WATFI V_USER' S_GUI DE

CONTENT S, . . . e e Page
1. INTRODUCTI ON ..ot e e e e e e e e e e e 1
2. CONTROL CARDS ittt e e e e e e 2
2.1 VWATFIV CONTROL CARDS it 2

2.2 OS/VS CONTROL CARDSt e 3
2.2.1 WATFIV CATALOGUED PROCEDURE 5

3. JOB CARD FORMAT . .ot e e e e e 6
3.1 VATFIV OPTIONS ... e e 6
3.1.1 COWILER CONTROL OPTIONS 6

3.1.2 PROFILER CONTROL OPTIONS 8

3.2 VATFIV CONTROL CARDSt 9
3.2.1 CONTROL CARDS TO EDI T SOURCE LISTINGS 9

3.2.2 OTHER WATFIV CONTROL CARDS 10

3.3 STUDENT JOB STREAM ENVIRONMENT 12

4. USING WATFIV UNDER I NTERACTIVE SYSTEMS 13
4.1 USING WVATFIV UNDER TSOot e e e 13

4.2 USING WATFIV UNDER CMB e 13
4.2.1 OPTIONS ... 14

4.2.2 USING THE CVs WATFIV COWAND 17

4.3 USI NG THE | NTERACTI VE DEBUGA NG FACILITIES 18
4.3.1 INTRODUCTION ... e e e e 18

4.3.2 COMWAND SETttt e 18

4.3.3 MODI FYI NG AND DI SPLAYI NG VARI ABLES 20

4.3.4 EFFICIENCY CONSIDERATIONS 20

4.4 | NTERACTI VE DEBUGA NG OF WATFIV JOBS 21

5. JOB ACCOUNTING . ..ottt e e e e e e 27
6. DI AGNGSTI CS . .. e 28
6.1 ERROR DIAGNCSTICS e e 28

6.2 CONTROL OPTIONS FOR CERTAIN DIAGNCSTICS 34

6.3 WATFIV DEBUGGA NG AIDS 37
6.3.1 EXECUTION-TIME PROFILER 37

6.3.2 STATEMENT TRACE FACILITY 44

6.3.3 ON ERROR GOTO STATEMENT 44

7. LANGUAGE ACCEPTED BY WATFIV e 46

7.1 EXTENSIONS 46
7.1.1 FORMAT-FREE I NPUT OQUTPUT 46
7.1.2 CHARACTER VARIABLES 46
7.1.3 MILTI PLE ASSI GNMENT STATEMENTS 47
7.1.4 EXPRESSIONS IN QUTPUT LISTS 47
7.1.5 INTIALIZING OF BLANK COMON 48
7.1.6 INTIALI ZING COMMON BLOCKS 48
7.1.7 | MPLIED DO I N DATA STATEMENTS 48
7.1.8 SUBSCRIPTS IN FUNCTION DEFINITIONS 48
7.1.9 SUBSCRIPT USAGE 48
7.1.10 OBJECT OF DO STATEMENT 49
7.1.11 EXCEEDI NG CONTI NUATION CARD LIMT 49
7.1.12 MILTI PLE STATEMENTS PER CARD 49
7.1.13 COMVENTS ON FORTRAN STATEMENTS 50
7.1.14 DUWMPLI ST STATEMENT 50
7.1.15 ON ERROR GOTO STATEMENT 51
7.1.16 PSEUDO- VARI ABLE DIMENSIONING 51
7.1.17 STRUCTURED PROGRAMM NG STATEMENTS 51

7.2 FORMAT-FREE INPUT OQUTPUT 51
7.2.1 SOURCE STATEMENT FORMS 52
7.2.2 INPUT DATA FORMS i 52
7.2.3 OUTPUT FORMS i 54

7.3 RESTRICTIONS 54

8. CHARACTER VARI ABLES 57

8.1 DECLARATI ON OF CHARACTER VARIABLES 58
8.1.1 VARIABLE TYPE: CHARACTER 58
8.1.2 IMPLICIT STATEMENT 58
8.1.3 CHARACTER TYPE STATEMENT 58

