ASSI ST1-1
3.0/B
ASSI ST MARCH 1974
| NTRODUCTORY ASSEMBLER USER S MANUAL

Pr ogram&Docunent ati on: John R Mashey
Proj ect Supervision : G aham Canpbel
Conput er Sci ence Departnent - Pennsylvania State University

PREFACE

This manual is the basic reference for the programmer witing
in the Assenbl er Language for the I1BM S/ 360 conputer, using the ASSIST
assenbl er-interpreter system ASSI ST (Assenbler System for Student
Instruction and Systens Teaching) is a small, high-speed, |ow overhead
assenbler/interpreter systemespecially designed for wuse by students
| earni ng assenbl er | anguage. The assenbler program accepts a |large
subset of the standard Assenbl er Language under OS/ 360, and includes
nost common features. The execution-time interpreter sinulates the
full 360 instruction set, with conplete checking for errors, neaning-
ful diagnostics, and conpletion dunmps of nmuch snmaller size than the
nor mal system dunps.

The first part of this mnmanual describes the assenbly [|anguage
conmands permitted by the ASSIST assenbler. In essence, it is a
conparison with the standard Assenbly Language, and generally notes
only the onissions or differences fromthe standard. The reader should
refer to one of the follow ng publications, which the first part of this
manual closely foll ows (depending on operating system used):

C28- 6514 | BM SYSTEM 360 OPERATI NG SYSTEM ASSEMBLER LANGUAGE
C24-3414 | BM SYSTEM 360 DI SK AND TAPE OPERATI NG SYSTEM ASSEMBLER LANG

The second section describes input/output, decinmal conversion
hexadeci mal conversi ons, and debugging facilities available to the user
at execution tinme.

The third part of the nmanual describes the control cards and
Job Control Language required to assenble and execute a program
under ASSI ST. It also notes the various options from the PARM
field which are accepted by the system

The fourth section gives information concerning the out put
from ASSIST, including the assenbly Ilisting, the format of t he
conpletion dunp produced by an error in program execution, and
alist of all error nessages produced during assenbly or execution.
It al so describes the object decks produced/accepted by ASSI ST.

Note: this document is NOT copyrighted.

Note: only mmjor change in docunentation fromversion 2.1
is the inclusion of cross-reference nmaterial (XREF)
and the inclusion of the extended interpreter
mat eri al

ASS| ST1-2
TABLE OF CONTENTS

PART |. THE ASSEMBLY LANGUAGE UNDER ASSIST................. 1-4
The sections flagged * note that the given | anguage features
are not accepted by ASSI ST.

SECTION I: INTRODUCTI ON. . ..ottt e e e e it e 1-4
Compatibility. 1-4
MACro I NStructions. i 1-4
The Assenmbler Program 1-5

SECTI ON 2: GENERAL I NFORMATION.t e 1-5
Synmbol s. .. 1-5
General Restrictions on Synbols....................... 1-5
Location Counter References............ 1-5
Literal s.. ... 1-5
Literal Pool 1-5
EXPressi ONS. . ..o 1-5

SECTI ON 3: ADDRESSI NG - - PROGRAM SECTI ONI NG AND LINKING ... 1-6
USING -- Use Base Register............ 1-6
CONTROL SECTI ONS.o e e e e 1-6
Control Section Location Assignhment................... 1-6
FIRST CONTROL SECTION. . ..ttt e e 1-6
START -- Start Assenmbly......... 1-6
CSECT -- Identify Control Section..................... 1-6
DSECT -- ldentify Dumy Section....................... 1-6
*EXTERNAL DUMMY SECTI ONS (ASSEMBLER F ONLY)............ 1-6
*COM - - DEFI NE BLANK COMMON CONTROL SECTION............ 1-6

SECTION 4: MACHINE INSTRUCTIONS. 1-7
Instruction Alignment and Checking.................... 1-7
OPERAND FI ELDS AND SUBFIELDS. 1-7

SECTI ON 5: ASSEMBLER LANGUAGE STATEMENTS. 1-7
*OPSYN -- EQUATE OPERATION CODE.o, 1-7
DC -- DEFINE CONSTANT.ttt e e e 1-7
Operand Subfield 3: Mddifiers......... 1-7
Qperand Subfield 4: Constant.......................... 1-7
CCW -- DEFINE CHANNEL COMVAND WORD.ovuun.. 1-8
Listing Control Instructions.......................... 1-8
TITLE -- IDENTIFY ASSEMBLY QUTPUT. 1-8
PRINT -- PRINT OPTIONAL DATA. e 1-8
PROGRAM CONTROL INSTRUCTIONS. i 1-8
*ICTL, ISEQ PUNCH, REPRO. 1-8
LTORG -- BEGA N LITERAL POOL.ot 1-8
Speci al Addressing Considerations..................... 1-8
Duplicate Literals...... 1-8
*COPY -- COPY PREDEFINED SOURCE CODING. 1-8

SECTI ON 6: | NTRODUCTI ON TO THE MACRO LANGUAGE 1-9

SECTI ON 7: HOW TO PREPARE MACRO DEFINITIONS 1-10

SECTI ON 8: HOW TO WRI TE MACRO- INSTRUCTIONS 1-10

SECTI ON 9: HOW TO WRI TE CONDI TI ONAL ASSEMBLY | NSTRUCTIONS . 1-11
SECTI ON 10: EXTENDED FEATURES OF THE MACRO LANGUAGE 1-12

ASS| ST1-3

PART | . (CONTI NUED)

APPENDI X K: USE OF LIBRARY MACROS. i 1-12
PART |1. |1 NPUT/ OQUTPUT AND DEBUGGE NG | NSTRUCTIONS. 2-1
I NPUT/ QUTPUT | NSTRUCTI ONS - XREAD, XPRNT, XPNCH............ 2-1
CONDI TEON CODE. . . .ot e e e e 2-1
CARRI AGE CONTROL. . . .ot e 2-1
EXAMPLES OF XREAD, XPRNT, XPNCH USAGE................. 2-2
DEBUGG NG I NSTRUCTI ON - XDUMP. . .. oo e e e e 2-3
GENERAL PURPCSE REG STER DUMP. 2-3
STORAGE DUMP. . . .o 2-3
EXAMPLES OF XDUMP USAGE. 2-3
DECI MAL CONVERSI ON | NSTRUCTI ONS - XDECI, XDECO. 2-4
XDEC . . 2-4
XDECO . o 2-4
SAMPLE USACGE OF XDECI 2-5
SAMPLE USACGE OF XDECO.ottt 2-5
HEXADECI MAL CONVERSI ON | NSTRUCTI ONS - XHEXI, XHEXO. 2-6
XHEXI . 2-6
XHEXO. . oo 2-6
SAMPLE USACE OF XHEXI AND XHEXO. 2-7
LIMT DUMP I NSTRUCTION - XLIMD. 2-8
SAMPLE USACGE OF XLIND. 2-8
OPTI ONAL | NPUT/ OQUTPUT | NSTRUCTI ONS - XGET, XPUT............ 2-9
CONDI TEON CODE. . . . oot e e e e e 2-9
CARRI AGE CONTROL. . . . ot e e e 2-9

EXAMPLES OF XGET AND XPUT USAGE.covn... 2-10

PART 111. ASSI ST CONTROL CARDS AND DECK SETUP.............. 3-1

A JOB CONTROL LANGUAGE. e e 3-1
B. OPTIONAL PARAMETERS FOR ASSIST. 3-2
C. DESCRIPTION OF INDI VIDUAL OPTIONS. 3-4
PART 1V. ASSI ST OPTI ONAL EXTENDED | NTERPRETER. 4-1
A. GENERAL DESCRIPTION OF NEWFEATURES. 4-1
B. THE XOPC (Assist OPtions Call) DEBUGE NG | NSTRUCTION. ... 4-2
PART V. QUTPUT AND ERROR MESSAGES. 5-1
A. ASSEMBLY LISTING e 5-1
1. ASSEMBLY LISTING FORMAT. e 5-1
2. ASSEMBLER ERROR MESSAGES.o 5-1
3. LIST OF ASSEMBLER ERROR MESSAGES. 5-2
4. ASSEMBLER STATISTICS SUMMARY., 5-10
B. ASSI ST MONI TOR MESSAGES. e 5-11
1. HEADI NG AND STATI STI CAL MESSAGES. 5-11
2. ASSI ST MONITOR ERROR MESSAGES. 5-12
C. ASSI ST COVPLETION DUMP. e e 5-13
D. COVPLETION CODES.ot e 5-14
E. OBJECT DECKS AND LOADER MESSAGES.coiiinn.. 5-15
1. OBJECT DECK FORMAT. e 5-15
2. ASSI ST LOADER USAGE AND MESSAGES. 5-16

PART | . THE ASSEMBLY LANGUAGE UNDER ASSI ST

This section deals wth the subset of the standard Os/ 360
Assenbl er Language accepted be the ASSIST assenbler. Because it
follows the standard very closely, the following describes only
t hose | anguage features which ASSIST omits or treats differently.
The user should generally consult the previously-mentioned publication
for nost of the information on the assenbler | anguage. The section
headi ngs and sub-headings in this nmanual are taken from the | BM
publication, and any sections omtted may be assuned to be the sane as
t he correspondi ng sections in the | BM manual .

SECTI ON 1: | NTRODUCTI ON

Conpatibility

Wth a few possible exceptions, any program which assenbles
and executes correctly under ASSI ST should do so using the standard
0S/ 360 software, and shoul d produce the same output as under ASSI ST.
At nost, a change of Job Control Language m ght be necessary.

The Assenbl er Program

The assenbl er program produces a listing of the source program and
normal |y creates an object programdirectly in main nenory, while using
no secondary storage, unless requested. An object deck can be punched.

SECTI ON 2: GENERAL | NFORVATI ON

CGeneral Restrictions on Synbols

A synbol may be defined only once in an assenbly, i.e., it may
appear in the name field of no nmore than one instruction. The
same synbol may not be wused as a label in tw different contro

sections, and control sections may not be resuned, the only case
in the standard | anguage allowing the same synbol on nore than one
st at enent .

Locati on Counter Reference
ASS| ST allows full use of the location counter *, wth the
fol |l ow ng exceptions:

1. The progranmer nay not refer to the location counter inside
a literal address constant. Thus, the followi ng statenent wil |
produce incorrect results:

L 1, =A(*+20)

2. The programmer nmay not refer to the location counter in
an A-type address constant having a duplication factor greater
than one, if the reference is nade in such a way that the various
duplications of the specified const ant have di fferent val ues.
For instance, under OS/360, the following statenent would produce

the values 0,1,...,255, but ASSIST would produce 256 byt es of
zero:
NANMVE DC 256AL1(* - NAMVE)
Literals

Literal constants my not contain nore than 112 characters,
counting the beginning = and ending delimter, i.e. my not require

nore than two cards when placed in the literal pool

Literal Poo

Unl ess ot herwi se specified by the use of the LTORG instruction,
the literal pool is placed after the programis END card, rather than
at the end of the first control section in the program

Expr essi ons
Use of general expressions is permtted for npst statenents.
Any restrictions are noted under the individual statenents.

ASSI ST1-6
SECTI ON 3: ADDRESSI NG -- PROGRAM SECTI ONI NG AND LI NKI NG

USI NG -- Use Base Register
The first expression (address) in a USING statenent nust be
rel ocat abl e.

CONTROL SECTI ONS
Multiple control sections are allowed. A program nust contain
at least one control section.

Control Section Location Assignnent

Control sections may not be interm xed under ASSI ST, i.e.,
all the statenents of one control section nust be coded before
anot her i s begun.

FI RST CONTROL SECTI ON

Under ASSIST, the first <control section has no properties
different from the other sections, i.e., its initial | ocation
counter value nmust be relocatable, and it does not nornmally contain
unassigned literal constants unless it is the only control section.

START -- Start Assenbly

The START instruction may be preceded by listing contro
i nstructions and comments cards. The sane |abel may not be used on a
START statenent and a | ater CSECT statenent.

CSECT -- Identify Control Section

No nore than one CSECT nmay use a given synbol as a nane,
and statenents from different CSECT's may not be i nt erspersed.
DSECT -- ldentify Dumry Section

No nmore than one DSECT may use a given synbol as a name, and
statenents fromdifferent DSECT's may not be interspersed

EXTERNAL DUMWY SECTI ONS (ASSEMBLER F ONLY)
External dumy sections are not supported, so the commands
CXD and DXD are not recogni zed.

COM - - DEFI NE BLANK COVMON CONTROL SECTI ON
COM i s not all owed.

ASS| ST1-7
SECTI ON 4: MACHI NE- | NSTRUCTI ONS

Instruction Alignnment and Checking
If any statement requires alignment and causes bytes to be
ski pped, the bytes skipped are NOT necessarily set to hexadeci mal zeros.

OPERAND FI ELDS AND SUBFI ELDS
ASSI ST permits the sane use of expressions in nachine-instruction
operand fields as does the standard assenbl er.

SECTI ON 5: ASSEMBLER LANGUAGE STATEMENTS
OPSYN -- EQUATE OPERATI ON CODE i s not accepted.

DC - - DEFI NE CONSTANT

Mul tiple operands (up to 10 operands in a single DC statenent)
and nultiple constants wthin operands are both permtted. Byt es
ski pped to align a DC statenent are NOT zeroed.

Operand Subfield 3: Mdifiers
The following nodifiers are not permtted by ASSI ST
Bit-Length Specification, Scale Modifier, and Exponent Modi fi er

Operand Subfield 4: Constant
Fi xed- Poi nt Constants -- F and H

Fi xed- poi nt constants may not contain decimal points or exponents
Wil e I engths may range fromone to eight bytes, the m ni mum and maxi mum
val ues permitted are those for length 4.

Fl oati ng- Poi nt Constants -- E and D
No scal e or exponent nodifiers are allowed, but exponents are
accepted within each constant.

Deci mal Constants -- P and Z:

If no explicit length is supplied for an operand containing
mul tiple constants, each of the operands is assenbled to the length
of the last constant in the operand, even if truncation is thus
required. For exanple, under the standard assenbler, the follow ng
needs four bytes. Under ASSIST it is assenbled into three bytes,
with the second constant truncated:

DC P' 0, 20, 1'

Address Constants: only A and V address constants are al | owned.
Conpl ex Rel ocat abl e Expressions: are not all owed.

A-type Address Constant: nmay not be wused in a literal constant
if it refers to the location counter. It will be assenbled inproperly

if it does so.

Y- Type, S-Type, and Q Type Address Constants: are not al | owed.

ASS| ST1-8

CCW - - DEFI NE CHANNEL COVMAND WORD
The CCWis recognized and all ocated storage, but is not otherw se
assenbled. It will be flagged ' NOT CURRENTLY | MPLEMENTED .

Listing Control Instructions

TI TLE -- | DENTI FY ASSEMBLY OUTPUT
No title may have a synbol in the nane field.

PRI NT -- PRI NT OPTI ONAL DATA

Al'l operands are accepted, but DATA and NODATA have no effect, i.e.
no nmore than eight bytes of data are ever printed. Any st atenent
flagged with an error or warning is always printed, even if the
print control is OFF, or NOGEN for generated statenents.

PROGRAM CONTROL | NSTRUCTI ONS

ICTL -- INPUT FORMAT CONTROL, ISEQ -- |INPUT SEQUENCE CHECKI NG
PUNCH -- PUNCH A CARD, and REPRO -- REPRODUCE FOLLOW NG CARD
are not accepted by ASSI ST.

LTORG -- BEG N LI TERAL POOL

Any literals used after the last LTORG are placed after the
END card, instead of at the end of the first <control section.

Duplicate Literals:

Duplicate literals are never stored, since the programrer nmay
not refer to the Ilocation counter in a literal A-type addr ess
constant, the only case under the regular system requiring the
storing of duplicate literals.

COPY -- COPY PREDEFI NED SOURCE CODING is not allowed.

ASSI ST1-9
SECTI ON 6: | NTRODUCTI ON TO THE MACRO LANGUAGE

The macro language is a facility which may or may not be i ncl uded
in a particular version of ASSIST. Also, various |levels of the ASSI ST
nmacro processor can be generated, so that the user should check to see
which one(s) are available at his installation. The fol I owi ng
facilities may be avail abl e:

BASIC (F) MACRO FACILITY: allows programrer-witten macros, conpatible
with Assenbl er(F), but without macro library or open code conditiona
assenbl y.

EXTENDED (G&H) MACRO FACILITY: like BASIC above, but allows certain
features not supported by Assenbler F, but allowed by Assenblers G or H

MACRO LI BRARY: sone versions of ASSIST permt system nmacros to be used
in addition to progranmer-witten nacros. This facility requires the
use of a special comment card (*SYSLIB), as described |ater.

OPEN CODE CONDI Tl ONAL ASSEMBLY: system assenblers allow the wuser to
use conditional assenbly statements and SET variables outside nacros,
i.e., in the open code, or main body of the program Wth certain
restrictions as noted, this facility can be supplied if desired.

Finally, in order to use macros at all, the user nmnust supply the
parameter MACRO= , as described in Part |11

THE MACRO DEFI NI TI ON
COPY statenents are not all owed.
THE MACRO LI BRARY

Certain restrictions exist in ASSIST' s processing of system nmacros.
One or nore *SYSLIB cards nust follow any programer-defined nacro
definitions. These cards indicate that library search is required, and
nmust nanme any nmacros which are called fromthe open code |ater, but have
not been previously nentioned in the programmer-witten nacros. The
user should consult the appendix USE OF LIBRARY MACROS in this PART.

SYSTEM AND PROGRAMMER MACRO DEFI NI TI ONS

Since ASSI ST reads in system nmacros and edits them upon comand of
*SYSLI B cards i nmediately followi ng progranmer nmacros, they are treated
exactly the same as programrer nmacros, except that they are not printed
unl ess requested by the LIBMC option. FErrors are attached to correct
statenents.

