

 THE PENNSYLVANIA STATE UNIVERSITY
 Computation Center

 CONTRIBUTED PROGRAM
 Contributor: John R. Mashey, Computer Science Department

 XDUMP/XSNAP
 360 ASSEMBLER LANGUAGE writeup revised January 1973 (v.5.0)

 EXTENDED SNAP AND DUMP MACROS

INTRODUCTION

 XDUMP provides a very simple command for obtaining either a dump of
the general purpose registers, or of a single area of main storage. The
output is identified by printing the location at which the XDUMP was
invoked. XDUMP is a special case of XSNAP, and calls it to create code.

 XSNAP is a much more flexible macro. General purpose registers may
be stored for later inspection if it is not desired to have them printed
immediately. In addition to the printing of the GP registers, the
floating point registers and any number of storage areas can be printed
by one XSNAP, in any desired combination. Any storage areas may be
displayed, and may be specified by labels, base-displacements, dummy
section symbols. An optional label may be provided to further identify
the output. XSNAPs may be cancelled at assembly time using the XSET
macro, and may be made conditional at execute time by making tests on
values in registers or storage. XSNAP modifies neither the condition
code nor the registers, and can thus be used at any point in a program
at which addressibility exists.

TYPICAL USAGE

a) Print GP registers (XDUMP with no operands).

 XDUMP

b) Print a single block of storage (up to 4095 bytes).

 XDUMP AREA,LENGTH LENGTH bytes starting at AREA

c) Print GP registers, floating registers, and a storage area.
 (labeled as shown, with 100 bytes starting at X).

 XSNAP T=FL,LABEL='REGS,AREA X',STORAGE=(X,X+100)

d) Print 2 storage areas, no registers. Areas are specified by RX-
 type addresses in this case, including DSECT symbols X1 and X2.

 XSNAP T=NO,STORAGE=(*0(R1,R2),*40(R1,R2),*X1,*X2)

e) Print (GP registers in this case) only when specified test is met,
 in this case, only if value in register 2 is greater than 100 .

 XSNAP LABEL='AFTER 100TH TIME IN LOOP',IF=((2),H,=F'100')

 XDUMP/XSNAP - 02

 XDUMP

USE

 XDUMP can be used in one of two basically different ways:

a) GENERAL PURPOSE REGISTER DUMP

 XDUMP

 Coding XDUMP with no operands prints the contents of the user's
general purpose registers, in hexadecimal notation. The registers
are preceded by a header line like the following:

BEGIN XSNAP - CALL # AT CCAAAAAA USER REGISTERS

is the number of calls made to XDUMP so far, for identification.

CCAAAAAA shows the last 32 bits of the user's PSW, in hexadecimal.

CC gives the ILC, CC, and Program Mask at the time of the XDUMP.

AAAAAA gives the approximate address of the XDUMP macro expansion, and
thus can be used to distinguish between the output of different
XDUMP statements. *NOTE* XDUMP , is the same as XDUMP with no operand.

b) STORAGE DUMP

 XDUMP area,length

area is any RX-type address (anything allowed in a LA instruction)

length is an absolute expression having value from 1 to 4095.

 Coding XDUMP with an address and length produces a dump of a
user storage area, beginning at the address given by area, and
ending at address area+length.

 The resulting output includes a header line like the above,
followed by a hexadecimal and alphanumeric dump of the selected
storage area. The storage is printed in lines showing two groups
of four fullwords, preceded by the memory address of the first
word in each line, and followed by the alphanumeric representation
of the 32 bytes on the line, with letters, numbers, and blanks
printed directly, and all other characters translated to periods.
The storage printed is also preceded by a line giving the address
limits specified in the XDUMP.

 If the length is omitted, the value 4 is used as a default.

EXAMPLES OF XDUMP USAGE

 XDUMP AREA+10,80
 XDUMP 8(1,4),100
 XDUMP FULLWORD use default value of 4
 XDUMP TABL(3),12

 XDUMP/XSNAP - 03

 XSNAP

USE

 XSNAP may be coded with any of the operands shown, in any order,
since all are keyword operands. It is called as follows:

label XSNAP T=,LABEL=,STORAGE=,IF=

label is an optional statement label.

T= (Type of action to be performed for registers)

T=PRINT requests that the GP registers be printed, as given by XDUMP..
 Storage areas may of course be printed in addition (STORAGE=).

T=NOREGS requests that GP registers NOT be printed. If no STORAGE=
 is specified, this produces exactly 1 line of output, which can be
used for program tracing.

T=FLOAT requests both GP and floating point registers to be printed.

T=(FLOAT,NOREGS) requests floating point registers, but NOT GP regs.

T=STORE causes the GP registers to be saved into a well-labeled area,
 but does not create any printed output. The register area is
originally generated filled with -1's (hexadecimal 'FF's), and is
immediately preceded by the LABEL= string if it exists, or by the label
generated on the register area (of form XX####B), if no LABEL= was used.
The area is followed by 'XXXX' to make it easy to find. By examining
such an area in a dump, the user can immediately determine:

a) whether control ever passed through a given point (register area has
values other than X'FF').

b) the contents of the registers the LAST time control passed through
the given XSNAP.

 Note that the LABEL= option helps identify each XSNAP. If it is
not used, the XX####B label placed before the area also appears in the
assembly Cross-Reference listing, so it is still easy to locate. Note
that this option is especially useful for placing inside heavily-used
loops in a program in which intermittent/unpredictable errors occur.

