Timing Out

BY SAM GOLOB

the system programmer’s “ silver spoon”

in your mouth for your entire data
processing career. In other words, you proba-
bly haven’t had “ PC (Privileged Character)”
status. One of the features of PC status is
that your own TSO session does not “time
out” and get logged off with a System 522
ABEND after a designated number of
minutes of inactivity. You can leave the
office and stay logged on all day.

From the administrator’s point of view, this
privilege of not timing out is undesirable for
the “average’ TSO user. Therefore, in most
installations, such power isnot given to these
users. Why is it better that an average TSO
user should not time out? Firg, any logged-
on TSO user dlocates a certain number of
datasets and ties them up with a shared
enqueue, SO no one else can get an exclusive
enqueue to these datasets if needed. Second,
even a swapped-out TSO user istying up an
address space and some system resources;
this user might even stop a new user from
logging on, if the MAXUSERS number (of
logged-on users) is being approached. Third,
if that TSO session is being hung while no
one skilled is around, it would be very diffi-
cult to free the session. You can probably
think of several other reasons that an
automatic session time-out would be helpful
for most TSO users. Of course for us PCs,
none of these reasons apply, since we can fix
any problem we might cause. Yeah, right.
Anyway, this month’s column will examine
thisidea of timing out.

Chances are, most of you haven't had

X22-TYPE ABENDS

My opinion is that this subject should
really start with a discussion about pur-
posely killing an address space. IBM has
graciously provided us with several means
of “chopping off” jobs, started tasks, and

http://www.naspa.net

TSO sessionsin the middle of their activity.
We've all heard of canceling or forcing
jobs and TSO sessions. When a job pro-
duces excessive output, we might want to
chop it off before it floods our printing
resources or JES spool space. CPU time
excession ABENDs have occasionally
been part of our experience. Sometimes,
we run a big SMP job in the wrong class
and it exceeds that class alowable CPU
time, getting cut short inthe middle. All of
these “cutoffs’ are related by the fact that
the resulting system ABENDs nearly all
end with the characters ‘22'.

What are some of these System X22-
type ABENDs?

[0 A System ABEND 122 occurs when the
operator cancelsajob, requesting adump.

[0 A System ABEND 222 is an oper ator
cancel without adump, which isvery
common.

[0 A System ABEND 322 isa CPU time
excession cancel of ajob.

[0 A System ABEND 422 isnew, andis
similar to a222, but it is done by an
Open Systems MV'S application.

0 A System ABEND 522 results from
excession of the Job Wait Time (JWT)
parameter in the SMF parmsin
SYS1.PARMLIB. Thisisthe“timing
out”’ ABEND we will examine this
month. A System 622 ABEND occurs
when something goes wrong with TSO,
or your session gets disconnected from
the terminal and the reconnect limit
time passes.

0 A System 722 ABEND occursif the job
puts out alot of output, exceeding the
JES or JOB card output limits and the
OUTLIM parameter was not coded in
the job’s JCL to override these limits.

0 A System 822 ABEND occurs when the

region requested for ajob step cannot
be obtained.

[0 A System 922 ABEND occursif the
INITIATOR is now in control of ajob,
before or after the job step has taken
place, and an ABEND or other inter-
ruption occurs.

[0 A System A22 ABEND occurs after
a FORCE operator command was
issued, and the address space was
“burned”, or chopped off forcibly, no
matter what it had been doing before.

We have faced nearly all of these
ABENDSs n our careers. Sometimes we are
happy when one occurs. Other times, we
can be very disappointed. This month, I'll
talk about a few tricks we can do to avoid
some of these disappointments.

Please remember that, by andlarge, we are
PCs (Privileged Characters) in our profes-
sion. However, sometimes management feels
even we PCs need to be restricted.
Nevertheless, we gill are the system doctors,
and we till need our tools to do the job that
management asks of us. This scenario is
similar to what the parent demanded of the
school bus driver: “Be careful and drive
dowly, but get my child to school quickly.”
The bus driver ill has to get that child to
school, safely, despite the parent’s protests.
And we have to do the job that management
requires of us, safely, but quickly too, without
unnecessary hasdes and interruptions.

So if management does not alow us to
stop our sessions from timing out with a
S522 ABEND, and the job requires that we
have to run several parallel sessions on one
or more systems for an extended period of
time, without their timing out, what option
do we have? How can we circumvent our
management’s restrictions and still do the
job asked of us?

June *97 TECHNICAL SUPPORT



WAYS OF AVOIDING SYSTEM 522 ABENDS

A System 522 ABEND is often caused
by a TSO session’s inactivity. How long it
takesto trigger the time-out depends on the
setting of the Job Wait Time (IWT) parameter
in the SMFPRMxx member of SY S1.PARM-
LIB (in minutes). All non-altered TSO ses-
sionswill timeout in this determined number
of minutes. How can we override thistime-
out in our own TSO session and not affect
the average TSO user?

One way to avoid the time-out is to have
your own TSO logon procedure in a PROC
library. This would also require that
SYSLUADS or a security package (i.e.,
RACF, ACF2, TOP-SECRET, etc.) be set up
s0 the use of your own procedure would be
alowed when your ID is used to logon to
TSO. Your own logon procedure, which, in
effect, is JCL, can be then coded with
TIME=1440 or TIME=NOLIMIT in the
EXEC card which invokes the terminal mon-
itor program (usualy IKJEFTO1 or
ADFMDFQ3). This will override a short
JWT setting and keep your own TSO session
“onthe air”.