ASS| ST1-10

SECTION 7: HOW TO PREPARE MACRO DEFI NI TI ONS

MACRO | NSTRUCTI ON PROTOTYPE

Two formats are allowed for statements, the normal one used by al
ot her statements, and the alternate one allowed only for nmacro prototype
and macro call statenents. ASSIST does all ow nmacro prototypes and nacro
calls to be continued on an indefinite nunber of cards. Wen there are
no nore than 2 continuation cards, ASSIST is conpletely conpatible wth
ot her assenblers. |If the total number of cards in a statenent exceeds
3, the following restriction nmust be followed: every third card in the
statement nust use the alternate format, unless it 1is the last one.
(This is done because ASSI ST processes cards in groups of 3). The two
prototypes below illustrate this restriction:

PROTOTYPE ACCEPTED BY ASSEMBLERS F, G H, VS, BUT NOT ASS| ST:

&L ABEL LONGPROT &PARML, &PARMR, PARMS, ALTERNATE FORVAT X
&PARMB, &PARMA, &PARMD, PARMS, ALTERNATE FORVAT X
&PARMB, &PARMY =XXXXXXXX, &PARMB=YYYYYYYY, &PARMB=27777777, &X
PARMD=A LAST LI NE

EQUI VALENT PROTOTYPE, ACCEPTED BY ASSI ST:

&L ABEL LONGPROT &PARML, &PARMR, PARMS, ALTERNATE FORVAT X
&PARMB, &PARMA, &PARMD, PARMS, ALTERNATE FORVAT X
&PARMS, &PARM7 =XXXXXXXX, &PARMB=YYYYYYYY, &PARMD=727777777, X
&PARMD=A LAST LI NE

Gven this restriction, it is best to place any positional parns
early in the list if they may require |ong val ues needing continuation.

MODEL STATEMENTS

Vari abl e synbol s MAY be used to generate PRI NT and END operations
If the open code feature is allowed, they may also be used to generate
calls to macros at the outer level, but not inside nacros.
COPY STATEMENTS

COPY statenents are not all owed.

SECTION 8: HOW TO WRI TE MACRO- | NSTRUCTI ONS

There are no changes fromthe |BM standard.

ASSI ST1-11
SECTI ON 9: HOW TO WRI TE CONDI TI ONAL ASSEMBLY | NSTRUCTI ONS
Al of the conditional assenbly instructions nmay be used inside
macros. They may only be used outside if the version of ASSIST being
used supports it, and there are restrictions in that use in any case.

ATTRI BUTES

ASSI ST is a two-pass assenbl er, performi ng nmacro-processing 'on the
fly' during pass 1. As such, it is inpossible for it to wusually know

the attributes of a synbol, so there are definite restrictions. In
effect, the only attributes are those which can be found by | ooking just
at a macro call statement by itself. The attributes allowed are:
Attribute Not at i on

Type T only values N, O and U possible

Count K

Nunber N

Thus, Length (L'), Scaling (S'), and Integer (l') attributes are
not supported. The only values for Type are N (Numeric), O (QOrmtted),
and U (undefined), so that the value is U under ASSIST in many cases
where it woul d be sonething el se under | BM assenbl ers.

Al F -- CONDI TI ONAL BRANCH

| BM assenbl ers normally assign 4096 as the usual linmt for nunber
of AIF and AGO branches. See ACTR for the way ASSIST handles this.

The sequence synbol naned in the AIF nmay precede or follow the
Al F statement inside nacros. Qutside macros, it may only follow the
AlF, i.e., only forward branches are allowed. |If a branch is taken to
a previously-defined sequence synbol in open code, ASSIST produces an
an error nessage and ignores the AlF AGO

AGO -- UNCONDI TI ONAL BRANCH

AGO follows the sane restriction as AlF: backwards branches are
allowed in macros, but not in open code

ACTR -- CONDI TI ONAL ASSEMBLY LOOP COUNTER

ASSI ST supports the standard ACTR However, the default value of
the ACTR counter is set differently, via the MACTR= option supplied by
the user. This has a default value as given in PART 1Il, which is
normal ly smaller than the | BM val ue 4096. The MACTR= value is used for
all macro definitions, unless explicitly overridden via ACIR statenents.

CONDI TI ONAL ASSEMBLY ELEMENTS

There are no changes, except that attributes L', S, and |I' are not
support ed.

ASS| ST1-12
SECTI ON 10: EXTENDED FEATURES OF THE MACRO LANGUAGE
MNOTE -- REQUEST FOR ERROR MESSAGE

The MNOTE statenents accepted by ASSIST follow the standard, but
ASSI ST effectively ignores the use of severity codes, except that
MNOTE' S with nunerical severity codes are printed as errors while ones
with * are printed in another format.

&SYSECT -- Current Control Section

CSECT or DSECT statenents processed in a macro definition do NOT
af fect the value for &SYSECT for any subsequent inner nmacros in that
definition.

MACRO DEFI NI TI ON COMPATI BI LI TY

ASSI ST does not accept AGOB or Al FB

APPENDI X K: USE OF LI BRARY MACROS

This section describes the deck |ayout and use of *SYSLIB cards
when the user desires to use nacros froma systemlibrary. Brief notes
are given regarding internal workings of nacro processing, in order to
hel p the requirements be nore meani ngful.

ASSI ST perforns all macro-processing during the first pass of its
total of two passes across the source program Macro processing itself
has two stages. During the EDIT stage, macro definitions are read,
scanned, and printed, while tables are built in nenory describing them
The EXPANSI ON stage is part of the normal first pass of a two-pass
assenbler, so that every time a macro call is encountered, the nacro
processor expands the call into O or nore statenents, which then act as
t hough they had been read in the nornmal way.

For best use of limted menory, ASSIST requires that ALL EDITING
be done before ANY EXPANSI ON. During editing of programmer nacros,
alist is kept of opcodes not yet defined, and these are presuned to
be system nmacros. Any systemnmacros called by progranmer nmmcros are

t herefore known to ASSI ST, and so it can fetch them from the Ilibrary.
However, if a systemmacro is only called at in the open code, there is
no way for ASSIST to knowthat it will be needed |Iater. Also, it is
desirable that the user specify whether the nacro library should be
searched at all, in order to avoid searching the library for a mspelled
opcode nane automatically. Thus, a special conments card, *SYSLIB, is
used to informassist that it should actually perform library search.

The format of the *SYSLIB card is either of the follow ng:

*SYSLI B nanel, nane2,...... coment s
*SYSLI B

The first formgives a list of 1 or nore nmacro nanes, seprated by
conmas, free format. The second form contains no operands at all

ASSI ST1-13

The second form may be used only when all library macros appear in the
user's macro definitions.

The *SYSLIB card should follow all programmer macros (if any), and
nust precede any of the statements of the open code, except for comrent
and listing control (PRINT, TITLE, EJECT, SPACE) statements. The user
may supply 1 or nore *SYSLIB cards, as long as these conditions are
fulfilled, thus allow ng sone conveni ence.

When finding any *SYSLIB card in a proper |location, ASSIST does
the foll ow ng:

1. Scans the card, adding any nane found there to the list of macro
nanes. If the name is already in the list, it is totally ignored.

2. Scans the list of macro names. If a macro is not defined, it
searches the macro library for it. |If the macro cannot be obtained,
it marks the nmacro 'searched for', and never |ooks for it again.

3. If the macro is found during 2, the print control is turned OFF
unl ess the user specified LIBMC, in which case the print control is
unchanged. The macro is then read and edited, |ike a programrer macro.

4, During step 3, the macro being read may refer to other nacros not
yet defined, and these are added to the nacro |ist also. The |loop of
steps 2,3,4 continues until all macros in the |list have either been
found or searched for. Thus, it is possible for a reference to one
macro to cause a nunber of macros to be fetched from the library. At
this point, print control is restored to its original value, and a i st
of undefined macros is produced

The followi ng gives the overall |ayout of a program

..... 0 or nore programmer macro definitions, wth print contro
statenments interspersed if desired.

..... 1 or nore *SYSLIB cards

..... 0 or nore GBLx declarations (if open code cond. asm al | owed)

..... 0 or nore LCLx declarations "

..... ACTR "

..... open code (main body of progran

The foll owi ng shows appropriate *SYSLIB use, although the program
itself should not be expected to make sense:

MACRO
PRGVACL &ARG
CALL X
MEND
*SYSLIB SAVE WE W LL NEED SAVE MACRO
*SYSLIB RETURN, EQUREGS OTHER MACROS NEEDED
* CALL (USED I N PRGVACL), IS NOT NEEDED (BUT COULD BE) ABOVE
USI NG *, 15
SAVE (14, 12)
PRGVACL

RETURN (14, 12)
EQUREGS

ASS| ST1- 14
H NTS ON OPTI MAL USE OF MACRO LI BRARY

The user should be aware of the following when wusing the nmacro
library facility:

1. The macro processor is minly intended to process programrer-
witten nmacros. Anmong other things, all macro dictionaries and tables
are kept in nenory for the sake of speed.

2. Most | BM macros, and nany XMACROS, call inner nacros, which cal

ot her inner nacros, which call others, etc, etc. Thus, calling one
macro fromthe library nay cause many others to be brought in. In
particular, alnost every IBMnmacro calls the macro |IHBERVAC to issue
MNOTE statenments for any error nessages. | HBERVAC contains over 400

statenents, with many nenory-consum ng MNOTEs i ncl uded.

3. If a macro is referenced, it is fetched fromthe Ilibrary, whether
it is actually ever called or not. For exanmple, IHBERMAC is only called
when there is an error, but is always fetched

4. G ven the conbination of 1,2,3 above, it is easily possible to
use macros |ike CALL, SAVE, RETURN, XSAVE, XRETURN, which do not in
t hensel ves seem | arge, but exceed menory quickly. (CALL, SAVE, RETURN
all use | HBERVAC, XSAVE and XRETURN contain GETMAIN and FREEMAIN to
support the REEN= option, and GETMAIN FREEMAIN both <call | HBERVAC).
Anot her exanple is using ASSI ST to check out a QSAM program ask for
OPEN, CLOSE, CGET, PUT, and DCB: ASSI ST processes these correctly, but
2700 statenments are added to the program by the macros and all of the
i nner macros. A sinple programcan easily require 250K bytes of nenory
for assenbly, given such nacros.

G ven the above circunstances, care nust be taken with the |library
facility in order to make efficeient use of it. G ven such care, ASSIST
is fast and snall enough to <check out fairly large prograns in a
'reasonabl e amount of menory and tinme. The follow ng are useful tricks
for saving time and space:

1. WRI TE REDUCED VERSI ONS OF COVMON MACROS, AND PLACE THEM IN A
SPECI AL LI BRARY, TO BE ACCESSED FI RST BY ASSI ST. For exanple, renove the
REEN option from XSAVE/ XRETURN, replace |IHBERVMAC calls by MNOTEs in
CALL, SAVE, RETURN, etc.

2. USE LI BMC OPTI ON TO EXAM NE LI BRARY MACROS. WRI TE DUMW MACRCS TO
KEEP UNUSED ONES FROM BEI NG FETCHED. For exanple, if you know that a
given nacro wll NOTI actually be called, wite a dummy, I'ike:

MACRO

| HBERVAC &A, &B, &D, &E, &F, &H

MNOTE 4, ' PSEUDO | HBERMAC CALLED: &A, &B, &D, &E, &F, &H
MEND

3. | F NECESSARY, USE THE DI SKU OPTION, | F AVAILABLE. The internediate
text saved between the two passes can be spilled to disk/drum thus
allowing nore space for nacro dictionaries, synbol tabl e, etc.

ASSI ST2-1

PART 11. | NPUT/ QUTPUT AND DEBUGA NG | NSTRUCTI ONS

ASSI ST accepts as special machine instructions sone commands
whi ch are handled by OS/360 as nmacro-instructions. They essentially
permt the user to read and punch cards, print |Ilines, and dunp the
contents of his registers and storage areas. They also provide

easy i nput/output conversions for decimal nunbers.

The following table gives the encodings of the special commands of
ASSI ST, which use currently undefined opcodes, and ARE SUBJECT TO CHANGE
AT ANY TIME. In sone cases, a Mask field is used to differentiate anong
di fferent conmmands using the sane opcode. The notation RX-SS under the
col ums for OPERAND FORMAT inplies that the first four bytes of the
instruction follow standard RX format, with the Mask field giving the
specific type of operation. The third halfword specifies the | engt h,
which is encoded in the sane way as are lengths in Shift instructions,
except the length is taken fromregister O if the halfword is all zero .

EXAMPLES: XREAD 0(1, 2), 100 ==> X' E00120000064
XPRNT 2(3,4),(1) ==> X' E02340021000
COMWVAND OPCCDE MASK LENGTH OPERAND FORVAT
XDECI X 53' - 4 bytes nor mal RX
XDECO X 52' - 4 bytes nor mal RX
XDUW X E1' - 6 bytes (register form- no operands) - |ast

five bytes totally ignored.

XDUWP X' EO 6 6 bytes (storage fornm) - RX-SS

XCGET X' EO' A 6 BYTES RX-SS

XHEXI X 61' - 4 bytes nor mal RX

XHEXO X 62' - 4 bytes nor mal RX

XLIMD X EO' 8 6 bytes RX- SS

XPNCH X EO' 4 6 bytes RX- SS

XPRNT X' EO' 2 6 bytes RX- SS

XPUT X' EO' C 6 bytes RX- SS

XREAD X EO' 0 6 bytes RX- SS

XREPL X A0’ - 4 bytes SI - imediate field gives operation

I NPUT/ QUTPUT | NSTRUCTI ONS - XREAD, XPRNT, XPNCH

Basi c i nput/output facilities are provided by XREAD (card READer),
XPRNT (line PRI NTer), and XPNCH (card PuNCH). They are witten using
the foll owi ng format

| abel XMACRO area, |l ength
| abel is an optional statenent |abe
XMACRO i s XREAD, XPRNT, XPNCH
area is the address in nenory to be read or witten.
This area may be specified by an RX-type address, 1i.e., anything

| egal as the second operand of a LA instruction, such as:
0(1,2), AREA2+10, CARD+1(3), or =CL30'0 MESSAGE

[ength specifies the nunmber of bytes to be read or witten.

This length can range from 1 to the maximum length for the
appropriate device (80 for XREAD, XPNCH, 133 for XPRNT). The length
field may be omtted, in which case the naximum length is used by
default. It may also be specified as a register enclosed in paren-
theses, indicating that the length wll be supplied at execution
time fromthe designated register.

ASS| ST2- 2
CONDI TI ON CCDE

XPRNT and XPNCH do not change the condition code. XREAD sets the
condition code to indicate normal processing or end-of-file as follows:

CC =0 - acard was read, and length characters placed in user's area

CC =1 - end-of-file encountered, no nore cards can be read (/* found).

CARRI ACE CONTROL

XPRNT requires that the first character of the area be a wvalid
carriage control character, such as blank (single space), '0" (double
space, and '1" (new page), or any others which are avail abl e.

EXAMPLES OF XREAD, XPRNT, XPNCH USAGE

The following section of a program reads in a deck of cards
until an end-of-file (/* card) is found, punches the last 70
characters of each card into the first 70 colums of each card
punched, and prints some nunber of characters from each card,
where the nunber + 1 had been previously loaded into regi ster
5 (the + 1 is for the carriage control character). The cards
are doubl e-spaced on the printer.

READLOOP XREAD CARD read card, using onmtted |l ength
BNZ NOMORE if CC=1, branch out. BC 4, NOVORE
or BM NOMORE woul d al so wor k
XPNCH CARD+10, 70 punch 70 bytes, explicit length
XPRNT CARD-1, (5) print nunmber of bytes, using
carriage contro
B READL OOP go back for next card to be read
NOMORE EQU * branch here when no nore cards
.......... nore programstatenments..................
DC co carriage control for printing
card, right before CARD
CARD DS CL80 space for card to be read in

The following statements show how the programmer nmay easily
produce messages and headings for his output, wusing XPRNT wth
l[iteral character constants or rel ated nethods:

XPRNT =CL30"1 A HEADI NG FOR NEW PAGE' , 30
XPRNT =CL50" SECOND HEADI NG | MVEDI ATELY UNDER FI RST' , 50

XPRNT MsG, L' MSG LET ASSEMBLER COWMPUTE LENGTH
XPRNT M5GX, MSGXL ASSEMBLER COVMPUTES LENGTH W TH EQU
M5G DC C O TH RD MESSAGE, SI NGLE CONSTANT W TH LENGTH
M5GX DC C FOURTH MESSAGE, WHI CH | NCLUDES A SECTION FILLED I N
DC C DURI NG EXECUTI ON '
MSGNMBR DS CL12 SPACE FOR DECI MAL NUMBER- XDECO

DC C ENDOCFIT
VBGXL EQU *- MBGX MSGXL |'S SET TO LENGTH OF MESSACE

ASS| ST2- 3

DEBUGG NG | NSTRUCTI ON - XDUMP

One basi c debugging command is provided, called XDUWP. It can
be used in two different ways, to print either registers or storage
ar eas:
GENERAL PURPCOSE REGQ STER DUMP

XDUMP

Coding XDUMP with no operands prints the contents of the wuser's
general purpose registers, in hexadecimal notation. The registers
are preceded by a header line |like the foll ow ng:
BEG N XSNAP - CALL # AT CCAAAAAA USER REG STERS
is the number of calls nade to XDUWP so far, for identification.
CCAAAAAA shows the last 32 bits of the wuser's PSW in hexadecimal.
CC gives the ILC, CC, and Program Mask at the time of the XDUWP.
AAAAAA gives the address of the instruction following the XDUWP, and
thus can be wused to distinguish between the output of different
XDUWP statenents. *NOTE* XDUMP , is the sane as XDUWP with no operand.
STORAGE DUMP

XDUWP area, | ength

Coding XDUMP with an address and length produces a dunp of a
user storage area, beginning at the address given by area, and
ending at the address area+l ength. The operands are specified like

those of XREAD, XPRNT, XPNCH, except the length nmay not specify
a register, but nmust be an explicit Iength.

The resulting output includes a header line like the above,
followed by a hexadecimal and al phanunmeric dunp of the selected
storage area. The storage is printed in lines showing two groups

of four fullwords, preceded by the nenory address of the first
word in each line, and followed by the alphanumeric representation

of the 32 bytes on the Iline, wth Iletters, nunmbers, and blanks
printed directly, and all other <characters translated to periods.
The storage printed is also preceded by a Iline giving the address

limts specified in the XDUWP
If the length is omtted, the value 4 is used as a default.

EXAMPLES OF XDUMP USAGE

XDUVP AREA+10, 80
XDUMP 8(1, 4), 100
XDUMP FULLWORD use default value of 4
XDUVP TABL(3), 12

ASSI ST2- 4
DECI MAL CONVERSI ON | NSTRUCTI ONS - XDECI, XDECO

To facilitate nuneric input/output, ASSIST accepts the conmands
XDECI (eXtended DEC nal Input), and XDECO (eXtended DEC nmal CQutput).
XDECI can be used to scan input cards for signed or unsigned decinal
nunbers and convert themto binary formin a general purpose register,
al so providing a scan pointer in register 1 to the end of the decim
nunber. XDECO converts the contents of a given register to an edited,
printable, decimal character string.