 Any of the types above may be abbreviated by the first two letters:
PRINT = PR, NOREGS = NO, FLOAT = FL, STORE = ST .

DEFAULT T=PRINT is the default value used if not supplied.

LABEL='string' (identification LABEL printed as XSNAP heading)

 The 'string' is any character string usable as a C-type constant in
a DC statement, and is used as the XSNAP heading if it prints anything
at all. The register area label (XX####B) is used if LABEL= is omitted.

 XDUMP/XSNAP - 04

STORAGE=(list) (areas of main STORAGE to be dumped)

 This option accepts a list of ADDRESS PAIRS, each pair specifying
the limits of an area of memory to be printed, from the address given
by the first operand to that given by the second, from the third to the
fourth, etc. There may be any even number of addresses, separated by
commas. Each of the address specifications in each pair may be written
in either of the following forms (in any combination):

a) any label or expression usable in an A-type address constant.

b) *expression , where expression is 40 or less characters long, and
is acceptable as the second operand of a Load Address instruction. Thus,
base-displacement forms, doubly-indexed expressions, and dummy section
symbols can all be used if preceded by an * . The following is a legal
example of a STORAGE= operand:

 STORAGE=(A,B+7000,*4(2,R3),*AREA+3(4),*DSECT1,*DSECT1A,A,*A)

IF=(opa,relation,opb) (perform XSNAP only IF condition exists)

 Operands opa and opb are compared in some way. The XSNAP prints
output only whenever the relation between the two operands is true.
The relation is specified using the same codes as the Extended Mnemonics
of the Branch on Condition: H,L,E,O,P,M,Z,NH,NL,NE,NO,NP,NM,NZ. Thus,
an XSNAP WITH IF=(FLAG,NE,1) dumps only when value of FLAG is Not Equal
to 1. The operands are compared in different ways depending on whether
they are registers, storage, or immediate operands. The 3 cases are:

OPERAND FORMS COMPARISON GENERATED MEANING
(opa) (opb) CR (opa),(opb) opa, opb both designate registers
(opa) opb C (opa),opb opa: register, opb: storage fullword
 opa opb CLI opa,opb opa: address, opb: Immediate operand

 For flexibility, adding a fourth operand to the sublist allows it
to be used as the opcode in the comparison: IF=(TAG,O,X'F0',TM) would
generate TM TAG,X'F0' and print only if result is Ones condition.

 The IF option can be a powerful debugging tool. Dumping can be
allowed only when a specific condition exists. For example, if an error
occurs only after a loop is executed several thousand times, IF can make
an XSNAP print nothing the first (2000, for example) times, then print:
IF=((register with loop counter),H,=F'2000') . For programs which
process many input cards, it becomes possible to turn debug output on
just before an input card known to be causing trouble, without printing
output for the preceding cards. This is done by checking the input for
a special debug flag value, then setting a flag byte in memory, which
can be tested by many XSNAPs to determine whether printing is desired.
In fact, if an 8-bit value can be obtained from an input card, 8
separate groups of XSNAPs can be individually controlled.

 XDUMP/XSNAP - 05

SUPPRESSION OF XDUMP AND XSNAP CODE GENERATION

 After a program is debugged, it is often useful to be able to
suppress all debug code, without actually removing the cards from the
deck. Coding XSET XSNAP=OFF suppresses all XDUMP and XSNAP code
following the XSET. They can be restored by coding XSET XSNAP=ON ,
and this process repeated as desired. Also note that XSET can be used
similiarly for other X-MACROS, with multiple operands a desired:
XSET XSNAP=OFF,XSAVE=OFF,XRETURN=OFF is quite common.

RESTRICTIONS AND NOTES

 XDUMP and XSNAP are usable ONLY where addressibility exists. A
common error is to write the following code at an exit point of a CSECT

 L 13,4(13) RETORE SAVE AREA POINTER
 LM 14,12,12(13) RESTORE REGISTERS
 XSNAP . . .
 BR 14 RETURN

 The above code sequence typically results in a branch SOMEWHERE,
since the program has destroyed whatever base register the XSNAP was
assembled under. Such errors are extremely difficult to locate.

 In order to receive dumping output from XSNAP or XDUMP, the user
should supply a DD card for the execution step of his program,
using the DDNAME XSNAPOUT. Typical such cards are:

 //DATA.XSNAPOUT DD SYSOUT=A (at Penn State)
 //GO.XSNAPOUT DD SYSOUT=A (standard IBM cataloged procedures)

 If XSNAPOUT is omitted, XSNAP will use one of the following DD names:
 XPRNT, SYSPRINT, FT06F001 (in that order)

 XDUMP and XSNAP operate by calling a CSECT named XXXXSNAP, which
performs the actual dumping. If it does not find the DDNAME XSNAPOUT
it will issue a message to the system log and ABEND U0300. It should
be noted that it is impossible for XXXXSNAP to cause an interrrupt
unless the user program has destroyed some of its code. Thus, any
abnormal end with PSW inside XXXXSNAP is probably caused by user error.

 If XSNAP and XPRNT are used in the same program, the output of each
is usually separate. The following XSNAPOUT card may be used instead to
obtain XPRNT and XSNAP output merged together:

 //DATA.XSNAPOUT DD UNIT=AFF=FT06F001 (at PSU, may not work elsewhere)

REFERENCES

 The following documents of other X-macros may be of use :
XMSYSGEN, XREAD/XPRNT/XPNCH .

