THE PENNSYLVANI A STATE UNI VERSI TY
Conput ati on Center

CONTRI BUTED PROGRAM
Contributor: John R Mashey, Conputer Science Departnent

XDUMP/ XSNAP
360 ASSEMBLER LANGUAGE witeup revised January 1973 (v.5.0)

EXTENDED SNAP AND DUMP MACROS
| NTRCDUCTI ON

XDUWP provides a very sinple command for obtaining either a dunp of
t he general purpose registers, or of a single area of main storage. The
output is identified by printing the location at which the XDUW was
i nvoked. XDUMP is a special case of XSNAP, and calls it to create code.

XSNAP is a much nore flexible macro. General purpose registers may
be stored for later inspection if it is not desired to have them printed
imediately. In addition to the printing of the GP registers, the
floating point registers and any nunber of storage areas can be printed
by one XSNAP, in any desired conbination. Any storage areas nmay be
di spl ayed, and nay be specified by |abels, base-displacenents, dumy
section synbols. An optional |abel may be provided to further identify
the output. XSNAPs may be cancelled at assenbly tinme using the XSET
macro, and may be nade conditional at execute time by making tests on
values in registers or storage. XSNAP nodifies neither the condition
code nor the registers, and can thus be used at any point in a program
at which addressibility exists.

TYPI CAL USAGE

a) Print GP registers (XDUWMP with no operands).
XDUMP

b) Print a single block of storage (up to 4095 bytes).
XDUMP AREA, LENGTH LENGTH bytes starting at AREA

c) Print GP registers, floating registers, and a storage area.
(label ed as shown, with 100 bytes starting at X

XSNAP T=FL, LABEL=" REGS, AREA X' , STORAGE=(X, X+100)

d) Print 2 storage areas, no registers. Areas are specified by RX-
type addresses in this case, including DSECT synmbols X1 and X2.

XSNAP T=NO, STORAGE=(*0(RL, R2) , *40(R1, R2) , * X1, *X2)

e) Print (GP registers in this case) only when specified test is nmet,
inthis case, only if value in register 2 is greater than 100

XSNAP LABEL='" AFTER 100TH TIME IN LOOP' , I F=((2), H, =F 100")

XDUMP/ XSNAP - 02
XDUMP

USE

XDUWP can be wused in one of two basically different ways:
a) GENERAL PURPOSE REG STER DUMP

XDUMP

Coding XDUMP with no operands prints the contents of the wuser's
general purpose registers, in hexadecimal notation. The registers
are preceded by a header line |like the foll ow ng:
BEGA N XSNAP - CALL # AT CCAAAAAA USER REQ STERS
is the number of calls made to XDUWP so far, for identification.
CCAAAAAA shows the last 32 bits of the wuser's PSW in hexadeci mal.
CC gives the ILC, CC, and Program Mask at the time of the XDUWP.
AAAAAA gi ves the approxi nate address of the XDUMP nmacro expansion, and
thus can be wused to distinguish between the output of different
XDUWP statenents. *NOTE* XDUMP , is the sane as XDUWP with no operand.
b) STORAGE DUMP

XDUWP area, | ength

area is any RX-type address (anything allowed in a LA instruction)
| ength is an absolute expression having value from 1 to 4095.

Coding XDUMP with an address and length produces a dunp of a

user storage area, beginning at the address given by area, and
endi ng at address area+l ength.

The resulting output includes a header line like the above,
followed by a hexadecimal and al phanunmeric dunp of the selected
storage area. The storage is printed in lines showing two groups

of four fullwords, preceded by the nenory address of the first
word in each line, and followed by the alphanuneric representation

of the 32 bytes on the Iline, wth Iletters, nunbers, and blanks
printed directly, and all other <characters translated to periods.
The storage printed is also preceded by a Iline giving the address

limts specified in the XDUWP.

If the length is omitted, the value 4 is used as a default.
EXAMPLES OF XDUMP USAGE

XDUWP AREA+10, 80

XDUWP 8(1, 4), 100

XDUVP FULLWORD use default value of 4
XDUMP TABL(3), 12

XDUMP/ XSNAP - 03

XSNAP
USE
XSNAP may be coded with any of the operands shown, in any order,
since all are keyword operands. It is called as follows:
| abel XSNAP T=, LABEL=, STORAGE=, | F=
| abel is an optional statenent |abel.
T= (Type of action to be perforned for registers)

T=PRI NT requests that the GP registers be printed, as given by XDUWP.
Storage areas may of course be printed in addition (STORAGES).

T=NOREGS requests that GP registers NOT be printed. If no STORAGE=
is specified, this produces exactly 1 line of output, which can be

used for programtracing.

T=FLOAT requests both GP and floating point registers to be printed.

T=(FLOAT, NOREGS) requests floating point registers, but NOT GP regs.

T=STORE causes the GP registers to be saved into a well-labeled area,
but does not create any printed output. The register area is
originally generated filled with -1's (hexadecimal 'FF's), and is

i medi ately preceded by the LABEL= string if it exists, or by the |abe
generated on the register area (of form XX####B), if no LABEL= was used.
The area is followed by ' XXXX' to make it easy to find. By exam ning
such an area in a dunp, the user can inmedi ately determn ne:

a) whether control ever passed through a given point (register area has
val ues other than X FF').

b) the contents of the registers the LAST tine control passed through
t he gi ven XSNAP.

Note that the LABEL= option helps identify each XSNAP. If it is
not used, the XX####B | abel placed before the area al so appears in the
assenbly Cross-Reference listing, so it is still easy to locate. Note

that this option is especially useful for placing inside heavily-used
loops in a programin which intermttent/unpredictable errors occur.