Both instructions follow the RX instruction format, as shown:

XDEC# REG, ADDRESS
where REG is any general purpose register, and ADDRESS is an RX-type
address, such as LABEL, O(R4,R5), LABEL+3(2).

XDECI

XDECI is generally used to scan a data card read by XREAD. The
sequence of actions perfornmed by XDECI is as foll ows:

1. Beginning at the location given by ADDRESS, nenory is scanned
for the first character which is not a bl ank.

2. If the first <character found is anything but a decinal
digit or plus or mnmnus sign, register 1 is set to the address
of that character, and the condition code is set to 3 (overflow)
to show that no decinmal nunber could be converted. The contents
of REG are not changed, and nothing nore is done

3. Fromone to nine decimal digits are scanned, and the nunber
converted to binary and placed in REG wth the appropriate sign.
The condition code is set to O (0), 1 (-), or 2 (+), depending
on the value just placed in REG

4. Register 1 is set to the address of the first non-digit after
the string of decimal digits. Thus REG should not wusually be 1
This permits the user to scan across a card imge for any nunber
of decinmal values. The values should be separated by blanks, since

ot herwi se the scanner could hang up on a string like -123*, unless
the user checks for this hinself. |I.e. XDECI will skip |eading blanks
but will not itself skip over any other characters.

5. During step 3, if ten or nore decinmal digits are found,

register 1 is set to the address of the first character found
which is not a decimal digit, the condition code is set to 3, and
REG is |l eft unchanged. A plus or mnus sign alone causes a simliar
action, with Rl set to the address of the character fol l owi ng
the sign character.

XDECO

XDECO converts the value from REG to printable decimal, wth
| eadi ng zeroes renmoved, and a mnus sign prefixed if needed. The
resulting character string is placed right-justified in a 12-byte
field beginning at ADDRESS. It can then easily be printed using

an XPRNT instruction. The XDECO i nstruction nodifies NO registers.

ASSI ST2-5
SAMPLE USAGE OF XDECI

The foll owi ng program segnent reads a card, and converts one
decimal value of 1-9 digits punched anywhere on the card, placing
this value in general register RO.

XREAD CARD read card into a workarea
XDECI RO, CARD scan and convert the nunber

XDECI can be wused to convert an wunknown nunber of decinal
values froma card. This can be done by punching the values anywhere
on the card, separated by one or nore blanks. The last numnber
on the card is then followed by a $ which indicates the end of
the data values to the program The following program reads a card
and converts nunbers, storing their values in an array for |later
use, and stopping when the $ is found.

SR 2,2 zero for index to first word of NUMBERS
XREAD CARD read cardi nage into input area
LA 1, CARD intialize RL as scan pointer register
LOOP XDECI 0, 0(, 1) scan and convert next numnber
BO OVER skip if bad nunber of $ (BC 1, OVER)
ST 0, NUMBERS(2) store legal value into array
LA 2,4(2) i ncrenent index value 1 fullword
B LOOP go back for next numnber
OVER CLI 0(1),C#$ was this delimter $
BE DONE yes, so branch out
XPRNT =CL30' 0*** BAD | NPUT ***STOP' , 30
DONE ..., nore instructions
NUVBERS DS 20F space for 20 values to be stored
CARD DS CL80 i nput wor kar ea

SAMPLE USACE OF XDECO

The following converts register 4 to decimal and prints it.
It assumes a reasonable value in R4, so that the first character
of QUT is a blank for carriage control.

XDECO 4, QUT convert the nunber
XPRNT OUT, 12 print val ue
..... ot her assenbler statnents
aut DS CLi2 typical output area

ASSI ST2- 6

HEXADECI MAL CONVERSI ON | NSTRUCTI ONS- XHEXI , XHEXO
(NOTE: Sone versions of ASSI ST may not provide these instructions)

XHEXI and XHEXO provi de easy conversion of hexadeci mal nunbers
for input and output. The value of a hexadecimal nunber can be
read from a card using XREAD, converted from character node to a
hexadeci mal nunber, and the converted nunber is placed in the specified
general purpose register wth XHEX. XHEXO provides an easy way
to convert internal hexadecimal to an output form that can be
printed using XPRNT.

XHEXI also places the address of the first non-hexadeci nal
nunber in register one, but if nore than eight digits are scanned,
the address of the ninth is placed in register 1.

XHEXI
XHEXI REG STER, ADDRESS
XHEXI, in the general form shown above where REGQ STER i s any genera
pur pose regi ster and ADDRESS is anything legal in an RX instruction, is

used to do the follow ng:

1. Beginning at the location ADDRESS, nenory is scanned until the
first non-blank character is found.

2. If the first character found is anything but a Ilegal hexa-
deci mal character(0-9,A-F), the condition code is set to overflow
and this address is placed in register 1. If the REGQ STER is

anything but register 1, its contents remai n unchanged.

3. One to eight hexadeciml characters are scanned, the nunber
converted to hexadecimal, and the result is placed in REG STER
The value placed in the register is internal hexadeci nal with
| eadi ng zeros included and the nunmber is right justified.

4. Register one is set to the address of the first non-hexadeci nal
character. Wth this in mnd, the user should not code regi ster one as
REA STER. This allows you to scan across the card for any nunber of
character strings. The strings should be separated by blanks. The end
of the string could be flagged with any non-hexadeci mal character and a
test could be nade after a Branch Overfl ow (see sanple progran).

5. If nore than eight hex digits are found, register oneis set to
the address of the ninth. This allows the user to scan across |ong
strings of nunbers.

XHEXO
XHEXO REGQ STER, ADDRESS
XHEXO in the general form shown above converts the value
in REG STER and places it in aright-justified 8-byte field beginning at

ADDRESS. It can be easily printed using an XPRNT instruction. The XHEXO
instruction nodifies NO registers.

ASSI ST2-7

SAVPLE PROGRAM USI NG XHEXI AND XHEXO

This program reads a data card with an unknown nunber of hexa-
decimal nunbers on it. The end of the data is denoted by a '% punched
after the last nunber. The nunbers are stored after being converted
usi ng XHEXI, and then converted for output using XHEXO.

LA 3, STORAGE WHERE NUMBERS STORED
XREAD CARD, 80 READ | N CARD
XPRNT CARD, 80 ECHO PRI NT
LA 1, CARD ADDRESS OF CARD FOR SCANNI NG
LooP XHEXI 2, 0(1) CONVERT NUMBER PUT I N 2
BO | LLEGAL CHECK FOR END
XHEXO 2, AREA PUT NUVBER | N OUTPUT AREA
XPRNT REP, 28 PRI NT CARD AND MESSAGE
ST 2,0(3) STORE NUMBER
LA 3,4(3) | NCREASE | NDEX
B LOOP GET NEXT NUMBER
ILLEGAL CLI 0(1),C % SEE | F END OF STRI NG
BE DONE YES DONE
XPRNT =CL50' | LLEGAL CHARACTER STOP', 50
DONE ... MORE I NSTRUCTI ONS.
CARD DC 81C STORAGE FOR CARD
STORAGE DS 20F STORAGE FOR NUMBERS
REP DC C THE NUMBER INR2 IS
AREA DC CL8' STORAGE FOR OUTPUT NUMBER

ASS| ST2- 8
LIMT DUVMP | NSTRUCTI ON - XLI MD

In order to conserve output records when necessary (for instance,
when ASSIST is being used froma renmpte termnal of any sort), the
XLIMD instruction is provided to enable the user to limt the size of
his conpl eti on dunmp and choose the area to be printed. In general
it is used to elimnate the wuser's program code, leaving only his
data areas in the conpletion dunp.

The instruction is coded as foll ows:
XLI MD area,l ength

area i s the beginning address where the conpletion dunp should start.
The area address is specified by an RX-type address, and nust
be within the user program area

| ength is the length in bytes of the area the user wshes to be
printed if a conpletion dunp occurs.

Note that the XLIMD instruction format is exactly the same as that
for the instructions XREAD, XPRNT, XPNCH. Thus the length my be
given as a regi ster nunber, enclosed in parentheses, or may be onitted,
in which case a length of 1 is assuned. |If the conbined area address
plus the length yields an address greater than the highest user
address, or if the length is 1, the highest wuser address is used
as an upper limt instead. Thus, storage will be printed to the end
of the user program

The suggested nethod of using XLIMD is to place all variables at
the end of the program then execute an XLIMD with an area address
specifying the first variable desired, and omitting the |ength. Thi s
wi |l cause the storage to be printed starting at the specfied address
and going to the end of the program

SAMPLE USAGE OF XLI MD
The following program gives a typical way of using XLI MD.

DUMPTEST CSECT
USI NG *, 15
XLI MD VARI ABL1 set dunp limt right away

VARI ABL1 bé"-'b"- first variable area

END
XLI MD may be executed any nunber of times during a program but
it is suggested that it be called early in any large program if there
is any possiblity that record limts could be exceeded.

ASSI ST2-9

OPTI ONAL | NPUT/ OQUTPUT | NSTRUCTI ONS - XGET AND XPUT

These instructions are simlar to XREAD/ XPRNT/ XPNCH
but are nore general, allow ng the user to specify any
filenanme to be read or witten. WARNING not all versions
of ASSI ST support these instructions. Also, a particular
version may only support a specific set of file nanes,
whi ch can differ frominstallation to installation. It is
advi sabl e to check on local procedures. The instructions
are coded as foll ows:

| abel XMacr o area,l ength
| abel is an optional statenent | abe
xmacro is either XGET or XPUT

area is the address in nenory to be read or witten.
This area may be specified by an RX-type address, i.e., anything
| egal as the second operand of a LA instruction, such as:
0(1, 2), AREA2+10, card+1(3), or =CL30'0 MESSAGE

| ength specifies the nunber of bytes to be read or witten.

This length can range from1l to the maximum |l ength for the
appropriate device (80 for cards, 133 for printer, etc.). The length
field nust not be omtted. it may also be specified as a register
encl osed in parentheses, indicating that the length will be supplied
at execution tinme fromthe designated register.

I f during execution, the length has a value of zero, the
file will be closed.

NOTE: During execution, register 1 nust point to an ei ght byte
character string which is the nanme of the file to be mani pul at ed.

CONDI TI ON CCDE

XGET and XPUT both change the condition code as foll ows:

CC=0 - normal input/output occurred

CC=1 - XGET O\LY - end of file occurred

CC=2 shows an error (like invalid data address) which causes
i ndi vidual operation to be ignored.

CC=3 shows that the file could not be opened (because it is
wrong direction,or DD card m ssing, or not enough roomin
tables, etc.).

CARRI AGE CONTRCL

XPUT only requires the first character of the area to be a
valid carriage control character, if the output device is the printer.

CLOSI NG OF FILE

Perform ng an XGET or XPUT with a Il ength of zero supplied in any GP
regi ster causes the designated file to be closed, so that it may then
be reread; |I.e. LA 1,=CL8 ddnane' SR 0,0 XGET area, (0) does close

ASS| ST2- 10

EXAMPLE OF XGET AND XPUT USAGE

The following programw |l read and wite a few files

in parallel.

TEST1 CSECT
BALR 12,0
USING *,12
SR 0,0

*

* TH S PROGRAM W LL PROCESS A FEW FI LES | N PARALLEL:

*

LOOP LA 1, =CL8' CARD point to an input file
XGET AREA, 80 do the input
BNE DONE branch on endfile,

* file automatically closed
XREAD AREA2, 80 do normal input
LA 1, =CL8' PAPER point to a printer file
XPUT AREA-1, 81 do output, note carriage control
LA 1, =CL8' PAPER2' point to other printer file
XPUT AREA2-1, 81 do output on other file
B LOOP try again

DONE BR 14 RETURN, | MPLIClI TLY CLOSE OTHER FI LES

DC cL1

AREA DS CL80
DC cL1

AREA2 DS CL80
END

The extra JCL for the above is as foll ows:

/ / DATA. PAPER DD SYSOUT=A, DCB=(RECFM=FA, LRECL=133, BLKSI ZE=133)
/ | DATA. PAPER2 DD SYSOUT=A, DCB=(RECFM=FA, LRECL=133, BLKSI ZE=133)
/ | DATA. CARD DD *
THI'S STUFF IS READ

AT THE SAMVE Tl ME AS ANOTHER

FILE I S READ

*kkkk*k THE LAST CARD *kkkkk*k*k

[/ DATA. | NPUT DD *

THIS IS THE NORMAL | NPUT FI LE

AND |'S READ AT THE SAME Tl ME AS ANOTHER FI LE

I S READ

*kkkkkkkx THE LAST CARD *kkkkkkkx

NOTE: a conmon usage for XGET might be to access files of test

dat a.

ASSI ST3-1
PART I'11. ASSI ST CONTROL CARDS AND DECK SETUP
A. JOB CONTROL LANGUAGE

Dependi ng on the type of ASSIST desired at a given installation
one or two different types of deck setup can be used.

SI NGLE RUN DECK SETUP - NOBATCH
This setup is suitable for individually-submtted jobs, and allows

the nost flexibility in job handling. It is as follows:
1) /1 a JOB card - installation dependent
2) /| EXEC ASACG
3) /1 SYSIN DD *
4 L. 360 assenbler source deck, or ASSIST object deck
5) /*
6) [/ DATA. | NPUT DD *
N . data cards to be read by user program
8) [*
If the programer has no data to be read, items 6), 7), and 8)
should be omtted. The programmer specifies optional paranmeters by
addi ng , PARME' option,option...." after ASACG on the EXEC card

BATCH RUN DECK SETUP

This type of run is recomended if a nunmber of jobs is to be given
as a batch to ASSIST, and is best for [|ow overhead. Each separate
programin the batch nust be set up as foll ows:

Col 1 Col 8 Col uims 16-80 of card
1) $JOB ASSIST list of options, separated by commas. The first
of these nay be an account nunber, which is
i gnored by ASSIST. Al others are optional

2) . 360 assenbler source deck, or ASSIST object deck

3) $ENTRY (this card nust be present if user execution is
to occur, regardl ess of existence of data.)

4 L. data cards to be read by wuser program (optional)

If the user desires only an assenbly of his program the $ENTRY
card should be omitted. As nany of the above can be included in one
batch submitted to ASSI ST, with BATCH and other appropriate paraneters
supplied to ASSIST in the invoking PARMfield. The batch can be ended
in one of two ways: either an end-of-file indicator, or a card wth
the following in colums 1-5: $STOP

The entire batch of runs is run wth whatever enclosing Job
Control Language is required for a given installation by specifying
BATCH in the invoking PARMfield. Al versions of ASSIST can run BATCH
prograns, but not all can run them with the SINGLE RUN DECK SETUP
A sanpl e BATCH run is given bel ow

/1 a JOB card

/'l EXEC ASACG, PARME' BATCH, ot her options, if any'
//SYSIN DD *

$JOB ASSI ST ACCT1, options

....... nore jobs, each beginning with $JOB cards
/* (or a $STOP card)

ASS| ST3- 2
B. OPTI ONAL PARAMETERS FOR ASSI ST

ASSI ST provides a | arge nunber of options to control the actions
it performs. These options are of two types: the first kind show yes/no
val ues and are coded as a specific nane, with or without a precedi ng NO
Every option has a default val ue, and some of the nunerical ones have
upper limts which can never be exceeded.

Each paraneter can possibly be given values from at nobst four
di fferent sources, which are as foll ows:

1. LIMT/DEFAULT - absolute upper limts on sone numerical options,
and default values for sone others. (defined inside ASSIST)

2. I NVOKI NG PARM - values for any of the options. (EXEC CARD PARM
field, or PARM supplied by another program calling ASSI ST)
NOTE this is not avail abl e under DOS/ 360.

3. $JOB CARD PARM - values for sonme of the options, if desired,
only possible if LIMT/DEFAULT or I NVOKING PARM specified BATCH

4. DEFAULT - default values for the numerical paraneters having upper
l[imts, only used if values not specified in 2. or 3. (defined
i nsi de ASSI ST)

For any assenbl y-execution-dunp cycle of ASSIST (i.e., one progran)
t he above sources of information are processed in the order given above,
subject to the follow ng rules:

1. Sone options can be supplied values only from certain sources.

2. Certain nunerical paraneters can never be increased beyond any
previous setting fromany source. This particularly applies to
time, records, and pages limts.

3. In nost cases, if the same option is coded several times in the
same information source, the last value is used, subject to rule 2.
It is possible that some val ues cannot be reset once set anywhere.

4. DEFAULT values are used only if they are not coded in either the
| N\VOKI NG PARM or $JOB cards, i.e., they override only LI M T/ DEFAULT
values. This construct allows for both Iimt and default values
for the numerical options.

SAMPLE USAGE OF OPTI ONAL PARAMETERS

1) /1 EXEC ASACG, PARMF' T=3. 5, R=200, NERR=10, RELCC, CMPRS'
2) /| EXEC ASACG, PARM=' BATCH, CPAGE, T=5, TX=2, P=20, PX=5, RX=315, SSD
//SYSIN DD *

$JOB ASSI ST ACCT#, PD=1, TD=0. 05, CVPRS, SS, SSX
(this job crams output onto fewest possible pages)
$JOB ASSI ST ACCT#, PD=0, TD=0, RD=0
(this is a debugged program saves no pages,tine,
or records for the dunp-gets nmaxi mum out put).
$JOB ASSIST ACCT#, OBJI N
............. (obj ect deck)

The above exanpl es show a typical single job run and a typica
bat ch of jobs.

ASS| ST3-3

CHARACTERI STI CS OF PARAMETERS

The following |ists the available options, including the default
val ues, sources from which each can be specified, and brief notes on
t he purpose of each. Each option is described in detail in the next

section. ASSIST can be generated not to allow certain options, and
these are flagged to show whether they can be onitted or not.