8.2 USINtO

8.2 USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS .. 61
8.2.1 DIMENSION STATEMENT 61
8.2.2 COWDON STATEMENT 61
8.2.3 NAMELIST STATEMENT 61
8.2.4 DATA STATEMENT 61
8.2.5 EQUI VALENCE STATEMENT 61
8.2.6 CALL STATEMENT 62
8.2.7 FUNCTION REFERENECE 62
8.2.8 STATEMENT FUNCTI ON STATEMENTS 63
8.2.9 SUBROUTINE STATEMENT 63
8.2.10 FUNCTION STATEMENT 63
8.2.11 REPLACEMENT STATEMENT: A=B 63

8.3 CORE-TO-CORE I/O STATEMENTS 65
8.3.1 WMRITE STATEMENT 65
8.3.2 READ STATEMENT 67
8.3.3 INPUT/QUTPUT LIST, 68

8.4 ADDI TI ONAL CHARACTER FEATURES SUPPCRT 68

8.4.1 USE AS SUBSCRIPTS 69

8.4.2 USE WTH RELATI ONAL OPERATORS 69

x 9. STRUCTURED PROGRAMM NG STATEMENTS 71
9.1 IF- THEN - ELSE 71

9.2 WVHILE - DO 73

9.3 DO CASE 73

9.4 EXECUTE AND REMOTE BLOCK 76

9.5 WHILE - EXECUTE 78

9.6 AT END DO 78

9.7 PROGRAMM NG CONSIDERATIONS 79

9.8 CONTROL STATEMENT TRANSLATOR 80

10. INTERRUPTS ... e 83
11. INPUT OUTPUT CONSIDERATIONS, 86
11.1 GENERAL NOTES 86

11.2 COWPI LER DATA SET ASSUMPTIONS 87

11.3 CONCATENTATING COMPILER INPUT 87

12. SUBPROGRAM FACILITIES 90
12.1 SOURCES OF SUBPROGRAMS i 90

12.2 FORTRAN SUPPLIED ROUTINES 90

12.3 AUTOVATIC FUNCTION TYPING 91

12.4 SUBPROGRAM ARGUMENTS 92

12.5 USER LIBRARIES i 94

12. 6 PSEUDO- VARI ABLE DIMENSIONING 95

12.7 SUBPROGRAMS IN OBJECT DECK FORM 98

12.8 ADDI Tl ONAL SUBPROGRAMS SUPPCRTED BY WATFIV 100
12.8.1 SPECIAL FUNCTIONS 100

12.8.2 STATEMENT COVPRESS/ UNCOMPRESS ROUTI NES ... 100

13. RETURN CODES e e 103

14. M SCELLANEQUS 104
14.1 CARRIAGE-CONTROL CHARACTERS 104
14.2 TREATMENT OF LOG CAL VALUES 104
14.3 CHARACTER-SET CONVENTIONS 104
14.4 | NCOVPATIBILITIES WTH IBM FORTRAN 105
15, APPENDI X .. . 108
15,1 WATFIV ERROR MESSAGES o 108

-jv-

| NTRODUCTI ON

1. | NTRODUCTI ON

This section provides information required by the wuser of
the WATFIV conpiler, and could be duplicated, wth
appropri ate acknow edgenents, by an installation for
distribution as a "WATFIV Progranmer's Guide". Not e,
however, that the material provided is based on the
"standard" WATFIV conpiler, and thus, nmay require sone
i nstal | ati on-dependent editing. Mjor sections, subsections
or paragraphs which contain details that depend on the
options descri bed in section 2.7 of the WATFIV

| mpl ementation Guide are marked in the left margin with an
D

It is intended that these marks woul d be used as guides to
areas that may require editting, because of options selected
when the conpiler was generated at the installation, by the
person responsible for preparation of this manual for
distribution to users.