Any of the types above may be abbreviated by the first two letters:
PRI NT = PR, NOREGS = NO, FLOAT = FL, STORE = ST .

** DEFAULT* * T=PRINT is the default value wused if not supplied.

LABEL="string' (identification LABEL printed as XSNAP heading)

The '"string' is any character string usable as a C-type constant in
a DC statenent, and is used as the XSNAP heading if it prints anything
at all. The register area |label (XX####B) is used if LABEL= is onitted.

XDUMP/ XSNAP - 04
STORAGE=(1i st) (areas of mmin STORAGE to be dunped)

This option accepts a |ist of ADDRESS PAI RS, each pair specifying
the limts of an area of nenory to be printed, from the address given
by the first operand to that given by the second, fromthe third to the
fourth, etc. There may be any even nunber of addresses, separated by
conmas. Each of the address specifications in each pair nmay be witten
in either of the following fornms (in any conbi nation):

a) any | abel or expression usable in an A-type address constant.

b) *expression , where expression is 40 or |less characters 1long, and
is acceptabl e as the second operand of a Load Address instruction. Thus,
base-di spl acenent forns, doubly-indexed expressions, and dunmy section
synbols can all be used if preceded by an * . The following is a lega
exanpl e of a STORAGE= oper and:

STORAGE=(A, B+7000, *4(2, R3) , * AREA+3(4) , * DSECT1, * DSECT1A, A, * A)

| F=(opa, rel ati on, opb) (perform XSNAP only |IF condition exi sts)

Operands opa and opb are compared in sone way. The XSNAP prints
out put only whenever the relation between the two operands is true.
The relation is specified using the sane codes as the Extended Mienonics
of the Branch on Condition: HL,E O P, MZ NH NL, NE, NO, NP, NM NZ. Thus,
an XSNAP WTH | F=(FLAG NE, 1) dunps only when val ue of FLAG is Not Equal
to 1. The operands are conpared in different ways dependi ng on whether
they are registers, storage, or inmredi ate operands. The 3 cases are:

OPERAND FORMS COVPARI SON GENERATED MEANI NG

(opa) (opb) CR (opa), (opb) opa, opb both designhate registers
(opa) opb C (opa), opb opa: register, opb: storage fullword
opa opb CLlI opa, opb opa: address, opb: Imrediate operand

For flexibility, adding a fourth operand to the sublist allows it
to be used as the opcode in the comnparison: | F=(TAG O X FO', TM woul d
generate TM TAG X FO' and print only if result is Ones condition

The IF option can be a powerful debugging tool. Dunping can be
al l owed only when a specific condition exists. For example, if an error
occurs only after a loop is executed several thousand times, |F can make
an XSNAP print nothing the first (2000, for exanple) times, then print:
| F=((register with loop counter), H, =F 2000") . For prograns which
process many input cards, it becones possible to turn debug output on
just before an input card known to be causing trouble, without printing
out put for the preceding cards. This is done by checking the input for
a special debug flag value, then setting a flag byte in nenory, which
can be tested by nmany XSNAPs to determi ne whether printing is desired.
In fact, if an 8-bit value can be obtained from an input card, 8
separate groups of XSNAPs can be individually controll ed.

XDUMP/ XSNAP - 05
SUPPRESSI ON OF XDUMP AND XSNAP CCODE GENERATI ON

After a programis debugged, it is often wuseful to be able to
suppress all debug code, without actually renoving the cards from the
deck. Coding XSET XSNAP=OFF suppresses all XDUWP and XSNAP code
following the XSET. They can be restored by coding XSET XSNAP=ON |,
and this process repeated as desired. Also note that XSET can be used
simliarly for other X-MACROS, wth nultiple operands a desired:
XSET XSNAP=OFF, XSAVE=COFF, XRETURN=CFF is quite common.

RESTRI CTI ONS AND NOTES

XDUVP and XSNAP are usable ONLY where addressibility exists. A
conmon error is to wite the followi ng code at an exit point of a CSECT

L 13, 4(13) RETORE SAVE AREA PO NTER
LM 14,12,12(13) RESTORE REG STERS

XSNAP . . .
BR 14 RETURN

The above code sequence typically results in a branch SOVEWHERE,
since the program has destroyed whatever base register the XSNAP was
assenbl ed under. Such errors are extrenely difficult to |locate.

In order to receive dunping output from XSNAP or XDUMP, the user
shoul d supply a DD card for the execution step of his program
usi ng the DDNAME XSNAPOUT. Typical such cards are:

/ | DATA. XSNAPQUT DD SYSQUT=A (at Penn State)
/1 GO XSNAPQUT DD SYSQUT=A (standard |1 BM catal oged procedures)

If XSNAPQUT is omtted, XSNAP will use one of the foll owi ng DD nanes:
XPRNT, SYSPRI NT, FTO6F001 (in that order)

XDUMP and XSNAP operate by calling a CSECT named XXXXSNAP, which
performs the actual dunping. |If it does not find the DDNAVE XSNAPOUT

it will issue a nmessage to the system|og and ABEND U0300. It should
be noted that it is inpossible for XXXXSNAP to cause an interrrupt
unl ess the user program has destroyed sone of its code. Thus, any

abnormal end with PSWinside XXXXSNAP is probably caused by user error.

I f XSNAP and XPRNT are used in the sane program the output of each
is usually separate. The followi ng XSNAPQUT card nay be used instead to
obt ai n XPRNT and XSNAP out put nerged together:

/1 DATA. XSNAPQUT DD UNI T=AFF=FT06F001 (at PSU, may not work el sewhere)

REFERENCES

The follow ng docunents of other X-macros may be of use :
XMSYSCEN, XREAD/ XPRNT/ XPNCH .