KEY
under FROM col umm notes that the option CAN be set fromthe source,
i.e., 1=LI M T/ DEFAULT, 2=INVOKING PARM 3=$J0B PARM 4=DEFAULT.
N under N colum indicates a numerical paraneter which cannot ever
be increased fromany previously set val ue.
@] under O colum indicates an option which can be omtted from a
particul ar generation of ASSIST (to save space, for instance).
PARM FROM N O DEFAULT PURPCSE
NAVE 1234 VALUE AND USACE
ALGN 1234 O ALGN suppress alignnent specification errs
BATCH 12 NOBATCH i ndi cate a batched-type run
CVPRS 1234 O NOCWMPRS conpressed source list,2 cols/page
COWNT 12 O NOCOWNT requi re percentage of comrented cards
CPACGE 12 O NOCPAGE control paging and page counting
DECK 1234 O NODECK punch object deck
DI SKU 123 O NODI SKU i nternedi ate di sk storage used
DUMP= 1234 0 controls type and size of dunp
FREE= 12 4096 bytes returned to systemfor buffers
= 1234 150000 maxi mum # instructions for user prog
KP= 1234 O 029 type of keypunch used (026 or 029)
= 1234 N O 63 maxi mum | i nes/ page i f CPAGE on
LI BMC 1234 O NOLI BMC allow library macros to be printed
LI ST 1234 LI ST produce source listing of assenbly
LOAD 1234 LQAD produce object program and run it
MACRO= 1234 O N al l ows use and types of nmmcros
MACTR= 1234 N O 200 default value of MACRO ACTR
MNEST= 1234 N O 15 maxi mum nest | evel for macro calls
MSTMG= 1234 N O 4000 maxi mumtotal macro stnts processed
NERR= 1234 0 maxi mum # errors permtting execute
OBJI N 1234 O NOOBJIN obj ect deck input rather than source
= 1234 N O 10 total run page limt if CPAGE on
PD= 1234 NO 1 page limt for dump if CPAGE on
PUNCH 12 0] PUNCH sel ect real punch, or print sinulated
PX= 1234 NO 5 execution+dunp page limt, if CPAGE
R= 1234 N 10000 out put record limt (lines+cards)
RD= 1234 N 25 records saved for dunp
RELOC 1234 O NORELOC rel ocate to real address, store-protec
REPL 1234 O NOREPL assenbl er repl acement run
RFLAG= 1234 O o0 replace option flag (only if REPL on)
= 1234 N 10000 execution+dunp record limt
SS 1234 O NOss singl e space assenbly (only if CPAGE)
SSD 1234 O NOSSD singl e space dump (only if CPAGE)
SSX 1234 O NGOSSX si ngl e space execution(only if CPAGE)
= 1234 N O 100 total run time, seconds
D= 1234 NO .1 time in seconds saved for dunp
TX= 1234 N O 100 time in seconds for execution+dunp
XREF= 1234 O (0,3,3) requests cross-reference

ASSI ST3- 4
C. DESCRI PTI ON OF | NDI VI DUAL OPTI ONS

This section describes each of the options which may be avail able
under ASSIST. Refer to the previous section for default values and
other information regarding the usage of these options.

ALGV NOALGN
Use of the NOALGN option allows the user to suppress specification
interrupts caused by inproper alignment of operands. This is usefu

when using a S/ 360 conputer to sinmulate a S/ 370, which nmay of course use
data on any boundaries for many opcodes. Not every ASSIST allows this.

BATCH NOBATCH
The BATCH option allows nultiple jobs to be run in one invocation
of ASSIST. It is described in Part Ill.A of this nmanual.

CMPRS/ NOCVPRS

The CMPRS option (CoMPReSsed output) produces an assenbly listing
which is approximately half as long as a standard |isting. This is
done by renmoving the ADDRL - ADDR2 fields and printing only colums
1-40 of each statenent. While the listing produced is not as readable
as the standard one, this option is particularly recormended for renpte
term nal usage, since programs are printed nearly twice as fast. It
does, however, increase the anmount of dynamic storage required to run

COWNT/ NOCOWNT

The COVWNT option causes the machine instructions of the program to
be checked for the presence of coments (4 or nore nonblank characters
in the cooment field). |If |less than 80 percent of those statenments have
conments, a nessage is printed and the program is not executed. Sone
instructors may require this option on prograns to be handed in, and it
i s possible that some account numbers may inply this option whether the
programer codes it or not.

CPAGE/ NOCPAGE

I f NOCPAGE is used, no linmts exist on the nunber of pages printed,
and lines are printed with whatever carriage controls are specified.
Codi ng CPAGE enabl es the usa of the followi ng options: L= P=, PD=, PX=,
SS, SSD, and SSX, all of which are totally ignored otherw se. Briefly,
a page nay be declared to have a maxi num nunber of Ilines (L=), and
limts given for the pages printed during various stages of a run. The
SS options then all ow the maxi num nunber of lines to be printed in a
gi ven number of pages by renoving sone carriage control characters from
the printed output (such as page and nmultiple |Iine skips).

DECK/ NODECK

Codi ng DECK causes ASSIST to punch an object deck of the user
program assunming that the nunber of errors did not exceed the NERR=
option, that the version of ASSIST in use has a card punch, and that
none of the follow ng options were specified al so: NOLOAD, NOPUNCH, OBJI N
or REPL. The deck punched is described in PART IV.E.1 of this manual

Note that this option should not be used for |arge prograns, since
every byte of storage of the user programis punched, 56 bytes per card,
even if the storage was reserved by DS or ORG commands. Note that the
deck, while resenbling standard S/ 360 object decks, cannot really be
used for any purpose but to read back into ASSIST | ater. The wuser is
al so cautioned to be careful about using DECK with the RELOC option.

ASS| ST3-5

DI SKU NODI SKU

Codi ng DI SKU causes the ASSI ST assenbler to place the passl out put
on internedi ate di sk storage. Pass2 then recovers the passl infornmation
fromdisk to use in the production of object code into ASSIST's dynamc
work area. Assuming ASSIST is generated with the user controlled DI SKU
/NODI SKU option, it is possible to assenble nmuch larger programs wth
ASSI ST using the DI SKU option. DI SKU has no effect when coded with OBJIN
and is conpatible with any ot her conbi nation of paraneters.

DUMP=

This option controls the size of the dunp printed on any error
term nation during programexecution. |f DUMP=0, a full dunmp is given.
This includes a PSW conpletion code, instruction trace, general-purpose
and floating-point registers, and all contents of the wuser programs
storage area. |If DUWMP=1, ASSIST omts the contents of user storage.

FREE=

ASSIST nornally acquires the largest single block of space
inits region for a dynamic workarea, then releases part of that
area back to the operating system for buffers and other uses.
The default 1is 4096 bytes returned, but the value of FREE= is
used if supplied, in case tape input or output is required, or
if extra space is required for the wuser program If the value
of FREE= is greater than the total obtained, it 1is ignored, and
no space is returned. ****NOTE*** THI S OPTION WLL PROBABLY BE NEEDED
BY ANYONE USI NG BLOCKED | NPUT FROM TAPE OR DI SK

| =

This paraneter provides a limt on the nunber of instructions which
whi ch can be executed by the user programduring its execution. |If this
limt 1is exceeded during execution, a nessage and a conpletion
dunp are printed. This is the recomended and nost economi ca
way to prevent infinite |oops during user program execution. A limt
for execution tinme nmay also be used to terminate |oops (TX=).

KP=

KP=26 specifies that an 026 keypunch was used to prepare the job,
whil e 29 specifies an 029 keypunch. Leading zeroes are pernmtted, and
any val ue except 26 inplies an 029 keypunch

L=
This is used to specify the maxinumlines per page, and is only
enabled if the CPAGE option is turned on

LI BMC/ NOLI BMC

Coding LIBMC permits macros fetched fromlibraries to be printed
if desired. Only effecitve when MACRO= is supplied to an ASSI ST which
supports nacro libraries. See also MACRO=, and APPENDI X K of PART |

LI ST/ NCLI ST

Codi ng NOLI ST suppresses the printing of the assenbly listing, and
can be used for relatively bug-free programs. However, regardl ess of the
current print status, any statenent flagged with an error or warning
nessage i s al ways printed.

ASSI ST3- 6

LOAD/ NOLOAD

Under nost circunstances, a progranmer usually wants to execute his
assenbl er program If he just wants to check it for errors, but
not execute it, the NOLOAD option can be coded. This wll result
in slightly faster assenbly tines. In addition, it wll require
| ess space in nenory, and it may be possible to assenble a program
under NOLQAD t hat cannot be assenbled with the LQOAD opti on.

MACRO=
Thi s option notes whether macro processing is to be done, and if
so, what |anguage facilities are to be allowed. The values all owed are:

MACRO=N NO macro processing: used if error in option
MACRO=F F-1evel Assenbler conpatibility (basic facility)
MACRO=G G level Assenbler features added, if available
MACRO=H H | evel Assenbler features added, if available

If nmacros or conditional assenbly are to be used, the user MJST specify
somet hi ng ot her than MACRO=N. See al so APPENDI X K of PART I.

MACTR=

This provides a default value for the starting ACTR counters in al
macros used. It can be overridden by explicit ACTR statenents.
MNEST=

This gives a limt on the maxi num | evel of nested macro calls, thus
al | owi ng prevention of unwanted recursion in nmacros.

MSTMG=

This provides a global linmt on the total statements processed in
all macro expansions. It is like ACTR, but counts all statenents in al
macros, rather than being local to a macro. It can be used to prevent

macr o | oopi ng whi ch causes storage to be exceeded.

NERR=

This option is used to allow a program to execute even though
there are errors init. |If onmtted, the value is assumed to be zero,
i.e., the programis not executed if there are any errors at all in it.

If NERR=10 is used, the programruns if it has 10 errors, but does not
run if there are 11. Note that warning nmessages are not included in
this count, only actual error nessages.

OBJI N/ NOOBJI N
Coding OBJIN informs ASSI ST that an object deck is being supplied
toit in place of the usual assenbler source deck. This is allowed in

every case, unless REPL is coded, in which case OBJINis ignored. The
format required of the object deck is given in PART |IV.E. 1.
The ASSI ST | oader reads the object deck wuntil an end-of-file or

ASSI ST control card is found, producing an object program in nenory
which is then treated exactly as though the source program had been
just assenbl ed there. The |oader also issues various nmnessages of the
form AL###, which are explained in PART IV.E. 2. The wuser should read
all of PART IV.E. before using the OBJIN option, since there are a
nunber of restrictions which nmust be noted before using object decks
as input to ASSIST. 1In general, a single ASSIST-produced deck should
al nost al ways be workable, a single deck produced by the standard
system assenbler, or multiple decks of any sort nmay be wusable if they
were created followi ng certain conventions. Decks requiring synbolic
| i nkage among control sections wll definitely NOTI' run correctly.

ASS| ST3-7

P=

Thi s gives the maxi mum nunber of pages (with L= Ilines per page)
which are permitted for a conplete job (or fromone $JOB card to the
next, if BATCH is used). It is only nmeaningful if CPAGE is on. The
entire process of page counting (which also involves values of PD= and
PX=) is summarized as foll ows:

1. As described in PART I11.B, the value of P= is «calculated before
ASSI ST prints anything for the job. ASSIST prints the beginning of the
header line, followed by the PARMfield, or the $JOB card, and then
assenbly begins. |If the p= value is exceeded during assenbly, the job
is halted at that point.

2. If the user program assenbl es successfully and is to be executed,
a page limt is calculated for execution plus dunp. The total for these
two phases is set to the mnimumof the PX= option and the nunber of
pages remaining from before.

3. Atenporary limt for user programexecution alone is calculated
by subtracting the value of the PD= option, thus reserving that nunber
of pages for a dunp. User program execution occurs, and nmay be
termnated if the tenporary page limt is exceeded.

4. After execution, the PD= value is added to the -current pages
remai ni ng counter, and the dunp begun. The dunp continues until it is
conpleted or it runs out of pages.

Note A. At steps 3 and 4 the Iines remaining count is just carried
forward, so that the user gets the benefit of any partial pages.

Note B. For REPL runs (assenbler replacenment), step three is perforned
twi ce, once for the replacenent program and once for the program it
assenbles (if execution is desired for it). Since a dunp of the
repl acenent program does not occur during the user dunp phase, it s
recomended that no pages be saved for it (i.e., PD=0).

Note C. Any process which can be halted by exceeding page count can
al so be halted by exceeding record linmts (see R=), or tine linmts (see

T=), and for user program execution, exceeding instruction count [limt
(see I =).
PD=

This option specifies the nunmber of pages which should be reserved
for the user conpletion dunp phase. It is effective only if CPACE is
on, and is used in conjunction with P= and PX= (see explanation under
P=). Typical values are as foll ows:

PD=0 saves no pages for dunmp. Good for debugged prograns.
PD=1 even if the program loops printing, this allows enough
infornmation to determ ne what the programwas doing. |If SSD

i s coded, about 1K of storage can al so be seen
Note that the PD= val ue does not restrict a dunp to that size,
so that the user also gets up to the PX= value for execution plus dunp
together, even if the entire anpbunt is wused to provide the dunp.

PUNCH' NOPUNCH

Use of the NOPUNCH paraneter causes the systemto print any output
from XPNCH i nstructions, rather than punching them Each cardinage is
preceded with the characters ' CARD-->' to distinguish it from other
printed output. This option is useful for testing punching prograns.
Versions of ASSIST with no punch treat all attenpted punching this way.

ASSI ST3-8
PX=
This gives the maxi num nunber of pages for both wuser program
execution and conpl eti on dunp phases together. It is effective only if
CPAGE is on. See description under P=.

R=

Thi s val ue specifies the maxi mum nunber of output records (lines
printed + cards punched) allowed for the entire run. Record counting
is always performed, and the entire process resenbles that of page
counting (see P=), and occurs in parallel with any page counting. The
paranmeters R=, and RX= are used just as are P=, PX=, and PD=, wth

records substituted for pages. One possible difference is in ASSIST
systenms with special record control type 2 (see header description -
PART IV.B.1.a.). In this case, the initial record remaining count is
al so determ ned by the nunber of records actually left (if this value
can be obtained fromthe operating systemj. This value is wused rather
than the default value if the user did not specify R= on the EXEC card
or $JOB card. As in Note B. under P=, use RD=0 for replacenent runs.

RD=

RD= t he nunber of output records reserved for a user conpletion dunmp
It is used in conjunction with R= and RX=in the same way that PD= is
used with P= and PX=. RD=0 is appropriate for well-debugged prograns,
and RD=25 is probably the npbst reasonable value for nost runs, as it
saves enough for a partial dump under all conditions.

RELOC/ NORELCOC

Under NORELOC a user programis assenbled with a |ocation counter
beginning either at 0 or the value on a start card, and the program is
executed as though it were actually | oaded at whatever addresses are
gi ven on the assenbly listing. Maxi num debugging checking is provided
by this node, as the user nay not branch, store, or fetch outside the
area of his program

RELOC in effect inserts a start card at the begi nning of the source
program whi ch specifies the actual location in nenory at which the user
program wll be assenbled. VWen the program is executed, fetch
protection is elimnated, which the execution-tinme relocation value
of zero, allows the user programto exam ne any areas of storage in the
conputer (for exanple, to trace systemcontrol blocks). RELOC nobde is
inplied if REPL is coded.

REPL/ NOREPL

REPL notes that the user supplies two source progranms, of which the
first is a replacenent for one of the nodules of the ASSIST assenbler,
and the second is a test program to be assenbled using the replacenent
program This optional feature is described in detail in the ASSIST
ASSEMBLER REPLACEMENT USER S GUI DE

RFLAG

This option specifies an initial value for the replace contro
flag, it is nmeaningful only if REPL is coded, and is described in the
ASSI ST ASSEMBLER REPLACEMENT USER S GUI DE

ASSI ST3-9

RX=

This gives the total number of output records for wuser program
execution and dunp together (see R=). It corresponds to PX= for page
control, and is used in the sane way.

SS/ NGSS
This option is effective only if CPAGE is on, and is wuseful for
reduci ng the nunber of pages printed for a given nunber of |ines output.
Using SS essentially converts all carriage controls to single space
conmands, except for page skips, which becone double spaces, and no
spaces, which are unchanged. SS is effective during the assenbly phase,
SSX during user program execution, and SSD during a conpletion dunp. The
carriage control conversions are as foll ows:
"1'" (page skip) becones ' 0’ "+ (overprinting) remains '+
"-'" (triple space) becones (single space) renains
'0" (doubl e space) becones ' any ot her character becones

SSD/ NOSSD
SSD is the SS option during conpletion dunp (see SS above). Usi ng
SSD allows a partial dunp plus 1K of storage to be printed on 1 page.

SSX/ NOSSX
SSX is the SS option during user execution (see SS above).

T=
This gives a limt in seconds on the total time allowed for a run.
The handling of the three time limts (T=, TX=, and TD=) is exactly

anal ogous to that for pages (see P=) and records limts. The val ues
are coded as integer values of seconds, or with fractional values up to
three digits, thus allowing for mllisecond specifications. As shown
in Note B. under P=, TD=0 should be wused for replacenent runs. The

appropriate times used depend on the nodel of nmachine being used, wth
the followi ng tinmes being appropriate for student runs on a 360/65:
T=5, TX=5, TD=1.

Sone versions of ASSIST may contain NOtinmng code at all (option
0), and sonme may contain special option 2. 1In the latter case, ASSIST
obtains a tine remaining estimate fromthe operating systemand uses it
rather than the default if the user specifies no tinme Ilimt hinself.
The user nay exam ne the ASSI ST header to determi ne which type of ASSI ST
is being used (see PART IV.B. 1. a).

TD=

This supplies the time remaining for a user conpletion dunp, and
shoul d generally be set to a |large enough value to permt at least a
partial dunp to be given, thus showing the user the instructions being
executed, especially if a loop is occurring. TD=0 is appropriate for
debugged prograns, which can then use all possible tine for execution.

TX=

This value is the total tinme in seconds for user program execution
and dunmp together. It controls tinme in the sane way that PX= controls
pages and RX= controls output records (see P= for description of
t he process of control val ues conputation).

ASS| ST3-11
XREF=

This option provides a short, but informative cross-reference
listing following the assenbly |isting. Anmong other things, it does
di stingui sh between two types of references. A MODIFY reference is any
one in which a synbol is used in a machine instruction field denoting an

operand to be nodified: ST 0,X for exanple. Al other references
are consi dered FETCH references: B X , L 0,X , DC A(X) . The
cross-reference output shows a synbol, its value, and statenent nunbers

of referencing statenents, with MODIFY references flagged as negative
statement nunmbers. Conrol of the output is obtained both by the XREF=
option, and by *XREF cards inserted in the source program as desired.
The latter permit explict control of how references are gathered.

A brief note on the XREF nechanismis necessary to nmake use of the
flexible control provided. During Pass 1 of an assenbly, the SD (synbol
Definition) flag is attached to each synbol as it is defined. The flag
consists of two bits (Mfor Mddify and F for Fetch, in that order), and
shows for each synbol what kinds of references may possibly collected.
For exanple, SD=10 indicates that no Fetch references are ever to be

printed for a specific synbol. The SD flag may be changed during a
program by *XREF cards, so that synbols in different sections of the
programcan be treated differently: SD=00 will elimnate all follow ng
synbol s conpletely, until it is changed again.

