
June ‘97 TECHNICAL SUPPORThttp://www.naspa.net

Chances are, most of you haven’t had
the system progra m m e r ’s “ s i l ver spoon”
in your mouth for your entire dat a

p rocessing care e r. In other wo rd s , you pro b a-
bly haven’t had “PC (Privileged Character)”
status. One of the features of PC status is
that your own TSO session does not “time
out” and get logged off with a System 522
ABEND after a designated number of
m i nutes of inactivity. You can leave the
office and stay logged on all day.

From the administrat o r ’s point of view, t h i s
p riv i l ege of not timing out is undesirable fo r
the “ ave rage ” TSO user. Th e re fo re, in most
i n s t a l l at i o n s , s u ch power is not given to these
u s e rs. Why is it better that an ave rage T S O
user should not time out? Fi rs t , a ny logge d -
on TSO user allocates a certain number of
d atasets and ties them up with a share d
e n q u e u e, so no one else can get an ex cl u s ive
enqueue to these datasets if needed. Second,
even a swapped-out TSO user is tying up an
a dd ress space and some system re s o u rc e s ;
this user might even stop a new user fro m
l ogging on, if the MAXUSERS number (of
l ogged-on users) is being ap p ro a ch e d. Th i rd,
if that TSO session is being hung while no
one skilled is aro u n d, it would be ve ry diffi-
cult to free the session. You can pro b ably
think of seve ral other reasons that an
a u t o m atic session time-out would be helpful
for most TSO users. Of course for us PCs,
none of these reasons ap p ly, since we can fi x
a ny pro blem we might cause. Ye a h , ri g h t .
A ny way, this month’s column will ex a m i n e
this idea of timing out.

X22-TYPE ABENDS
My opinion is that this subject should

re a l ly start with a discussion about pur-
p o s e ly killing an add ress space. IBM has
gra c i o u s ly provided us with seve ral means
of “ chopping off” j o b s , s t a rted tasks, a n d

TSO sessions in the middle of their activity.
We ’ve all heard of canceling or fo rc i n g
jobs and TSO sessions. When a job pro-
duces ex c e s s ive output, we might want to
chop it off befo re it floods our pri n t i n g
re s o u rces or JES spool space. CPU time
excession ABENDs have occasionally
been part of our ex p e ri e n c e. Sometimes,
we run a big SMP job in the wrong cl a s s
and it exceeds that cl a s s ’ a l l owable CPU
t i m e, getting cut short in the midd l e. All of
these “ c u t o ff s ” a re re l ated by the fact that
the resulting system ABENDs nearly all
end with the ch a ra c t e rs ‘22’.

Wh at are some of these System X22-
type ABENDs?

◆ A System ABEND 122 occurs when the
o p e rator cancels a job, requesting a dump.

◆ A System ABEND 222 is an operator
cancel without a dump, which is very
common.

◆ A System ABEND 322 is a CPU time
excession cancel of a job.

◆ A System ABEND 422 is new, and is
similar to a 222, but it is done by an
Open Systems MVS application.

◆ A System ABEND 522 results from
excession of the Job Wait Time (JWT)
parameter in the SMF parms in
SYS1.PARMLIB. This is the “timing
out”ABEND we will examine this
month. A System 622 ABEND occurs
when something goes wrong with TSO,
or your session gets disconnected from
the terminal and the reconnect limit
time passes.

◆ A System 722 ABEND occurs if the job
puts out a lot of output, exceeding the
JES or JOB card output limits and the
OUTLIM parameter was not coded in
the job’s JCL to override these limits.

◆ A System 822 ABEND occurs when the

region requested for a job step cannot
be obtained.

◆ A System 922 ABEND occurs if the
INITIATOR is now in control of a job,
before or after the job step has taken
place, and an ABEND or other inter-
ruption occurs.

◆ A System A22 ABEND occurs after
a FORCE operator command was
issued, and the address space was
“burned”, or chopped off forcibly, no
matter what it had been doing before.