THE PENNSYLVANI A STATE UNI VERSI TY
Conput ati on Center

CONTRI BUTED PROGRAM
Contri butor: Richard W Fow er

XGET/ XPUT
360 ASSEMBLER V.5.0. Jan 1973

EXTENDED ASSEMBLER |/ O COVIMANDS

PURPGSE
Two macros XGET (eXtended GET) and XPUT (eXtended PUT), provide
easy assenbler I/Ofacilities for up to 20 files each sinultaneously.
a) Only 2 statenents are needed for each operation.
LA R1, =CL8' ddnane’
XGET or XPUT area address,|ength
Exanpl e:
LA 1, =CL8' CARDS
XGET AREA, 80
/ / DATA. CARDS DD *

The above exanple will read in a card file.

b) Only register 1 is destroyed, but the user destroys it with the
LA instruction.

c) Condition code is set to indicate end-of-file, error conditions,
and nornal execution.

THESE MACRCS ARE EXACTLY LI KE THE XREAD/ XPRNT/ XPNCH MACROS | N
their formof calling sequence, except that the maxi mumlength is 32767.
|.e., the area address may be any RX-type address, or (0) or (RO), the
[atter two indicating that the address is already present in register O.
Li kewi se, the length is an absolute expression giving the length, a
regi ster enclosed in parentheses (such as (1) or (R2)), or a default
value (80 for XGET, 133 for XPUT) if the operand is omtted.

CONDI TI ON CODES
XGET and XPUT set the CC as foll ows:

CC=0 --- 1/0O occurred;

CC=1 --- XGET only --- end-of-file encountered,;

CC=2 or 3 --- ERROR occurred. Either file not opened or error
occurred while processing, file closed if possible or
necessary.

CARRI AGE CONTROLS
If XPUTting to a printer file, the first character of the area nust
a valid carriage control character.

CLOSI NG OF FILE
Perform ng an XGET or XPUT with a |l ength of zero causes the
designated file to be closed, so that it nay be reread, for exanple.

XGET/ XPUT - 02

JOB CONTROL LANGUAGE

There are no extra DD cards in the catal ogued procedures,
therefore, unless using a dd that is in the procedure, the user nust
speci fy everything.

Card Reader [1 DATA. XXXXX DD * any DD nane all owed

Printer /] DATA. XXXXX DD SYSOUT=A, DCB=(RECFM=FA, BLKSI ZE=133)

Card Punch / / DATA. XXXXX DD SYSOUT=B, DCB=(RECFM-F, BLKSI ZE=80)

Tape /1 DATA. XXXXX DD VOL=SER=YYYYY, DSN=2ZZ, UNI T=2400,
/1 DCB=(RECFM-FB, LRECL=dd, BLKSI ZE=ddd)

Di sk / | DATA. XXXXX DD DSN=&&TEMP, UNI T=SYSDA,

/1 SPACE=(CYL, (5, 1)), DCB=(RECFM=FB, BLKSI| ZE=ddd)
Not e that these macros need the dcb to be specified, (or on the file),
Thus, nmany DD cards in the procedure may require the DCB to be added.

GENERAL | NFORVATI ON
Each nacro has an associated CSECT which it calls to performthe
actual 1/0O operations. The characteristics are as foll ows:

MACRO MAX LENGTH CSECT NAME CSECT LENGTH
XCGET 32767 XXXXGET 964
XPUT 32767 XXXXPUT 996

STORAGE REQUI REMENTS

Each call on any of the macros generates from 32-42 bytes of code,
depending on initial alignment and options use. This is in addition to
the storage required by any of the CSECTS used.

Each nmacro calls the inner macro XIONR, which is the sane macro
call ed by the XREAD, etc, nmcros.

NOTE User nust load into register 1 the address of an eight byte
character string, left justified and padded with blanks if necessary
This string represents the XXXXX of the //DATA. XXXXX DD cards.

REFERENCES: see t he XREAD XPRNT/ XPNCH witeup for the sinpler and
nore specific I/O commands provided. Also see the XMSYSGEN writeup
whi ch describes the various properties and generation of the entire
X- MACRO system

XGET/ XPUT - 03
EXAMPLE OF XGET AND XPUT USAGE
The foll owing programreads/wites several files in parallel.
TEST1 CSECT
BALR 12,0
USING *,12
SR 0,0

* THI' S PROGRAM W LL PROCESS A FEW FI LES | N PARRALLEL

LOOP LA 1, =CL8' CARD point to an input file
XGET AREA, 80 do the input
BNE DONE branch on endfil e,
* file automatically closed
XREAD AREA2, 80 do normal i nput
LA 1, =CL8' PAPER point to a printer file
XPUT AREA-1, 81 do output, note carriage control
LA 1, =CL8' PAPER2' point to other printer file
XPUT AREA2-1, 81 do output on other file
B LOOP try again
DONE BR 14 RETURN, | MPLI ClI TLY CLOSE OTHER FI LES
DC cL1
AREA DS CL80
DC cL1
AREA2 DS CL80
END

The extra JCL for the above is as foll ows:
/ | DATA. PAPER DD SYSQUT=A, DCB=(RECFM=FA, LRECL=133, BLKSI ZE=133)
/ | DATA. PAPER2 DD SYSOUT=A, DCB=(RECFM=FA, LRECL=133, BLKSI ZE=133)
/| DATA. CARD DD *
TH S STUFF | S READ
AT THE SAME Tl ME AS ANCTHER
FILE | S READ
*k kkkk THE LAST CARD *kkkk k%
/| DATA. | NPUT DD *
TH S IS THE NORVAL | NPUT FI LE
AND | S READ AT THE SAME TI ME AS ANOTHER FI LE
| S READ
*kkhkkkhkkkk*x THE LAST CARD *kkkkkkkk*x

