
 SSSSSSSSSS PPPPPPPPPPP AAAAAAAAAA SSSSSSSSSS MM MM
 SSSSSSSSSS PPPPPPPPPPP AAAAAAAAAA SSSSSSSSSS MM MM
 SSSSSSSSSS PPPPPPPPPPP AAAAAAAAAA SSSSSSSSSS MM MM
 SSSSSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSSSSS MMM MMM
 SSSSSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSSSSS MMM MMM
 SSSSSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSSSSS MMM MMM
 SS SS PP PP AA AA SS SS MMMM MMMM
 SS SS PP PP AA AA SS SS MMMM MMMM
 SS SS PP PP AA AA SS SS MMMM MMMM
 SS PP PP AA AA SS MM MM MM MM
 SS PP PP AA AA SS MM MM MM MM
 SS PP PP AA AA SS MM MM MM MM
 SSS PP PP AA AA SSS MM MMMM MM
 SSS PP PP AA AA SSS MM MMMM MM
 SSS PP PP AA AA SSS MM MMMM MM
 SSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM MM
 SSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM MM
 SSSSSSSSS PPPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM MM
 SSSSSSSSS PPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM
 SSSSSSSSS PPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM
 SSSSSSSSS PPPPPPPPPPP AAAAAAAAAAAA SSSSSSSSS MM MM
 SSS PP AA AA SSS MM MM
 SSS PP AA AA SSS MM MM
 SSS PP AA AA SSS MM MM
 SS PP AA AA SS MM MM
 SS PP AA AA SS MM MM
 SS PP AA AA SS MM MM
 SS SS PP AA AA SS SS MM MM
 SS SS PP AA AA SS SS MM MM
 SS SS PP AA AA SS SS MM MM
 SSSSSSSSSSSS PP AA AA SSSSSSSSSSSS MM MM
 SSSSSSSSSSSS PP AA AA SSSSSSSSSSSS MM MM
 SSSSSSSSSSSS PP AA AA SSSSSSSSSSSS MM MM
 SSSSSSSSSS PP AA AA SSSSSSSSSS MM MM
 SSSSSSSSSS PP AA AA SSSSSSSSSS MM MM
 SSSSSSSSSS PP AA AA SSSSSSSSSS MM MM

 VERSION 5.0
 AUGUST, 1977

 UU UU SSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRR
 UU UU SSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRR
 UU UU SSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRR
 UU UU SSSSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRRR
 UU UU SSSSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRRR
 UU UU SSSSSSSSSSSS EEEEEEEEEEEE RRRRRRRRRRRR
 UU UU SS SS EE RR RR
 UU UU SS SS EE RR RR
 UU UU SS SS EE RR RR
 UU UU SS EE RR RR
 UU UU SS EE RR RR
 UU UU SS EE RR RR
 UU UU SSS EE RR RR
 UU UU SSS EE RR RR
 UU UU SSS EE RR RR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRRR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRRR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRRR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRR
 UU UU SSSSSSSSS EEEEEEEE RRRRRRRRRRR
 UU UU SSS EE RR RR
 UU UU SSS EE RR RR
 UU UU SSS EE RR RR
 UU UU SS EE RR RR
 UU UU SS EE RR RR
 UU UU SS EE RR RR
 UU UU SS SS EE RR RR
 UU UU SS SS EE RR RR
 UU UU SS SS EE RR RR
 UUUUUUUUUUUU SSSSSSSSSSSS EEEEEEEEEEEE RR RR
 UUUUUUUUUUUU SSSSSSSSSSSS EEEEEEEEEEEE RR RR
 UUUUUUUUUUUU SSSSSSSSSSSS EEEEEEEEEEEE RR RR
 UUUUUUUUUU SSSSSSSSSS EEEEEEEEEEEE RR RR
 UUUUUUUUUU SSSSSSSSSS EEEEEEEEEEEE RR RR
 UUUUUUUUUU SSSSSSSSSS EEEEEEEEEEEE RR RR

 GGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGGGG UU UU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG UU UU II DD DD EE
 GG UU UU II DD DD EE
 GG UU UU II DD DD EE
 GG UU UU II DD DD EE
 GG UU UU II DD DD EE
 GG UU UU II DD DD EE

 GG UU UU II DD DD EEEEEEEE
 GG UU UU II DD DD EEEEEEEE
 GG UU UU II DD DD EEEEEEEE
 GG GGGGG UU UU II DD DD EEEEEEEE
 GG GGGGG UU UU II DD DD EEEEEEEE
 GG GGGGG UU UU II DD DD EEEEEEEE
 GG GGGGG UU UU II DD DD EE
 GG GGGGG UU UU II DD DD EE
 GG GGGGG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GG GG UU UU II DD DD EE
 GGGGGGGGGGGG UUUUUUUUUUUU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGGGG UUUUUUUUUUUU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGGGG UUUUUUUUUUUU IIIIIIIIII DDDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGG UUUUUUUUUU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGG UUUUUUUUUU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE
 GGGGGGGGGG UUUUUUUUUU IIIIIIIIII DDDDDDDDD EEEEEEEEEEEE

 SLAC COMPUTING SERVICES
 STANFORD CENTER FOR INFORMATION PROCESSING
 STANFORD LINEAR ACCELERATOR CENTER
 STANFORD, CALIFORNIA 94305

 User Note 77

 Title: SPASM User Guide, Version 5.0

 Date: August 15, 1977

 Authors: John Ehrman
 Paul Dantzig
 Greg Mushial
 Mary Artibee

 Abstract: This User Note describes Version 5.0
 of SPASM, a fast single pass
 assembler.

 Published by: SLAC Computing Services of the
 Stanford Center for Information
 Processing (SCSCIP), located at
 Stanford Linear Accelerator Center
 (SLAC), Menlo Park, California.

 TABLE OF CONTENTS

 I. General Information.. 1

 1.0 Control Cards... 2

 1.1 Parameters Allowed at SPASM System Invocation Time Only... 3
 1.2 Parameters Allowed at Invocation and Assembly Times....... 4
 1.3 Parameters Allowed at Invocation, Assembly, and Execution. 4
 1.4 Option-Dependent Features................................. 6

 2.0 SPASM Features.. 7

 2.1 Pre-Defined Macro Instructions............................ 7
 2.1.1 PRINTOUT and PRINTVAL (Print Memory Data, Registers,
 Branch Trace Table, or Terminate Execution)........... 8
 2.1.2 PRINTLIN (Print a Line of EBCDIC Characters).......... 9
 2.1.3 READCARD (Read a Card)................................ 10
 2.1.4 READFILE (Read a Card from an External Device)........ 11
 2.1.5 DUMPOUT (Dump Out an Area of Memory).................. 11
 2.1.6 INSTRACE (Trace Instruction Execution)................ 11
 2.1.7 MONITOR (Monitor References to an Area of Memory)..... 12
 2.1.8 SPASMINT (Begin Interpretive Execution)............... 13
 2.1.9 SPASMFRE (Begin Free-Running Execution)............... 13
 2.1.10 CONVERT.. 14
 2.2 Assembler Control Options (AOPTIONS Statement)............ 14
 2.3 Extended Branch Mnemonics................................. 15
 2.4 Opcode Definition Modification............................ 15
 2.5 Text Deferring Feature (Internal Text Files).............. 16
 2.6 Assembly Listing Features................................. 18
 2.6.1 Forward References and Unknown Values................. 18
 2.6.2 Symbol Table.. 18
 2.6.3 USING Maps.. 19
 2.6.4 Fixup Table... 20
 2.6.5 Type Checking... 20

 3.0 Execution-Time Conventions.................................. 21

 3.1 Conventions for Interpretive Mode......................... 21
 3.1.1 Limitations... 21
 3.1.2 Additions... 21
 3.1.3 Initial Register Settings............................. 22
 3.1.4 Error and Interruption Handling by the Interpreter.... 22
 3.2 Conventions for Free-Run Mode............................. 23
 3.2.1 Register Settings..................................... 23
 3.2.2 Error and Interruption Handling in Free-Running Code.. 23

 i

 TABLE OF CONTENTS

 II. Reference Information....................................... 24

 4.0 Things SPASM Does Differently from IBM's Assemblers......... 24

 4.1 USING Registers... 24
 4.2 USINGs with Implied Addresses............................. 24
 4.3 DROP Extension.. 24
 4.4 Code Overlays... 24
 4.5 Alternate Statement Format................................ 25
 4.6 Resumed CSECTs.. 25
 4.7 Expressions... 25
 4.8 Continued Comment Statements.............................. 26
 4.9 Blank Control Section Name................................ 26
 4.10 Code From Pre-Defined Macro Instructions................. 26
 4.11 Macro Language Differences............................... 27

 5.0 Things SPASM Doesn't Do that IBM's Assemblers Do............ 28

 6.0 Things SPASM Does that IBM's Assemblers Don't (or Didn't)... 29

 6.1 Self-Defining Terms....................................... 29
 6.2 DC and DS Statements...................................... 29
 6.3 ICTL and ISEQ Statements.................................. 29
 6.4 Assembler Debugging Instructions.......................... 30
 6.5 Length Attributes of Self-Defining Terms and Location
 Counter... 30
 6.6 Macro Language Extensions................................. 30
 6.7 Extended EQU Syntax....................................... 31
 6.8 PRINT INNER and PRINT DATA................................ 32
 6.9 MALIGN ... 32
 6.10 Literals... 32
 6.11 LTORG Statement.. 33
 6.12 S-Type Address Constants................................. 33
 6.13 END Statement Operands................................... 33

 III. SPASM Diagnostic and Error Messages........................ 34

 7.0 How to Interpret the Messages............................... 34

 7.1 Diagnostic and Error Messages............................. 37
 7.2 SPASM Abnormal-End Codes.................................. 48

 ii

 User Note 77. SPASM User Guide, Version 5.0 Page 1
 --

 I. General Information

 SPASM is a fast Single Pass ASseMbler (whence the acronym SPASM)
 designed to accept a subset and a superset of the IBM System/370
 Assembler Language. The generated code is assembled directly into
 core memory, and may be executed or interpreted there. Since the
 SPASM system is designed with the beginning machine language
 programmer in mind, it is expected that interpretation will be the
 normal mode of execution. Facilities are provided to help the
 beginner over some of the pitfalls inherent in the language,
 sometimes at the cost of minor restrictions on the source language.
 Like many student-oriented systems, SPASM provides a batching
 capability which removes the necessity for returning to the
 operating system between jobs that typically are at most a few
 seconds in duration.

 The SPASM user is expected to have access to the IBM System/360 or
 System/370 Principles of Operation manual as a description of the
 machine code, and the IBM Operating System/360 or OS/VS and DOS/VS
 Assembler Language manual as a description of the base language.
 This User Guide is not meant to be a substitute for either of these
 manuals, but a supplement.

 Certain SPASM features may not be available at a particular
 installation. Each center can choose to include or exclude these
 features when generating its version of SPASM. Section 1.4
 describes the behavior of option-dependent features of SPASM.

 Comments, suggestions, reports of errors, and technical inquiries
 regarding SPASM should be directed to:

 John R. Ehrman
 SCS-SCIP (Mail Bin 97)
 Stanford Linear Accelerator Center
 P. O. Box 4349
 Stanford, California 94305

 User Note 77. SPASM User Guide, Version 5.0 Page 2
 --

 1.0 Control Cards

 The operating system control cards necessary to use the SPASM system
 are described below. Each installation may modify the control cards
 necessary for SPASM; in which case, a local supplement concerning

 control cards should be published.