 THE PENNSYLVANIA STATE UNIVERSITY
 Computation Center

 CONTRIBUTED PROGRAM
 Contributor: Richard W. Fowler

 XGET/XPUT
360 ASSEMBLER V.5.0. Jan 1973

 EXTENDED ASSEMBLER I/O COMMANDS

PURPOSE
 Two macros XGET (eXtended GET) and XPUT (eXtended PUT), provide
easy assembler I/O facilities for up to 20 files each simultaneously.
 a) Only 2 statements are needed for each operation.
 LA R1,=CL8'ddname'
 XGET or XPUT area address,length
Example:
 LA 1,=CL8'CARDS'
 XGET AREA,80
 //DATA.CARDS DD *

 The above example will read in a card file.

 b) Only register 1 is destroyed, but the user destroys it with the
 LA instruction.
 c) Condition code is set to indicate end-of-file, error conditions,
 and normal execution.

 THESE MACROS ARE EXACTLY LIKE THE XREAD/XPRNT/XPNCH MACROS IN
their form of calling sequence, except that the maximum length is 32767.
I.e., the area address may be any RX-type address, or (0) or (R0), the
latter two indicating that the address is already present in register 0.
Likewise, the length is an absolute expression giving the length, a
register enclosed in parentheses (such as (1) or (R2)), or a default
value (80 for XGET, 133 for XPUT) if the operand is omitted.

CONDITION CODES
 XGET and XPUT set the CC as follows:
 CC=0 --- I/O occurred;
 CC=1 --- XGET only --- end-of-file encountered;
 CC=2 or 3 --- ERROR occurred. Either file not opened or error
 occurred while processing, file closed if possible or
 necessary.

CARRIAGE CONTROLS
 If XPUTting to a printer file, the first character of the area must
a valid carriage control character.

CLOSING OF FILE
 Performing an XGET or XPUT with a length of zero causes the
designated file to be closed, so that it may be reread, for example.

 XGET/XPUT - 02

JOB CONTROL LANGUAGE
 There are no extra DD cards in the catalogued procedures,
therefore, unless using a dd that is in the procedure, the user must
specify everything.

 Card Reader //DATA.XXXXX DD * any DD name allowed
 Printer //DATA.XXXXX DD SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133)
 Card Punch //DATA.XXXXX DD SYSOUT=B,DCB=(RECFM=F,BLKSIZE=80)
 Tape //DATA.XXXXX DD VOL=SER=YYYYY,DSN=ZZZ,UNIT=2400,
 // DCB=(RECFM=FB,LRECL=dd,BLKSIZE=ddd)
 Disk //DATA.XXXXX DD DSN=&&TEMP,UNIT=SYSDA,
 // SPACE=(CYL,(5,1)),DCB=(RECFM=FB,BLKSIZE=ddd)
Note that these macros need the dcb to be specified, (or on the file),
Thus, many DD cards in the procedure may require the DCB to be added.

GENERAL INFORMATION
 Each macro has an associated CSECT which it calls to perform the
actual I/O operations. The characteristics are as follows:
 MACRO MAX LENGTH CSECT NAME CSECT LENGTH
 XGET 32767 XXXXGET 964
 XPUT 32767 XXXXPUT 996

STORAGE REQUIREMENTS
 Each call on any of the macros generates from 32-42 bytes of code,
depending on initial alignment and options use. This is in addition to
the storage required by any of the CSECTS used.
 Each macro calls the inner macro XIONR, which is the same macro
called by the XREAD, etc, macros.

NOTE User must load into register 1 the address of an eight byte
character string, left justified and padded with blanks if necessary
This string represents the XXXXX of the //DATA.XXXXX DD cards.

REFERENCES: see the XREAD/XPRNT/XPNCH writeup for the simpler and
more specific I/O commands provided. Also see the XMSYSGEN writeup
which describes the various properties and generation of the entire
X-MACRO system.

 XGET/XPUT - 03

EXAMPLE OF XGET AND XPUT USAGE

 The following program reads/writes several files in parallel.

TEST1 CSECT
 BALR 12,0
 USING *,12
 SR 0,0
*
* THIS PROGRAM WILL PROCESS A FEW FILES IN PARRALLEL,
*
LOOP LA 1,=CL8'CARD' point to an input file
 XGET AREA,80 do the input
 BNE DONE branch on endfile,
* file automatically closed
 XREAD AREA2,80 do normal input
 LA 1,=CL8'PAPER' point to a printer file
 XPUT AREA-1,81 do output, note carriage control
 LA 1,=CL8'PAPER2' point to other printer file
 XPUT AREA2-1,81 do output on other file
 B LOOP try again
DONE BR 14 RETURN, IMPLICITLY CLOSE OTHER FILES
 DC CL1' '
AREA DS CL80
 DC CL1' '
AREA2 DS CL80
 END

The extra JCL for the above is as follows:
//DATA.PAPER DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)
//DATA.PAPER2 DD SYSOUT=A,DCB=(RECFM=FA,LRECL=133,BLKSIZE=133)
//DATA.CARD DD *
THIS STUFF IS READ
 AT THE SAME TIME AS ANOTHER
 FILE IS READ
 ****** THE LAST CARD *******
//DATA.INPUT DD *
THIS IS THE NORMAL INPUT FILE
 AND IS READ AT THE SAME TIME AS ANOTHER FILE
 IS READ
 ********* THE LAST CARD *********