During Pass 2, a Synmbol Reference (SR) flag is used to determ ne
what types of references are being collected fromthe code. A reference
to a synbol is logged if and only if the SD bit and the SR bit for the
given type of reference are both on. |I.e., if SD=10 for a synbol, SR=11
at the current time, and a fetch reference is nade, no reference will be
| ogged, since the SD Fetch bit is O. Note that references are only
| ogged during Pass 2: some synbol references occur only during Pass 1
and these are ignored, such as sunbols in EQJ, ORG and DC and DS
I ength nodifiers or duplication factors.

The XREF paraneter requests a cross-reference, indicates the type
of output produced, and possibly gives initial values to the SD and SR
flags. Two forns are permtted as foll ows:

XREF=a OR XREF=(a, b, c) VWHERE
a: i ndi cates overall control and output format:
= no cross-reference i s generated.
= cross reference is printed, wth one synbol per output |Iine.

= cross reference is printed, but with mniml output wasted (nore
than one synbol nay appear on a line- this form is reconmended).

b: initial value of SD flag, in deciml corresponding to binary, i.e.
0: 00, 1: 01, 2: 10, 3: 11
C: initial value of SR flag, sane format as b

Illegal values are ignored, and it is allowable to onmt itens as
desired, showi ng this by comma usage: XREF=(2,,2) for exanple. The
default value is XREF=(0,3,3) so that all that is needed to obtain a
conplete listing is to code XREF=2 or XREF=3, as the other values are
not changed or zeroed.

ASS| ST3-12

The SR and SD fl ags may be changed at any time during the program
by pl aci ng *XREF comment cards anywhere in the source program follow ng
the first machine instruction or assenbl er opcode used (SD options used
before these will work, but SRs wll be ignored). The format is:

* XREF one or nor e bl anks OPTI ONl1=val uel, OPTI ON2=val ue2,
The operand(s) may be specified in any order, and if the sane
option is used several tines, requested actions are perforned in order.

The options are:

SD=<M><F> give the nodify and fetch bits for the SD flag.
SR=<M><F> give the nodify and fetch bits for the SR flag.

Possi bl e val ues for <M> and <F> are:

0: turn bit off.
1: turn bit on.
*: | eave bit in previous state.
If an <F> specification is omtted, this is equivalent to a *.
It is suggested that the user begin by just specifying XREF=2 or 3
and then cutting out unnecessary references |ater. Al t hough conpl ex,
the facilities allow unwanted output to easily be elimnated. The

foll owi ng gives as exanple (assuned to be a |large progranj:

*XREF SD=10 following synbols will have only nodify refs.
..... | arge nunber of DS and DC statenents (global table, for exanple).
*XREF SD=*1 add nodify and fetch references both

..... nore synbols in DSECTS, tables, etc.

*XREF SD=00, SR=10 collect no references to synbols defined from

here on, collect nodify references created.

..... section of code referencing tables above.

*XREF SD=11, SR=11 collect all references fromfollowing code to
2nd part of table, nodify references to first
part, and all references to itself.

..... section of code referencing tables.

ASS| ST4- 1
PART I'V. ASSI ST OPTI ONAL EXTENDED | NTERPRETER
A. DESCRI TPI ON OF NEW FEATURES

The ASSI ST Optional Extended Interpreter is a seperate control
section which can replace the original ASSIST interpreter if certain
addi ti onal program debugging features are desired. These features
include additional pseudo instructions, extra program statistics,
extra abnornmal term nation conpletion information, a facility allow ng
the programmer to change machine enulation during execution, an
instruction trace facility, an instruction counting facility and a
| arger subset of S360/S370 instructions. The ASSIST interface wth
the interpreter (Econtrol Block) has been extended but upwar ds
conpatibility with the entire assist systemis nmintained.

The ASSIST Optional Extended Interpreter is sonewhat |arger
and executes slightly slower than the original Assist interpreter.
This is caused by the extensively table-driven nature of the extended
interpreter and the addition of all of the new features.

ASS| ST4- 2
B. THE XOPC (OPTIONS CALL) DEBUGA NG AND ANALYSIS | NSTRUCTI ON

The OPtions Call pseudo-instruction can provide the user
programmer with several functions: 1). Set a type of 'SPIE in
ASSI ST, giving the user the capability to process specified execution
time interrupts, 2). Trace instructions as they are executed, 3). Check
whi ch areas of storage are being nodified by which instructions, 4).
Pur posel y cause an execution tine interrupt when a certain nunber of
instructions have been executed, 5). Control Boundary Ali gnnent
Checking - Turn off and on the allowance of S0C6 alignment interrupts,
and 6). Count and print statistics of the nunber of instructions
execut ed between two specified addresses. The flexibility of this
instruction is brought about by its simlarity in format to the s360-
s370 Supervisor Call Instruction (SVC).

The XOPC instruction is of the RRtype. Its general fornmat
is as follows:

The nunber residing in the second byte of the instruction
controls which specific XOPC instruction will be executed. Up to 256
(0-255) different instructions can be executed using XOPC. However ,
at present only 23 XOPC instructions are inplenented.

There is very little error checking involved with the inter-
pretation of the XOPC instruction. The condition code is used to tell
t he user progranmmer about XOPC instruction errors and is set during
execution of the instruction as follows:

CC =0 Instructionis valid
CC =1 Illlegal or Incorrect Argunent(s) used.
CC = 3 Specified code nunber is not inplenented.

VWen a specified XOPC instruction is found to be in error, the condition
code is set as described above, and the instruction execution is

ignored. No other error checking is provided. It should be noted that
XOPC instruction errors cannot cause execution tinme interrupts
(ABENDS) .

Bel ow i s a description of the 23 XOPC instructions presently
i mpl enent ed.

ASSI ST4- 3
XoPC 0 - SET PSEUDO - SPIE EXI T ADDRESS
This instruction allows the user to set a type of 'SPIE

The wuser specifies an address and the interrupts he w shes to
process in a coded form When this instruction is executed, Registers

0 and 1 are assunmed to contain certain argunents. Regi ster 1 nust
contain a user program address (Exit Address) to which control is passed
if any of the specified programinterrupts occur. The last 15 bits

(bits 17-31) of Register 0 nust contain a code specifying which
interrupts the user wishes to intercept. The first 17 bits of register
0 are ignored. Each of the bit positions 17 to 31 of register O
correspond to one of the 15 execution tine interrupts. A 1 in
one of the bit positions specifies a spie-exit on the corresponding
programinterrupt. For exanple, Bit (17) = 1 specifies a spie-exit on
S0C1, Bit (18) = 1 specifies a spie-exit on S0C2, , Bit (31)
= 1 specifies a spie-exit on SOCF. A zero in any of the bit positions
all ows the correspondi ng execution time interrupt to occur as if no
spi e had been set.

Example: |If register 0 contains the follow ng;
0000 0000 0000 0000 0111 0000 0000 0001

After an XOPC 0 instruction has been executed with register 0 as above,
control will be passed to the address found in register 1 if any of the
following interrupts occur; S0Cl, S0C2, SOC3 and SOCF

If a spie exit address has been given (i.e. This instruction
has been executed) and one of the specified interrupts occurs, the
foll owi ng actions take pl ace:

1). The current values of user register 0 and 1 are saved.
2). The PSWat interrupt is loaded into registers 0 and 1

3). The proper interrupt code is inserted into user register
0O (bits 17 thru 31 of the PSW.

4). ASSI ST now considers the user in the interrupt processing
state.

5). Control in the user programis passed to the given
interrupt exit address.

It should be noted that when the user is in the Interrupt
Processing State any further interrupt will cause abnormal termnation
of the user program The user will remain in this state until the exec-
ution of an XOPC 21 instruction.

XOPC 0 can be executed an unlimted nunber of times during
the execution of a programto change the specified exit address or to
change the interrupts to be intercepted. Note, however, that the nost
recent execution of XOPC 0O is the one in effect, and cancels al
previ ous executions.

ASSI ST4- 4
XOPC 1 - SET ADDRESSES FOR THE |INSTRUCTION TRACE FACILITY

This instruction specifies boundary addresses used by the
trace facility. Once enabled the trace facility will give the wuser a
printed trace of all instructions executed within these two boundary
addresses. Wien this instruction is executed the | ower and upper trace
address linmts are assuned to be in registers 0 and 1, respectively.

XOPC 2 - TURN ON THE | NSTRUCTI ON TRACE FACI LI TY

This instruction enables the trace facility. Prior to the
execution of this instruction the user should have specified two Ilimt
addresses. However, if no limt addresses have been specified, ASSIST
will use the highest and |owest program addresses for the limts.
Bel ow i s an exanple of the trace line printed for each instruction
executed. Assune this instruction is executed causing the follow ng
trace nessage to be printed:

ADDR I NSTRUCTI ON
OO0EBEO STM RO, R10, SAVEAREA

Here is the trace nessage printed:

TRACE- - > | NSTR ADDR: OO0EBEO I NSTR. 980A 6020

XOPC 3 - SET ADDRESSES (as in XOPC 1) and TURN ON THE
| NSTRUCTI ON TRACE FACI LI TY

This instruction conbi nes the actions of XOPC instructions 1
and 2. It assunes register usage the same as in XOPC 1

XOPC 4 - TURN OFF THE | NSTRUCTI ON TRACE FACI LI TY

This instruction disables the Instruction Trace.

XOPC 5 - SET ADDRESSES FOR THE STORAGE MODI FI CATI ON CHECKI NG
FACI LI TY

This instruction specifies address boundaries (high and | ow)
i nside which the Storage Mdification Checking Facility wll operate.
Once enabled, this facility causes storage between the boundary
addresses to be nonitored. |If any of this storage is nodified, the
l ength of storage nodified and the instruction nodifying the storage
will be printed for the user. The register usage upon execution of
this instruction is the sane as in XOPC 1 above.

ASS| ST4-5
XOPC 6 - TURN ON THE STORAGE MODI FI CATI ON CHECKING FACILITY

This instruction enables the Storage Mdification Checking
Facility. Before the execution of this instruction the wuser should
have specified two boundary addresses. However, if no limt addresses
are specified ASSI ST will use the highest and | owest program addresses
(outer limts) for the limt addresses. Below is an exanple of the
St orage Modification Checking line printed when an instruction nodifies
storage. Assune the instruction |isted below is executed:

ADDR I NSTRUCTI ON
0001C0 ST R1, SAVE

Here is the line printed assum ng the | abel SAVE has a displacenent of
0002C0.

CHECK- - > I NSTR ADDR: 0001CO0 INSTR: 5010 C2C0
MODI FI CATION LIM T ADDRS--> LOWN 0002C0 H GH: 0002C3

XOPC 7 - SET ADDRESSES (as in XOPC 5) and TURN ON THE
STORAGE MODI FI CATI ON CHECKI NG FACI LI TY

This instruction conbi nes the actions of the XOPC 5 and
XOPC 6 instructions above.

XOPC 8 - TURN OFF STORAGE MODIFI CATION CHECKING FACILITY

This instruction disables the Storage Mdification
Checking Facility.

XOPC 9 - TURN ON BOUNDARY ALIGNMENT CHECKING FACILITY

This instruction turns on boundary alignnent checking in
ASSI ST. This inmplies that SOC6 alignment interrupts will be allowed.
The default condition wthin ASSIST allows Alignnment Interrupts to
occur. Thus, this instruction need be executed only after execution
of an XOPC 10 instruction has shut off (disabled) the Boundary
Al ignment Checking Facility (see XOPC 10).

XOPC 10 - TURN OFF BOUNDARY ALI GNMENT CHECKING FACILITY

This instruction di sabl es Boundary Alignnent checking in
ASSI ST. This inmplies that SOC6 Alignment Interrupts wll no |[|onger
be all owed after the execution of this instruction. Thus, the wuser is
no | onger restricted by storage alignments and can fetch and store data
on odd word boundari es.

ASS| ST4- 6
XOPC 11 - FETCH ASSI ST | NSTRUCTI ON COUNTER
The current value of the ASSIST Instruction Counter is put
in user register 0. This instruction should be used in conjunction wth
the XOPC 14 instruction described below The instruction counter
is put into the register in hexideciml form

XOPC 12 - EMULATE SYSTEM 360

This instruction causes ASSI ST to enulate a system 360. That
is, ASSIST will act as if it is running on an S360 no matter what

machi ne (S360 or S370) it is really running on. It should be noted
that enmulation in ASSI ST defaults to S370 (S370 instructions wll be
interpreted). After the execution of this instruction however, ONLY
S360 instructions will be interpreted. S370 instructions wll cause

user programterm nation (SOC1).

XOPC 13 - EMULATE SYSTEM 370

This instruction causes ASSIST to enulate a system 370. That
is, ASSIST will act as if it is running on an S370 no natter what
machi ne (S360 or S370) it is really running on. This instruction
shoul d only be used after the execution of an XOPC 12 instruction as
machi ne ermul ation in ASSIST defaults to S370 (i.e.S370 instructions
will be interpreted).

XOPC 14 - SET | NTERRUPT COUNT

This instruction allows the user to halt program execution
when the ASSI ST instruction counter and the value found in register O
becorme equal (i.e. cause a COUNT | NTERRUPT). This instruction should be
used in conjunction with the XOPC 11 instruction. Any negative value
found in user register 0 when this instruction is executed wll disarm
the count interrupt facility.
Exampl e of Use: The user desires a count interrupt to occur

if 200 instructions are executed fromthis point on (Note: The ASSIST
i nstruction counter counts down):

XoPC 11 Load register O with current instruction counter
S RO, =F' 200’ decrenent counter by 200
XOPC 14 Set interrupt count 200 instructions from now.

ASSI ST4-7
XOPC 15 - SET COUNT EXI T ADDRESS
The value found in user register O when this instruction is

executed will be used as an exit address if a count interrupt occurs
(i.e. when the instruction counter becones equal to the cl ock

conparator - see XOPC 14). If a count interrupt occurs after this
i nstruction has been executed, the psw at interrupt wll be |oaded
into user registers 0 and 1. Execution wll then continue beginning
at the given exit address. |If no exit address has been specified and
a count interrupt occurs, the program abnornmally termnates wth
the standard ASSIST instruction [imt exceeded error print ed.

XOPC 16 - TURN ON THE | NSTRUCTI ON EXECUTION COUNT FACILITY

This instruction enables the | NSTRUCTI ON EXECUTI ON COUNT
FACILITY. This facility counts each instruction executed between two

l[imt addresses. It should be realized that wupon its initia

execution this instruction will cause ASSIST to allocate a section of
mai n nenory equal in size to that of the user program If this space
is found to be unavailable, the condition code of the wuser program is
set to one and the count facility remains disabled. Prior to the
execution of this instruction, the wuser should have specified two
limt addresses for the count facility (See XOPC 17 below). However,
if two limt addresses were not specified, ASSIST will use the highest
and | owest program addresses for the limt addresses. Not e: Thi s
instruction does not clear the instruction counting area. See XOPC

20 for clearing the count area.

XOoPC 17 - SET ADDRESSES FOR THE | NSTRUCTION EXECUTI ON
COUNT FACILITY (I ECF)

This instruction specifies boundary Iint addresses used by
| ECF. Once enabled this facility will count the nunber of executions
of each instruction between the two Iimt addresses specified by this
instruction. Wen this instruction is executed the Ilow and high
IECF limt addresses are assuned to be in registers 0 and 1
respectively.

XOPC 18 - SET ADDRESSES AND TURN ON THE | ECF
This instruction conmbi nes the actions of XOPC instructions
16 and 17. Register usage is assuned to be the sanme as in XOPC 17.
XOPC 19 - TURN OFF THE | NSTRUCTI ON EXECUTI ON COUNT FACILITY

This instruction disables the IECF. This instruction will
not have any effect on the | ECF counting area

ASS| ST4- 8

XOPC 20 - CLEAR THE |INSTRUCTION EXECUTION COUNT FACILITY
COUNTI NG AREA

This instruction resets the Instruction Execution Count

Facility Counting area to zero. |If the |ECF has never been enabled in
the user program (i.e. no counting space has been allocated), the
condition code of the user programis set to 1 and this instruction is
ignored. This instruction can be executed an unlimted nunber of tines
to insure accurate instruction counting. Please note that the counter
for each instructionis only a halfword (2 bytes) in | ength. Executi ng
one instruction many tinmes could overflow that counter and reset it
to zero.

XOPC 21 - RETURN FROM | NTERRUPT PROCESSI NG CCDE

This instruction tells ASSI ST that the User Program has com
pl eted any interrupt processing routine (s) and is ready to resune
normal execution of the user program It causes the followi ng actions
to occur:

1). If the user is not in the interrupt processing state the
condition code is set to 1 and nothing nore is done.

2). The address in register 1 is used as the address where
normal execution of the user programwll resune. |If
register 1 is not nodified in the interrupt processing code,
execution of the user programw |l continue with the
instruction inmediately following the instruction that
caused the initial interrupt. Oherwise, the user will be
expected to load register 1 with an appropriate address.

3). User registers 0 and 1 are rel oaded with the val ues they
had when the initial interrupt occurred.

4). Normal execution of the user programis resunmed with the
user no longer in the | NTERRUPT PROCESSI NG STATE.

XOPC 22 - DUMP THE |INSTRUCTION EXECUTION COUNT FACILITY
STATI STI CS

This instruction prints out a statistical report according to
address of the nunber of instructions counted (within the specified
l[imt addresses) by the Instruction Execution Count Facility. An
instruction executed O times wll cause no statistical line to be
printed. G oups of instructions executed the same number of times will
produce one statistical line. This shows the wuser where his nmgjor
| oops are and where nobst of his execution tine is being spent. [If this
instruction is executed and the count facility has not yet been enabled
at least once in the wuser program (i.e. no count space has been
al l ocated), the condition code of the user programis set to one and
this instruction is ignored. As an exanple consider the follow ng test
program

ASSI ST4-9

ADDR I NSTRUCTI ON COMMENTS

000010 LOWADDR EQU *

000010 LA 0, LOAMDDR GET LOW COUNTI NG ADDRESS
000014 LA 1, H GHADDR GET H GH COUNTI NG ADDRESS
000018 XOPC 18 ENABLE THE COUNT FACI LI TY
00001A XOPC 20 CLEAR THE COUNT AREA

00001E LA 10, 50 GET LOOP VALUE

000022 LOOP LR 1,3 DO GARBAGE FOR COUNTI NG

000024 AR 4,1 MORE GARBAGE

000028 BCT 10, LOOP LOOP 50 TI MES

00002C XOPC 19 TURN OFF THE COUNTI NG

00002E XOPC 22 DUMP STATI STI CS

000030 HI GHADDR EQU *

The XOPC 22 instruction above would print out the following statistica
report:

STATS--> BEG N ADDR: 00001E END ADDR: 00001E | NSTRUCTI ON COUNT: 0001
STATS--> BEG N ADDR: 000022 END ADDR: 000028 | NSTRUCTI ON COUNT: 0050
STATS--> BEG N ADDR: 00002C END ADDR: 00002C | NSTRUCTI ON COUNT: 0001

A FEW EXTRA NOTES:

It should be noted when using the XOPC instructions that they
are expensive instructions with regard to overhead space and tinme.
They shoul d be used sparingly and preferably one facility at a time for
best results.