 For DOS:

 // JOB <jobname> <local account information>
 // EXEC SPASM
 =JOB (username, etc.)
 =SPASM parameters
 - - - source program - - -
 =GO parameters (if execution desired)
 - - - optional data cards if read by program - - -
 =SPASM parameters
 - - - another source program - - -
 =GO parameters
 - - - more assemblies - - -
 /*
 /&

 For OS:

 //jobname JOB (accounting information),'username'
 // EXEC SPASM
 //SYSIN DD *
 =JOB (username, etc.)
 =SPASM parameters
 - - - source program - - -
 =GO parameters (if execution desired)
 - - - optional data cards if read by program - - -
 =SPASM parameters
 - - - another source program - - -
 =GO parameters
 - - - more assemblies - - -
 /*

 There are three JCL (Job Control Language) cards needed: JOB, EXEC,
 and SYSIN DD (under OS). The "/*" card is the usual deck delimiter.
 Three control cards are recognized by the SPASM System Executive
 (SEX):

 =JOB specifies accounting information
 =SPASM specifies parameters for assembly and execution
 =GO specifies parameters for execution

 User Note 77. SPASM User Guide, Version 5.0 Page 3
 --

 These cards invoke the SPASM assembler and interpreter so that it is
 possible for a sequence of jobs to run in one batch, rather than
 submitting each as a separate job to the operating system. The "="
 must appear in column 1. The control word (JOB, SPASM or GO) must
 appear in columns 2 through 71, inclusive. (Cards with "=" in
 column 1 but no control word are treated as logical end-of-file
 markers.) A blank must separate the control word from any following
 information on the card. Other information on the card may not
 contain embedded blanks.

 Parameters are keyword or non-keyword. Keyword parameters consist
 of a keyword followed by an equal sign and a numeric quantity.
 Non-keyword parameters consist of 1 to 4 letters (2 to 5, if
 preceded by "N" indicating negation of the option requested by the
 parameter). Non-keyword parameters may be abbreviated by the
 shortest sensible string of letters, providing there is no
 ambiguity. In the case of ambiguity, SPASM simply uses the first
 parameter providing a match.

 1.1 Parameters Allowed at SPASM System Invocation Time Only

 These parameters are specified in the PARM string passed to SPASM by
 the Operating System. Normally the user will never have to specify

 these.

 ACCT Indicates that accounting should be performed (not available
 in this version of SPASM).

 DBUG Indicates that various system debugging options are to be
 permitted (overrides the OVLY parameter). DBUG is the
 default.

 OVLY Indicates that the work and save areas of the various
 internal routines are to be overlaid wherever possible in
 order to save space (not used in this version of SPASM).

 SIZE= Indicates the number of 1K units of core space to be acquired
 from the Operating System for use by the assembler and
 interpreter. 5K is always needed for assembler pointers and
 work areas, in addition to the space requested for individual
 assemblies. If SIZE=9999 is specified, SPASM will request as
 much space as is available (up to 4 million bytes). SIZE=20
 is the default.

 XMAC Indicates that a search is to be made for undefined opcodes
 in external macro libraries. XMAC is the default.

 User Note 77. SPASM User Guide, Version 5.0 Page 4
 --

 1.2 Parameters Allowed at Invocation and Assembly Times

 ADMP Dump assembled program after assembly complete. NADMP is the
 default.

 ERR= Indicates minimum severity code required for an error message
 to be printed. ERR=0 is the default.

 FIX List machine instruction and address constant fixups. FIX is
 the default.

 GO Execute program unless suppressed by errors. GO is the
 default.

 PRNT Print source listing. PRNT is the default.

 SUMP Print Short (tabular) USING Map. SUMP is the default.

 SYM List Symbol Table. SYM is the default.

 TYPE Perform instruction-operand type checking during assembly.
 TYPE is the default.

 UMAP Print linear USING Map. UMAP is the default.

 XPRT List source code of system macros brought from external macro
 libraries. NXPRT is the default.

 XREF Provide Symbol Cross-Reference Table. XREF is the default.
 (XREF requires that SYM be specified, see below.)

 1.3 Parameters Allowed at Invocation, Assembly, and Execution

 BTRC Print Branch Trace Table at end of interpretation. BTRC is
 the default.

 COND= Specifies the minimum assembler error severity code required
 to suppress execution. COND=6 is the default.

 DUMP Dump program area after execution is complete. DUMP is the
 default.

 ECOL Is the ecology option. It replaces page ejects with triple
 spacing, triple with double spacing, and other spacing
 (except for "+") with single spacing. ECOL is the default.

 INTP Specifies execution should begin in interpretive mode (NINTP
 specifies free-run mode). (Execution may be changed from
 interpretive to free-running and back through the use of the
 SPASMFRE and SPASMINT macro instructions.) INTP is the
 default.

 User Note 77. SPASM User Guide, Version 5.0 Page 5
 --

 LNPP= Indicates number of lines per page. LNPP=60 is the default.

 MINT= Specifies the maximum number of execution-time program
 interrupts allowed before execution should be abandoned.
 MINT=50 is the default.

 MXLN= Indicates maximum number of execution-time print lines.
 MXLN=2000 is the default.

 TIME= Indicates maximum execution time in seconds. TIME=3 is the
 default. For OS, the time is CPU (task) time; for DOS, the
 time is elapsed (clock) time.

 The following is a sample SPASM "job".

 =JOB (SMEDLEY)
 =SPASM ECOL,COND=1,XPRT
 - - Assembler Language program - -
 =GO INTP,MINT=8
 - - - data deck - - -

 In the following table the various SPASM parameters are grouped as
 keyword or non-keyword. Each parameter is listed with its default
 (if applicable) and the times when it may be specified (where I =
 Invocation time, A = Assembly time, and E = Execution time).

 Parameter Default Specification Times

 Keyword COND= 6 I,A,E
 ERR= 0 I,A
 LNPP= 60 I,A,E
 MINT= 50 I,A,E
 MXLN= 2000 I,A,E
 SIZE= 20 I
 TIME= 3 I,A,E

 Non-Keyword ACCT I
 ADMP NADMP I,A
 BTRC BTRC I,A,E
 DBUG DBUG I
 DUMP DUMP I,A,E
 ECOL ECOL I,A,E
 FIX FIX I,A
 GO GO I,A
 INTP INTP I,A,E
 OVLY I
 PRNT PRNT I,A
 SUMP SUMP I,A
 SYM SYM I,A
 TYPE TYPE I,A
 UMAP UMAP I,A
 XMAC XMAC I
 XPRT NXPRT I,A
 XREF NXREF I,A

 User Note 77. SPASM User Guide, Version 5.0 Page 6
 --

 1.4 Option-Dependent Features

 If an optional feature is not generated, the action taken by SPASM
 at invocation of a non-supported option is:

 1. If READFILE is not in the system, an error message is issued.

 2. If System/370 Instruction Support is not in the system, an error
 message is issued if the use of any System/370 instruction is
 attempted.

 3. If the Extended Error Message Facility is not in the system, the
 text portion of error or warning messages is not printed.

 4. If the Execution-Time Branch Trace Facility is not in the
 system, a warning message is issued if "PRINTOUT 20" or
 "PRINTVAL 20" is attempted, or the BTRC parameter is specified.

 User Note 77. SPASM User Guide, Version 5.0 Page 7
 --

 2.0 SPASM Features

 2.1 Pre-Defined Macro Instructions

 Some macro instructions allow the programmer to perform simple
 debugging and input/output operations at the time the program is
 being executed. The macro instructions PRINTOUT, PRINTVAL,
 PRINTLIN, READCARD, READFILE, and DUMPOUT are executed when they are
 encountered. However, the macro instructions INSTRACE, MONITOR,
 SPASMINT, and SPASMFRE set internal switches and flags to modify the
 behavior of the SPASM interpreter.

 All but two of the pre-defined macro instructions have two names, so
 that possible naming conflicts with existing macros can be avoided.
 The synonymous pairs are:

 PRINTOUT SPASMOUT
 PRINTVAL SPASMPRV
 PRINTLIN SPASMPRT
 READCARD SPASMCRD
 READFILE SPASMRFL
 DUMPOUT SPASMDMP
 INSTRACE SPASMITR
 MONITOR SPASMMON
 SPASMINT
 SPASMFRE
 CONVERT SPASMCVT

 The operands permitted for these macro instructions may take several
 forms and are described in general terms first.

 <loc> is a location field symbol appearing in the name field
 of one of these macro instructions. It must always be a
 legal symbol and is always optional.

 * is the single character "*".

 <name> refers to a symbol which is the name of some area of the
 program, e.g., "A". Note that a <name> may not refer to
 a symbol defined in a dummy control section (DSECT).

 <number> is a self-defining term, e.g., "25" or "C'+'".

 <numbname> is either a <number> or a <name>.

 <basedisp> is an explicit base-displacement specification of the
 form "expression(expression)", e.g., "0(4)". Both
 expressions must be absolute.

 User Note 77. SPASM User Guide, Version 5.0 Page 8
 --

 <relexpr> is an expression which evaluates to an addressable,
 relocatable value.

 <absexpr> is an expression which evaluates to an absolute value.

 <locarg> can be either a <relexpr> or a <basedisp>.

 <numbarg> can be either an <absexpr> or a <basedisp>.

 2.1.1 PRINTOUT and PRINTVAL (Print Memory Data, Registers, Branch
 Trace Table, or Terminate Execution)

 <loc> PRINTOUT
 <loc> PRINTOUT <numbname>,...,<numbname>
 <loc> PRINTOUT <numbname>,...,<numbname>,*
 <loc> PRINTOUT *

 The only difference between the PRINTOUT and PRINTVAL macros is that
 PRINTOUT precedes its printed output with a header line giving the
 location of the macro call, its statement number, and name.
 PRINTVAL does not print a header line. In the following description
 only PRINTOUT will be mentioned, but all comments apply equally to
 PRINTVAL.

 The operand field of the PRINTOUT macro instruction may take the
 form of a list of <name>s and/or <number>s separated by commas and
 terminated with a blank or asterisk.

 <name> prints the current value of the contents of the named area
 on the output listing in some useful form, usually
 hexadecimal. (Items named in dummy control sections are
 noted as such when the PRINTOUT is executed, but their
 values cannot be printed since they do not refer to fixed
 locations in memory.)

 The number of characters printed for a <name> depends on
 the Length Attribute of the <name>. However, it is at
 most the length of a single print line.

 0-15 prints the contents of the specified general purpose
 register(s).

 16-19 prints the contents of the floating-point registers 0, 2,
 4, or 6 (respectively).

 20 prints the current contents of the Branch Trace Table, the
 most recent branches taken by the program. This table
 specifies the "before" and "after" instruction address
 portions of the PSW, the value of the condition code, and
 a branch count.

 User Note 77. SPASM User Guide, Version 5.0 Page 9
 --

 <number> is ignored if other than 0-20.

 * terminates execution of the program and returns control to
 the program supervisor.

 Examples:

 PROUT1 PRINTOUT 0,1,2,3,A

 will print the contents of general purpose registers 0, 1, 2, and 3,
 and the contents of the area of memory named A.

 PROUT2 PRINTOUT 20

 prints the current contents of the Branch Trace Table.