 THE PENNSYLVANIA STATE UNIVERSITY
 Computation Center

 CONTRIBUTED PROGRAM
 Contributor: Alan Artz

 XHEXI/XHEXO
 360 Assembler language April,1972

 Extended Hexadecimal Conversion Macros

INTRODUCTION

 XHEXI and XHEXO provide easy conversion of hexadecimal numbers
for input and output. The value of a hexadecimal number can be
read from a card using XREAD, converted from character mode to a
hexadecimal number, and the converted number is placed in the specified
general purpose register with XHEXI. XHEXO provides an easy way
to convert internal hexadecimal to an output form that can be
printed using XPRNT.
 XHEXI also places the address of the first non-hexadecimal
number in register one, but if more than eight digits are scanned,
the address of the ninth is placed in register 1.

TYPICAL USAGE

 The following shows the most common usage of the macros XHEXI
and XHEXO:

A) Take a character number from an area called CARD and convert
 it to hex in Register 2.

 XHEXI 2,CARD convert number

B) Take a series of numbers from a card and store them on a full-
 word-boundary.

 LA 3,AREA address of storage
 LA 1,CARD address of numbers
 TOP XHEXI 2,0(1) convert number
 ST 2,0(3) store it
 LA 3,4(3) advance storage pointer
 BNO TOP keep on going

 This bit of code takes character numbers from an area called CARD,
converts them to internal hex, and then stores them in a location called
AREA. The card was probably read in with the XREAD instruction.

C) Take a number in a register and convert it and place it in
 an output area to be printed.

 XHEXO 2,AREA+1 convert number
 XPRNT AREA,8 print number
 AREA DC CL9' ' storage for number

 XHEXI - 02

 XHEXI

USE:

 XHEXI REGISTER,ADDRESS

 XHEXI, in the general form shown above where REGISTER is any general
purpose register and ADDRESS is anything legal in an RX instruction, is
used to do the following:

 1. Beginning at the location ADDRESS, memory is scanned until the
first non-blank character is found.

 2. If the first character found is anything but a legal hexa-
decimal character(0-9,A-F), the condition code is set to overflow
and this address is placed in register 1. If the REGISTER is
anything but register 1, its contents remain unchanged.

 3. One to eight hexadecimal characters are scanned, the number
converted to hexadecimal, and the result is placed in REGISTER.
The value placed in the register is internal hexadecimal with
leading zeros included and the number is right justified.

 4. Register one is set to the address of the first non-hexadecimal
character. With this in mind, the user should not code register one as
REGISTER. This allows you to scan across the card for any number of
character strings. The strings should be separated by blanks. The end
of the string could be flagged with any non-hexadecimal character and a
test could be made after a Branch Overflow (see sample program).

 5. If more than eight hex digits are found, register one is set to
the address of the ninth. This allows the user to scan across long
strings of numbers.

 XHEXO

USE:

 XHEXO REGISTER,ADDRESS

 XHEXO in the general form shown above converts the value
in REGISTER and places it in a right-justified 8-byte field beginning at
ADDRESS. It can be easily printed using an XPRNT instruction.

 XHEXI - 03

SAMPLE PROGRAM USING XHEXI AND XHEXO

 This program reads a data card with an unknown number
of hexadecimal numbers on it. The end of the data
string is denoted by a '%' punched after the last number.
The numbers are stored after being converted using
XHEXI, and then converted for output using XHEXO.

 LA 3,STORAGE WHERE NUMBERS STORED
 XREAD CARD,80 READ IN CARD
 XPRNT CARD,80 ECHO PRINT
 LA 1,CARD ADDRESS OF CARD FOR SCANNING
LOOP XHEXI 2,0(1) CONVERT NUMBER PUT IN 2
 BO ILLEGAL CHECK FOR END
 XHEXO 2,AREA PUT NUMBER IN OUTPUT AREA
 XPRNT REP,28 PRINT CARD AND MESSAGE
 ST 2,0(3) STORE NUMBER
 LA 3,4(3) INCREASE INDEX
 B LOOP GET NEXT NUMBER
ILLEGAL CLI 0(1),C'%' SEE IF END OF STRING
 BE DONE YES DONE
 XPRNT =CL50' ILLEGAL CHARACTER STOP',50
DONE MORE INSTRUCTIONS.....
CARD DC 81C' ' STORAGE FOR CARD
STORAGE DS 20F STORAGE FOR NUMBERS
REP DC C' THE NUMBER IN R2 IS'
AREA DC CL8' ' STORAGE FOR OUTPUT NUMBER

REFERENCES

 The following documents of the other X-macros may be of use:
XREAD/XPRNT/XPNCH, XMSYSGEN.

 The Pennsylvania State University
 Computation Center

 Contributed Program
 Contributor: John R. Mashey
 Computer Science Department

 360 ASSEMBLER XREAD/XPRNT/XPNCH
 V.5.0. Jan 1973

 ASSEMBLER UNIT-RECORD INPUT-OUTPUT MACROS

PURPOSE
 Three macros XREAD (card READer), XPRNT (line PRINTer),
and XPNCH (card PuNCH) provide easy assembler 1/0 facilities
with the following features:
 a) Only 1 statement is needed for each operation. No
 OPEN's, CLOSE's, DCB's, etc are required.
 b) REGISTERS - no registers are destroyed by these macros.
 c) CONDITION CODE - XPRNT and XPNCH preserve the con-
 dition code. XREAD sets it to indicate end-of-file
 occurrence.
 d) JOB CONTROL LANGUAGE - under most circumstances,
 little or no extra JCL will be needed.
 e) number of characters - may be specified in several
 different ways, may be any length up to maximum
 for device, and can be varied at execution time for
 maximum flexibility.
 f) XSET macro may be used to temporarily cancel output
 messages, input statements to be omitted, etc, during
 assembly time.