ASSI ST5-1
PART V. OUTPUT AND ERROR MESSAGES
A. ASSEMBLY LI STI NG
1. ASSEMBLY LI STI NG FORVAT

The assenbly listing produced by the ASSIST assenbler is essen-
tially the same as that produced by the standard OS/ 360 assenblers,
with the follow ng mnor differences:

a. Error nessages are not printed at the end of the assenbly
listing, but are printed after the each statement causing the messages.
A scan pointer '$ indicates the colum where the error was discovered.

b. No nore than four nessages are printed for any single source
statenment. Sone errors cause termination of statement scan, and errors
following in the sane statenent nay not be discovered. However, an
error in a statenent does not nornmally prevent its statenment |abel from
bei ng defined, which is usually the case with the standard assenbler.

c. As noted under PRINT in PART | and under NCLIST in PART II1,
statenments flagged are printed regardl ess of print status at the tine.

d. As noted under PRINT in PART |, no nore than eight bytes of
data are printed for a statenent, even if PRINT DATA is used.

2. ASSEMBLER ERROR MESSAGES

The assenbl er produces error nmessages consisting of an error code
followed by an error description. The code is of the form AS###, wth
t he value of ### indicating one of three types of errors:

a. Warnings - ### is in range 000-099. These never prevent the
execution of the program correspond to OS severity code 4, and e have
nessages begi nning with characters 'W'.

b. Errors - ### is in range 100-899. Execution is deleted if the
total number of errors exceeds the NERR paraneter, as described in PART
I1l. These correspond to OS severity codes of 8 and 12.

c. Disastrous errors - ### is in range 900-999. Sone condition
prevents successful conpletion of the assenbly process. Executi on of
the user program nmay or may not be permtted

ASS| ST5- 2
3. LI ST OF ASSEMBLER ERRCOR MESSAGES

The following |ists the codes and nessages issued by the ASSIST
assenbler, with further explanations follow ng each nessage.

ASO00 W ALI GNVENT ERROR- | MPROPER BOUNDARY
The address used in a nachine instruction is not aligned to the
correct boundary required by the type of instruction used.

AS001 W ENTRY ERROR- CONFLI CT OR UNDEFI NED
A synmbol naned in an ENTRY statenment is either wundefined, or is
al so naned in either a DSECT or EXTRN st atenent.

AS002 W EXTERNAL NAME ERROR OR CONFLI CT
A synbol naned in an EXTRN statenent is either defined in the
programor is nanmed in an ENTRY statenent.

AS003 W REG STER NOT USED
The register flagged in a DROP statenment is not available for use
as a base register at this point in the program This my be
caused by an error in a USING statement naming the register.

AS004 W ODD REG STER USED- EVEN REQUI RED
An odd register is coded in a machine instruction requiring the
use of an even register for a specific operand. I nstructions
which may flagged are Multiply, Divide, Double Shifts, and all
floating point instructions.

AS005 W END CARD M SSI NG SUPPLI ED
The assenbl er creates an END card because the wuser has supplied
none before an end-file marker.

ASS| ST5- 3

AS100 ADDRESSI Bl LI TY ERROR
An inmplied address is used which cannot be resolved into base-
di spl acenent form No base register is available having the
sanme relocatability attribute and a value fromO to 4095 less than
the value of the inplied address.

AS101 CONSTANT TOO LONG
Too many characters are coded for the type of constant specified.
This nmessage appears if a literal constant contains nore than 112
characters, including the equals sign and delimters.

AS102 | LLEGAL CONSTANT TYPE
An unrecogni zabl e type of constant is specified.

AS103 CONTI NUATI ON CARD COLS. 1-15 NONBLANK
A continuation card contains nonblank characters in colums 1-15.
This may be caused by an accidental punch in colum 72 of the
precedi ng card.

AS104 MORE THAN 2 CONTI NUATI ON CARDS
Three or nore continuation cards are wused, which is illegal,
except on macro prototype statenents and nacro calls.

AS105 COVPLEX RELOCATABI LI TY | LLEGAL
ASSI ST does not permt conplex relocatibl e expressions.

AS106 TOO MANY COPERANDS I N DC
ASSIST allows no nore than ten operands in a DC statenent.

AS107 MAY NOT RESUME SECTI ON CODI NG
The assenbl er requires that any section be coded in one piece.
The | abel flagged has already appeared on a CSECT or DSECT.

AS108 | LLEGAL DUPLI CATI ON FACTOR
A duplication factor either exceeds the maxi mum value of 32,767,
or a duplication factor in a literal constant is not specified by
a decimal termor else has the value zero.

AS109 EXPRESSI ON TOO LARGE
The val ue of the flagged expression or termis too large for the
gi ven usage, such as a constant length greater than the maxi num
perm ssible for the type of constant.

AS110 EXPRESSI ON TOO SMALL
The val ue of the flagged expression or termis too small for the
gi ven usage, or has a negative val ue. Coding a V-type constant
with a length of two would generate this nmessage

ASSI ST5- 4

AS111 | NVALI D CNOP OPERAND(S)
The operands of a CNOP have values which are anything but the
| egal conbinations of values for a CNOP, such as a first operand
greater than the second, an odd value, etc. The only legal value
conbi nations are 0,4 2,4 0,8 2,8 4,8 6,8

AS112 LABEL NOT ALLOWED
A label is used on a statement not permtting one, such as a
CNOP or USI NG st at enent .

AS113 ORG VALUE I N WRONG SECTI ON OR TOO LOW
The expression in an ORG statenent either has a value smaller than
the initial location counter value for the current contro
section, or has a relocatibility attribute different from that
of the current control section

AS114 | NVALI D CONSTANT
A constant contains invalid characters for its type, or s
specified inproperly in some other way.

AS115 | NVALI D DELI M TER
The character flagged cannot appear in the statenent where it does.
Thi s nmessage i s used whenever the scanner expects a certain kind of
delimter to be used, and it is not there.

AS116 | NVALI D FI ELD
The field fl agged has an unrecognizable value, or is otherw se
incorrectly coded. PRINT OF is flagged this way.

AS117 | NVALI D SYMBCL
The synbol flagged either contains nine or nore characters or does
not begin with an al phabetic character as is required.

AS118 | NVALI D OP- CODE
The statenent contains an unrecogni zabl e menoni ¢ op-code, or none
at all. Note that different versions of ASSIST may not accept some
of the possible op-codes. The first heading descri bed in
PART 1V.B. 1. a describes which op-codes are all owed.

AS119 PREVI OQUSLY DEFI NED SYMBOL
The synbol in the label field has been previously used as a |abel,
or a SET variabl e has been previously decl ared.

AS120 ABSOLUTE EXPRESSI ON REQUI RED
A rel ocatabl e expression is used where an absolute one is required,
such as in constant duplication factor or for a register.

ASS| ST5-5

AS121 M SSI NG DELI M TER
A delimter is expected but not found. For instance, a GC-type
constant coded with no ending ' is flagged this way.

AS122 FEATURE NOT CURRENTLY | MPLEMENTED
The version of ASSI ST being used does not support the [|anguage
feature used.

AS123 M SSI NG OPERAND
The instruction requires an operand, but it 1is not specified.

AS124 LABEL REQUI RED
An instruction requiring a label, such as a DSECT, is coded
wi t hout one.

AS126 RELOCATABLE EXPRESSI ON REQUI RED
An absol ute expression or termis used where a relocatable one is
required by ASSIST, such as in the first operand of a USING
Al so, this nessage nay appear if the final relocatiblity attribute
of the value in an address constant is that of a synbol in a DSECT.

AS127 | NVALI D SELF- DEFI NI NG TERM
The sel f-defining termflagged contains an illegal character for
its type, has a value too large for 24 bits to contain, or is
ot herwi se incorrectly specified.

AS128 | LLEGAL START CARD
The START card flagged is coded with one or nore statenments other
than listing controls or comments appearing before it.

AS129 | LLEGAL USE OF LI TERAL
The literal constant appears in the receiving field of an
i nstruction which nodifies storage. e.g., ST O0,=F1

AS130 UNDEFI NED SYMBOL
The synbol shown is either conpletely undefined, or has not been
al ready defined when it is required to be. Synbols used in ORG
instructions or in constant |engths or duplication factors nust be
defined before they are used.

ASS| ST5- 6

AS131 UNRESOLVED EXTERNAL REFERENCE
The synbol used in a V-type constant is not defined in the
assenbly, or is defined but not declared a CSECT or ENTRY. ASSI ST
does not link nultiple assenblies, so this is an error.

AS132 | LLEGAL CHARACTER
The character flagged is either not in the set of acceptable
characters, or is used in an illegal way.

AS133 TOO MANY PARENTHESI S LEVELS
Par ent heses are nested nmore than five deep in an expression.

AS134 RELOCATABLE EXPRESSI ON USED WTH * OR /
REl ocatabl e terns or expressions may not be wused wth either of
t hese operators.

AS135 SYNTAX
The character flagged is inproperly used. This <catchall nessage
is given by the general expression evaluator when it does not find
what is expected during a scan.

AS136 TOO MANY TERMS | N EXPRESSI ON
The expression contains nore than the I egal maximum of 16 terns.

AS137 UNEXPECTED END OF EXPRESSI ON
The expression term nates w thout having enough cl osi ng parent heses
to bal ance t he openi ng ones used.

THE FOLLOW NG MESSAGES ARE ONLY | SSUED DURI NG MACRO PROCESSI NG

AS201 OPERAND NOT ALLOWED
Duri ng macro expansi on, an extra operand was found, i.e., an extra
posi tional beyond those given in the prototype.

AS202 STATEMENT OUT OF ORDER
The statenent flagged is in an incorrect place in the deck. For
exanpl e: LCLx before GBLx, ACTR not after both; GBLx, LCLXx, ACTR
in mddle of nacro definition or open code. *SYSLIB card out of
order, etc. May often be caused by m ssing MEND card.

AS203 SET SYMBOL DI MENSI ON ERROR
A di nensi oned set synbol was used wi thout a dinension, or one which
was not di nmensioned was witten with one

AS204 | NVALI D NBR OF SUBSCRI PTS
There was an error in specifying substring notation, sublists, or
set synbol dinmension.

ASS| ST5-7

AS205 | LLEGAL CONVERSI ON
During macro editing, a SET instruction was found w th an obviously
I ncorrect conversion, as in &l SETA C

AS206 M SSI NG QUOTES | N CHAR EXPR
Quot es (apostrophes) are required in character expressions and mnust
al ways be supplied, but were not.

AS207 | LLEGAL OR DUP MACRO NAME
A macro prototype nanme is either conpletely illegal, such as having
too many characters, or duplicates the nanme of a previously gi ven
macro, nachine instruction, or assenbler instruction.

AS208 OPRND NOT COMPATI BLE W TH CPRTR
An operand is used with an inconpatible operator. For exanple, if
&C is LCLC, &B LCLB : &B SETB (NOT &Q)

AS209 UNDFND OR DUPLI CATE KEYWORD
In calling a macro, a keyword i s used which does not appear in the
macro prototype. In either defining or calling a macro, a keyword
operand appears twice or nore in the |list of operands.

AS210 MNEST LIM T EXCEEDED
The MNEST option provides a maximumlimt to the nested depth of
macro calls. This limt has been exceeded. Note that after the
MSTMG linmit has been exceeded, the MNEST limt is effectively 0.

AS211 | LLEGAL ATTRI BUTE USE
ASSI ST does not support S, |I', or L' for nacro operands.

AS212 GENERATED STATEMENT TOO LONG
A STATEMENT WAS CGENERATED HAVI NG MORE THAN TWO CONTI NUATI ON CARDS .

AS217 STMI NOT PROCESSED: PREVI QUS ERROR: STMI/ MACRO #####/ name
Duri ng expansion of macro 'nane', the statenment nunbered ##### was
encountered, but not expanded because it had al ready been flagged.

AS218 STORAGE EXCEEDED BY FOLLOW NG MACRO EXPANSI ON
The following call to the macro listed caused overfl ow of storage ,
probably due to | ooping. Use ACTR, MACTR=, or MSTMZ= .

AS220 UNDEFI NED SEQUENCE SYMBOL | N STATEMENT #####
This may appear following an entire macro definition, and gives the
nunber of a statement referencing a sequence synbol never defined .

ASS| ST5- 8

Any of the foll owi ng nessages describes an error found during the
expansi on of statement ##### of macro 'nane’' . Some nessages al so add
a descriptive 'value', such as an of fendi ng subscri pt. Note that the
nessages bel ow use ## as an abbreviation for the actual output (which is
actually printed by ASSIST in the form STMI/ MACRO #####/ nane) .

AS221 ACTR COUNTER EXCEEDED: ##
The ACTR count has been exceeded. The ACTR is set by the MACTR
option, or by an ACTR statenent. This indicates a | ooping macro

AS222 | NVALI D SYM PAR OR SET SYMBOL SUBSCRI PT: ## --> value
A subscript is out of range. The offending value is given.

AS223 SUBSTRI NG EXPRESSI ON OUT OF RANGE: ## --> value
This is nmost often caused by the first subscript in a substring
expression having a nonpositive value, or one larger than the size
of the string.

AS224 | NVALI D CONVERSI ON, CHAR TO ARI TH: ## --> val ue
The val ue could not be converted to arithnetic form

AS225 | NVALI D CONVERSI ON, ARI TH TO BOOLEAN. ## --> val ue
The val ue was not 0 or 1.

AS226 | NVALI D CONVERSI ON, CHAR TO BOOLEAN: ## --> val ue
The value was not '0" or '"1', so it could not be converted.

AS227 | LLEGAL ATTRI BUTE USE: ##
An attribute was used incorrectly.

AS228 &SYSLI ST SUBSCRI PT QUT OF RANCE: ##
The subscript has a value greater than the nmaxi mum nunber of fields
whi ch can be supplied.

AS229 CALL FRI ENDLY ASSI ST REPAI RVAN: ##
An internal error has occurred inside ASSIST. Please send a deck.

AS230 | NTERNAL CHAR BUFFER EXCEEDED: ##
Too nmuch concatenation was done in the statenent. Renedy: reduce
the conplexity of the statement.

AS231 MSTMG LI M T EXCEEDED: ##
The MSTMG limt (total nunber of statenments processed during macro
expansi on) has been exceeded. Use MSTMG= to increase this.

AS232 ZERO DI VI DE OR FI XED PO NT OVERFLOW ##
One of these interrupts was caused by the statenment given.

ASS| ST5-9

AS241 SEQUENCE SYMBOL NOT FOUND
This message imrediately foll ows an AGO or successful AIF in open
code whose sequence synbol could not be found before the END card.
As a result, all of the program between the AIF/ AGO and END card is
ski pped over.

AS242 BACKWARDS Al F/ AGO | LLEGAL
Thi s nmessage appears followi ng an AGO or successful AIF in the open
code which references a previously defined sequence synbol. ASSI ST
al ows backwards branches only in macros, not in open code.

AS288 MACRO xxxxxxxx COULD NOT BE FOUND
This is issued by the nacro library processor when it tries to get
a macro and cannot find it in the library. The macro nmay be naned
on a *SYSLIB card, or referenced by another macro.

AS289 UNABLE TO OPEN MACRO LI BRARY: OPTI ON CANCELED
This is issued after a *SYSLIB card is encountered, but the macr o
library cannot be opened. A SYSLIB DD card is nmissing or in error

AS298 GENERATED STMIS OVERWRI TTEN
Duri ng macro expansi on, one or nore generated statments were | ost
due to internal table managenent, probably because a statement near
the beginning of a macro generated a long literal constant. One
solution is to insert several coments cards at the begi nning of
the macro definition.

AS999 DYNAM C STORAGE EXCEEDED
ASSI ST requires nore storage than is available, so the assenbly is
halted. This can occur for many reasons. REMEDIES: use the DI SKU
option if available, renpve comrents cards from your program cut
down on array sizes, etc.

ASS| ST5- 10
4. ASSEMBLER STATI STI CS SUMVARY

Foll owi ng the assenbly listing, the assenbler prints three or four
lines of statistical information, as follows:

a.
*xox gyt STATEMENTS FLAGGED - ##### WARNI NGS, ##### ERRORS
This notes the total nunbers of statenents flagged, warning
nessages, and error nessages given during the assenbly.

b.
*xxxx NUVMBER OF ERRORS EXCEEDS LI M T OF ##### ERRORS - PROGRAM EXECUTI ON
DELETED *****

This notes the nmaxi mum nunber of errors permtting execution, and

that the user programw ||l not be executed because the NERR limt
val ue has been overrun (see PART |I1 regardi ng NERR).
c

*** DYNAM C CORE AREA USED: LOW ###### H GH. ###### LEAVI NG ######
FREE BYTES. AVERAGE: ###### BYTES/ STMI ***

The ASSI ST assenbl er uses menmory fromthe opposite ends of one area
of storage acquired at execution time. The LOW area contains source
statenents and generated object code,the H GH area contains the synbol
and literal tables, and the space renmining indicates how close the
user is to causing a storage overflow. The average core wusage printed
i ncl udes that used in both LONand H GH areas.

d.

*** ASSEMBLY TI ME = #. ### SECS, #it### STATEMENTS/ SEC ***
This notes the total tinme used by the assenbler, along wth the
rate of assenmbly. At PSU, this tine includes both CPU tine and
I/ O charges.

e.
*xx%k% EXECUTI ON DELETED - LESS THAN ## PER CENT OF MACHI NE | NSTRUCTI ONS
HAVE COMVENTS *****
The above nmessage may appear before the core area nmessage, if the
ASSI ST has the comment - checki ng option, and either COWT was coded,
or was invoked by account nunber, and the user did not put comments
on the given percentage of nmachine instruction statenents.