 PROUT3 PRINTOUT ANSWER,*

 prints the contents of the area of memory named ANSWER and then
 terminates execution of the program.

 PROUT4 PRINTVAL NUM

 will print the contents of the area of memory named NUM, without any
 identifying header line.

 2.1.2 PRINTLIN (Print a Line of EBCDIC Characters)

 <loc> PRINTLIN <locarg>,<numbarg>
 <loc> PRINTLIN <locarg>

 The PRINTLIN macro instruction prints preformatted lines of EBCDIC
 characters on the output printer. <locarg> specifies the starting
 location of the data to be printed. <numbarg> gives the length of
 characters to be printed on the line. The default print line length
 (determined when SPASM was generated) is used if <numbarg> is not
 specified; it will usually be 121 or 133.

 The first character of a print line is used for carriage control, as
 shown below. If the ECOL option is in effect, these vertical
 spacings are reduced as shown under the column "ECOL Action".

 Character Print Action ECOL Action

 blank single space single space
 0 double space single space
 - triple space double space
 1 page eject triple space
 + no space, no space,
 print over print over
 previous line previous line

 User Note 77. SPASM User Guide, Version 5.0 Page 10
 --

 Examples:

 PRINTLIN A,27

 prints the string of 27 characters, beginning at A.

 PRINTLIN 0(12),0(13)

 prints a line whose first character is at the address contained in
 register 12, and the number of characters printed is given by the
 operand at the address given in register 13. This mechanism allows
 for "indirect" specification of line locations and lengths.

 2.1.3 READCARD (Read a Card)

 <loc> READCARD <locarg1>
 <loc> READCARD <locarg1>,<locarg2>

 The READCARD macro instruction reads an 80-character card image from
 the input stream (following the =GO control card) into the area of
 the program designated by <locarg1>. Because 80 characters are
 always read, the unwary programmer may run the risk of over-writing
 parts of his program if the area provided for the card image is too
 small. <locarg2> is taken as the ENDFILE exit address. If there is
 no card to be read (a logical or physical end-of-file condition),
 then control returns to the location given by <locarg2>. If the
 ENDFILE exit address is invalid, control passes to the instruction
 following the READCARD macro instruction as if a normal read had
 been made. If an attempt is made to read past the end of the deck
 and <locarg2> is not specified, the job is terminated. The presence
 of an = sign in column 1 (or whatever other character is selected to
 indicate the presence of a SPASM control card) signals a logical
 end-of-file condition.

 Examples:

 To read a card into the area beginning at INCARD and transfer
 control to ENDECK when no cards are left, we could write:

 READCARD INCARD,ENDECK

 To illustrate the use of a <basedisp> to do the same thing:

 LA 8,ENDECK
 LA 9,INCARD
 READCARD 0(9),0(8)

 User Note 77. SPASM User Guide, Version 5.0 Page 11
 --

 2.1.4 READFILE (Read a Card from an External Device)

 READFILE reads 80-character card images from the data set specified
 by the DDname SYSFILE for OS and the DLBL statement for DOS. The
 READFILE instruction is written exactly as was described for
 READCARD, and its operation is similar. (READFILE will usually be
 used for instructor-supplied data.)

 2.1.5 DUMPOUT (Dump Out an Area of Memory)

 <loc> DUMPOUT <locarg1>
 <loc> DUMPOUT <locarg1>,<locarg2>

 The DUMPOUT macro instruction dumps an area of memory during the
 running of the program, so that the progress of a computation may be
 followed in detail. The contents of the area is converted to
 hexadecimal and printed 8 words (32 bytes) to a line, followed by

 the same 32 bytes printed as EBCDIC characters.

 If only <locarg1> is given, the area dumped is the 32 bytes
 beginning at the first fullword boundary which includes the location
 specified. If both <locarg1> and <locarg2> are given, the area
 dumped is the area between the two addresses specified, starting and
 ending at the nearest enclosing fullword boundaries.

 Examples:

 DUMP1 DUMPOUT RESULT

 dumps the 32 bytes beginning at the first fullword location does not
 exceed that of the area named RESULT.

 DUMP2 DUMPOUT 4(2),85(2)

 dumps the area beginning 4 bytes after the address in register 2 and
 ending 85 bytes after the address in register 2.

 2.1.6 INSTRACE (Trace Instruction Execution)

 <loc> INSTRACE <locarg1>
 <loc> INSTRACE <locarg1>,<locarg2>
 <loc> INSTRACE =OFF

 User Note 77. SPASM User Guide, Version 5.0 Page 12
 --

 INSTRACE controls the tracing of program execution by the
 interpreter, and is ignored if the program is executing in free-run
 mode. The effect of tracing is such that after each instruction is
 executed, the resulting PSW and general registers are printed,
 showing the effect of having executed that instruction.

 If only <locarg1> is specified, the tracing function is performed
 only if the instruction address during interpretation equals the
 value of <locarg1>. (This is useful in determining whether control
 has reached a given location.) When <locarg1> and <locarg2> are both
 specified, any instruction which lies between the two locations is
 traced. The operand "=OFF" turns off instruction tracing.

 Any INSTRACE instruction overrides the effect of previous ones, so
 that two separate instructions cannot be traced without also tracing
 the intervening executed instructions.

 Example:

 INSTRACE JUMP-16,JUMP+16

 traces the execution of instructions within 16 bytes of either side
 of the instruction named JUMP.

 2.1.7 MONITOR (Monitor References to an Area of Memory)

 <loc> MONITOR <locarg1>
 <loc> MONITOR <locarg1>,<locarg2>
 <loc> MONITOR =OFF

 The MONITOR instruction checks references to memory to see if they
 fall within a specified area of memory. If so, the PSW and general
 registers of the instruction whose execution caused the reference is
 printed. This feature is useful for finding hard-to-locate bugs,
 such as an instruction that is inadvertently overwritten or a
 constant that is modified. If the program is executing in free-run
 mode, the MONITOR instruction is ignored.

 If only <locarg1> is given, MONITOR prints the PSWs of any
 instructions that reference operands beginning at the exact address
 <locarg1>. If both <locarg1> and <locarg2> are specified,
 references to any memory location between the two addresses,
 inclusive, cause MONITOR printout. "=OFF" suspends all checking for
 memory references.

 User Note 77. SPASM User Guide, Version 5.0 Page 13
 --

 Examples:

 To determine which instructions make references to memory locations
 between A and A+7:

 MONITOR A,A+7

 To monitor the area of memory pointed to by register 9:

 MONITOR 0(9)

 The scope of the monitored area should be kept to the essential
 minimum since a large amount of output can easily be generated.

 2.1.8 SPASMINT (Begin Interpretive Execution)

 <loc> SPASMINT

 A program running in free-run mode may change modes to execute
 interpretively with the SPASMINT macro. This is helpful in
 debugging programs containing segments of code that appear to behave
 badly. Also, for reasons of time and speed, one might only want to
 interpret a small portion of the program. Any operands on the
 SPASMINT instruction are ignored. If the program is already
 executing in interpretive mode, the SPASMINT instruction has no
 effect.

 The speed ratio between interpreted and free-running code varies
 between about 20 and 90, with the higher figure applying to short
 and fast instructions.

 2.1.9 SPASMFRE (Begin Free-Running Execution)

 <loc> SPASMFRE

 A program running in interpretive mode may change modes to execute
 freely with the SPASMFRE macro. This is helpful in debugging
 programs containing frequently executed segments of code that have
 been fully debugged. Any operands are ignored. If the program is
 already executing in free-run mode, the SPASMFRE instruction has no
 effect.

 User Note 77. SPASM User Guide, Version 5.0 Page 14
 --

 2.1.10 CONVERT

 <loc> CONVERT

 CONVERT is not implemented in this version of SPASM. It is intended
 to perform conversions between data types for which there is no
 "hardware" support such as the instructions CVB, UNPK, etc.

 2.2 Assembler Control Options (AOPTIONS Statement)

 A number of assembler control options are available under the
 AOPTIONS Assembler instruction statement. These operand field items
 may also appear with the prefix "NO" indicating negation of the
 normal operand's function.

 COMMA Allows the appearance of a comma to delimit items in B and
 X-type constants which normally may only specify a single
 item. With the COMMA option in effect, one could write
 "DC X'1,2,3,4'".

 ERRORn Restricts printing of error messages to those error of
 severity equal to or greater than "n" ("n" is a digit from 0
 to 9). For example, ERROR3 will print only the error
 messages of severity 3 or greater. The option NOERRORn
 inhibits printing errors of severity less than or equal to
 "n". Thus NOERROR2 has the same effect as ERROR3.

 FIX Requests the printing of the Fixup Table.

 MTRACE Traces AIF/AGO branches during macro expansion. This option
 cannot be set by any of the control card parameters.

 ROUND Is the usual mode for converting constants of types D, E, F,
 and H. However, in situations where an unrounded constant
 is preferred (such as when parts of a multiple-precision
 number are being converted), use the operand NOROUND.

 SYM Prints the Symbol Table at the conclusion of the assembly.
 (To obtain the cross-reference listing specified by the XREF
 option, the Symbol Table must be printed also.)

 TYPE Checks for possible conflicts between instruction and data
 types.

 UMAP Prints the USING/DROP Table at the conclusion of the
 assembly.

 User Note 77. SPASM User Guide, Version 5.0 Page 15
 --

 USEANY Allows the resolution of implied addresses according to
 currently active USING information, disregarding undefined
 USINGs. This is at variance with the specifications of the
 IBM Assembler, which requires that the lowest displacement
 and the highest numbered register be used. By specifying
 USEANY, it may be possible to avoid a large number of fixups
 due to the presence of a single undefined expression in a
 USING statement.

 XMACPR Prints the source statements of external macros as the macro
 definition is encoded.

 XREF Collects the cross-references beginning at this point,
 unless forbidden by a control card parameter. Normally this
 will be used to restore XREF collection after it has been
 turned off by use of the operand NOXREF.

 2.3 Extended Branch Mnemonics

 All extended branch mnemonics have RR-type equivalents, formed by
 adding the letter R to the end of the RX-type mnemonic.

 2.4 Opcode Definition Modification

 Every opcode has a definition stack on which the definition(s)
 associated with the opcode are kept. All redefinition (except when
 a DEFER replaces a NULL definition) is non-destructive, that is,
 during redefinition the previous opcodes on the stack are pushed
 down, becoming inaccessible until the definition(s) on top of them
 on the stack are removed. OPDEF, UNDEF and REDEF allow the user to
 manipulate the definition stack of any opcode (including opcodes
 OPDEF, UNDEF and REDEF).

 Syntax of the definition opcodes:

 <nfs> OPDEF opcode1,opcode2,...,opcoden
 <nfs> UNDEF opcode1,opcode2,...,opcoden
 <nfs> REDEF opcode1,opcode2,...,opcoden

 OPDEF causes <nfs> to become equivalent to each opcode in the
 operand field. For each opcode a new entry is added to the <nfs>'s
 definition stack containing a pointer to that opcode. Thus <nfs> is
 finally equivalent to "opcoden", with "opcode1" at the bottom of its
 stack.

 User Note 77. SPASM User Guide, Version 5.0 Page 16
 --

 UNDEF results in the "popping" of the definition stack of each
 opcode in the operand field. "Popping" means that the top stack
 entry is removed, thus exposing the definition at the next level
 down. If there is only one definition on an opcode's definition
 stack, UNDEF results in that opcode becoming undefined. Referencing
 an undefined opcode results in a diagnostic.