USE
 All three macros use the same form of calling sequence:

 label is an optional statement label

 Xmacro is one of XREAD, XPRNT, XPNCH

 area the address of the area to be read or written.
 This may be specified in two different ways:
 a) Anything valid in a LA instruction, for example HERE,
 SYM+8(5), 2(4,6), =CL10'OMESSAGE' are all acceptable.
 b) Either (O) or (RO), indicating that register O con-
 tains the area address.

 length specifies the number of bytes to be transferred.
 This length should be in the range 1 to maximum
length for the device (80 for XREAD, XPNCH, l33 for XPRNT).

 XREAD/XPRNT/XPNCH - 02

If the length is incorrect, it will be ignored, and the maxi-
mum length used. The length may be specified in three dif-
ferent ways:

 a) Directly, by providing an expression in the macro
 call.
 b) By default, by providing only an area address, which
 will cause the appropriate maximum length to be used.
 c) Indirectly, at execution time, by coding an ex-
 pression enclosed in parentheses, indicating a general
 purpose register which contains the number of bytes
 to be read or written.

CONDITION CODE
 XREAD sets the CC as follows:
 CC = 0 - a card was read, and length characters transferred
 CC = 1 - end-of-file was encountered-no more cards

CARRIAGE CONTROLS
 XPRNT requires the first character of the area to be
a valid carriage control character.

JOB CONTROL LANGUAGE
 The macros will accept DD cards with various DDNAMES,
but have been designed to use JCL already present in cer-
tain cataloged procedures, in order to minimize the
amount of extra JCL. The DD cards required for each macro
are listed below. Note that the PSU catalogued procedure
ASGCLG already contains a FT06F001 DD card, so this need
not usually be supplied by the user.

MACRO DD CARD FORM DDNAMES ALLOWED(for xxxxx)
XREAD //DATA.xxxxx DD * XREAD, INPUT, FT05F001
XPRNT //DATA.xxxxx DD SYSOUT=A XPRNT, FT06F001
XPNCH //DATA.xxxxx DD SYSOUT=B XPNCH, FT07F001

NOTE if you want to use the macros in combined FORTRAN-
Assembler programs, you must supply the X-ddnames, rather
than using the FORTRAN ones.

USAGE OF XSET
 The macro XSET (described in writeup on XSNAP/XSTOP/XSET),
may be used to selectively cancel and restore generation of
any of these macros. It is used as follows:
 XSET name=onoff
where name is XREAD, XPRINT, or XPNCH, and onoff is either
ON or OFF, which either permits or deletes generation of
the specified macro until it is changed again by another XSET.

 XREAD/XPRNT/XPNCH - 03

GENERAL INFORMATION
 Each macro has an associated CSECT which it calls to
perform the actual 1/0 operations. The characteristics of
these CSECTS are listed below, together with their DCB's.
If the DCB's are unsatisfactory, they may be altered prior
to the first macro call, since the DCB names are all entry
point names also.

MACRO MAX LENGTH CSECT NAME CSECT LENGTH DCB NAME
XREAD 80 XXXXREAD 576 XXREDCB
XPRNT 133 XXXXPRNT 700 XXPRDCB
XPNCH 80 XXXXPNCH 596 XXPNDCB
 XXXXOPEN 532

 XXXXOPEN is called by all the csects to do the openning
of their dcb's for them.

 The relevant paramaters of the current DCB's used are
as follows:

XXREDCB DCB DSORG=PS,MACRF=GM,RECFM=F,BUFNO=1,LRECL=80,
BLKSIZE=80

XXPRDCB DCB DSORG=PS,MACRF=PM,RECFM=FA,BUFNO=1,LRECL=133,
BLKSIZE=133

XXPNDCB DCB DSORG=PS,MACRF=PM,RECFM=F.BIFMP=1,LRECL=80,
BLKSIZE=80

STORAGE REQUIREMENTS
 Each call on any of the macros generates from 32-42 bytes
of code depending on initial alignment and options used. This
is in addition to the storage required by any of the three
CSECT's used.

GLOBAL SET VARIABLES
 Each of the macros used a GBLB variable of the form
&nameST, where name is the name of the given macro. These
are used in conjunction with XSET to control macro generation.

INNER MACROS CALLED
 Each of the macros uses the inner macro XIONR.

 XREAD/XPRNT/XPNCH - 04

SAMPLE PROGRAM
 The following program reads, prints, and punches cards,
and shows some the various ways of specifying the macro
operands.