We have faced nearly all of these
ABENDs in our careers. Sometimes we are
happy when one occurs. Other times, we
can be very disappointed. This month, I’ll
talk about a few tricks we can do to avoid
some of these disappointments.

Please remember that , by and large, we are
PCs (Priv i l eged Chara c t e rs) in our pro fe s-
sion. Howeve r, sometimes management fe e l s
even we PCs need to be re s t ri c t e d.
N eve rt h e l e s s , we still are the system doctors ,
and we still need our tools to do the job that
m a n agement asks of us. This scenario is
similar to wh at the parent demanded of the
s chool bus drive r : “Be careful and drive
s l ow ly, but get my child to school quick ly.”
The bus driver still has to get that child to
s ch o o l , s a fe ly, despite the pare n t ’s pro t e s t s .
And we have to do the job that manage m e n t
re q u i res of us, s a fe ly, but quick ly too, w i t h o u t
u n n e c e s s a ry hassles and interru p t i o n s .

So if management does not allow us to
stop our sessions from timing out with a
S522 ABEND, and the job requires that we
have to run several parallel sessions on one
or more systems for an extended period of
time, without their timing out, what option
do we have? How can we circumvent our
management’s restrictions and still do the
job asked of us?

Timing Out
BY SAM GOLOB

M V S T O O L S A N D T R I C K S

WAYS OF AVOIDING SYSTEM 522 ABENDS
A System 522 ABEND is often caused

by a TSO session’s inactivity. How long it
takes to trigger the time-out depends on the
setting of the Job Wait Time (JWT) para m e t e r
in the SMFPRMxx member of SYS1.PA R M-
LIB (in minutes). All non-altered TSO ses-
sions will time out in this determined nu m b e r
of minutes. How can we override this time-
out in our own TSO session and not affect
the average TSO user?

One way to avoid the time-out is to have
your own TSO logon pro c e d u re in a PRO C
l i b ra ry. This would also re q u i re that
S Y S 1 . UADS or a security pack age (i.e. ,
R AC F, AC F 2 , TO P - S E C R E T, e t c.) be set up
so the use of your own pro c e d u re would be
a l l owed when your ID is used to logon to
T S O. Your own logon pro c e d u re, wh i ch , i n
e ffe c t , is JCL, can be then coded with
TIME=1440 or TIME=NOLIMIT in the
EXEC card wh i ch invo kes the terminal mon-
itor program (usually IKJEFT01 or
ADFMDF03). This will ove rride a short
JWT setting and ke ep your own TSO session
“on the air”.

Some installations do not allow this,
although nowa d ays it is unusual to find such
“ b a ck wa rd ” places. These installat i o n s , wh i l e
re c ognizing that systems progra m m e rs have
d i ffe rent re q u i rements in their TSO sessions
than ap p l i c ation progra m m e rs , will allow one
l ogon PROC for ap p l i c ation progra m m e rs
and another one (or seve ral) for systems pro-
gra m m e rs. Th ey will not allow, h oweve r, a
systems programmer to have a private logo n
P ROC. And they will also not allow
TIME=1440 or TIME=NO-LIMIT to be
coded in any of these PROCs. In many places,
the systems progra m m e rs are not the securi t y
a d m i n i s t rat o rs. Wh at can we do now ?

A common solution is to find (or write)
a program which runs continuously in a
TSO session if nothing else is running, and
that has a built-in timer. For example, the
timer will pop every five minutes. When the
timer pops, the program tri gge rs some
small TSO activity to fool the session into
thinking that it is not inactive. Therefore,
the session will never time out.

Th e re is a way to solve this pro blem with
m a n age m e n t ’s ap p roval. If your installat i o n
s u ffi c i e n t ly re c og n i zes the importance of cer-
tain users not timing out, t h e re is another pos-
s i ble ap p ro a ch via the SMF exit IEFUTL that
can be used to control the effect of Job Wa i t
Time on jobs, s t a rted tasks, or TSO sessions.
An interesting and ge n e ral solution that can

be implemented with management ap p rova l
o p e rates through RACF or wh at ever securi t y
p a ck age you have. I’ll show an ex a m p l e
using RAC F. You define an entity to RACF in
the FACILITY class called T S OWA I T. Th o s e
u s e rs who will not time out are given READ
access to this entity. Then an IEFUTL ex i t
can be coded, wh i ch does a RAC ROUTE call
for the TSO user to ask if READ access is
granted to this entity, and if so, an infi n i t e
time extension is given to the TSO session.
M a n agement administers this solution offi-
c i a l ly, t h rough the security administrat o rs ,
and eve rything is ab ove board.