 REDEF causes a NULL definition to be added to the definition stack
 of each opcode in the operand field. Referencing an opcode with a
 NULL definition results in the opcode being ignored.

 Examples:

 LOAD OPDEF LR,LH,L LOAD EQUIVALENT TO L
 UNDEF LOAD LOAD NOW EQUIVALENT TO LH

 ADD OPDEF A ADD EQUIVALENT TO A
 REDEF ADD ADD BECOMES NULL

 2.5 Text Deferring Feature (Internal Text Files)

 The Text Deferring Feature allows the user to save statement(s) of a
 source program by building them into a named file and later to have
 those statements assembled by using the file name as an opcode.
 Files can be built by adding statements to a file's bottom (DEFER or
 DEFRL) or top (DEFRS).

 Syntax of the DEFER opcodes:

 <nfs> DEFER
 <nfs> DEFRL
 <nfs> DEFRS
 DEND <optional-character-string>

 where <nfs> (name field symbol) is used as the file name. DEFER,
 DEFRL, or DEFRS signals the start of deferred text. All the source
 text between this starting opcode and its matching DEND is added to
 the DEFER file whose name is given by <nfs>. Subsequent DEFER
 statements with the same <nfs> reference the same file, unless that
 file has been made inaccessible through redefinition of <nfs>. (For
 redefinition, see Section 2.4 on Opcode Definition Modification.)

 Usually the occurrence of a symbol in the name field of a DEFER
 opcode causes the definition stack of that symbol to be pushed down
 one level before the new definition is added. If, however, the top
 definition is of type NULL (see the preceding section on Definition
 Modification), the new definition will replace the NULL definition.
 This allows the programmer to create multiple files under the same
 name in a way analogous to the redefinition of a macro.

 User Note 77. SPASM User Guide, Version 5.0 Page 17
 --

 The starting DEFER opcode (DEFER, DEFRS, or DEFRL) and its matching
 DEND may be thought of as a pair of statement quotes which suppress
 evaluation of the source text between them. The only character
 strings recognized through these quotes are the opcodes DEFER,
 DEFRL, DEFRS, and DEND. The recognition of one of these does not
 result in evaluation (i.e., the start or end of a DEFER file),
 rather the increment (for DEFER, DEFRL, and DEFRS) or decrement (for
 DEND) of a nesting counter. This allows arbitrary nesting of DEFER
 statements within a DEFER, since only the DEND which causes the
 counter to return to its initial value (0), will be recognized as
 the one which terminates the text-deferring started by the initial
 DEFER opcode.

 The statements generated from a DEFER file are flagged with a "/"
 character preceding the statement. For example:

 * START NEW DEFER FILE MYFILE
 MYFILE DEFER
 LA 4,5
 LR 3,4
 AR 3,4
 DEND MYFILE
 * ADD THESE TO THE START OF MYFILE
 MYFILE DEFRS
 ST 3,SAVE
 ST 4,SAVE+4
 DEND MYFILE
 * ASSEMBLE THE SAVED STATEMENTS.
 * MYFILE IS USED AS AN OPCODE TO RETRIEVE THE STATEMENTS
 MYFILE
 / ST 3,SAVE
 / ST 4,SAVE+4
 / LA 4,5
 / LR 3,4
 / AR 3,4

 There is a known bug in the DEFER feature: source text containing
 single (i.e., unpaired) occurrences of a character whose
 representation is X'32' (2-9 punch) will have those single
 occurrences replaced with blanks when assembled.

 User Note 77. SPASM User Guide, Version 5.0 Page 18
 --

 2.6 Assembly Listing Features

 2.6.1 Forward References and Unknown Values

 Because SPASM makes only one pass over the source program, some
 instructions and statements cannot be completely assembled when they
 are first encountered. In such cases the incomplete parts of an
 instruction are replaced by dots in the listing of the partially
 assembled statement.

 For example, if the first executable statement in a program is a
 branch around a following data area, the assembler output might look
 like the following:

 LOC OBJECT CODE ADDR2 STMT SOURCE STATEMENT

 012468 47F0.... 3 B START

 where the dots indicate that the parts of the instruction that
 cannot be assembled will be completed later, when the value of the
 symbol START is known.

 2.6.2 Symbol Table

 The Symbol Table which follows the assembly provides useful
 information about the symbols defined in the program. The four
 attributes of the symbol (value, relocatability, type, and length)
 are printed in hexadecimal. If the symbol has been multiply
 defined, the number of the statement in which it was first defined
 will be followed by the letters "MD". If some attribute of a symbol
 is undefined, it will be replaced with dots.

 The Relocatability Attribute (RA) of a symbol is determined by the
 control section origin relative to which it is relocated. Absolute
 symbols have RA = 0. Symbols appearing in real control sections
 (CSECTs) have RAs which are numbered beginning at 1. Symbols
 defined in dummy control sections (DSECTs) have RAs which are
 numbered starting at 255, counting down by 1 with each additional
 DSECT.

 The Type Attribute (TA) of a symbol reflects the type of statement
 in which the symbol is defined. The possible TAs (in decimal) and
 their associated statement types are:

 User Note 77. SPASM User Guide, Version 5.0 Page 19
 --

 TA Statement Type TA Statement Type

 0 Character Constant 12 Q-Type Address Constant
 1 Zoned Decimal Constant 13 S-Type Address Constant
 2 Packed Decimal Constant 15 External Name
 3 Hexadecimal Constant 16 Location Counter Reference (*)
 4 Binary Constant 17 DEFERred Text Name
 5 Long Floating-Point 18 Machine Instruction Statement
 6 Short Floating-Point 19 CSECT or START Statement
 7 Fullword Fixed-Point 20 DSECT Statement
 8 Halfword Fixed-Point 21 Length Attribute Reference (L')
 9 A-Type Address Constant 22 Macro Instruction Statement
 10 Y-Type Address Constant 23 Self-Defining Term
 11 V-Type Address Constant 24 LTORG Statement

 If the symbol names an area of memory defined by a DC or DS
 statement with a length modifier, then X'20' (decimal 32) will be
 added to the TA to indicate that the length is explicitly defined.
 Thus the statement:

 ABLE DC BL2'101'

 could cause the symbol "ABLE" to have a TA of X'24'.

 Example of Symbol Table output:

 SYMBOL VALUE LNTH RA TA DEFN/M REFERENCES

 ABLE 27A346 0002 01 24 4
 BAKER 27A348 0004 01 07 5MD 6 6
 DUMMHEAD 000000 0001 FF 14 14
 DUMVAR2 00000F 0002 FF 20 16
 FORWARD 27A35C 0004 01 07 11 7 8 13
 HWORD 27A340 0002 01 08 2 3
 MISSING 2
 .PRIVATE 27A340 0001 01 13 1

 2.6.3 USING Maps

 Because errors in the application of USING statements can be
 difficult to find, SPASM provides listings at the end of the
 assembly (under control of the UMAP and SUMP parameters) of all
 USING statements in the program. The information in the USING Maps
 includes the register specified as a base register, the Value and
 Relocatability Attributes of the expression assigned to that
 register, and the starting and ending numbers of the group of
 statements to which that USING may be applied for purposes of
 resolving implied addresses into base-displacement form.

 User Note 77. SPASM User Guide, Version 5.0 Page 20
 --

 The USING Map provided by the UMAP parameter provides its
 information in linear form, while the Short USING Map specified by
 the SUMP parameter provides a table showing the values in all active
 base registers for the entire program, except that the
 Relocatability Attributes are omitted.

 Example of Using Map (UMAP) output:

 REG START-SN DROP-SN RA VALUE

 12 10 END 01 27A35A
 15 1 9 01 27A340

 2.6.4 Fixup Table

 Statements which contain references to undefined symbols generate
 fixups. Fixups are segments of code whose assembly is completed
 only after the end of the program is reached. (This is because
 SPASM is a one-pass assembler rather than a two-pass assembler.) For
 each statement which generates a fixup, the Fixup Table lists the
 location, the generated code, the address fields (if applicable),
 the statement number, and an indication of the type of the field
 being completed. Note: Errors may be detected during fixup time,
 so check the Fixup Table listing carefully for error messages.

 Example of Fixup Table output:

 LOC RESOLUTIONS ADDR1 ADDR2 STMT SUBFIELD(S)

 27A350F01C 27A35C 7 S2
 27A354 ..03F01CF020 27A35C 27A360 8 S1 L S2

 2.6.5 Type Checking

 This feature informs the user (via warning messages) of potential
 conflicts between instruction and data types. For example, if HWORD
 is defined as "DS H" and the source contains the statement "ST
 2,HWORD", a warning is issued since the type of the instruction
 (fullword) and the type of the data (halfword) are in conflict.

 Example of Type Checking output:

 LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT

 27A340 0004 2 HWORD DC H'4'
 ************* WARNING MIF-52-3,STMT=3,COLUMN=23,OPERAND=2,SUBFIELD=8
 OPERAND NOT IMPLICIT FIXED FULLWORD
 27A342 5020F000 27A340 3 ST 2,HWORD
 ************* WARNING MIF-68-3,STMT=9,COLUMN=25,OPERAND=2,SUBFIELD=7
 OPERAND NOT PACKED DECIMAL
 27A364 4F00C002 27A35C 9 CVB 0,FORWARD

 User Note 77. SPASM User Guide, Version 5.0 Page 21
 --

 3.0 Execution-Time Conventions

 3.1 Conventions for Interpretive Mode

 3.1.1 Limitations

 Privileged Instructions

 Privileged instructions are treated as invalid opcodes, and an
 appropriate interruption message is printed. Even if a branch is
 implied (e.g., for LPSW), the next sequential instruction is
 executed. Note: The SVC instruction is treated as a privileged
 instruction, as well as instructions pertaining to special features,
 such as Monitor Call, Store Clock, etc.

 Extended Precision Floating-Point Instructions

 The extended precision floating-point instructions are not
 interpreted. If the machine itself does not contain the extended
 precision feature, their use will cause a program interrupt.

 Byte-Oriented Operand Feature

 The SPASM interpreter does not support the System/370 Byte-Oriented
 Operand Feature.

 3.1.2 Additions

 Handling of Illegal Instruction Addresses

 One of the most notable oversights in the design of System/370 is
 that illegal instruction branch addresses are determined at
 instruction fetch time rather than at the time the branch address is
 known. This leads to situations where the programmer has no idea
 how his program arrived at a given location, and the interruption
 mechanism of System/370 can do no more than to tell him that he's in
 the wrong place. To help diagnose this rather common programming
 fault, the SPASM interpreter will print a special error message when
 such an invalid branch is detected and ignore the branch
 instruction. This may lead to later faults in the program logic,
 but provides a guard against the possibility of trying to interpret
 instructions from areas well outside the program area.

 User Note 77. SPASM User Guide, Version 5.0 Page 22
 --

 3.1.3 Initial Register Settings

 When the initial instruction of the program is interpreted,
 registers 13, 14 and 15 are initialized as follows:

 R13 Save Area (18-word area aligned on a fullword boundary)
 R14 Return Address (branch address upon termination of execution)
 R15 Entry Address (address of the first executed instruction)

 The contents of the other registers at program initiation are
 unknown.