// EXEC ASGCLG
//SOURCE.INPUT DD *
 TITLE ' TEST PROGRAM FOR 1/0 MACROS'
TESTX10 CSECT
 XSAVE TR=NO set up linkage, base register
 XSET XPRNT=OFF cancel XPRNT for a while
 XPRNT =CL50' THIS MESSAGE IS NOT GENERATED', 50
 XSET XPRNT=ON allow XPRNT's again
 LA 0,CARD save address of card
 XPRNT =CL40'1 TEST EXAMPLES', 40 skip to new page
 LA 2,50 set up length in register
 XPRNT =CL50'0 WILL READ,PRINT,PUNCH',(2)
TLOOP XREAD CARD use default length=80
 BNZ TDONE branch on end-of-file
 XPNCH (0) use previously loaded address
 XPRNT CARD-1,81 print card, with carriage cont
 B TLOOP go back for next card
TDONE XPRNT MESSAGE,L'MESSAGE print ending message
 XRETURN SA=*,TR=NO
MESSAGE DC CL100'OSUCCESSFULL COMPLETION OF TEST'
CARD DS CL80
 end
//DATA.XPNCH DD SYSOUT=B required for card punch
//DATA.INPUT DD *
 THIS IS THE FIRST TEST CARD
 THIS IS THE SECOND TEST CARD
 THIS IS LAST TEST CARD-END-OF-FILE FOLLOWS

REFERENCES: see the XGET/XPUT writeup for more generalized macros
allowing access to any sequential files. Also see XMSYSGEN for an
overview of the X-MACRO system.

 THE PENNSYLVANIA STATE UNIVERSITY
 Computation Center

 CONTRIBUTED PROGRAM
 Contributor: John R. Mashey, Computer Science Department

 XSAVE/XRETURN
 360 ASSEMBLER LANGUAGE writeup revised April 1972 (v.4.0)

 EXTENDED SAVE AND RETURN MACROS

INTRODUCTION

 XSAVE and XRETURN provide various services for assembler language
program linkage using OS/360 conventions. While offering many more
options than SAVE and RETURN, they use defaults, thus allowing that
few operands need be coded. Some of the services provided are:

a) Saving or restoring any range or ranges of registers on program entry
or exit, in a more general way than SAVE or RETURN.
b) Automatic initialization of 1 or more base registers for a program.
c) Creating standard entrypoint identifier coding at a program entry.
d) Generating reentrant code, using GETMAIN and FREEMAIN calls.
e) Creating an AUTOMATIC PROGRAM TRACE or REGISTER DUMP whenever a
module is entered or exited.
f) Permitting easy usage in CSECT's with multiple entries/exits.

TYPICAL USAGE

 The following shows the most common ways to use XSAVE and XRETURN:

a) CSECT with a single entry point, at the CSECT name:

 ACSECT CSECT
 XSAVE
 the code for the csect.
 XRETURN SA=* EXIT POINT: ALSO CREATE SAVE AREA

b) CSECT with single entry and exit, using register 13 as both a base
register and save area pointer, generating save area inside XSAVE:

 BCESCT CSECT
 XSAVE BR=13 CAUSE SAVE AREA TO BE HERE
 the code for the csect.
 XRETURN

c) CSECT with multiple entry points:

 CCSECT CSECT
 ENTRY C1,C2 SEVERAL ENTRIES
 C1 XSAVE
 the code for section C1 of CCSECT.
 C1EXIT XRETURN
 C2 XSAVE
 the code for C2.
 C2EXIT XRETURN SA=* SAVE AREA AFTER LAST XRETURN ONLY

 XSAVE/XRETURN - 02

 The macros are described below, with arguments listed basically in
order of importance. A programmer not yet familiar with S/360 linkage
should concentrate on the options: RGS=,SA=, and BR= where they exist.

 XSAVE
PURPOSE

 XSAVE is used at any entry point (CSECT, START, or ENTRY label) in
an assembler program to save registers acccording to the standard
conventions, set up new base register(s), and possibly perform program
tracing and various other optional services.

USE

 The macro allows 8 keyword operands, which can be used in almost
any combination or omitted as desired. Reasonable defaults values are
supplied so that few operands need normally be coded. It is called:

label XSAVE RGS=,BR=,SA=,ID=,TR=,REEN=,OPT=,AD=

label is an optional statement label.

RGS= (ReGisterS)

 This operand specifies the register(s) to be saved into the calling
program's save area in the standard locations. It can specify that NO
registers, a single range of registers, or multiple ranges of registers
be saved, with the following operand types:

RGS=NO no registers are saved.

RGS=(list) list specifies the the registers to be saved, where each
 item in the list is either:
a) a single register designation (number or equate symbol) OR
b) a pair of register designations, separated by a dash, showing the
(inclusive) range of registers that should be stored.
 For example, RGS=(14-15,2-12) causes registers 14,15, and all of 2
through 12 to be saved appropriately.

DEFAULT VALUE If omitted, RGS=(14-12) is assumed (normal linkage).

BR= (Base Register(s))

 BR lists the base register(s) to be set up for the program just
entered. It is either a single register, or a list of 2-4 of them,
enclosed in parentheses, and separated by commas. If the latter format
is used, a multiple USING statement and appropriate register-loading
statements are generated. If the first (or only) register is 13, a save
area is generated in the middle of the XSAVE, so that register 13 can be
used both as a base register and as a save area pointer. WARNING: if
register 13 is specified, do not code XRETURN SA=* later in the csect.

DEFAULT BR=12 is assumed if this option is omitted.

 XSAVE/XRETURN - 03

SA= (Save Area)

 This option specifies the name of a save area to be used, and also
controls whether the program actually has a save area or not (if it is a
lowest-level routine calling no others, it might not have one).

SA=NO no code is generated for linking save areas, and no save area
 is referenced by XSAVE code. Register 13 is unchanged, so this
option should only be used by a routine which calls no others.