One of the features of PC
(Privileged C h a racter) status is that

your own TSO session does not “time
out” and get logged off with a System

522 ABEND after a designated
number of minutes of inactivity.

This IEFUTL exit can be quite easily
c o d e d. An example can be found on File 245
of the CBT MVS Utilities Tap e, a huge, i n d e-
p e n d e n t ly produced tape of MVS go o d i e s
ava i l able through NaSPA. The IEFUTL ex i t
in File 245 can be simplified even furt h e r.
Besides the RAC ROUTE call there is ve ry
little to it, just either a time extension or a
bypass of the time ex t e n s i o n , based on the
result of the RAC ROUTE call. If you have
other IEFUTL exits in use at your installa-
t i o n , d o n ’t wo rry. SMF exits can be easily
p i ggy b a cke d, so they all run in succession.

ANOTHER SOLUTION
Another clever solution can be found on

File 183 of the CBT MVS Tape. This solu-
tion requires that ISPF be running in your
TSO session. To implement this solution
judiciously, not including too many people
in the timeout exemption, you should have
a restricted or a private load library to put
into the ISPLLIB concatenation. This can
be done dynamically in a CLIST using the
ALLOCATE TSO command, even if your
TSO session is using a public logon PROC.
Just exit ISPF, FREE FILE(ISPLLIB), and
issue an ALLOCATE command with the
proper ISPLLIB libraries concatenated in
the proper order. That can all be done in one
CLIST. Finally, assemble and linkedit the
source code for the ISPTASK module on

File 183 (non-reentrant and non-reusable)
into this private library. With ISPF running,
your TSO session will not time out during
weekdays, until 7 p.m. on Friday. Examine
the source code of the ISPTASK module on
File 183 to see how this works. You can
alter the source code if you have different
timeout exemption requirements.

The user version of the ISPTASK module
f rom File 183 is designed to front-end IBM’s
ISPTASK module, which is either in the
link list or in LPA. IBM’s ISPTASK module
is re-entrant; this user front-end is not. The
user ISPTASK, as coded, works as follows:

1. Upon getting control, it pre-loads a
bunch of ISPF modules into the Job
Pa ck Queue for more efficient operat i o n
if these modules were not put in LPA-
LIB, but were running from the link
list. This is not important for our
purpose, but I’m just mentioning it
for completeness.

2. A f t e r wa rd s , our user ISPTASK determines
what day of the week it is (Monday
t h rough Fri d ay) and conditionally passes
c o n t rol to the STIMER routine that jog s
the TSO session into “activity” every
10 minutes. It only does this from
M o n d ay at midnight until Fri d ay at 7 p.m.

3. Finally, it does a lot of searching
through TCBs, looking for IBM’s
actual copy of ISPTASK, avoiding
ISPLLIB and STEPLIB, looking for
a re-entrant module.

4. Upon finding the proper copy of
ISPTASK, it XCTLs to it. Meanwhile,
the STIMER keeps popping itself every
10 minutes, and the TSO session does
not time out, because of this “activity”.

I hope you have found this month’s
discussion interesting and info rm at ive.
Perhaps you will find alternative ways to do
this job. I’ve always thought that systems
programmers were a clever bunch. Good
luck, and keep those timers popping. See
you next month.

NaSPA member Sam Golob is a senior
systems programmer.

©1997 Technical Enterprises, Inc. Reprinted
with permission of Technical Support maga-
zine. For subscription information, email
mbrship@naspa.net or call 414-768-8000,
Ext. 116.

ts

http://www.naspa.netTECHNICAL SUPPORT June ‘97