 3.1.4 Error and Interruption Handling by the Interpreter

 When an error condition is detected during the interpretation of a
 program, every attempt is made to continue. This means that the
 program may produce many error messages of which only the first has
 any significance; however, other program bugs can sometimes be found
 by continuing to execute. There is a built-in maximum number of
 program interruptions (specifiable with the MINT parameter), after
 which execution terminates.

 Other error conditions are handled as follows:

 ø If the instruction address is allowed to run off the end of the
 program area, there is no way to tell where to go next, so
 execution is terminated.

 ø If the parameters of one of the macro instruction expansions are
 undecipherable, the program has probably overwritten itself. An
 attempt is made to try to recover and continue execution, in
 which case the actions requested by the macro instruction will
 probably be lost or incorrect.

 ø If there are "memory-protect" errors (attempts to access data
 outside the program area), the instruction will generally be
 ignored. The TR and TRT instructions are treated specially by
 checking the address of each byte fetched from the translate
 table.

 ø Program interruption codes 7 to 15 are generally detected by the
 hardware, so that the instruction is usually in an undetermined
 state of completion. The other interruptions are usually
 detected by the interpreter, so that the instruction is not
 executed and the contents of registers or memory areas are not
 changed.

 ø If a branch to an invalid address is attempted, the branch will
 be ignored and execution will continue with the next sequential
 instruction.

 User Note 77. SPASM User Guide, Version 5.0 Page 23
 --

 3.2 Conventions for Free-Run Mode

 3.2.1 Register Settings

 As in the case of interpretive execution, registers 14 and 15 are
 preset to the return and entry-point addresses respectively.
 Register 13 contains the address of a standard 18-word save area
 into which the user's program may store its registers in the usual
 way.

 When control is returned to SPASM, register 14 is used as a
 temporary base register. Hence the value of R14 which appears in
 the "Final PSW and REGs" on the output listing is 2 greater than the
 original return address. In addition, the final PSW value is
 unknown.

 3.2.2 Error and Interruption Handling in Free-Running Code

 Error conditions generated by free-running code are more difficult
 to handle, so the program should be thoroughly debugged before using
 the free-run option.

 ø Branch errors cannot be detected before the branch occurs so
 these errors are usually fatal.

 ø When a program interruption occurs outside the bounds of the
 user's program, SPASM assumes that control has been lost and
 terminates execution.

 ø When a specification error is caused by an odd instruction
 address in the PSW, SPASM sets the low-order bit of the PSW
 Instruction Address to zero and attempts to continue execution.
 This may cause further errors.

 ø The INSTRACE and MONITOR instructions will not cause instruction
 tracing or memory monitoring in free-running code.

 ø A bad ENDFILE address on the READCARD or READFILE macro
 instructions causes program termination in a free-running program
 if an end-of-file condition is detected.

 Note: The interpretive mode of execution may be entered and exited
 with the SPASMINT and SPASMFRE macro instructions.

 User Note 77. SPASM User Guide, Version 5.0 Page 24
 --

 II. Reference Information

 4.0 Things SPASM Does Differently from IBM's Assemblers

 4.1 USING Registers

 Because of the one-pass nature of SPASM, it is necessary to avoid
 the inherent two-pass aspect of the base register USING algorithm
 found in IBM Assemblers. Thus, while it might seem quite natural to
 write the statements:

 USING *,REG
 REG EQU 7

 SPASM requires these statements be given in the reverse order, so
 that the value of the register is known when the USING statement is
 encountered. The appearance of an unknown quantity in a USING
 statement requires that the resolution of all implied addresses
 following that statement be deferred until the value has been
 resolved. This means that virtually all implied addresses would be
 saved for fixup at the end of the program, thereby greatly
 increasing the time and memory requirements of the program.
 Therefore, SPASM gives an error message whenever a USING statement
 uses an undefined register.

 4.2 USINGs with Implied Addresses

 Since the use of implied addresses is very common in places where
 self-defining terms appear (such as in the statement "LA 2,10" where
 "10" is an implied address), it is assumed when the first operand of
 a USING statement is undefined, it is relocatable. Otherwise SPASM
 would need to save all such USINGs for final resolution of the
 implied operands at the end of the program.

 4.3 DROP Extension

 A DROP statement with no operands drops all currently active base
 registers.

 4.4 Code Overlays

 If the program causes text to overlay itself through the use of ORG
 statements, incorrect results may be obtained if the overlaid text
 contains fixups. For example, the statements:

 LA 3,A
 ORG *-4
 BC 15,B

 User Note 77. SPASM User Guide, Version 5.0 Page 25
 --

 can cause an erroneous branch if the address implied by A requires a
 fixup but that implied by B does not. After the fixup, the branch
 instruction would become:

 BC 15,A

 (IBM assemblers generate text in which the second instruction
 completely replaces the first.)

 4.5 Alternate Statement Format

 The Alternate Statement Format, supported by IBM Assemblers for
 macro statements, is supported by SPASM for all statement types.
 The Alternate Statement Format allows an operand field to be
 continued onto the next card if the operand is terminated by a comma
 followed by a blank (comments may follow the blank). A non-blank
 character must be placed in the column following the end column.
 The operand field continues in the continue column of the next card.

 There is one very minor restriction on the use of Alternate
 Statement Format. If the string "L'*" appears anywhere in the
 operand field of a statement, that statement is not considered to be
 in the Alternate Statement Format and is handled accordingly. This
 is because L'* may be interpreted in one of two ways depending upon
 the type of statement in which it appears. In a machine
 instruction, L'* is a Length Attribute reference. In a macro
 instruction, it could be part of a quoted string being passed as an
 operand. (Note: IBM Assemblers avoid this problem by considering
 L'* as a part of a string if it appears in a macro call, but as a
 Length Attribute reference if it appears in an assembler or machine
 instruction statement. Because SPASM allows dynamic redefinition of
 opcodes, SPASM cannot tell which kind of statement it is until the
 operand field has been scanned and the opcode has been processed.)

 4.6 Resumed CSECTs

 Due to the one-pass nature of SPASM, resumed CSECTS are not
 assembled contiguously if other CSECT(s) come between the sections
 of the resumed CSECT(s). DSECT resumption is handled correctly.

 4.7 Expressions

 An expression may not consist of more than 16 terms, 5 levels of
 parentheses, or 15 operators. Unary minuses are allowed in
 expressions.

 User Note 77. SPASM User Guide, Version 5.0 Page 26
 --

 4.8 Continued Comment Statements

 SPASM does not allow comment statements to be continued. In comment
 statements it is almost invariably the case that a non-blank
 character in the continuation column (column 72) is a mistake.

 4.9 Blank Control Section Name

 If a blank control section name is used (on a START or CSECT
 statement, or if the code is uninitiated), then the name of the
 control section appears in the Symbol Table as ".PRIVATE".

 4.10 Code From Pre-Defined Macro Instructions

 The following brief description of the actual code generated by the
 macro expansions should help to debug programs from core dumps and
 to understand the mechanism used for providing macro instruction
 services. The basic set of instructions generated by any of the
 SPASM pre-defined macro instructions described in Section 2.1 is:

 CNOP 2,4 ALIGN TO MIDDLE OF A FULLWORD
 <loc> STM 14,15,*+18 SAVE REGISTERS 14 and 15
 L 15,*+10 GET POINTER TO PROCESSOR ADDRESS
 L 15,0(,15) GET PROCESSOR ADDRESS
 BALR 14,15 BRANCH TO PROCESSOR
 DC X'n',AL3(processor-pointer)
 DS 2F SAVE AREA FOR REGISTERS 14 AND 15
 <parameter-list>
 LM 14,15,4(14) RESTORE REGISTERS 14 AND 15

 The quantity "n" is a number between 1 and 11 specifying which of
 the macro instructions is being expanded. <parameter-list> depends
 on the particular macro instruction being expanded; it is an
 encoding of the information in the original operand list. There are
 two basic forms: the first for PRINTOUT and PRINTVAL and the second
 for the others.

 For PRINTOUT and PRINTVAL, each list entry has the form:

 DC AL1(type),AL3(tablecode)

 where "type" specifies the nature of the list entry and "tablecode"
 tells where to find the relevant information in the Symbol Table.

 User Note 77. SPASM User Guide, Version 5.0 Page 27
 --

 For the other macro instructions, the list entries have the form:

 DC XL2'type',S(argument)

 where "type" specifies the nature of the list entry, and "argument"
 gives the data necessary to compute the value of the operand.

 Thus the operands of the macro instructions (other than PRINTOUT and
 PRINTVAL) should be valid for S-type address constants. Fixups for
 these constants will occasionally appear in the Fixup Table if the
 FIX parameter is in effect.

 4.11 Macro Language Differences

 Macro language restrictions and features effective in SPASM include:

 ø System macros may be referenced if the XMAC parameter is
 specified, and access is provided through appropriate JCL
 statements referencing one or more macro libraries. (Listing of

 such macros can be controlled with the XPRT parameter or the
 AOPTIONS statement's XMACPR operand.)

 ø Only the K, L, N, and T attributes are recognized. (That is, the
 I and S attributes are not recognized.)

 ø If a relocatable symbol is used in an expression which must be
 evaluated by the Macro Expander (MXP), it is flagged with a
 warning diagnostic and the value of the symbol is used. No check
 is made to determine if Relocatability Attributes have been
 combined properly.

 ø Because of the one-pass nature of SPASM, expressions evaluated by
 the Macro Expander must not refer to symbols which are undefined
 when the evaluation occurs. (The Macro Expander must evaluate
 all expressions in conditional assembly statements and all
 variable symbol subscripts.) This restriction also applies to
 variable symbol references whose value is a symbol undefined at
 time of expansion. Note that this restriction does not apply to
 expressions appearing in model statement expressions except for
 variable symbol subscripts.

 ø Tracing of the flow of control during macro expansion is
 controlled by the MTRACE operand of the AOPTIONS statement (see
 Section 2.2).

 User Note 77. SPASM User Guide, Version 5.0 Page 28
 --

 5.0 Things SPASM Doesn't Do that IBM's Assemblers Do

 ø No capability exists for conditional assembly in open code.

 ø No provision has been made for use in open code of attributes
 other than L (length).

 ø CXD, DXD, EXTRN, WXTRN and ENTRY are not supported.

 ø The COM and CCW instructions are not supported.

 ø Q-type and V-type address constants are treated as A-type.

 ø L-type constants are not supported.

 ø Bit length specification in DC statements is not supported.

 ø The COPY, REPRO and PUNCH statements are not supported.

 User Note 77. SPASM User Guide, Version 5.0 Page 29
 --

 6.0 Things SPASM Does that IBM's Assemblers Don't (or Didn't)

 6.1 Self-Defining Terms

 Self-defining terms may have values up to a full word (32 bits) in
 length. The maximum value is X'FFFFFFFF'. (Some of the IBM
 Assemblers restrict values to 24 bits.)

 6.2 DC and DS Statements

 The syntax of the DC and DS statements has been expanded to allow
 the use of modifiers containing the name field symbol and the
 location counter reference (*). When this occurs, the modifiers
 containing the "*" are rescanned for each duplication of the
 operand, so that constants of varying lengths, scale modifiers, and
 exponent modifiers may be generated. For example, the following
 statement generates a table of the first ten powers of ten:

 TBL DC 10EE((*-TBL)/L'TBL)'1.0'

 This example also illustrates the fact that SPASM allows the Length
 Attribute of the name field symbol to appear anywhere after it is
 logically known.