SA=* this is normal linkage, with following actions:

a) register 13(calling program's save area) is loaded into another reg.
b) the address of the called program's save area is placed into R13.
c) the two registers are saved correctly to fill in the standard forward
and backward linkage between calling and called programs' save areas.

 Part b) creates the statement LA 13,saveareaname , as follows:
a) If this is the first XSAVE in a CSECT, a 'standard name' (unique to
that CSECT) is created by the macro and referenced.
b) If this is not the first XSAVE, the current 'standard name' is used
regardless of how it was originally created.

SA=name this specifies the same kind of linkage as SA=*, except that
 the name becomes the 'standard name' .

 Briefly, the 'standard name' allows XSAVE and XRETURN macros to use
and generate appropriately-named save areas, allowing either complete
control over naming, or the convenience of giving no names.

DEFAULT If omitted, SA=* is assumed, giving standard linkage, with
all XSAVE(s) in a CSECT referring to the SAME save area name.

ID= (IDentifier)

 ID specifies an identifying character string to be created just
after the entry point. It aids debugging by making the entry point easy
to locate in the dump, and may be printed in dump save area traces.

ID=NO no identifier is created. This saves space and time.

ID=* the identifier created is the first of the following found:
 the statement label, if one is coded on the XSAVE; the name of the
CSECT in which the XSAVE is used, or $PRIVATE if the CSECT is unnamed.

ID=string the string (1-255 characters) is the identifier.

DEFAULT If omitted, ID=* is assumed, thus creating some kind of ID.

 XSAVE/XRETURN - 04

TR= (TRace)

 TR provides for automatic program tracing or register dumping
whenever the entry point is given control, a useful debug feature.

TR=NO no trace code is provided .

TR=* the message '*** name ENTERED ***' is printed on entry, where
 name is either the label on the XSAVE, or the name of its CSECT.

TR='message' 'message' is printed on entry to the program.

TR=SNAP the message (as in TR=*) is printed, followed by a dump of the
 GP registers, before they get changed by called program.

TR=('message',SNAP) 'message' and registers are printed.

DEFAULT TR=* is assumed, thus normally providing a dump (but see
section at end called SPECIAL CONSIDERATIONS FOR TRACE CODE).

REEN=exp (REENtrant code)

 REEN requires that reentrant code be generated, and give the number
of bytes to be acquired via GETMAIN, IN ADDITION TO the 72 bytes needed
for the standard savearea. The address of the acquired area is placed
in register 13, so that first usable working storage begins at 72(13).
If the called program uses the original values of register 15,0,1, they
must be included in the registers saved by the RGS= option. The value
exp may be any absolute expression. WARNING: this method is slow for
heavily-used routines.

OPT= (OPTional declarations)

 OPT provides for declaration of CSECT or ENTRY and/or TITLE.

OPT=CSECT the label (required) on the XSAVE is declared a CSECT.

OPT=ENTRY the label(required) on the XSAVE is declared to be an ENTRY.

OPT=TITLE a TITLE is generated before any other code, and displays the
 label on the XSAVE statement.

OPT=(TITLE,xxxxx) xxxxx is either CSECT or ENTRY, combining the above.

AD= (ADdress constant addressibility)

 In some cases it may be necessary to have several entry points in
a CSECT which share common USING conditions; AD can be used to do this.
An address constant of the name specified is loaded into the first (or
only) base register (BR=), and addressiblity declared. Typically the
address constant refers to the name of the CSECT.

 XSAVE/XRETURN - 05
 XRETURN

PURPOSE

 XRETURN is used to return from a module entered at an XSAVE, and is
used to restore registers, set return code in R15, perform program trace
and possibly generate a 72-byte save area referenced by XSAVE code.

USE
 The macro has 7 keyword operands, coded or omitted as desired:

label XRETURN RGS=,SA=,RC=,RP=,T=,TR=,REEN=

label is an optional statement label

RGS= (ReGisterS)

 This specifies the registers to be restored from the original
calling program's save area, and is coded just like XSAVE RGS= option.

DEFAULT RGS=(14-12) is assumed, restoring all registers.

SA= (Save Area)

 This option can be used to control the return linkage code, and if
desired, creates an 18-fullword save area (filled with zeroes for debug
purposes), immediately following XRETURN's executable code.

SA=NO the macro assumes that the routine is a lowest-level routine
 which calls no others. It generates neither the save area itself,
nor code to reload register 13 with the address of th caller's save
area. R13 is assumed to still point at the caller's save area.
WARNING: use only paired with XSAVE SA=NO, else errors will occur.

SA=* an 18-fullword save area is generated, labeled with the
 current 'standard name' described under XSAVE SA=* above.

SA=name the save area is generated, and labeled with the name given.

DEFAULT If SA is completely omitted, no save area is generated,
 but a save area is assumed to exist somewhere, and code generated
to restore the previous save area pointer. The reason for this default
is that any CSECT having several entry points still needs only 1 save
area, which is typically generated only by the LAST XRETURN, so that it
is addressible by ALL of the XSAVEs. Typically, a maximum of 1 SA=*
should appear in the XSAVEs and XRETURNs in one CSECT.

RC= (Return Code)

 Specifies a return code value to exist in register 15 on return to
the calling program. The user need not worry about possible conflicts
with RGS=, since RC overrides any inclusion of R15 in the RGS= option.