ASS| ST5- 11
B. ASSI ST MONI TOR MESSAGES
1. HEADI NGS AND STATI STI CAL MESSAGES

The main control program of ASSIST nmay issue the follow ng
headi ngs and nessages during execution:

a.
*** ASS| ST version OF date | NSTS/ DFP/ =### CHECK/ TRP/ =### OPTS/ CCKMR/ =###
PENN STATE UNI V. nodel - system ***

This heading is the first Iline printed, and it describes the
facilities in the version of ASSI ST being used, as foll ows:

ver sion, date - version nunmber of this ASSI ST, and date it was created.
I NS/ DFPS/ = - describes instruction sets accepted. The digits are 0's
or 1's showing lack or presence of decimal, floating

point, privileged operations, and sonme S/ 370 operations
describes tine, records, and pages checki ng nodes. a 2
for T or Rindicates ASSI ST can obtain time or records
remaining fromsystem O for T indicates no tinmng, O
for P indicates no page checki ng possible.
OPTS/ CCKMR = - describes availability of najor optional features, in
order CWVPRS, COWNT, KP=26, MACRO, and REPL. Values of
0 indicate the feature is unavail abl e. If value for
COWNT is nonzero, it is two digits long and gives the
percentage of comments required. A value of 1 for R
denotes a partial version of the Replace Monitor,
while 2 denotes a conplete version with all features .
nodel - lists the nodel nunber of the conputer being used
system - describes operating system being used (such as OS- MWT).

CHECK/ TRP/ =

b.
Following the above heading, the ASSIST nmonitor prints the
contents of the wuser's EXEC card PARM field, or his $J0B CARD

C.
*** PROGRAM EXECUTI ON BEG NNING - ANY QUTPUT BEFORE EXECUTION TIME
MESSAGE | S PRODUCED BY USER PROCGRAM ** *

This nmessage is issued imediately before the wuser program is
executed, and serves to delinmt user output.

d.
*** EXECUTION TIME = #. ### SECONDS ##### | NSTRUCTI ONS EXECUTED -
| NSTRUCTI ONS/ SEC ** *
*** F| RST CARD NOT READ: card inage

This message is issued imediately after the wuser program has
been executed, and supplies statistics regarding the execution tine and
rate of execution of the user program The tine shown may be slightly
smal l er than the actual time, if the conpletion code given in the dunp
is ASSIST = 223 TIME LIMT EXCEEDED. The second part appears if one or
nore data cards were not read by the user program

e.
*** TOTAL RUN Tl ME UNDER ASSI ST = #. ### SECS ***
This is the last line printed by ASSIST, and the tine given

includes time for the entire run. Printed only if CHECK/ TRP/ =2## .

ASS| ST5-12

2. ASSI ST MONI TOR ERROR MESSAGES

The ASSI ST nonitor may al so i ssue any of the follow ng nessages,
which are of the form AM###, and usually indicate errors:

AMD01 ASSI ST COULD NOT OPEN PRI NTER FTO6F001: ABORT
Thi s message appears in the system nessage class data set i f
ASSI ST is unable to open the DCB for its printer, using DDNAMVE
FTO6F001. This is probably caused by lack of a DD card, or by an
incorrect override of this DDNAVE in a catalogued procedure.

AMD02 ASSI ST COULD NOT OPEN READER SYSI N: ABORT
Thi s nessage appears in the system nessage class data set if
ASSI ST is unable to open the DCB for the source card reader. The
SYSIN DD * card is probably omtted or mspunched, making an
assenbly and execution inmpossible.

AMD03 - STORAGE OVERFLOW BEFORE EXECUTI ON, EXECUTI ON DELETED
The user program assenbled properly, but there is insufficient
menory renmaining to set up control blocks required for execution
The user should attenpt to reduce the amount of storage wused by
his program This message shoul d occur very sel dom

AMD04 - NORVAL USER TERM NATI ON BY RETURN
This nmessage is issued if the user program branches to the address
originally supplied to it as a return address in register 14. | f

this nmessage appears, no conpletion dunmp is printed.

AMDO5 - TI ME OR RECORDS HAVE BEEN EXCEEDED
This nmessage is printed if the time or record limts have been
exceeded at any time during a job. This nessage appears after a
conpletion dunp, if there is one.

ASS| ST5- 13
C. ASSI ST COVPLETI ON DUMP

When a user programterm nates abnormally, a conpletion dunp is
provi ded for debuggi ng purposes, and contains the following itens:
1
ASSI ST COVPLETI ON DUMP
The above header begins the dunp.
2.
PSW AT ABEND XXXXXXXX XXXXXXXxX COVPLETION CODE type = code nessage
This line gives the user's Program Status Wrd, in hexadecinmal,
foll omed by further information concerning the reason for termnation.
The type given is one of the follow ng:
a. SYSTEM indicating that the code given is the sane as that given
by OS/ 360, such as for programinterrupts.
b. ASSI ST, indicating a conpletion code which does not necessarily
correspond directly to a code used by OS/ 360.
The three-digit hexadecimal code is followed by a descriptive nessage.
PART IV.D provides a list of the nessages and codes.

3.
***xx* TRACE OF | NSTRUCTI ONS JUST BEFORE TERM NATI ON: PSWBI TS SHOMN ARE
THOSE JUST BEFORE CORRESPONDI NG | NSTRUCTI ONS DECODED * ** **

| M LOCATI ON INSTRUCTION : IM= PSWBITS 32-39(ILC, CC, MASK) BEFORE
| NSTRUCTI ON EXECUTED AT PROGRAM LOCATI ON SHOWN
aa bbbbbb cccc cccc cceccce (1-10 lines in this f or mat)

The above section in a dunp lists up to the last ten instructions
executed before termnation, with the last instruction shown wusually
causing the ternm nation. Parts aa and bbbbbb nake up a wuser PSW in
each line, and are followed by from one to three halfwords of
instruction, represented by cccc.

4.
** TRACE OF LAST 10 BRANCH | NSTRUCTI ONS EXECUTED BEFORE TERM NATI ON: PSW
BI TS SHOAN ARE THOSE JUST BEFORE CORRESPONDI NG | NSTRUCTI ON DECODED * *

| M LOCATI ON INSTRUCTION: I M= PSWBITS 32-39(ILC, CC, MASK) BEFORE
| NSTRUCTI ON EXECUTED AT PROGRAM LOCATI ON SHOWN
AA BBBBBB CCCC Cccc ccece (1-10 lines in this format)

The above section of the Assist Conpletion Dunp is only given when
ASSI ST Optional Extended Interpreter is in use by the installation. This
section in a dunp lists up to the last 10 successful branch instructions
executed before term nation.

5.
GP REQ STERS 0/8 1/9 2/ 10 3/11 4/ 12
5/ 13 6/ 14 7/ 15
REGS 0-7 (8 groups of 8 hexadecinmal digits each)
REGS 8- 15 (8 groups of 8 hexadecinal digits each)
FLTR 0-6 (4 groups of 16 hexadecimal digits each)

The above section in a dunp displays the contents of the wuser's
general purpose and floating point registers at the tine of term nation.

ASS| ST5- 14

6.
USER STORACE
CORE ADDRESSES SPECI FI ED- XXXXXX TO yyyyyy
222222 (8 groups of 8 hexadecimal digits each) * (32 characters) *
The above section shows the format of a wuser storage dunp. The
begi nni ng and endi ng addresses are given by Xxxxxxx and yyyyyy. Each

line shows 32 bytes, beginning at location zzzzzz, grouped into eight
fullwords. Each area is also shown in alphaneric form at the right,
with blanks, letters, and digits printed directly, and all other
characters translated to peri ods.

D. COVPLETI ON CODES

SYSTEM = 0Cx
This code is given for program interrupts, where x is the
hexadeci mal interrupt code. The nessage given is as shown on page
6 of the I BM Systenf 360 Reference Data card, for interrupts O-F

ASSI ST = xxx nessage
This type is given for special ASSI ST conpletions. The possible
codes and messages are as follows:

220 ATTEMPTED READ PAST ENDFI LE
After performng an XREAD instruction and receiving an end-of-file
i ndi cation, the user has attenpted another XREAD, i.e. tried to
read nore data cards than existed.

221 INSTRUCTION LI M T EXCEEDED
The user specified an I=1imt on his EXEC card, and this number of
i nstructions has been exceeded. The program was probably | ooping.

222 RECORD LI M T EXCEEDED
The user attenpted to print or punch nore records than was given by
conbi nati on of R, RD, and RX option val ues. Execution has been
term nated, and at |east a partial dunp given.

223 TIME LIM T EXCEEDED
The user program has consunmed nore execution tinme than specified by
the values of the T, TD, and TX option val ues. Execution was
term nated and at |east a partial dunmp given.

224 BRANCH QUT OF PROCRAM AREA
The user programattenpted to branch outside of its area. The
only branch outside not flagged this way is a branch to the return
address originally supplied to the user program in register 14.

ASS| ST5- 15
E. OBJECT DECKS AND LOADER MESSAGES

1. OBJECT DECK FORVAT

ASSI ST provides basic facilties for reading (OBJIN) and punching
(DECK) object decks which whose format is a conpatible subset of nornal
S/ 360 decks. However, ASSI ST does not punch External Synbol Dictionary
(ESD) or Relocation Dictionary (RLD) cards, and ignores themif reading
a deck. Thus, it cannot performsynbolic |inkage between nodules or
rel ocate individual address constants. The facility can be wuseful for
saving assenbler utility prograns, or for providing efficient running
and good diagnostics for object code from student-witten conpilers.

Two types of cards are punched and recogni zed: text cards (TXT),
whi ch supply actual object code, and end cards (END), which supply an
optional entry point address for beginning of execution. The formats
of these cards are described below. ALWAYS |ists the characters which
are defintely present, DECK notes those which are punched, and OBJIN
those required for input. The notation |GNORED means that the given
card colums are conpletely ignored when I|oading an object deck.

CARD/ COLUMNS ALWAYS DECK OBJI N
END CARD

1 b | GNORED

2-4 END - -

5 X 00 | GNORED

6- 8 entry address entry address or bl anks

9-72 bl ank | GNORED
73- 80 sequence # | GNORED
TEXT CARD

1 b | GNORED

2-4 TXT - -

5 X 00 | GNORED

6-8 begi nni ng address of text code which is on this card
9-10 bl anks | GNORED

11 X 00 | GNORED

12 | ength of object code on card, from X 00' to X 38

(i.e. 0 to 56 decimal bytes of code).

13- 16 bl anks | GNORED
17-72 up to 56 bytes of code, to be loaded at given address.
73-80 sequence # | GNORED

Note that the format above resenbles the standard, given in
| BM S/ 360 OS Assenbler (F) Programmer's Gui de GC26-3756, Appendix B

When ASSI ST punches an obj ect deck, it punches the entire program
storage, including character 5 s which fill any DS or other areas not
havi ng specified code values. Unlike the standard system assenblers,
ASSI ST al ways punches an END card with an entry point address on it,
whet her the user specifies an entry point on the source END card or not.

Al though it is not possible to performsynbolic Iinkage of multiple
decks, it is possible to link multiple decks if the user assenbles each
of several prograns at particular |ocations known to each other, using
START cards. Deck |inkage can then be acconplished by | ocating a vector
of address constants at the begi nning of each assenbly, which can then
be used to reference any required areas or nodules within that assenbly.
Note that this type of procedure wll not work if RELOC is used

ASS| ST5- 16
2. ASSI ST LOADER USAGE AND MESSAGES

The ASSI ST | oader is called by use of the OBJIN paraneter, and
| oads object deck cards having the format given on the previous page,
ignoring all cards having neither TXT nor END in colums 2-4. The usua
use for this option is to |load a deck previously produced by ASSIST or
possi bly by some student-witten conpiler being tested. However, it is
possible to link decks produced by the standard system assenblers if the
gui del i nes bel ow are fol |l owed:

a. Use no V-type adcons.

b. Any command listed in PART Il of this manual (XREAD, XDUMP, etc)
is handl ed i nside ASSI ST as a special instruction, using one or
nore of the opcodes not already used. If any of these comuands
is to be used, equival ent code nust be generat ed.

c. If multiple assenblies are used, the only way to comunicate
among themis to assenble each at sone fixed |ocation known to
any of the others which reference it in any way.

Regardl ess of the nethod used to create the input deck, the entire

obj ect deck nust follow the rul es bel ow

a. The address on the first TXT card nmust be less than or equal to
all other TXT card addresses received. The object code for this
address is placed starting at the first byte of available nenory.

b. The difference between the highest address of received object
code and the | owest address cannot exceed the avail able storage.

c. The entry point address is either the address fromthe first END
card specifying one (i.e., not blank), or if no such address is
found, then the address found on the first TXT card.

d. The user program cannot nodify storage beyond the I|ast code
address, so if it requires nore work space, it can specify a TXT
card with zero I ength and a hi gh enough address to reserve space.

Wthin the imts above, TXT addresses can occur in any order, and

END cards can appear anywhere (including the first card of the deck).

The user is cautioned to be careful in using the RELOC option wth
OBJIN. ASSI ST normally computes a relocation factor used to load the
code, which is equal to the | owest actual nmenmory address minus the first
TXT address. After loading the code, if RELOC is used, the relocation
is set to 0, since RELOC-type prograns nust be run with no execution-
time relocation (so they can reference | owcore addresses for instance).
Thus, any deck to be run under RELCC should contain no relocatable-type
address constants of any type, or else should use a START card to create
the sane addresses as where the programwll be run (which nmay be hard
to do under general OS-MT and MVT systens).

ASS| ST5- 17

Messages produced by the ASSIST |oader are of the form AL###,
and include the foll owi ng nmessages:

a.
*** ALOOO - ASSI ST LOADER BEG NS LOAD AT xxxxxx ,USABLE CORE ENDS AT
XXXXXX ***

This nmessage is printed before loading is begun, and gives the
begi nning real address at which code can be | oaded, and the address of
the first byte beyond the usable area. The entire area nentioned is
filled with character 5's before | oading is begun.

*** AL100 - LOAD COVPLETED, USER ADDRESSES: LOW xxxxxx , H GH xxxxxx
ENTRY xxxxxX , RUN-TI ME RELOCATI ON XXXXXX ***

This nmessage is printed at the end of a successful load. It gives
the I ow and hi gh addresses in user-relative values (as found in incom ng
TXT cards), the entry point address where execution is to begin (again,
in user-relative terns), and the run-tine relocation factor. This |[ast
value is used during interpretive execution, and is added to every
program defi ned address to obtain an actual address in nenory, i.e., as
far as the user programis concerned, it is actually |ocated between the
LOW and H GH addresses given. |If RELOC is used, the relocation factor
will be set to zero, regardless of the relocation factor actually used
to |l oad the program

The foll owi ng nessages indicate a error in the input deck. Loading

is term nated, and user program execution does not occur. **NOTE** if
ei t her nessage AL997 or AL998 appears, it will be followed by an XSNAP
| abel ed 'IMAGE OF | NCORRECT OBJECT CARD , and the offending card

di spl ayed beginning at the first address given by the XSNAP

*** ALQ96 - NO TXT CARD RECEI VED ***
The | oader encountered an end-of-file indication or ASSIST contro
card before finding any TXT cards.

*** ALQ97 - TXT CARD ADDRESS BELOW 1ST TXT CARD ***

In order to performrelocation fromTXT addresses to appropriate
nenory addresses, no TXT card can have a | ower address than the first
one found. This requirement was not nmet by the card displayed.

*** A998 - TXT CARD ADDRESS EXCEEDED STCORAGE ***

The area described in nessage ALOOO was not sufficiently large to
hold all of the object code, i.e. the address of at |east one byte of
code on the offending card was required to be beyond the end of the
avai | abl e space.

*** AL999 - LOAD ABORTED ***
This nmessage follows any of the other nessages to note the
i medi ate ternmination of the | oading process.

ASREPLGD- 01

3.0/A
June 1973
ASSI ST
ASSEMBLER REPLACEMENT USER S GUI DE
Pr ogram&Docunent ati on: John R Mashey
Proj ect Supervision : G aham Campbel |
PSU Comput er Sci ence Depart ment
PREFACE
This manual is the key reference source for the programmer who
uses the replacement facility of ASSIST. This facility allows the

programmer to wite and test his own versions of certain program
nmodul es which are part of the ASSIST Assenbler. The nodul es which
are replaceabl e performa wide variety of functions, thus allow ng for
a nunber of different course assignnents covering inportant segnents
of a running 360 Assenbler. Anobng those replacable are nodules for
management of the synbol table, base register table, scanning and
covnversi on of various constant types, and evaluation of both self-
defining ternms and general expressions. The entire repl acenent
process can be performed wth |ow overhead, in-core, and batched,
whil e all owi ng the user program no possible way to danage the rest of
t he ASSI ST system

The first part of this manual briefly describes the interna
structure of the ASSIST assenbler, and lists the steps in the entire
repl acenent process. Also included are the overall register and
I i nkage conventions required of all replacabl e npdul es.

The second section describes the additional debugging facilities
available to the witer of a replacenent nodul e.

The third section shows the deck setup, Job Control Language,
and PARM options needed to make a replacenent run.

The fourth section lists all nessages which my be printed by
t he ASSI ST Repl ace Mnitor during a replacenent run

The reader should be famliar wth the fol | owi ng manual :

ASSI ST
| NTRODUCTORY ASSEMBLER USER S MANUAL

The above manual gives various information which nmay be required to
wite a program which can be run under ASSI ST, and explains the various
nmessages whi ch may generated (other than Replace Mnitor nessages).
Note also that this manual is structured simlar to the above one.

For replacenment of certain of the nodules, it may be necessary to
examine the following nmanual for additional required information

ASSI ST SYSTEM
PROCGRAM LOG C MANUAL

ASREPLGD- 02
TABLE OF CONTENTS

PART |. THE ASSI ST REPLACEMENT PROCESS. 03
A. OVERVI EW OF THE ASSI ST ASSEMBLER. 03
B. STEPS IN THE REPLACEMENT PRCOCESS. i 04
C. REG STER AND SUBROUTI NE LI NKAGE CONVENTIONS. 06
PART I'l. REPLACE MONI TOR DEBUGGE NG AIDS. i 08
A THE RFELAG . . . 08
B. THE XREPL I NSTRUCTI ON. e e s 09
PART 111. JOB CONTROL LANGUAGE AND PARM OPTIONS. 09
A. JOB CONTRCOL LANGUAGE FOR REPLACE RUN. 09
B. PARM OPTI ONS. . . . 09

PART 1V. REPLACE MONI TOR MESSAGES. e 10

ASREPLGD- 03
PART | . THE ASSI ST REPLACEMENT PROCESS
A. OVERVI EW CF THE ASSI ST ASSEMBLER

The ASSI ST Assenbler is a section of the entire ASSIST System
whi ch transl ates a deck of S/ 360 Assenbler Language statenments into

object code, in menmory. It is made up of approximately 30 contro
sections, of which 3 are nain control prograns. The overall contro
program is nanmed MPCONO, which calls the nain prograns for each of the
two passes in the assenbler, and also calls all initialzation and

term nation entrypoints for the various other nmodules in the assenbler.