 The lack of a data field in an operand in a DC statement causes the
 operand to be treated as a DS-type operand and a warning message to
 be issued. Thus the statement:

 DC X'1',X,X'2'

 causes a byte to be skipped between the two constant bytes, as
 though the three statements:

 DC X'1'
 DS X
 DC X'2'

 had been written.

 6.3 ICTL and ISEQ Statements

 Multiple ICTL and ISEQ statements are allowed. The maximum
 allowable number of characters in the sequence field is 8. Longer
 fields are truncated for sequence-checking purposes. Any errors in
 the operands (or null operand fields) cause the appropriate
 quantities to be reset to the standard default values (1, 16, and 72
 for ICTL, and 73-80 for ISEQ).

 User Note 77. SPASM User Guide, Version 5.0 Page 30
 --

 6.4 Assembler Debugging Instructions

 There are a number of assembler debugging instructions which perform
 various debugging operations (e.g., dynamic dumps of the program
 area, Symbol Table, and Fixup Table), as well as tracing the flow of
 control among assembler routines and dumping common control areas in
 the process. See the comments at the start of SPASM routine DBG for
 further information.

 6.5 Length Attributes of Self-Defining Terms and Location Counter

 The use of Length Attributes of self-defining terms and location
 counter references is allowed (e.g., L'*, L'5, and L'L'A) The Length
 Attribute of a literal is invalid.

 6.6 Macro Language Extensions

 ø A macro definition may occur at any point in the source program.

 ø Symbolic parameter sublists may be nested to any level.

 ø References to the attributes of the value of a SETC symbol may be
 made and they are processed in the same way as references to
 symbolic parameter attributes.

 ø SETC symbols and symbolic parameters may be any term which is
 valid for SPASM when used in arithmetic expressions to be
 evaluated by the Macro Expander. Thus in "&A SETC &C", the
 character string corresponding to &C is not required to be a
 string of decimal digits. It may be a string representing any
 evaluatable term.

 ø The value of T'&SYSECT is either the string "CSECT" or "DSECT"
 depending on the type of the current control section (whose name
 is the value of &SYSECT).

 ø IBM Assembler Language syntax relaxations are allowed in a few
 minor cases. Within expressional parentheses, blanks may be used
 anywhere. Keyword parameters may appear in any order, and
 anywhere in the formal and actual parameter lists. References to
 &SYSLIST may be made in keyword macros. The leading & may be
 omitted from the variable symbol name in a declaration list.
 &SYSLIST(0) may be used to refer to the name field operand of the
 macro call statement.

 ø System variable symbols &SYSTIME, &SYSDATE, and &SYSDAY have the
 values that appear at the top of each page of the assembly
 listing. &SYSNAME is the name of the macro currently being
 expanded, and &SYSNEST is the current macro nesting level.

 User Note 77. SPASM User Guide, Version 5.0 Page 31
 --

 ø MNOTE severity may be indicated by any self-defining term (not
 just decimal self-defining terms as in IBM Assemblers).

 ø Macro quotes are provided. Left and right macro quotes are
 indicated by the operations ALMQ and ARMQ. When a statement
 whose operation field contains ALMQ is encountered, subsequent
 lines are treated as pure text (no substitutions or evaluations
 are done) until a corresponding ARMQ statement is encountered.
 Macro quotes may be nested. No substitution is made for variable
 symbols appearing within macro quotes. At expansion time, the
 outermost macro quotes are stripped off, and the lines between
 them are generated exactly as they appeared in the macro
 definition. Thus a macro may generate a macro definition.

 Example of a MACRO defining a MACRO:

 MACRO
 MAKEMAC &NAME
 LCLC &TEMP,&MNOT
 &TEMP SETC '&&'(1,1)
 &MNOT SETC 'MNOTE' (SO MNOTE WON'T BE RECOGNIZED IMMEDIATELY)
 ALMQ
 MACRO
 ARMQ
 &TEMP.L &NAME
 MNOTE *,'GENERATING &NAME'
 &MNOT *,'THIS IS &NAME, AT &TEMP.L'
 ALMQ
 MEND
 ARMQ
 MEND
 MAKEMAC GLOTZ
 HERES GLOTZ
 MAKEMAC FLOOP
 THERES FLOOP

 6.7 Extended EQU Syntax

 <nfs> EQU <expr1>,<expr2>,<expr3>

 The syntax of the EQU instruction's operand field allows the
 specification of up to three expressions separated by commas.
 <expr1> is required and can be any valid assembler expression.
 <expr2> and <expr3> are optional and, if specified, must be
 absolute. If <expr2> is specified, its value (if less than 65536)
 will be used as the Length Attribute (LA) of <nfs> (the name field
 symbol). If <expr3> is specified, its value (if less than 256) will
 be used as the Type Attribute (TA) of <nfs>. In the absence of
 <expr2> and/or <expr3> (or if there is an error in <expr2> or
 <expr3>), the LA and/or TA of <nfs> is determined from <expr1> in
 the usual way. For example:

 User Note 77. SPASM User Guide, Version 5.0 Page 32
 --

 A EQU 10 A HAS VA=10,RA=0,LA=1,TA=23
 A EQU 10,2 A HAS VA=10,RA=0,LA=2,TA=23
 A EQU 10,,1 A HAS VA=10,RA=0,LA=1,TA=1
 A EQU 10,2,1 A HAS VA=10,RA=0,LA=2,TA=1

 6.8 PRINT INNER and PRINT DATA

 PRINT INNER and PRINT NOINNER are SPASM extensions which allow the
 user to specify that inner macro calls with their actual parameters
 are to be printed during the expansion of any macro. PRINT INNER
 and PRINT GEN are independent of each other, so that inner macro
 calls may be printed without printing the generated code that may
 accompany the expansion of the inner macro. The default is PRINT
 NOINNER. Generated code is flagged with a "+" preceding column 1;
 inner macro calls are flagged with "-".

 PRINT DATA and PRINT NODATA are accepted but ignored.

 6.9 MALIGN

 MALIGN controls macro-generated text. This opcode takes three
 numeric operands, and is processed in the same way as the ICTL
 statement. The operands (op1, op2, op3) are used to set the
 operation, operand, and comment columns for the generated text. The
 default columns are 10, 16, and 40. The operands are checked to
 guarantee that:

 3 è op1 è 40
 9 è op2 è 50
 19 è op3 è 60

 In addition, the operand field must start at least 6 columns to the
 right of the operation field, and the comment field must start at
 least 10 columns to the right of the operand field. That is:

 op1 + 6 è op2
 op2 + 10 è op3

 6.10 Literals

 Since a literal is actually a symbol (it simply has the side-effect
 of generating a constant), SPASM creates a dummy symbol of the form
 ".LITnnnn" for each literal encountered. "nnnn" is a unique number
 for each literal generated. Since literals are treated as symbols,
 they appear in the Symbol Table and cross-reference listing.

 User Note 77. SPASM User Guide, Version 5.0 Page 33
 --

 6.11 LTORG Statement

 If a name field symbol does not appear on a LTORG statement, the
 location counter is not automatically aligned with a doubleword
 boundary. The generated constants will fall on whatever boundaries
 are required, with those having the most stringent alignment
 requirements appearing first.

 LTORG may appear in a dummy control section, and any literals
 generated will therefore have dummy names. However, literals
 generated following the END statement will appear in whatever
 control section is in effect at that point in the program.

 6.12 S-Type Address Constants

 S-type address constants are allowed in literals, however a
 low-level diagnostic is issued. The base-displacements of implied
 operands are resolved with respect to the USING statements in effect
 at the time the constant is generated (after LTORG or END), not
 those in effect at the point where the constant is used.

 6.13 END Statement Operands

 The operand of the END statement may be a symbol or an expression.

 User Note 77. SPASM User Guide, Version 5.0 Page 34
 --

 III. SPASM Diagnostic and Error Messages

 7.0 How to Interpret the Messages

 This is a brief summary of the error messages printed by the SPASM
 assembler. Error messages are of two basic forms:

 ********** ERROR identifier-errorcode-severity

 ********** WARNING identifier-errorcode-severity

 where:

 identifier is a three letter sequence identifying the functional
 routine in SPASM that issued the diagnostic message. It
 usually has some mnemonic significance; for example,
 errors detected by the constant processor have the
 identifier "KON".

 errorcode is a number from 0 to 999 identifying the specific
 error. The lists below provide some explanation of what
 went wrong.

 severity is a single digit. If severity is 3 or less, SPASM
 flags the message as a "WARNING" rather than an "ERROR".
 If severity is 5 or greater and the error applies to a
 machine instruction, the instruction is "zeroed". An
 approximate description of the significance of each
 severity level is:

 0 There may be an incompatibility with an IBM
 assembler, but SPASM will handle it correctly.

 1 There is some minor condition that should be checked.

 2 There is some minor error (non-fatal).

 3 There is an error that is not fatal to assembly, but
 which should be checked carefully.

 4 There is a serious error, but the statement might
 work.

 5 The error is bad enough that the statement probably
 will not work correctly.

 6 The error is bad enough that the statement is
 useless.

 User Note 77. SPASM User Guide, Version 5.0 Page 35
 --

 7 The error may cause the location counter to be lost,
 and it may be reset by some default action to a
 useable though incorrect value.

 8 The space available to the program and its associated
 tables is insufficient. No further code is emitted,
 but the tables are permited to grow into the program
 area to allow complete program checking.

 9 Space needed for tables is unavailable. Assembly
 will continue with the information at hand.

 Most error messages are printed immediately before or after the
 statement containing the error. Some errors, however, are detected
 only during the final fixup phase, so the Fixup Table should be
 checked carefully.

 Whenever possible, additional information is printed along with the
 basic error message. (The Extended Error Message Facility prints
 explanatory text on the line below the error message.) This includes
 the column nearest the point where the error was detected, the
 operand number in the statement (if the error is in the operand
 field), the statement number, the subfield number, and so forth.
 Under most circumstances, this added information will be accurate;
 but occasionally only the basic error message will be accurate.

 Some of the error messages include a subfield designator. This is
 of the form "SUBFIELD=xx", where "xx" can have the following forms:

 A refers to A-type address constant.

 B1,D1,B2,D2 refer to the base and displacement of the appropriate
 operand.

 DF refers to the duplication factor.

 EM refers to the exponent modifier.

 L,L1,L2 refer to the length fields of SS-type instructions.

 LM refers to the length modifier.

 M1 refers to the mask field of a conditional branch
 instruction.

 R1,R2,R3 correspond to the register operands of the erring
 machine instruction.

 S1,S2 refer to implied addresses in the appropriate operand
 fields.

 User Note 77. SPASM User Guide, Version 5.0 Page 36
 --

 SB,SD refer to the base and displacement of an S-type address
 constant.

 SI refers to an implicit S-type address constant (usually
 from macro instructions).

 SM refers to the scale modifier.

 X2 refers to the index register of the instruction.