RC=exp expression less than 4096 to be placed in register 15.

RC=(r) specifies register currently containing the return code.

 XSAVE/XRETURN - 06

RP=exp (Return Past register 14)

 RP provides a form of multiple (nonstandard) return to the calling
program. The last instruction generated is not the usual BR 14, but
B exp(14) instead. The value of exp is usually a multiple of 4, so
that the calling program has 1 or more Branch statements following the
call to the routine.

T=* (Tag save area)

 This requests that byte 12 of the calling program's save area be
set to X'FF' just before control is returned. This is useful for
debugging, and is sometimes used by FORTRAN error-handling routines.

TR= (TRace code)

 This option is coded exactly as is XSAVE TR=, and does the same
thing, except that the message printed is '*** name EXITED ***', where
name is either the label on the XRETURN or the CSECT name.

REEN=exp (REENTRANT code)

 REEN specifies reentrant code generation, and should be matched
only with an XSAVE REEN=exp, where the two expressions are the same.
The area addressed by register 13, of length exp+72, is freed using the
FREEMAIN macro. WARNING: if this option is used, it is impossible for
the XRETURN code to ever restore the values of registers 15, 0, 1 which
existed in the calling program prior to entering the called module. Note
that normal conventions require only that registers 2-12 be restored.

SPECIAL CONSIDERATIONS FOR TRACE CODE

 Note that the TR= options call the macro XSNAP (for SNAP options),
or XPRNT for the others, so that the relevant writeups should be studied
if any problems arise. In particular, the SNAP options may require a
card like the following to be inserted for the execution step of the
program (before or after a SYSUDUMP card):

 //DATA.XSNAPOUT DD SYSOUT=A (non-PSU users may replace DATA with GO).

 The trace code (and ONLY the trace code) created by XSAVE and
XRETURN can be eliminated by coding XSET XSAVE=OFF,XRETURN=OFF , and
can be allowed again by replacing OFF by ON, as many times as desired.
This allows leaving trace code in a program until it is debugged, then
eliminating it by adding 1 XSET card at the beginning of the program.

SYMBOLIC REGISTER EQUATES

 Symbolic register equates may be used anywhere, and can be any
symbols, except that any used for registers 13,14, or 15 must end in
those characters, i.e., WORK13, R14, REG15 are acceptable.

 XSAVE/XRETURN - 07

SAMPLE USAGE
 The following sample program assumes that EQU's have been set up
for R0 EQU 0, ... R15 EQU 15 .

* TYPICAL USAGE FOLLOWS.
 XSAVE
 CALL PROG2
 XRETURN SA=*,RC=4 RETURN TO OS WITH RETURN CODE OF 4
* FOLLOWING CALLS EXTREME AND UNTYPICAL.
PROG2 XSAVE RGS=(R14,R0-R1,5-12),BR=(11,10),OPT=(TITLE,CSECT)
 CALL LOWEST CALL LOWEST LEVEL ROUTINE
 LA R3,5 SET UP LIMIT ON RECURSION DEPTH
 CALL RECURSE CALL RECURSIVE ROUTINE
 CALL PROG3
 CALL PROG4
 B BAD RETURN HERE× OR SKIP BRANCH VIA RP=
 SR 15,15 CLEAR FOR RETURN CODE = 0
BAD XRETURN RGS=(14,0-1,5-12),SA=*,T=*,RC=(R15)
* LOWEST LEVEL ROUTINE FOLLOWS: NOTE CODE GENERATED.
LOWEST CSECT
 XSAVE SA=NO,BR=15,TR=NO,ID=NO ZAP OPTIONS
 XRETURN SA=NO,TR=NO
* FOLLOWING CSECT USES REEN FOR RECURSIVE CALLS.
PROGRAM CSECT
RECURSE XSAVE TR=('RECURSION',SNAP),REEN=0,OPT=ENTRY
 BCT R3,CONTINU LOOP, RECURSING
 B RETB GIVE UP NOW
CONTINU CALL RECURSE CALL MYSELF AGAIN
RETB XRETURN REEN=0 RETURN, FREE STORAGE
* ENTIRES PROG3 AND PROG4 HAVE SAME ADDRESSIBILITY, WITH AD.
PROG3 XSAVE OPT=ENTRY,SA=P3SAVE,BR=(12,11,10),AD=PROG3
PROG3A XRETURN RC=(R3),T=*
PROG4 XSAVE OPT=ENTRY,AD=PROG3,BR=(12,11,10),ID=PROG3ENTRYOFPROGRAM
 LTR R0,R0 TEST TO DECIDE
 BZ ZERO SKIP TO RP=0
 XRETURN RP=4 BRANCH OVER BAD ABOVE
ZERO XRETURN RP=0,T=*,SA=* SAVE AREA, RP
 END

REFERENCES

 The following documents of other X-macros may be of use:
XMSYSGEN, EQUREGS, XDUMP/XSNAP, XREAD/XPRNT/XPNCH.

 The reader is also referred to the following manuals:

C28-6827 IBM S/360 OS FORTRAN IV (G&H) Programmer's Guide - Appendix C.
 (a concise explanation on save areas and linkage).

C28-6646 IBM S/360 OS Supervisor and DAta Management Services
 (pp. 10-18 approx: linkage, reentrancy).

C28-6647 IBM S/360 OS Supervisor and Data Management Macro Instructions
 (macros CALL, SAVE, RETURN)