THE PENNSYLVANI A STATE UNI VERSI TY
Conput ati on Center

CONTRI BUTED PROGRAM
Contributor: Alan Artz

XHEXI / XHEXO
360 Assenbl er | anguage April, 1972

Ext ended Hexadeci mal Conversi on Macros
| NTRODUCTI ON

XHEXI and XHEXO provi de easy conversion of hexadeci mal nunbers
for input and output. The value of a hexadecimal nunber can be
read from a card using XREAD, converted from character npde to a
hexadeci mal nunber, and the converted nunber is placed in the specified
general purpose register wth XHEXI. XHEXO provides an easy way
to convert internal hexadecimal to an output form that can be
printed using XPRNT.

XHEXI also places the address of the first non-hexadeci nal
nunber in register one, but if nore than eight digits are scanned,
the address of the ninth is placed in register 1.

TYPI CAL USAGE

The foll owi ng shows the nost common usage of the macros XHEXI
and XHEXO

A) Take a character nunber froman area called CARD and convert
it to hex in Register 2.

XHEXI 2, CARD convert nunber

B) Take a series of nunbers froma card and store themon a full-
wor d- boundary.

LA 3, AREA address of storage
LA 1, CARD address of nunbers

TOP XHEXI 2, 0(1) convert nunber
ST 2,0(3) store it
LA 3,4(3) advance storage pointer
BNO TOP keep on going

This bit of code takes character nunbers froman area call ed CARD,
converts themto internal hex, and then stores themin a location called
AREA. The card was probably read in with the XREAD instruction.

@) Take a nunber in a register and convert it and place it in
an output area to be printed.

XHEXO 2, AREA+1 convert nunber
XPRNT AREA, 8 print nunber
AREA DC cL9' ' storage for nunber

XHEXI - 02
XHEX
USE:
XHEXI REGQ STER, ADDRESS
XHEXI, in the general form shown above where REGQ STER i s any genera

purpose register and ADDRESS is anything legal in an RX instruction, is
used to do the follow ng:

1. Beginning at the location ADDRESS, nenory is scanned wuntil the
first non-blank character is found.

2. If the first character found is anything but a Iegal hexa-
deci mal character(0-9,A-F), the condition code is set to overflow
and this address is placed in register 1. If the REG STER is

anything but register 1, its contents remai n unchanged.

3. One to eight hexadecinmal characters are scanned, the nunber
converted to hexadecimal, and the result is placed in REG STER
The value placed in the register is internal hexadeci nal with
| eadi ng zeros included and the nunber is right justified.

4. Register one is set to the address of the first non-hexadeci nal
character. Wth this in mnd, the user should not code register one as
REA STER. This allows you to scan across the card for any nunber of
character strings. The strings should be separated by blanks. The end
of the string could be flagged with any non-hexadeci mal character and a
test could be nade after a Branch Overfl ow (see sanple progranj.

5. If nore than eight hex digits are found, register one is set to
the address of the ninth. This allows the user to scan across |ong
strings of nunbers.

XHEXO
USE:
XHEXO REQ STER, ADDRESS
XHEXO in the general form shown above converts the value

in REG STER and places it in aright-justified 8-byte field beginning at
ADDRESS. It can be easily printed using an XPRNT instruction.

XHEXI - 03
SAVPLE PROGRAM USI NG XHEXI AND XHEXO

This program reads a data card wth an unknown nunber

of hexadeci nal nunbers on it. The end of t he dat a
string is denoted by a '% punched after the | ast nunber .
The nunbers are stored after bei ng converted usi ng
XHEXI , and t hen converted for out put usi ng XHEXQO.
LA 3, STORAGE VWHERE NUMBERS STORED
XREAD CARD, 80 READ | N CARD
XPRNT CARD, 80 ECHO PRI NT
LA 1, CARD ADDRESS OF CARD FOR SCANNI NG
LOoP XHEXI 2, 0(1) CONVERT NUMBER PUT IN 2
BO | LLEGAL CHECK FOR END
XHEXO 2, AREA PUT NUMBER I N QUTPUT AREA
XPRNT REP, 28 PRI NT CARD AND MESSAGE
ST 2,0(3) STORE NUMBER
LA 3,4(3) | NCREASE | NDEX
B LOOP GET NEXT NUMBER
| LLEGAL CLI 0(1),C % SEE | F END OF STRI NG
BE DONE YES DONE
XPRNT =CL50" |LLEGAL CHARACTER STOF' , 50
DONEMORE INSTRUCTIONS.
CARD DC 81C STORACE FOR CARD
STORACE DS 20F STORACE FOR NUMBERS
REP DC C THE NUMBER IN R2 | S
AREA DC cLg' STORAGE FOR QUTPUT NUMBER
REFERENCES

The foll owi ng docunents of the other X-nmacros nay be of use:
XREAD/ XPRNT/ XPNCH, XMBYSGEN.

The Pennsyl vania State University
Conput ati on Center

Contri buted Program
Contributor: John R Mashey
Conput er Sci ence Depart nent

360 ASSEMBLER XREAD/ XPRNT/ XPNCH
V.5.0. Jan 1973

ASSEMBLER UNI T- RECORD | NPUT- QUTPUT MACROS

PURPGCSE
Three macros XREAD (card READer), XPRNT (line PRI NTer),
and XPNCH (card PuNCH) provide easy assenbler 1/0 facilities
with the follow ng features:
a) Only 1 statenment is needed for each operation. No
OPEN s, CLOSE's, DCB's, etc are required.
b) REGQ STERS - no registers are destroyed by these nacros.
c) CONDI TION CODE - XPRNT and XPNCH preserve the con-
dition code. XREAD sets it to indicate end-of-file
occurrence.
d) JOB CONTROL LANGUAGE - under npst circunstances,
little or no extra JCL will be needed.
e) nunber of characters - may be specified in several
di fferent ways, may be any length up to maxi mum
for device, and can be varied at execution tine for
maxi mum flexibility.
f) XSET macro may be used to tenporarily cancel output
nessages, input statenents to be omtted, etc, during
assenbly time.