 Y refers to a Y-type address constant

 User Note 77. SPASM User Guide, Version 5.0 Page 37
 --

 7.1 Diagnostic and Error Messages

 AEX - ASSEMBLER EXECUTIVE

 AEX-0-0 No ADMP, zero length program

 --

 DBG - ASSEMBLER DEBUG ROUTINE

 DBG-0-0 Bad dynamic patch

 --

 DEF - DEFINITION ROUTINE

 DEF-10-6 No name field on OPDEF
 DEF-20-6 Operand field missing
 DEF-21-4 Invalid character in operand field
 DEF-22-4 Operand length invalid
 DEF-23-4 Undefined opcode in operand field
 DEF-30-2 Assembler or machine opcode modified
 DEF-40-6 Circular definition created

 --

 DFR - TEXT DEFERING ROUTINE

 DFR-10-1 Illegal name field on "DEND"
 DFR-20-5 EOF encountered, matching DENDs generated
 DFR-30-9 Out of space, text not saved
 DFR-40-2 Unmatched DEND
 DFR-50-6 No name or bad name on DEFER statement
 DFR-60-1 Operand field on DEFER card
 DFR-70-2 Primitive opcode redefined

 --

 EQU - EQU PROCESSOR

 EQU-1-6 Name Field Symbol (NFS) missing
 EQU-2-6 Operand 1 undefined (NFS undefined)
 EQU-3-6 Operand 1 missing (NFS undefined)

 EQU-4-3 Invalid delimiter (NFS defined)
 EQU-5-3 Expression 2 (expr2) invalid or relocatable - expr1's
 Length Attribute (LA) used
 EQU-6-3 Specified LA > 65536 - expr1's LA used
 EQU-7-3 Expr3 invalid or relocatable - expr1's Type Attribute
 (TA) used
 EQU-8-3 Specified TA > 255 - expr1's TA used
 EQU-9-3 Scan error in expr2 or 3, expr1's LA or TA used
 EQU-10-6 Expr1 is complexly relocatable

 User Note 77. SPASM User Guide, Version 5.0 Page 38
 --

 --

 EVL - EXPRESSION EVALUATOR

 EVL-1-2 Fixed-point overflow in add or subtract
 EVL-2-2 Multiply overflow
 EVL-10-4 Relocatability error in multiplication or division

 --

 EXP - EXPRESSION SCANNER

 EXP-5-0 Unary operator appears in an expression
 EXP-10-5 Illegal character
 EXP-30-5 Missing term
 EXP-31-5 Missing operator
 EXP-32-5 Unbalanced parentheses
 EXP-33-5 Location counter reference (*) used in multiply or
 divide operation
 EXP-34-5 Invalid delimiter
 EXP-40-5 Too many terms
 EXP-41-5 Too many levels of parentheses
 EXP-42-5 Too many operators
 EXP-50-5 Illegal literal
 EXP-51-5 Nested literals not supported by SPASM

 --

 EXT - CONTROL SECTION ROUTINE

 EXT-10-2 Resumed CSECT not assembled contiguously
 EXT-20-6 More than 256 CSECTs and DSECTs
 EXT-30-3 Illegal START card
 EXT-40-5 Bad name field symbol, statement ignored
 EXT-50-5 Attempt to switch section types, statement ignored

 --

 FIX - FIXUP ROUTINE

 FIX-1-5 Undefined expression
 FIX-2-5 Address constant undefined
 FIX-3-5 Illegal use of complex relocatability

 --

 KON - CONSTANT PROCESSOR FOR DC, DS, AND LITERALS

 Error messages from "KON" fall into two groups: those detected
 during the scanning of the operands (errorcode of 200 or greater),
 and those found during the conversion of a constant.

 User Note 77. SPASM User Guide, Version 5.0 Page 39
 --

 Scanning Errors

 KON-200-5 Bad operand
 KON-201-4 Relocatable duplication factor, set to 1 instead
 KON-202-4 Duplication factor contains *, set to 1 instead
 KON-203-3 Negative duplication factor, set to 1 instead
 KON-204-1 Literal has duplication factor zero
 KON-210-5 Invalid constant type
 KON-220-5 Invalid character in length modifier
 KON-221-4 Relocatable length modifier, default used instead
 KON-222-3 Erron in length modifier, default used instead
 KON-230-5 Invalid character in scale modifier
 KON-231-4 Relocatable scale modifier, zero used instead
 KON-232-1 Invalid scale modifier (ignored)
 KON-233-3 Scale modifier out of range, zero used instead
 KON-240-5 Invalid character in exponent modifier
 KON-241-4 Relocatable exponent modifier, zero used instead
 KON-242-1 Invalid exponent modifier (ignored)
 KON-243-3 Exponent modifier out of range, zero used instead
 KON-300-5 No data text in a literal
 KON-301-0 No text in a DC operand, treat as DS-type instead
 KON-310-5 Excessive location counter increment (ignored)
 KON-320-7 Location counter increment ran off bottom of the
 program, reset to start of the program area
 KON-330-5 Invalid operand delimiter
 KON-331-2 Vacuous comma after an operand (ignored)
 KON-332-5 Invalid data delimiter
 KON-340-5 Excessive literal length
 KON-500-5 Invalid expression found in scanning a field
 KON-501-4 Unevaluatable expression found by EXP, some default
 action was taken (usually set to zero)

 Conversion Errors

 To determine the precise causes of conversion errors, the errorcode
 must be examined as a binary 8-bit pattern. The rightmost 3 bits
 define a number between 1 and 7. Errors 1-3 are fatal; 4-7 allow
 some degree of continuation. The converted value is set to zero.
 The leftmost 5 bits define a number of non-fatal errors. For
 example, a KON errorcode of 23 is decoded as 7 (floating-point
 characteristic out of range) plus 16 (too many decimal points); the
 resulting value is set to zero.

 Bits 5, 6, and 7 (low-order 3 bits)

 1 Invalid single ampersand
 2 Invalid character
 3 Invalid type conversion requested
 4 Vacuous input text (zero used)
 5 Excessive decimal exponent
 6 Null decimal exponent where one was expected
 7 Floating-point characteristic out of range

 User Note 77. SPASM User Guide, Version 5.0 Page 40
 --

 Bits 0, 1, 2, 3, and 4 (high-order 5 bits)

 8 Missing delimiter, assumed after last character
 16 Excess decimal points, only first one used
 32 Implied length too big, maximum used instead
 64 Lost precision in floating-point fraction
 128 Truncation of some significant digits from a fixed-point
 value

 --

 LOC - PROCESSOR OF ORG, START, CNOP, AND END

 For most of the errors detected by LOC, the invalid operand is
 simply ignored.

 LOC-1-5 Syntax error
 LOC-2-5 Relocatability error - an operand was not absolute or
 relocatable where such was required.
 LOC-3-5 Invalid delimiter
 LOC-4-5 Operand not defined
 LOC-5-5 Operand has a complex Relocatability Attribute
 LOC-10-0 Name field symbol has appeared in a CNOP
 LOC-11-5 Missing operand for CNOP
 LOC-12-5 Invalid operand for CNOP
 LOC-30-5 END or ORG operand out of range
 LOC-31-5 ORG operand not in current CSECT
 LOC-40-5 END operand is in a dummy control section
 LOC-41-5 END operand is not halfword aligned
 LOC-42-3 END operand is not type "I" (operand used anyway)

 --

 LST - PROCESSOR OF PRINT, SPACE, EJECT, AND TITLE

 LST-1-5 Missing TITLE or PRINT operand
 LST-2-5 Invalid delimiter, terminates processing
 LST-5-4 Last TITLE delimiter missing
 LST-6-5 Single ampersand appears in TITLE
 LST-7-5 SPACE operand not a self-defining term
 LST-9-4 Invalid PRINT option (ignored)

 --

 LTP - LITERAL SCANNER AND PROCESSOR

 LTP-10-5 Invalid delimiter following a literal
 LTP-20-5 No space for literal to be saved
 LTP-30-5 No space for processing literal

 User Note 77. SPASM User Guide, Version 5.0 Page 41
 --

 --

 MAC - SPECIAL MACRO INSTRUCTION PROCESSOR

 MAC-10-4 Unbalanced parentheses
 MAC-20-5 Too many operands
 MAC-30-4 Self-defining term for PRINTOUT is too big
 MAC-31-4 Symbol in PRINTOUT list is too long
 MAC-32-4 "*" not last item in PRINTOUT operand list
 MAC-40-5 Missing operand or operands
 MAC-41-5 Invalid operand
 MAC-42-5 Invalid delimiter
 MAC-50-5 READFILE option not available
 MAC-60-6 CONVERT is not implemented in this version of SPASM

 --

 MDE - ASSEMBLY MODE STATEMENT PROCESSOR

 MDE-10-4 Inconsistency in ICTL or MALIGN specification
 MDE-11-4 No room for sequence field
 MDE-12-5 ICTL/ISEQ/MALIGN operand not a self-defining term
 MDE-13-5 ICTL/ISEQ/MALIGN operand out of range
 MDE-14-5 ICTL/ISEQ/MALIGN operand conflict
 MDE-15-5 Too many operands
 MDE-16-4 Sequence field longer than 8 characters (8 used)
 MDE-20-5 Invalid operand in AOPTIONS statement
 MDE-30-5 Invalid delimiter
 MDE-40-5 Missing operand in AOPTIONS statement

 --

 MIF - MACHINE INSTRUCTION FIELD PROCESSOR

 Type Checking Option

 If the type checking option is in effect and a type conflict is
 detected, the subfield parameter (SUBFIELD=) of the error message
 will indicate the conflicting field's type. Subtract 32 from the

 subfield value if the conflicting operand uses explicit length.

 SUBFIELD= Type of Statement, Symbol or Term

 0 C - Character
 1 Z - Zoned decimal
 2 P - Packed decimal
 3 X - Hexadecimal
 4 B - Binary
 5 D - Long floating-point
 6 E - Short floating-point
 7 F - Fullword fixed-point
 8 H - Halfword fixed-point
 9 A - Fullword address constant
 10 Y - Halfword address constant

 User Note 77. SPASM User Guide, Version 5.0 Page 42
 --

 11 V - External (virtual) address constant
 12 Q - Q-type address constant (pseudo-register offset)
 13 S - S-type address constant
 15 EXT - EXTRN operand or external name
 16 LOC - Location counter reference
 17 DEF - DEFER statement name
 18 I - Machine instruction
 19 J - Control section (CSECT)
 20 K - Control section (DSECT)
 21 L - Length Attribute reference
 22 M - Macro instruction
 23 N - Self-defining term
 24 LTO - LTORG statement

 MIF-10-4 Field is too small for value, which is truncated
 MIF-12-5 Length or register field is not absolute (zeroed)
 MIF-20-4 Length or register field invalid (e.g., not even),
 value is truncated or rounded
 MIF-21-4 Alignment error, given value is used as is
 MIF-22-4 Floating-point register should be 0 or 4, set to 0
 MIF-23-4 SRP instruction rounding digit must be < 10, set to 0
 MIF-30-5 Addressability error (instruction zeroed)
 MIF-40-3 Operand not executable (I,J,M,N,LOC,DEF,X allowed)
 MIF-44-3 Operand not absolute (N allowed)
 MIF-48-3 Operand not implicit aligned fixed fullword (X,F,A,V,Q
 allowed)
 MIF-52-3 Operand not implicit fixed fullword (F,A,V,LTO allowed)
 MIF-56-3 Operand not implicit fixed halfword (X,H,Y,LTO allowed)
 MIF-60-3 Operand not implicit long float (X,D,LTO allowed)
 MIF-64-3 Operand not implicit short float (X,E,LTO allowed)
 MIF-68-3 Operand not packed decimal (P,X,D,LTO allowed)
 MIF-72-3 Operand not zoned decimal (C,Z,X,LTO allowed)
 MIF-76-3 Operand not C,Z,P,X,B,D,E,F,H,LTO
 MIF-80-3 Operand not C,Z,P,X,B,D,E,F,H,A,Y,LOC,DEF,I,J,M,LTO
 MIF-84-3 Operand not C,Z,P,X,B,D,E,F,H,A,Y,V,Q,S,LOC,DEF,I,J,L,
 M,N,LTO