Some installations do not allow this,
athough nowadays it is unusua to find such
“backward” places. Theseingallations, while
recognizing that systems programmers have
different requirements in their TSO sessions
than application programmers, will alow one
logon PROC for gpplication programmers
and another one (or several) for systems pro-
grammers. They will not dlow, however, a
systems programmer to have a private logon
PROC. And they will also not alow
TIME=1440 or TIME=NO-LIMIT to be
coded in any of these PROCs. In many places,
the systems programmers are not the security
administrators. What can we do now?

A common solution is to find (or write)
a program which runs continuously in a
TSO session if nothing else is running, and
that has a built-in timer. For example, the
timer will pop every five minutes. When the
timer pops, the program triggers some
small TSO activity to fool the session into
thinking that it is not inactive. Therefore,
the session will never time out.

There is away to solve this problem with
management’s approva. If your ingtallation
sufficiently recognizes theimportance of cer-
tain usersnot timing out, there is another pos-
sible approach viathe SMF exit IEFUTL that
can be used to control the effect of Job Wait
Time on jobs, started tasks, or TSO sessions.
An interesting and genera solution that can

TECHNICAL SUPPORT June 97

be implemented with management approval
operates through RACF or whatever security
package you have. I'll show an example
using RACF. You define an entity to RACF in
the FACILITY classcalled TSOWAIT. Those
users who will not time out are given READ
access to this entity. Then an IEFUTL exit
can be coded, which doesa RACROUTE cdl
for the TSO user to ask if READ access is
granted to this entity, and if so, an infinite
time extension is given to the TSO session.
Management administers this solution offi-
cialy, through the security adminigtrators,
and everything is above board.

One of the features of PC
(Privileged Character) status is that
your own TS0 session does not “time
out” and get logged off with a System
922 ABEND after a designated
number of minutes of inactivity.

This IEFUTL exit can be quite easily
coded. An example can be found on File 245
of the CBT MV S Utilities Tape, ahuge, inde-
pendently produced tape of MVS goodies
available through NaSPA. The IEFUTL exit
in File 245 can be simplified even further.
Besides the RACROUTE cdl there is very
little to it, just either a time extenson or a
bypass of the time extension, based on the
result of the RACROUTE cdl. If you have
other IEFUTL exits in use a your installa-
tion, don't worry. SMF exits can be easily
piggybacked, so they dl run in succession.

ANOTHER SOLUTION

Another clever solution can be found on
File 183 of the CBT MV'S Tape. This solu-
tion requires that 1SPF be running in your
TSO session. To implement this solution
judiciously, not including too many people
in the timeout exemption, you should have
a restricted or a private load library to put
into the ISPLLIB concatenation. This can
be done dynamically in a CLIST using the
ALLOCATE TSO command, even if your
TSO session isusing a public logon PROC.
Just exit ISPF, FREE FILE(ISPLLIB), and
issue an ALLOCATE command with the
proper ISPLLIB libraries concatenated in
the proper order. That can all be donein one
CLIST. Findly, assemble and linkedit the
source code for the ISPTASK module on

File 183 (non-reentrant and non-reusable)
into this private library. With | SPF running,
your TSO session will not time out during
weekdays, until 7 p.m. on Friday. Examine
the source code of the ISPTASK module on
File 183 to see how this works. You can
ater the source code if you have different
timeout exemption regquirements.

Theuser version of the ISPTASK module
from File 183 is designed to front-end IBM’s
ISPTASK module, which is either in the
link list or in LPA. IBM’s ISPTASK module
is re-entrant; this user front-end is not. The
user ISPTASK, as coded, works as follows:

1. Upon getting control, it pre-loads a
bunch of 1SPF modules into the Job
Pack Queue for more efficient operation
if these modules were not put in LPA-
LB, but were running from the link
list. Thisis not important for our
purpose, but I'm just mentioning it
for completeness.

2. Afterwards, our user ISPTASK determines
what day of the week it is (Monday
through Friday) and conditiondly passes
control to the STIMER routine that jogs
the TSO session into “activity” every
10 minutes. It only does this from
Monday a midnight until Friday at 7 p.m.

3. Finally, it does alot of searching
through TCBs, looking for IBM’s
actual copy of ISPTASK, avoiding
ISPLLIB and STEPLIB, looking for
are-entrant module.

4. Upon finding the proper copy of
ISPTASK, it XCTLsto it. Meanwhile,
the STIMER keeps popping itself every
10 minutes, and the TSO session does
not time out, because of this “activity”.

| hope you have found this month’s
discussion interesting and informative.
Perhaps you will find alternative ways to do
this job. I've aways thought that systems
programmers were a clever bunch. Good
luck, and keep those timers popping. See
you next month. &

NaSPA member Sam Golob is a senior
systems programmer.

©1997 Technical Enterprises, Inc. Reprinted
with permission of Technical Support maga-
zine. For subscription information, email

mbr ship@naspa.net or call 414-768-8000,
Ext. 116.

http://www.naspa.net