USE
Al'l three macros use the sanme formof calling sequence:

| abel is an optional statenent |abel
Xmacr o i s one of XREAD, XPRNT, XPNCH

area the address of the area to be read or witten.
This may be specified in two different ways:
a) Anything valid in a LA instruction, for exanple HERE,
SYM+8(5), 2(4,6), =CL10' OVESSAGE are all acceptable.
b) Ether (O or (RO, indicating that register O con-
tains the area address.

 ength specifies the nunber of bytes to be transferred.
This length should be in the range 1 to naximum
I ength for the device (80 for XREAD, XPNCH, |33 for XPRNT).

XREAD/ XPRNT/ XPNCH -

If the length is incorrect, it will be ignored, and the maxi-
mum | ength used. The length may be specified in three dif-
ferent ways:

a) Directly, by providing an expression in the macro
cal l.

b) By default, by providing only an area address, which
wi || cause the appropriate maxi mum|length to be used

c) Indirectly, at execution tinme, by coding an ex-
pression encl osed in parentheses, indicating a genera
pur pose regi ster which contains the nunber of bytes
to be read or witten.

CONDI TI ON CODE
XREAD sets the CC as foll ows:
CC =0 - acard was read, and |length characters transferred
CcC 1 - end-of-file was encountered-no nore cards

CARRI AGE CONTRCOLS
XPRNT requires the first character of the area to be
a valid carriage control character.

JOB CONTROL LANGUAGE

The macros will accept DD cards with vari ous DDNAMES,
but have been designed to use JCL already present in cer-
tain catal oged procedures, in order to mninze the
amount of extra JCL. The DD cards required for each macro
are listed below. Note that the PSU catal ogued procedure
ASCCLG al ready contains a FTO6F001 DD card, so this need
not usually be supplied by the user

MACRO DD CARD FORM DDNAMES ALLOVED(f or XXxxxX)
XREAD // DATA. xxxxx DD * XREAD, | NPUT, FTO5F001
XPRNT //DATA. xxxxx DD SYSOUT=A XPRNT, FTO6F001

XPNCH //DATA. xxxxx DD SYSOUT=B XPNCH, FTO07F001

NOTE if you want to use the nacros in conmbi ned FORTRAN-
Assenbl er prograns, you nust supply the X-ddnanes, rather
t han using the FORTRAN ones.

USAGE OF XSET

The macro XSET (described in witeup on XSNAP/ XSTOP/ XSET),
may be used to selectively cancel and restore generation of
any of these macros. It is used as foll ows:

XSET name=onof f

where nanme is XREAD, XPRI NT, or XPNCH, and onoff is either
ON or OFF, which either permts or deletes generation of
the specified macro until it is changed again by anot her XSET.

02

XREAD/ XPRNT/ XPNCH -

GENERAL | NFORVATI ON

Each macro has an associ ated CSECT which it calls to
performthe actual 1/0 operations. The characteristics of
these CSECTS are |listed below, together with their DCB's.
If the DCB's are unsatisfactory, they may be altered prior
to the first macro call, since the DCB names are all entry
poi nt nanes al so.

MACRO MAX LENGTH CSECT NAME CSECT LENGTH DCB NAME

XREAD 80 XXXXREAD 576 XXREDCB

XPRNT 133 XXXXPRNT 700 XXPRDCB

XPNCH 80 XXXXPNCH 596 XXPNDCB
XXXXOPEN 532

XXXXOPEN is called by all the csects to do the openning
of their dcb's for them

The rel evant paranaters of the current DCB' s used are
as follows:

XXREDCB DCB DSORG=PS, MACRF=GM RECFM=F, BUFNO=1, LRECL=80,
BLKSI ZE=80

XXPRDCB DCB DSORG=PS, MACRF=PM RECFM-FA, BUFNC=1, LRECL=133,
BLKSI ZE=133

XXPNDCB DCB DSORG=PS, MACRF=PM RECFM=F. Bl FMP=1, LRECL=80,
BLKSI ZE=80

STORAGE REQUI REMENTS

Each call on any of the macros generates from 32-42 bytes
of code depending on initial alignment and options used. This
is in addition to the storage required by any of the three
CSECT' s used.

GLOBAL SET VARI ABLES

Each of the nmacros used a GBLB variable of the form
&aneST, where nane is the nane of the given macro. These
are used in conjunction with XSET to control macro generation.

| NNER MACROS CALLED
Each of the macros uses the inner nmacro Xl ONR

03

XREAD/ XPRNT/ XPNCH -

SAMPLE PROGRAM

The foll owi ng programreads, prints, and punches cards,
and shows sone the various ways of specifying the macro
oper ands.