 --

 MNC - MACRO ENCODER

 MNC-2-5 Error in macro name, no definition entered
 MNC-10-1 Statement sequence not compatible with IBM syntax
 MNC-12-1 Sequence symbol illegal for this operator
 MNC-14-1 Name field symbol use inconsistent
 MNC-16-5 Operand missing
 MNC-20-0 AIF expression not Boolean
 MNC-22-5 Missing sequence symbol in AIF or AGO
 MNC-24-5 Unbalanced right macro quote
 MNC-26-5 Wrong type of variable symbol for SETA, SETB, or SETC
 MNC-40-5 Variable symbol already defined, first one used
 MNC-41-1 Variable symbol starts with "SYS", definition accepted
 MNC-42-5 Inconsistent definition of GLOBAL symbol

 User Note 77. SPASM User Guide, Version 5.0 Page 43
 --

 MNC-44-5 Variable symbol doesn't start with &
 MNC-45-5 Array dimension not an integer less than 256
 MNC-46-5 Syntax error or illegal character
 MNC-48-5 Duplicate sequence symbols, new one is ignored
 MNC-60-5 Attribute reference does not refer to a parameter
 MNC-62-5 Illegal use of character expression
 MNC-64-1 Illegal blank
 MNC-66-5 Syntax error, or illegal character in expression
 MNC-68-5 Stack overflow -- expression too complex
 MNC-70-5 Missing parenthesis
 MNC-100-5 Array used without subscript, first element used
 MNC-102-5 Subscripted variable symbol not an array, SUBSCRIPT
 ignored
 MNC-104-5 Undefined symbol
 MNC-110-5 Missing quote in character string
 MNC-120-0 Boolean operator used with arithmetic operand(s)
 MNC-140-5 Name does not start with a letter
 MNC-142-5 Name is too long
 MNC-150-1 Machine or assembler operation modified
 MNC-160-5 Missing MEND supplied for macro definition
 MNC-999-9 Out of space - abort encoding of this macro

 --

 MOP - MACHINE INSTRUCTION OPERAND FIELD PROCESSOR

 MOP-1-5 Syntax error, wrong or unrecognizable format
 MOP-2-5 Too many operands
 MOP-3-5 Missing operand or operands

 --

 MXP - MACRO EXPANDER

 MXP-10-5 Calls nested too deeply, return to level zero
 MXP-20-1 Macro definition has no name field parameter
 MXP-30-5 Error in keyword name, or syntax error in macro call
 MXP-40-5 Variable not defined as a keyword
 MXP-45-5 Syntax error in operand list
 MXP-50-1 More operands than explicitly specified in macro defn.
 MXP-60-5 Keyword name does not start with a letter
 MXP-62-5 Keyword name too long
 MXP-100-5 String buffer overflow, statement terminated
 MXP-102-5 Subscript error
 MXP-105-5 Undefined symbol's Value or Length Attribute requested
 MXP-110-5 ACTR value went to zero, expansion terminated
 MXP-120-1 Length Attribute undefined for a symbol
 MXP-130-1 Relocatable symbol used in macro expression, value used
 MXP-132-5 String too long to convert to a value
 MXP-134-5 Unable to convert string to a value
 MXP-140-5 Value of symbol not known, statement terminated
 MXP-150-5 Sublist index not positive, statement terminated
 MXP-160-1 Zero divisor, zero used for result
 MXP-200-5 Expression 1 not positive in substring operation

 User Note 77. SPASM User Guide, Version 5.0 Page 44
 --

 MXP-201-5 Expression 2 negative in substring operation
 MXP-202-1 Null substring generated, expr2 is 0
 MXP-203-1 Substring expr1 exceeds string length (null result)
 MXP-204-1 Substring expr2 exceeds string length (tail-end used)
 MXP-210-5 Undefined sequence symbol, no branch taken
 MXP-220-5 Erroneous statement in definition, ACTR halved
 MXP-250-1 Syntax error in specification of MNOTE severity
 MXP-260-0 Decimal self-defining term expected for MNOTE severity
 MXP-270-1 No continuation possible (end column = 80), text lost
 MXP-300-5 Unbalanced string quotes in operand
 MXP-310-5 Unbalanced left parentheses in operand
 MXP-999-1 Macro expansions out of space, return to level zero.

 --

 OPN - NAME AND OPERATION FIELD PROCESSOR

 OPN-10-4 Name field symbol too long (more than 8 characters)
 OPN-11-4 Name field symbol illegal (ignored)
 OPN-12-4 Name field symbol required, but not present
 OPN-20-5 Operation not found, or unknown
 OPN-21-5 Operation name too long
 OPN-30-5 Missing operation field
 OPN-40-5 Invalid delimiter for name or operation field
 OPN-50-4 Name field symbol is multiply defined, value unchanged
 OPN-70-6 Circularly defined opcode
 OPN-80-6 Operation not allowed in open code
 OPN-99-5 Unsupported operation code

 --

 OTC - OPERAND TERM COLLECTOR

 OTC-1-0 Use of Length Attribute of a self-defining term is an
 incompatibility (or the Length Attribute of a Length
 Attribute, etc.)
 OTC-2-3 Symbol is too long, first 8 characters used
 OTC-3-5 Length Attribute of a literal not defined
 OTC-4-1 Reference to literal in a DSECT, ignored

 --

 SEX - SYSTEM EXECUTIVE PROGRAM

 SEX-20 =GO card not preceded by an assembly
 SEX-30 Execution suppressed
 SEX-50 Syntax error in parameter field
 SEX-51 Invalid parameter option
 SEX-52 Error in specification of keyword parameter
 SEX-53 Parameter conflicts with invocation parameters
 SEX-90 Static patches worked incorrectly, assembler bugs not
 patched
 SEX-91 Space available less than required minimum

 User Note 77. SPASM User Guide, Version 5.0 Page 45
 --

 --

 STM - STATEMENT PROCESSOR

 STM-5-3 Sequence error
 STM-10-3 A comment statement is continued (column 72, or the
 user's continuation column is non-blank)
 STM-20-4 Invalid continuation card, will try to process
 STM-21-7 End-of-file encountered while scanning continuation
 cards (statement ignored, and an END card generated to
 terminate assembly)
 STM-22-5 Too many continuation cards
 STM-99-3 Missing END card, assembly terminated
 STM-100-8 Tables overrun program area - assembly is continued but
 no further code is emitted, and execution will not take
 place
 STM-999-9 Available space is exhausted, have to stop assembly but
 as much further syntax checking as possible will be
 done

 --

 TRM - TERM AND SYMBOL SCANNING ROUTINE

 The three digits of the TRM errorcodes have the following
 significance: 1) the ones digit indicates the type of term, 2) the
 hundreds digit indicates the type of error, and 3) the tens digit
 provides additional information concerning the erring term or its
 field. Using the table below, the error message "TRM-433-0" can be
 determined to mean a decimal self-defining term had an excessive
 value.

 Errorcode Meaning

 0 Type unknown
 1 Binary self-defining term
 2 Character self-defining term
 3 Decimal self-defining term
 4 Hexadecimal self-defining term
 5 Symbol
 6 Location counter reference (*)
 7 Symbol Length Attribute reference (L')
 8 Literal (=)

 10 Operation code or name field being scanned
 20 Operand field item being scanned
 30 Self-defining term being scanned

 100 Illegal character detected
 200 Term is too long (too many characters)
 300 Term is vacuous
 400 Value of term is excessive

 User Note 77. SPASM User Guide, Version 5.0 Page 46
 --

 --

 UDF - TEXT UNDEFERING ROUTINE

 UDF-10-4 No continuation possible (end column = 80), text lost

 --

 UFX - USING TABLE FIXUP AND MAINTENANCE ROUTINE

 UFX-1-5 Absolute expression found for base value at USING fixup
 time - this violates a restriction of the SPASM
 assembler. (Because implied addresses are commonly
 coded in statements like LA 1,5 it would be necessary
 to keep all such instructions for later fixups if there
 were any undefined USING statements active. Therefore,
 it is assumed that if the expression in a USING
 statement is not defined at the time the statement is
 scanned, then it must be a relocatable expression.)
 UFX-2-5 Undefined expression found in USING statement at final
 fixup time
 UFX-3-5 Illegal use of complex relocatability

 --

 UGH - UNSUPPORTED OPERATION CODE PROCESSOR

 UGH-1-6 The operation code is not supported by SPASM

 --

 USE - USING AND DROP INSTRUCTION PROCESSOR

 USE-10-5 Missing operand
 USE-11-5 Too many operands
 USE-20-4 Value too big (greater than X'FFFFFF')
 USE-21-4 Register not defined before USING statement
 USE-22-4 Register 0 not first in list
 USE-23-4 Register specification error
 USE-30-3 Unnecessary DROP, register not in use
 USE-40-5 Illegal use of complex relocatability

 --

 VYA - ADDRESS CONSTANT SCANNER

 VYA-1-5 Vacuous constant, scan terminated
 VYA-5-1 Address Constant (ADCON) in DSECT will not be fixed up
 VYA-10-5 Relocatable A-type constant of length less than 3
 bytes - zeroed
 VYA-20-5 Relocatable Y-type constant, zeroed
 VYA-30-5 Addressability error in an implicit S-type constant,
 zeroed
 VYA-40-4 Base or displacement field of an S-type constant is

 User Note 77. SPASM User Guide, Version 5.0 Page 47
 --

 too large and is truncated to fit
 VYA-41-5 Base or displacement of an S-type constant is not
 absolute and is zeroed
 VYA-50-1 S-type address constants in literals not compatible
 with IBM assembler - value depends on USING statements
 VYA-60-3 Q-type constants not supported, treat as A-type
 VYA-70-3 V-type constants not supported, treat as A-type
 VYA-80-5 Complex relocatable expressions in A-type ADCONs only

 --

 User Note 77. SPASM User Guide, Version 5.0 Page 48
 --

 7.2 SPASM Abnormal-End Codes

 CODE INDICATION

 1 Abort from KON - SYM thinks NFS just entered is
 undefined
 2 Abort from KON - TRM found L' inside decimal SDT
 3 Abort from KON - Null expression encountered
 4 Abort from SYT - Null Symbol Table tree
 5 Abort from GIM - Invalid space return
 6 Abort from GIM - Invalid space request (too big)
 7 Abort from LTP - Recursive entry to literal processor
 8 Abort from VYA - Invalid constant type found
 9 Abort from VYA - Invalid statement type found
 1000 Abort from SCT - Pointer vector/common area too long
 1001 Abort from SCT - Inadequate work space
 1002 Abort from SCT - Over twenty assembly-time program
 interrupts in SCT
 1003 Abort from SCT - Error in invocation parameters
 1004 Abort from DBG - Immediate ABEND requested
 1005 Abort from SCT - Open of SYSIN/SYSPRINT unsuccessful
 1006 Abort from SCT - READFILE option not generated in SCT
 1010 Abort from SCT - Unable to find PRB in timer trap
 1011 Abort from SCT - Space not available for SYSLIB READ
 buffer