During the first pass, under control of MOCONL, each <card in the
i nput source deck is read, scanned for |abel and opcode, and processed
partially according to the type of opcode. Each statenent is given a
| ocation counter value during this pass, and sone types of statenents
are conpl etely processed, such as EQU, START, ORG etc. Each cardimge
and its associated information is then saved into a large dynamc
wor karea, until an END card is encountered.

Duri ng the second pass, each statenent saved in the dynamic area

is retrieved and processed. Several different routines control the
scanni ng of each statenent and production of object code fromit. Each
statenent's object code, if any, is loaded into nmenory, and the

statenent printed.

Approxi mately half of the nodul es of the assenbler can be replaced
using the ASSIST Replace Mbdnitor. In general, these nodules are
those which are fairly lowlevel routines, which are not required to
have comuni cation with many other nodules, and which generally do
not have to be able to exam ne variables and flags global to the entire
assenbler. They definitely are never required to nodify storage outside
the limts of their own storage. These characteristics make it
possible for themto be replaced wthout requiring a great deal of
know edge of the internal workings of the ASSI ST Assenbl er.

ASREPLGD- 04
B. STEPS | N THE REPLACEMENT PROCESS

1. The programmer wites one control section which is to be assenbl ed
and used as a replacenent for the existing one in ASSIST of the sane
nane. This control section nust have the following characteristics:

a. The CSECT and ENTRY nanes (if any) nust be defined and spelled
exactly as the existing ones.

b. Certain replacable nodul es (such as EVALUT), are permtted to
call existing ASSI ST nodul es. Any nodule so called can be done
so by listing the mpdule nane in an EXTRN statenment, then
referenci ng the nodul e name by use of a V-type address constant.

2. After the user programis assenbled and | oaded into nmenory, the
Repl ace Monitor searches its list of replaceable control sections for
one defined as a csect in the user program The required entry point
nanes are found, if possible, in the user program During this process,
the Repl ace Monitor nodifies certain address constants in the main
control table of the assenbler, which will permit it to regain contro
every tinme one of the replaced entry points is called. The nessages
| abel ed ARO00, AR001, and AR002 nmy appear on the listing at this point.
If it cannot find a legally replaceable csect name, the nmessage ARL00
is printed, and the replacenment process termnated. The latter can al so
occur if the user programcontains nore serious errors than given by the
val ue of the NERR paraneter.

3. VArious functions are perfornmed to initialize the user program for
| ater execution. These include initializing the user RFLAG to the val ue
given by the RFLAG= option in the PARM field (see PART 1I11). Then,
i nstead of executing the user programdirectly, the ASSI ST Assenbler is
called to process a test deck, which follows the wuser program

4. During the assenbly of the test deck, any of the replace programs
entry points may be called. Any such call is intercepted by the Repl ace
Monitor. Using previously saved information, it supplies the paraneter
values to the original ASSIST entry point called, which returns the
correct set of values to be conputed by that entry.

At this point, depending on certain bits in the current value of
the user RFLAG various debugging information may be printed. This nmay
i nclude the current cardi mage bei ng processed, the values of 5 paraneter
registers on entry to the Replace Monitor, and their correct values as
returned by the original ASSI ST nodul e. These messages have |abels
ARO51, AR052, AR054, respectively.

5. At this point, a check is nade to assure that the entry point
call ed actually was defined properly by the user. If not, the AR1O1
nmessage i s given, user storage is dunped, and the interception of calls
is termnated. Oherwi se, the user registers and counters are prepared,
and the user program executed begi nning at the address in his program
given by the called entry point. The user program is not executed
directly, but is interpreted to prevent it from danaging any part of
ASSI ST. The user program may thus access storage outside its area, but
may not nodi fy such storage.

ASREPLGD- 05

6. The wuser program is interpreted until it either termnates
normal ly by returning to the return address supplied to it in R4, or
terminates with some error.

7. If the user programtermnated normally, the register values it
returned are checked agai nst the ones returned by the original nodule.
In some cases, the exact register values do not matter, but any value
definitely wong is noted. If anything is actually wong, any debug
i nformati on not already printed during step 4 is printed now Then
the values of the user-returned paraneter registers are printed (AR058),
foll omed by a nessage flagging the incorrect registers (AR059). The
ARO58 nessage may be printed in any case if the appropriate bit in the
current value of the user RFLAG is turned on. Another bit in the RFLAG
is set if an error has occurred. This bit may be tested by the user
programthe next tinme it is called.

The correct values are placed in the paraneter registers, and
control is returned to the programwhich originally called the replaced
entry point.

8. If the user programdid not term nate nornally, and the error was
a branch out of the user program it may be the case that the user
program was attenpting to call some other original ASSIST nodule. The
call is checked to see if it is a legitamate one. |If so, the paraneter
regi sters may be printed (AR0O50), and then checked to make sure they
contain legal values. |If they are illegal for any reason, they are
flagged with message AR059, the user programis dunped, and no further
calls are made to user entry points. |If the call is legal, the desired
routine is called, and its paraneter values placed in the wuser's
registers, and step 6 is begun once nore.

9. Finally, the assenbly of the test programis conpleted, wth al
call's having been made to the appropriate entry points of the user
repl acenent program Messages AR003 and AR004 are then printed, giving
various statistics about the performace of the wuser program These
i nclude the nunber of times each entry point was called, the tota
nunber of instructions executed by each entry, the nunmber of times the
val ues returned by the user programwere incorrect, the average nunber
of instructions executed per call, and the percent of the «calls which
were handl ed incorrectly.

10. If the option BATCH was specified, <control returns to step 1,
thus allowi ng different nodul es to be tested during one run. O herw se,
ASSI ST execution term nates.

ASREPLGD- 06
C. REG STER AND SUBROUTI NE LI NKAGE CONVENTI ONS

1. REG STER USAGE

The general purpose registers are referred to by two separate sets
of synmbols. The first is a set of absolute register equates, the
symbol s RO-R15 being used for registers 0-15. |In addition, a second set
exi sts which has nore menonic neaning. The user is urged to wutilize
only synbolic registers in his program and should thus include any of
the required EQU instructions in his program |In particular, registers
7-11 shoul d be coded using the synbols RA-RE. The additonal synbolic
regi ster equates are as follows:

RwW EQU R3 GENERAL WORK REG STER 1
RX EQU R4 GENERAL WORK REG STER 2
RY EQU R6 GENERAL WORK REG STER 3
RZ EQU R6 GENERAL WORK REG STER 4
RA EQU R7 PARAVETER REG STER 1

This register is comopnly used as a scan pointer register
i nsi de the assenbl er.

RB EQU RS PARAMETER REG STER 2
This register is comonly used to pass a control value to
a subroutine, and on return, alnpbst always contains either
an error code, or a zero to show no errors.

RC EQU RO PARAMETER REG STER 3
This register is nost often used in the assenbl er for passing
a 24-bit value (such as the result of an expression or a
self-defining ternj.

RD EQU RI10 PARAMETER REG STER 4

RE EQU RI11 PARAMETER REG STER 5
Regi sters RD and RE may be used for subroutines needing nore
than two or three arguments, but are nore comonly used as
work temporary work registers.

RAT EQU R12 ASSEMBLER TABLE PO NTER- READ ONLY
This register points the main assenbler table (VWTABL csect,
AVKTABL dsect) during an assenbly. No subroutine in the
assenbler may nodify this register.

RSA EQU R13 SAVE AREA PO NTER/ BASE REG FOR SOVE
This register is used to point to an OS/ 360 save area, for
any subroutine which may call another. Alnmpst all subroutines
use this as a base register if they are not | owest-Ieve
routines.

RET EQU R14 RETURN ADDRESS USED | N CALLS
This is used in subroutine |inkage for the return address to
a calling program This synbol is generally used whenever
subroutine linkage is being set up, while R14 is used when the
register is being used as a tenporary work register.

REP EQU R15 ENTRY PO NT ADDRESS/ OFTEN USED BASE
This register is used to hold the entry point address for al
subroutines in the assenmbler. Lowest-level routines usually
use this as a base register. |In other routines, this my be
used as a local work register, in which case the synbol R15
is normal |y coded.

ASREPLGD- 07

2. LI NKAGE CONVENTI ONS - THE ASSEMBLER

The |inkage conventions inside the ASSIST assenbler consist of
a few nodifications to the standard OS/360 |inkage conventions, which
have been changed nainly to save tinme and space. The differences are
as follows:

a. Registers RO-R6 (or RO-R2, RWRZ) are protected across any
cal ling sequence and nust be restored if changed. R14 (RET) nust also
be restored if changed before returning

b. Regi ster R12(RAT) nmay not be changed by any routine.

c. Registers R7-R11 (RA-RE) are used for parameters and tenporary
work registers, and are not protected at all across calls. No routine
ever requires nore than five argunents, so these five registers are
sufficient.

d. Except for the above, all normal OS/ 360 conventions are foll owed
regardi ng save area |inkage requirements and usage. In general, nost
routine only save as many registers as required. Lowest-level routines
use R15 as a base, and do not perfrom save area |inkage, other routines
usual |y use R13 as a base and save area pointer.

e. For replacenment runs, the wuser nust include any needed EQU
symbol s for registers. Note that all documentation and output produced
by the Replace Mnitor refers to registers 7-11 as RA-RE, so that
using these synbols in a replacenent program will aid reading the
various di agnostic output produced.

ASREPLGD- 08
PART I'l. REPLACE MONI TOR DEBUGGE NG Al DS

A. THE RFLAG

Conmuni cati on between the user program and the Replace Monitor
is achi eved through the use of the User Replace Flag, called the RFLAG
This is a two-byte area of storage which may initialized for an entire
run using the RFLAG= option in the PARM field. Certain bits in it
det erm ne which diagnostic nmessages the Replace Mnitor prints when
it intercepts a call to a replaced nodule. These bits can also be
changed by the user program during execution, thus allowing the user
to obtain additional information when needed. The various bits of the
RFLAG are used as described in the table bel ow.

BYTE BI TS DECI MAL BI NARY MEANING | F BIT ON (AR### NMESSAGE)
0 0-7 currently unused, user can set or test
for his own purposes.
7 1 00000001 print current statenent on entry (ARO51)
6 2 00000010 print registers RA-RE on entry (AR052)
5 4 00000100 print correct regs RA-RE, on exit (AR054)
fromoriginal ASSI ST nodul e

4 8 00001000 print registers RA-RE on exit from (AR058)
user replacenent nodul e
3 16 00010000 print registers RA-RE if user (AR050)

nodul e calls an original ASSIST nodul e.
1,2 64, 32 01100000 reserved for future use
0 128 10000000 is set to 1 when there is an error (AR059)
paranmeter registers returned by the user
program |Is set to O if acceptable.
Bit 0 of byte 1 can be used to start extra debugging output only
after an error occurs. See the XREPL exanple for this action.
The entire first byte is reserved for the user program such as for
addi ti onal debugging flag bits for controling the program
Note that bits 5,6,7 are tested before the call to the wuser
program Thus, changing them affects output beginning at the next
call to a user nodul e.

B. THE XREPL | NSTRUCTI ON
The XREPL instruction is an SI format instruction, in which the
imMmediate field is used to specify a type of action. It is coded as
XREPL ADDR, CODE wi th CODE meani ng as foll ows:

0 set the RFLAG fromthe 2-byte area specified by ADDR

1 fetch the RFLAG into the 2-byte area specified by ADDR

2 fetch the nunmber of instructions left into the 4-byte area given by
ADDR. This value is decrenented each tine an instruction is done.

The foll owi ng gives an exanple of the use of XREPL

XREPL MYRFLAG 1 get the value of the RFLAG

™ MYRFLAG+1, 128 was there an error |ast tine

Bz *+12 no, don't reset it

a MYRFLAG+1, 8+4+2+1 set all these for debug out put

XREPL MYRFLAG 0 reset the RFLAG to new setting

ASREPLGD- 09
PART 1'11. JOB CONTROL LANGUAGE AND PARM COPTI ONS

A. JOB CONTROL LANGUAGE
The deck setup for a single-job replacenment run is as follows:
/1 a JOB CARD
/1 EXEC ASACG, PARME' REPL, ot her options if any'

//SYSIN DD *
..... user-written replacement program....
END , end card of replacenent program

..... user test deck for his replacenent program....

The deck setup for a replace programrun under BATCH is:
$JOB ASSI ST ACCT#, REPL, ot her options, if any
..... user-written repl acenent program

$SENTRY (required to initiate test)
..... user test deck for replacenent program
$ENTRY (optional, if user wants assenbl ed test

programto execute also - unlikely)

B. PARM OPTI ONS
The following PARMfield options are of particular interest to
the user of the replacenent facility. (see PART Ill. of USER S GU DE)

REPL required if the runis to be a replacenent run rather than
just a normal assenbly and execution.

RFLAG=nunber coded to initialize the value of the RFLAG for the entire
run. The default value is 0.

BATCH may be coded if the user wants to test nore than one nodul e,
or nore than one version of the sane nodule in the sane run.

| =nunber the instruction count Iimt specified applies to each call of
a replacenent nmodule. It is therefore recomended that this
opti onal operand be coded, and that its value be fairly small.

ASREPLGD- 10
PART |'V. REPLACE MONI TOR MESSACES

The following |ists the nessages which may be produced during a
repl ace run by the Replace Monitor. Note that all these nessages are
printed inline with output produced by other sections of ASSIST. In
particul ar, Replace Mnitor output is enbedded in the listing of the
user test program which can possibly make it difficult to read in sone
cases. A helpful procedure is to run the test programby itself under
ASSI ST, thus obtaining a listing, then insert a PRINT OFF command at
the beginning. This will renmove nobst of he test program listing

Al Replace Mnitor nmessages are of the form ///AR### nmessage.
The type of message is indicated by the value of ###, as follows:

000-049 - informative or warni ng nessages.
050- 099 - debuggi ng out put nessages, produced during intercepted call
100-199 - severe error nessage, causing replacenent interception to end.

ARO00 REPLACE CSECT: nane 111
Thi s nmessage appears inmedi ately after the replace csect has been
assenbled, with name being the nanme of the replacing csect.

AR0O01 REPLACE ENTRY: nane AT LOCATI ON: xxxxxx [//
I f nmessage AROOO appears, each properly defined entry point in the

csect will be listed here with its location xxxxxx in nenory. Note
that a csect which can be entered through its csect nane is also
listed.

AR002 REPLACE ENTRY: nane NOT FOUND AS CSECT OR ENTRY ///
Thi s nmessage may appear with the AR0O00 and AROO1 nessages for any
entry or csect nane which is required, but either not defined in
the user programor not declared as CSECT or ENTRY. |If this entry
nane is called during execution, its execution will be terninated
with an AR1O1 nessage and storage dunp.

ARO03 STATI STICS: # INSTRUCTIONS # CALLS # WRONG | NSTRS/ CALL 9%\RONG

This nessage appears after the test program is assenbl ed.
AR004 name : 5 deci mal nunbers
One of this nessage appears for each entry point after AR003. It

descri bes the perfornance of the naned entry point during the run

ARO50 ON CALL TO name REA STERS RA-RE (values of regs 7-11)
This nmessage may be printed if the RFLAG byte 1 bit 3 is set and
the user programcalls sone other ASSIST nodule. It nmmy also be
printed if the user programtries to pass illegal paraneter val ues
to the routine nane.

ASREPLGD- 11

ARO51 ON ENTRY TO nane STMI' ADDR: XXXXXX -> car di mage
This nmessage is printed before calling the user program and shows
the current statenment being processed, if any. The address of the
cardi mage is given by XXXXXX, which corresponds to the first
character following the '>'" in the nmessage. The nessage is
if RFLAG byte 1 bit 7 is set before the call, or if an error
occurs in the user program

AR052 ON ENTRY TO nane REA STERS RA- RE: (values of 5 registers)
Thi s nmessage displays the 5 paraneter registers before the wuser
program name is called, and is printed if RFLAG byte 1 bit 6 is
on before the user programis called, or if there is an error.

AR054 ON EXI T FROM nane REA STERS RA- RE: (values of 5 registers)
Thi s message shows the correct values of the paraneter registers
as returned by the original ASSIST nodul e nane. It is printed
if RFLAG byte 1 bit 5 is on before call to the nodule, or if the
user program makes an error.

AR058 ON EXIT FROM nane REA STERS RA- RE: (values of 5 registers)
I f RFLAG byte 1 bit 4 is on after conpletion of the wuser program
or if there is an error, this nessage appears, and gives the val ues
of the paranmeter registers as returned by the wuser entry nane.

AR059 WARNI NG ERROR I N USER REGS: error |ist
If any of the user registers has an incorrect value, this nessage
is printed, either following AR050 or AR058, depending on whether
the incorrect value(s) were in a call to another nodule or in a
return of values to the calling program
The error list consists of one or nore of the foll ow ng:

RO- R6 when a user programreturned, the wvalues in registers
0-6 were not all the sane as when it was called

R12 the user programnodified the value of the assenbler
table pointer, which is not permtted.

R13 the user did not restore the save area poi nter.

$3$$$$$$ The dollar signs indicate a register shown in nessages
ARO50 or ARO58 as incorrect.

If this nessage appears, RFLAG byte 1 bit 0O is set to 1 for the

next tinme the user programis called.

AR100 REPLACE CSECT NOT FOUND - REPLACE ABORT ///
Thi s nmessage appears imedi ately after the assenbly of the wuser
program None of the allowable csect names were found as a csect
in the user program

AR101 | NVALI D ENTRYPO NT NAME: name CALLED. REPLACE ACTI ON ABORTED ///
I f nane appeared in an AR002 nessage and is called, this nessage
appears, followed by a dunp of user storage and the |ast values of
the user registers.

AR102 USER PROGRAM ABENDED DURI NG REPLACEMENT ///
Repl ace action is aborted and a dunp given.