/1 EXEC ASGCLG
/1 SOURCE. | NPUT DD *

TITLE ' TEST PROGRAM FOR 1/0 MACROCS
TESTX10 CSECT

XSAVE TR=NO set up |inkage, base register
XSET XPRNT=0OFF cancel XPRNT for a while
XPRNT =CL50' THI S MESSAGE | S NOT GENERATED , 50
XSET XPRNT=ON al l ow XPRNT' s again
LA 0, CARD save address of card
XPRNT =CL40'1 TEST EXAMPLES', 40 skip to new page
LA 2,50 set up length in register
XPRNT =CL50' 0 W LL READ, PRI NT, PUNCH , (2)

TLOOP XREAD CARD use default | ength=80
BNz TDONE branch on end-of-file
XPNCH (0) use previously | oaded address
XPRNT CARD-1, 81 print card, with carriage cont
B TLOOP go back for next card

TDONE XPRNT MESSAGE, L' MESSAGE print endi ng nessage
XRETURN SA=*, TR=NO

MESSAGE DC CL100' OSUCCESSFULL COWPLETI ON OF TEST'
CARD DS CL80

end
/ 1 DATA. XPNCH DD SYSOUT=B required for card punch

/ / DATA. | NPUT DD *
THIS IS THE FI RST TEST CARD
THIS | S THE SECOND TEST CARD
THI S | S LAST TEST CARD- END- OF- FI LE FOLLOWNS

(N 0]

REFERENCES: see the XGET/ XPUT writeup for nore generalized nacros
all owi ng access to any sequential files. Also see XMSYSGEN for an
overvi ew of the X- MACRO system

04

THE PENNSYLVANI A STATE UNI VERSI TY
Conput ati on Center

CONTRI BUTED PROGRAM
Contributor: John R Mashey, Conputer Science Departnent

XSAVE/ XRETURN
360 ASSEMBLER LANGUAGE witeup revised April 1972 (v.4.0)

EXTENDED SAVE AND RETURN MACROS

| NTRODUCTI ON

XSAVE and XRETURN provide various services for assenbler |anguage
program | i nkage using OS/ 360 conventions. Wiile offering many nore
options than SAVE and RETURN, they wuse defaults, thus allowi ng that
few operands need be coded. Sone of the services provided are:

a) Saving or restoring any range or ranges of registers on programentry
or exit, in a nmore general way than SAVE or RETURN.

b) Automatic initialization of 1 or nore base registers for a program
c) Creating standard entrypoint identifier coding at a program entry.
d) GCenerating reentrant code, wusing GETMAIN and FREEMAIN calls.
e) Creating an AUTOVATI C PROGRAM TRACE or REG STER DUMP whenever a
nodule is entered or exited.

f) Permtting easy usage in CSECT's with nultiple entries/exits.

TYPI CAL USAGE
The foll owi ng shows the nbost commopn ways to use XSAVE and XRETURN:
a) CSECT with a single entry point, at the CSECT nare:
ACSECT CSECT
XSAVE
..... the code for the csect.

XRETURN SA=* EXIT PO NT: ALSO CREATE SAVE AREA

b) CSECT with single entry and exit, using register 13 as both a base
regi ster and save area pointer, generating save area inside XSAVE

BCESCT CSECT

XSAVE BR=13 CAUSE SAVE AREA TO BE HERE
..... the code for the csect.
XRETURN

c) CSECT with multiple entry points:

CCSECT CSECT
ENTRY C1, C2 SEVERAL ENTRI ES
Cc1 XSAVE
..... the code for section Cl of CCSECT.
CIEXIT XRETURN
c2 XSAVE
..... the code for C2.
C2EXI T XRETURN SA=* SAVE AREA AFTER LAST XRETURN ONLY

XSAVE/ XRETURN - 02

The macros are described below, with arguments listed basically in
order of inportance. A programer not yet familiar with S/ 360 |I|inkage
shoul d concentrate on the options: RGS=, SA=, and BR= where they exist.

XSAVE
PURPOSE

XSAVE is used at any entry point (CSECT, START, or ENTRY label) in
an assenbler programto save registers acccording to the st andard
conventions, set up new base register(s), and possibly perform program
tracing and vari ous other optional services.

USE

The macro all ows 8 keyword operands, which can be wused in alnost
any conbi nation or omtted as desired. Reasonable defaults values are

supplied so that few operands need normally be coded. It is called:
| abel XSAVE RGS=, BR=, SA=, | D=, TR=, REEN=, OPT=, AD=

| abel is an optional statenent |abel

RGS= (ReG sterS)

Thi s operand specifies the register(s) to be saved into the calling
program s save area in the standard locations. It can specify that NO
registers, a single range of registers, or multiple ranges of registers
be saved, with the foll ow ng operand types:

RGS=NO no regi sters are saved.

RGS=(1i st) list specifies the the registers to be saved, where each
itemin the list is either:

a) a single register designation (nunber or equate synbol) OR

b) a pair of register designations, separated by a dash, showing the
(i nclusive) range of registers that should be stored.

For exanple, RGS=(14-15,2-12) causes registers 14,15, and all of 2
through 12 to be saved appropriately.

** DEFAULT VALUE** |f omitted, RGS=(14-12) is assuned (normal |inkage).

BR= (Base Register(s))

BR lists the base register(s) to be set up for the program just
entered. It is either a single register, or a list of 2-4 of them
encl osed in parentheses, and separated by commas. |If the latter fornmat
is used, a multiple USING statenment and appropriate register-I|oading
statenents are generated. |If the first (or only) register is 13, a save
area is generated in the mddle of the XSAVE, so that register 13 can be
used both as a base register and as a save area pointer. WARNI NG i f

register 13 is specified, do not code XRETURN SA=* |ater in the csect.

** DEFAULT** BR=12 is assunmed if this option is onmtted.

XSAVE/ XRETURN - 03
SA= (Save Area)

This option specifies the name of a save area to be used, and also
controls whether the programactually has a save area or not (if it is a
| owest-level routine calling no others, it mght not have one).

