSN=ABCD.ENV,DISP=(,KEEP),UNIT=SYSDA,SPACE=(TRK,(1,1,1)), 
//      DCB=RECFM=VB 
//B DD DSN=ABCD.LIB,DISP=(,KEEP),UNIT=SYSDA,SPACE=(TRK,(1,1,1)) 
//* 
//* ROOT MODULE 
//* 
// EXEC A68CL, 
// ENVOUT='ABCD.ENV(A)',           ENVIRONMENT GENERATED 
// DISPL=OLD,NAMEL='ABCD.LIB(A)'   LOAD MODULE 
//A68.SYSIN DD * 
TITLE root segment  #title for compiler diagnostics# 
NAME "A"            #CSECT name for segment# 
print("root"); 
ENVIRON ONE; 
ENVIRON TWO 
//* 
//* FIRST BRANCH 
//* 
// EXEC A68CL, 
// ENVOUT='ABCD.ENV(B)',           ENVIRONMENT GENERATED 
// DISPL=OLD,NAMEL='ABCD.LIB(B)'   LOAD MODULE 
//A68.ENVIN DD DSN=ABCD.ENV,DISP=SHR  TO ACCESS PREVIOUS ENVIRONMENT 
//A68.SYSIN DD * 
TITLE branch 1 NAME "B" USING ONE FROM "ENVIN(A)"



print("b"); 
STRING s = ENVIRON THREE; 
print(s) 
//* 
//* TWIG 
//* 
// EXEC A68CL, 
// DISPL=OLD,NAMEL='ABCD.LIB(C)' 
//A68.ENVIN DD DSN=ABCD.ENV,DISP=SHR 
//A68.SYSIN DD * 
USING THREE FROM "ENVIN(B)" 
" c " 
//* 
//* SECOND BRANCH 
//* 
// EXEC A68CL, 
// DISPL=OLD,NAMEL='ABCD.LIB(D)', 
// PARMC='/USING TWO FROM "ENVIN(A)"' 
//A68.ENVIN DD DSN=ABCD.ENV,DISP=SHR 
//A68.SYSIN DD * 
print("d") 
//* 
//* LKED (OVERLAYING) AND EXECUTE 
//* 
// EXEC A68LG,ATTL=OVLY 
//LKED.SYSLIB DD 
//            DD 
//            DD DSN=ABCD.LIB,DISP=SHR 
//LKED.SYSIN DD * 
 OVERLAY ONE 
 INCLUDE SYSLIB(B,C) 
 OVERLAY ONE 
 INCLUDE SYSLIB(D)  NOTE ROOT IS AUTOMATICALLY LOADED 
 
 
14. Error messages 
------------------ 
 
    The error messages from the compiler should be self explanatory, at 
least with the help of the ALGOL68C Reference Manual to explain 
technical terms.  Occurrences of "System error" and "Consult expert" 
messages should be reported to the ALGOL68C maintenance group (see 3 
above). 
 
    Error messages from the translator should not occur frequently; the 
most likely messages are "program too large", or "segment exceeds 12k" 
in which case the program should be further segmented (The translator 
will not produce an object module occupying more than 12k because only 3 
base registers are used.)  "System error" messages from the translator 
may also occur, please report as above. 
 
    The messages from the linkage editor are described by IBM. 
 
    The run-time diagnostics need considerable improvement - this will 
happen in due course.  Messages produced at run time include: 
 
    "no storage for generator"  a heap or local generator was elaborated 
                and insufficient storage was available.  Increase the 
                region size.  Note that the 'static' stack size is not 
                checked so that the static and dynamic stacks (or the



                heap) may clash causing miscellaneous errors (but 
                usually abends 0C4, 0C5 or 0C1). 
 
                Note that, on the 360/370, the dynamic stack and the 
                heap are allocated from the same area of storage (the 
                high address end of the region).  Mixed use of the 
                heap and the dynamic stack can prevent storage on 
                the dynamic stack from being recovered.  The heap is 
                used for all HEAP generators and for dynamically 
                constructed strings (strictly, for the characters 
                contained within the string) and for OS data control 
                blocks.  The dynamic stack is used for array elements, 
                and for explicit LOC generators (but this does not 
                include sample-generators).  Thus 'ƒ1:4„INT a' will 
                cause the elements of 'a' to be placed on the dynamic 
                stack, 'REF INT b = LOC INT' will cause 'b' to be 
                on the dynamic stack, but 'LOC INT c' will cause 'c' to 
                be on the static stack. 
 
                The following program will cause the dynamic stack 
                allocated for the elements of 'a' not to be recovered: 
 
                    BEGIN 
                       PROC p = VOID: BEGIN ƒ1:5„INT a; q END; 
                       PROC q = VOID: BEGIN HEAP INT b; SKIP END; 
                       p 
                    END 
 
    "file ended" this message is output by the default file mended 
                routine before it terminates the program.  The user has 
                attempted to read past the last character of the file. 
                Either do not read too far, or substitute a new file 
                mended routine.  N.B. a call of 'file ended' before 
                reading will not normally be useful as the file is not 
                ended until the user reads past the last line in the 
                file.  A useful technique is to assign a routine 
                delivering false and to check for file ended immediately 
                after reading, e.g. 
 
                   on file end(file, (REF FILE f)BOOL: FALSE); 
 
                           . . . 
 
                   read(c); IF NOT file ended(file) 
                            THEN  . . . 
 
                Alternatively, although perhaps less elegantly, a jump 
                from the file mended routine may be made, e.g. 
 
                   on file end(file, 
                               (REF FILE f)BOOL: (GOTO endfile; SKIP)); 
 
                           . . . 
 
                   read(c) 
 
                           . . . 
 
                   endfile: . . . 



    "integer out of range for ELEM ... "  ELEM for string, bits, or 
                bytes has been called and the 'index' integer is out of 
                range, i.e. zero or negative, or too large. 
 
    "obeying faulty program" occurs if the part of a program that caused 
                a compiler error message is elaborated. 
 
    Other runtime error messages produced by the library should be 
self-explanatory.  The usual ABENDs may of course occur.  In some future 
release, these will be trapped with STAE and SPIE macros to produce a 
more meaningful diagnostic. 
 