It should be noted that this User's Quide is not a manual or
text on FORTRAN progranmng. The Guide is intended for the
"experienced FORTRAN programmer, i.e., one who already has
sone famliarity wth FORTRAN in general and likely sone
famliarity with IBMs FORTRAN conpilers. |In particular,
the authors of the Cuide assune the reader has access to the
follow ng | BM publications:

| BM Syst enf 360 FORTRAN |V Language, Form GC28- 6515
| BM Syst emf 360 FORTRAN IV (G and H) Programmer's Cuide, Form GC28-6817

(1) This WATFIV User's Cuide has been prepared using SCRI PT and
the unformatted input file is available on request.

I NTRODUCTI ON Page 1

CONTROL CARDS
2. CONTROL CARDS

Two |l evels of control cards are required to run a program
using WATFIV - control cards recognized by the conpiler
itself, and those required by the operating system job
schedul er.

x 2.1 WATFIV CONTROL CARDS

Two control cards - $JOB and $ENTRY - are required to run a
program under WATFI V. Their use is shown in the follow ng
di agram whi ch defines a WATFIV j ob.

$JOB identification,paranmeters

FORTRAN program consi sting of a main
program and any nunber of subprograns

$ENTRY

any data required by the program

The control field $J0OB is punched in colums 1 to 4 of the
card, and $ENTRY in colums 1 to 6; colum 5 and 7,
respectively, must be blank. Colums 8 to 80 of the $ENTRY
card are ignored. Accounting information and job paraneters

that may appear on the $JOB card are described in section 3
on page 6.

The $ENTRY card is required to initiate execution of the
conpil ed programeven if no data cards are present.

The FORTRAN program and data are punched according to the

usual rules of FORTRAN. The main program and subprograns
foll ow one another, as shown in the follow ng exanpl e:

WATFI V. CONTROL CARDS Page 2

CONTROL CARDS
DI MENSI ON X(10)

END
SUBROUTI NE EXAMPLE

END
FUNCTI ON FN (A)

END
SUBROUTI NE RTN (X, Y)
END

The mai n program need not appear first.

2.2 0OS/ VS CONTROL CARDS

The OS/VS control cards are necessary to load WATFIV into

main nmenmory. Once there, it can process any nunber of
WATFIV jobs in sequence, i.e., an OS/VS job consists of a
"batch' of one or nore WATFIV j obs. Si nce the operations'

personnel at your installation may collect WATFIV prograns
torun as a batch, or batching may be provided by other
mechani sms, know edge of the OS/VS control cards is not
essenti al . The details are provided for those who nust
batch their own jobs for subm ssion to the conputer.

One formof an OS/VS job to run a batch of WATFIV jobs is
shown in the next figure.

0S/ VS CONTROL CARDS Page 3

//jobname JOB accounting
/1 EXEC WATFI V
//GO SYSIN DD *
$JOB i d, par s
Program 1
$ENTRY
Data 1
$JOB i d, parns
Program 2
$ENTRY
Data 2
$JOB i d, parns
Program n
$ENTRY
Data n

$STOP
/| *

(1) Optional as end of batch indicator.

0S/ VS CONTROL CARDS

CONTROL CARDS

Page 4

CONTROL CARDS

x 2.2.1 WATFI V CATALOGUED PROCEDURE

The followi ng catal ogued procedure is the standard WATFIV
procedure. The WATLIB DD card references WATFI V' s function
library and any data sets containing subprograns that m ght
be called by the user's program The catal ogued procedure
WATFI V al so contains DD cards for the card reader, printer,
and punch (Fortran wunits 5, 6, and 7 respectively) and for
tenporary sequential data sets on units 1, 2, 3, and 4 (DD
namnes, FTO01F001, FTO2F001, FTO3F001, FT04F001,
respectively). Certain files are given read-only status by
WATFI V; see section 11.1 on page 86 for further information
on this feature. Concat enati on of conpiler input is
di scussed and illustrated wth exanples in section 11.3 on
page 87. Hereafter, the term'job'" will nean a WATFIV j ob.
A listing of the WATFIV procedure for an OS/VS system
foll ows:

/I WATFI V. PROC PROG=WATFI V, LI B=' WATFI V. FUNLI B' , V="', VOL=WATFI V

/1 JB=" WATFI V. JOBLI B

/1 G0 EXEC PGME&PROG, REG ON=150K

/1 STEPLI B DD DSN=&JB, DI SP=SHR, UNI T=SYSDA, VOL=SER=&V. &/OL

//WATLIB DD DSN=&LI B, DCB=(RECFM=FB, LRECL=80, BLKSI ZE=800) , DI SP=SHR,

/1 VOLUVE=SER[R,

/1 VOLUVE=SER=&V. &/QL, UNI T=SYSDA

DSN=WATFI V. WATLI B, DI SP=SHR, VOL=SER=&V. &/OL, UNI T=SYSDA
SPACE=(TRK, (20, 10)) , DCB=(RECFM=VS, BLKSI ZE=256) , UNI T=SYSDA
SPACE=(TRK, (20, 10)) , DCB=(RECFM=VS, BLKSI ZE=256) , UNI T=SYSDA
SPACE=(TRK, (20, 10)), DCB=(RECFM=VS, BLKSI ZE=256) , UNI T=SYSDA
SPACE=(TRK, (20, 10)) , DCB=(RECFM=VS, BLKSI ZE=256) , UNI T=SYSDA

S

// FTO1F001
[/ FTO2F001
[/ FTO3FOO1
|/ FTO4F001

Y589888

/ / FTO5F001 DDNAME=SYSI N
/ / FTO6F001 SYSOUT=A, DCB=(RECFM=FA, BLKSI ZE=133)
[/ FTO7F001 SYSQUT=B

OS/ VS CONTROL CARDS Page 5

JOB CARD FORVAT

x 3. JOB CARD FORVAT

Starting in colum 16 of the $JOB card you may punch your
user account nunber or identification. This may be foll owed
by a conma and a selection of job parameters fromthe |ist
below. Qherwise, |eave at |east one blank colum after
your account nunber to separate it fromany coments.

col .16
X
X

\

e.g., (1) $JOB DO59JCEUSER NO PARAMETERS
(2) $JOB P7735YCURI D, KP=29, TI ME=1, NOLI ST PARMS d VEN

WATFIV control cards are identified by a C$ or $ starting in
colum 1. The main advantage of the C$ control characters
is the ability to conpile the source program under a
FORTRAN conpiler other than WATFIV, since these control
cards will be treated as comrents. WATFIV will thus treat
the $ or C$ as valid control characters but all control
cards will be prefixed with a C$ when they are printed out
(except $JOB and $ENTRY cards).

3.1 WATFI V OPTI ONS

The followi ng options may be used on the WATFIV $JOB card or
placed on the C$OPTIONS card. VWere applicable, the
standard default options are underlined, and short fornms of
the keywords are placed in parentheses. Were a choice is
avai l abl e, the options are separated by a /. The paraneters
may be punched in any order and may extend to columm 79.
The | ast paranmeter nust be followed by at |east one blank
colum. The C$OPTIONS or $JOB card scan will be terninated
upon encountering the first blank in the options field. |If
an option is mispunched a warning nessage will be issued but
the scan for remaining paraneters (if any) is continued. |If
any parameter is specified nore than once, the right-nost
val ue i s used. The C$OPTIONS card was introduced to allow
the programmer to change conpile- or execution-tinme options
wi thin the program Use of the CSOPTIONS card is shown in
subsection 3.2.2 on page 10.

3.1.1 COWPI LER CONTROL CPTI ONS
(Mime=s / (m / (ms) / (3)

Specifies the tine, "in nminutes and seconds, to be used as
the upper limt for execution of your program

WATFI V OPTI ONS Page 6

JOB CARD FORMAT

(P)ages=n / 999

Speci fies the maxi mum nunber of pages of output you wish to
al ow your programto produce at execution tine.