SA=NO no code is generated for linking save areas, and no save area
is referenced by XSAVE code. Register 13 is unchanged, so this
option should only be used by a routine which calls no others.

SA=* this is normal |inkage, with follow ng actions:

a) register 13(calling progranis save area) is |oaded into another reg.
b) the address of the called programis save area is placed into R13.
c) the two registers are saved correctly to fill in the standard forward
and backward |inkage between calling and called progranms' save areas.

Part b) creates the statement LA 13,saveareanane , as foll ows:
a) If this is the first XSAVE in a CSECT, a 'standard name' (unique to
that CSECT) is created by the nacro and referenced.
b) If this is not the first XSAVE, the current 'standard name' is used
regardl ess of how it was originally created.

SA=nane this specifies the same kind of |inkage as SA=*, except that
the name becones the 'standard nane'

Briefly, the 'standard name' allows XSAVE and XRETURN nmacros to use
and generate appropriately-naned save areas, allowing either conplete
control over naning, or the conveni ence of giving no names.

DEFAULT |If omitted, SA=* is assumed, giving standard |linkage, wth
all XSAVE(s) in a CSECT referring to the SAME save area hane.
| D= (IDentifier)

I D specifies an identifying character string to be created just

after the entry point. It aids debugging by nmaking the entry point easy
to locate in the dunp, and nay be printed in dunp save area traces.

| D=NO no identifier 1is created. This saves space and tine.
| D=* the identifier created is the first of the following found:
the statenent | abel, if one is coded on the XSAVE; the nane of the

CSECT in which the XSAVE is used, or $PRIVATE if the CSECT is unnaned.
I D=string the string (1-255 characters) is the identifier.

** DEFAULT** |If omitted, ID=* is assuned, thus creating sone kind of ID

XSAVE/ XRETURN - 04

TR= (TRace)

TR provides for automatic program tracing or register dunping
whenever the entry point is given control, a wuseful debug feature.
TR=NO no trace code is provided .

TR=* the nmessage '*** nane ENTERED ***' s printed on entry, where

name is either the |abel on the XSAVE, or the nane of its CSECT.
TR=' nessage' 'message' is printed on entry to the program

TR=SNAP the nessage (as in TR=*) is printed, followed by a dunp of the
GP registers, before they get changed by called pr ogram

TR=("' message', SNAP) 'message’ and registers are printed.

** DEFAULT** TR=* is assuned, thus normally providing a dunp (but see
section at end call ed SPECI AL CONSI DERATI ONS FOR TRACE CODE)

REEN=exp (REENtrant code)

REEN requires that reentrant code be generated, and give the nunber
of bytes to be acquired via GETMAIN, IN ADDITION TO the 72 bytes needed
for the standard savearea. The address of the acquired area is placed
in register 13, so that first usable working storage begins at 72(13).
If the called programuses the original values of register 15,0,1, they
nust be included in the registers saved by the RGS= option. The val ue
exp may be any absol ute expression. WARNING this nethod is slow for
heavi | y-used routi nes.

oPT= (OPTi onal decl arati ons)
OPT provides for declaration of CSECT or ENTRY and/or TITLE
OPT=CSECT the label (required) on the XSAVE is declared a CSECT.

OPT=ENTRY the | abel (required) on the XSAVE is declared to be an ENTRY.

OPT=TI TLE a TITLE is generated before any other code, and displays the
| abel on the XSAVE statenent.

OPT=(TI TLE, XxXXXX) XXXXX is either CSECT or ENTRY, conbining the above.

AD= (ADdr ess constant addressibility)

In sonme cases it may be necessary to have several entry points in
a CSECT which share conmmon USI NG conditions; AD can be used to do this.
An address constant of the nane specified is |oaded into the first (or
only) base register (BR=), and addressiblity declared. Typically the
address constant refers to the name of the CSECT

XSAVE/ XRETURN - 05
XRETURN

PURPCSE
XRETURN is used to return froma nodul e entered at an XSAVE, and is

used to restore registers, set return code in Rl5, performprogramtrace
and possibly generate a 72-byte save area referenced by XSAVE code.

oo The macro has 7 keyword operands, coded or onitted as desired:
| abel XRETURN RGS=, SA=, RC=, RP=, T=, TR=, REEN=

| abel is an optional statenent |abe

RGS= (ReG sterS)

This specifies the registers to be restored from the origina
calling programis save area, and is coded just |ike XSAVE RGS= option.

** DEFAULT* * RGS=(14-12) is assuned, restoring al | registers.
SA= (Save Area)
This option can be used to control the return |inkage code, and if

desired, creates an 18-fullword save area (filled with zeroes for debug
pur poses), imediately foll owi ng XRETURN s execut abl e code.

SA=NO the macro assumes that the routine is a |owest-level routine

which calls no others. It generates neither the save area itself,
nor code to reload register 13 with the address of th «caller's save
area. Rl13 is assumed to still point at the caller's save area.
WARNI NG use only paired with XSAVE SA=NO, else errors wll occur.
SA=* an 18-fullwrd save area is generated, |abeled wth the

current ‘'standard nane' described under XSAVE SA=* above.
SA=narme the save area is generated, and | abeled with the name given.

** DEFAULT* * If SAis conpletely omtted, no save area is generated,

but a save area is assuned to exi st sonewhere, and code generated
to restore the previous save area pointer. The reason for this default
is that any CSECT having several entry points still needs only 1 save
area, which is typically generated only by the LAST XRETURN, so that it
is addressible by ALL of the XSAVEs. Typically, a nmaximum of 1 SA=*
shoul d appear in the XSAVEs and XRETURNs in one CSECT.

RC= (Return Code)

Specifies a return code value to exist in register 15 on return to
the calling program The user need not worry about possible conflicts
with RGS=, since RC overrides any inclusion of R15 in the RGS= option.

RC=exp expression less than 4096 to be placed in register 15.

RC=(r) specifies register currently containing the return code.

XSAVE/ XRETURN - 06
RP=exp (Return Past register 14)

RP provides a formof multiple (nonstandard) return to the <calling
program The last instruction generated is not the usual BR 14, but
B exp(14) instead. The value of exp is usually a multiple of 4, so
that the calling programhas 1 or nore Branch statenments followi ng the
call to the routine.

=* (Tag save area)

This requests that byte 12 of the calling programis save area be
set to X FF' just before control is returned. This is wuseful for
debugging, and is sonetinmes used by FORTRAN error-handling routines.

TR= (TRace code)

This option is coded exactly as is XSAVE TR=, and does the sane
thi ng, except that the nessage printed is '*** name EXITED ***', where
nane is either the | abel on the XRETURN or the CSECT nane.

REEN=exp (REENTRANT code)

REEN specifies reentrant code generation, and should be natched
only with an XSAVE REEN=exp, where the two expressions are the sane.
The area addressed by register 13, of length exp+72, is freed using the
FREEMAI N macr o. WARNING. if this option is used, it is inpossible for
the XRETURN code to ever restore the values of registers 15, 0, 1 which
existed in the calling programprior to entering the called nodule. Note
that normal conventions require only that registers 2-12 be restored.

SPECI AL CONSI DERATI ONS FOR TRACE CODE

Note that the TR= options call the macro XSNAP (for SNAP options),
or XPRNT for the others, so that the relevant witeups should be studied
if any problens arise. |In particular, the SNAP options nmay require a
card like the following to be inserted for the execution step of the
program (before or after a SYSUDUWP card):
/| DATA. XSNAPQUT DD SYSOUT=A (non-PSU users may replace DATA with GO.

The trace code (and ONLY the trace code) created by XSAVE and

XRETURN can be elimnated by coding XSET XSAVE=OFF, XRETURN=CFF , and
can be allowed again by replacing OFF by ON, as many times as desired.
This allows leaving trace code in a programuntil it is debugged, then

elimnating it by adding 1 XSET card at the beginning of the program
SYMBCLI C REG STER EQUATES
Synbolic register equates may be used anywhere, and can be any

synbol s, except that any used for registers 13,14, or 15 nust end in
those characters, i.e., WORK13, Rl14, REGL5 are acceptable.

XSAVE/ XRETURN - 07

SAMPLE USAGE
The foll owi ng sanpl e program assunes that EQU s have been set up
for RO EQUO, ... R15 EQU 15

* TYPI CAL USAGE FOLLOWS.
XSAVE
CALL PRO®
XRETURN SA=*, RC=4 RETURN TO OS W TH RETURN CODE OF 4
* FOLLOW NG CALLS EXTREME AND UNTYPI CAL.
PROG2 XSAVE RGS=(R14, RO-R1, 5-12), BR=(11, 10), OPT=(Tl TLE, CSECT)
CALL LOWEST CALL LOWEST LEVEL ROUTI NE
LA R3,5 SET UP LIM T ON RECURSI ON DEPTH
CALL RECURSE CALL RECURSI VE ROUTI NE
CALL PROG3
CALL PROZ4
B BAD RETURN HEREx OR SKI P BRANCH VI A RP=
SR 15,15 CLEAR FOR RETURN CODE = 0
BAD XRETURN RGS=(14, 0- 1, 5- 12) , SA=*, T=*, RC=(R15)
* LOWEST LEVEL ROUTI NE FOLLOWS: NOTE CODE GENERATED.

LONEST CSECT
XSAVE SA=NO, BR=15, TR=NO, | D=NO ZAP OPTI ONS
XRETURN SA=NO, TR=NO
* FOLLOW NG CSECT USES REEN FOR RECURSI VE CALLS.
PROGRAM CSECT
RECURSE XSAVE TR=(' RECURSI ON' , SNAP) , REEN=0, OPT=ENTRY

BCT R3, CONTI NU LOOP, RECURSI NG

B RETB G VE UP NOW
CONTI NU CALL RECURSE CALL MYSELF AGAI N
RETB XRETURN REEN=0 RETURN, FREE STORACE
*

ENTI RES PROG3 AND PRO& HAVE SAME ADDRESSI BI LI TY, WTH AD.
PROG3 XSAVE OPT=ENTRY, SA=P3SAVE, BR=(12, 11, 10) , AD=PROG3
PROG3A XRETURN RC=(R3), T=*
PRO4 XSAVE OPT=ENTRY, AD=PROG3, BR=(12, 11, 10), | D=PROG3ENTRYOFPROGRAM

LTR RO, RO TEST TO DECI DE

BZ ZERO SKIP TO RP=0

XRETURN RP=4 BRANCH OVER BAD ABOVE
ZERO XRETURN RP=0, T=*, SA=* SAVE AREA, RP

END
REFERENCES

The following docunents of other X-macros may be of use:
XMSYSCEN, EQUREGS, XDUMP/ XSNAP, XREAD/ XPRNT/ XPNCH.

The reader is also referred to the foll owi ng manual s:

C28-6827 |1BM S/360 OS FORTRAN |1V (G&H) Programmrer's Qui de - Appendix C
(a conci se explanation on save areas and |inkage).

C28- 6646 IBM S/360 OS Supervisor and DAta Managenent Servi ces
(pp. 10-18 approx: linkage, reentrancy).

C28-6647 |1BM S/ 360 OS Supervisor and Data Managenent Macro |nstructions
(macros CALL, SAVE, RETURN)