(L)ines=n / 63

Specifies the number of lines that wll be printed per page
at conpile and execution tine. If n is set to 0, WATFIV
will suppress all conpiler-generated page ejects; the page
count will be incremented after every 63 lines printed. |If
nis greater than 66 and the job is run with the DEBUG:®
parm the lines per page will be reset to 66.

CHECK / NOCHECK / FREE
The CHECK option will cause the conpiler to check, at
execution time, for attenpted use of variables which have
not been assigned a val ue (undefined vari abl es).

Using the NOCHECK option suppresses this execution-tinme
checking of wundefined variables (except those used as
subscripts of arrays), thereby reducing the amount of object
code produced and execution tinme consuned. (Not e: NOCHECK
does not suspend subscript error checking; for exanple,
attenpting to use an wundefinied variable as an array
subscript when NOCHECK is in effect would result in an error
nessage indicating that the subscript is undefined.

The FREE option is the sane as CHECK, but WATFIV wll
initiate execution of your program even if conpile-tinme
errors were encountered. |f an executable statenent which
contained a source error is subsequently encountered,
execution is term nated.

KP=29 / 26

KP=29 specifies that the programwas punched on a nodel 029
(EBCDI C) keypunch. KP=26 indicates that it was punched on
an 026 (BCD) keypunch. Al WATFIV programs typed on any
key-driven terminal are in 29 keypunch node.

LI ST / NOLI ST

LI ST causes the conpiler to produce a source listing of the
program NOLI ST suppresses this listing.

LI BLI ST / NOLI BLI ST
LI BLI ST causes the conpiler to produce a listing of the
source subprograns retrieved from the subprogramlibraries.
NOLI BLI ST suppresses this listing of the library routines.
This option is not in effect if encountered in a subprogram
library. Note that the LIST/NCLIST and LIBLI ST/ NOLIBLI ST

(1) The DEBUG parmis explained in subsection 3.3 on page 12.

WATFI V OPTI ONS Page 7

JOB CARD FORMAT

paraneters are independent.
WARN / NOWARN

WARN causes the conpiler to print all diagnostics of a
severity less than a fatal error. NOWARN suppresses the
printing of these nessages.

EXT / NOEXT

EXT causes the conpiler to print all extension nessages,
that is, indications of any WATFIV features that nmay not
wor k under an | BM FORTRAN conpiler. NOEXT suppresses all
ext ensi on nessages.

PGVENNNNNn
If the WATFIV programto be executed is a mainline program
that is stored in a Ilibrary, it can be accessed by

specifying its name as a "PGW" operand.

SUB / NOsSUB
Pseudo- Vari abl e Di nensioning (PVD) was inplenmented i n WATFI V
to ease the programmer's task of inplenenting existing
prograns which use non-standard FORTRAN conventions for
passing arrays to subprograns. VWATFIV will allow a
subprogram whi ch receives an array through its argunent |ist
(this is called a subprogram dummy array) to have a
rightnost dinmension of 1. Wth PVD, this rightnost dinension
of the "dummy" array wll be adjusted by the conpiler to
occupy as nuch as possible of the storage allocated to the
calling array. For such subprogram arrays, the option SUB
causes checking to be done to ensure that each subscript
used in this "dumy" array does not exceed its linmt as
defined in the subprogram Specifying NOSUB will pernit
access to any nmenber of the dummy array, as long as this
array element is within the storage allocated to the calling
array.

3.1.2 PROFI LER CONTROL OPTI ONS

The options for the WATFIV PROFI LER (which is discussed in
subsection 6.3.1 on page 37) are specified in the sane
manner as the above conpiler options. They cause WATFIV to
produce profiler output for the sections marked by C$PROFON
and CPPROFOFF cards described below. If no CSPROFOFF is
encountered, all source statenments fromthe C$PROFON card
on, including any from the library, are profiled. Thr ee
different types of profiler output are avail able, and can be
obt ai ned by using one or nmore of the follow ng options (the
| ast encountered form of each option will determ ne whether
the correspondi ng output is produced):

WATFI V OPTI ONS Page 8

JOB CARD FORMAT

PROFC / NOPROFC

PROFC turns on the profile count option; NOPROFC turns it
of f.

PROFP / NOPROFP

PROFP turns on the percentage histogramoption; NOPROFP
turns it off.

PROFA / NOPROFA

Turns on the absolute histogramoption; NOPROFA turns it
of f.

PROF / NOPROF

PROF i s equi val ent to specifying PROFC, PROFP, and PROFA;
NOPROF is equival ent to NOPROFC, NOPROFP, and NOPRCOFA.

C$PROFON / C$PROFOFF
The C$PROFON card will activate the accunmul ati on of PROFILER
statistics. The C$]PROFOFF card will disable this collection.
Any nunber of groups of statenents can be surrounded by the
C$PROFON and C$PROFOFF cards and will be displayed in the
PROFI LER output. This control card nust be used in

conjunction with the PROFILER control options on the $JOB or
C$OPTI ONS CARD.

3.2 WATFI V CONTROL CARDS

The following control cards may be placed anywhere in the
source program They nust be punched with a 'C$ in colums
1 and 2. WATFIV currently supports a few C$... cards not
described in this section. They are merely earlier
i mpl ement ati ons of features which are descibed in subsection
3.1.1 on page 6. Users should attenpt to use the newy
i ntroduced C$OPTIONS card. No war ni ng/ ext ensi on messages
are issued to flag the use of these earlier control cards.

x 3.2.1 CONTROL CARDS TO EDI T SCURCE LI STI NGS

The following control cards are never printed and can be
used for the final "production run" to nake the output | ook
nore presentable. These control cards provide no page or
I'ine skipping while the NOLIST option is in effect.

C$EJECT
This control card causes the conpiler to skip to the top of
the next page to continue the listing of the source program

WATFI V. CONTROL CARDS Page 9

JOB CARD FORMAT

C$SPACE n / 1
The insertion of this control card will cause the conpi | er
to leave n blank Iines in the source listing.
A source deck using these new cards might be as foll ows:
$JCB D9999JCE. USER, NOLI ST
cards not to be listed
C$OPTI ONS LI ST

cards to be listed

END
C$EJECT

subprograns
C$SPACE

END
$ENTRY

data cards

These control cards can be used to advantage when a |arge
program is being tested. By suppressing print in areas
where code has not been changed, the wuser can save on
machine printout time and thus have the job run nore
econom cal | y.

3.2.2 OTHER WATFI V CONTROL CARDS

C$PROFON / C$PROFOFF

The C$PROFON card will activate the generation of PROFILER
statistics. The C$PROFOFF card will disable this collection
of PROFILER statistics. Any nunber of groups of statenents
can be surrounded by the C$PROFON and C$PROFOFF cards and
will be displayed in the PROFILER output. This control card
nust be used w th the PROF option on the $JOB or CSOPTI ONS
card.

C$I SNON / C3$1 SNOFF
The C$ISNON control card causes the execution-time traci ng

of any following statenents until the C3ISNOFF card is
encountered. At |east one executable statement nust precede

WATFI V. CONTROL CARDS Page 10

I+

JOB CARD FORMAT

a C3ISNON card or a warning nmessage is given. This is an
execution-tine control card in the sense that object code is
generated for these control cards which nust be executed to
activate or deactivate the "I SN trace".

C$OPTI ONS

This control card provides the programmer with the facility
of changing options part way through the program

Wth the recent proliferation of options available on the
$JOB card for WATFIV, the C$OPTIONS card has been introduced
to give the user nore flexibility. This card may contain
any options permitted on WATFIV's $JOB card. An exanpl e of
possi bl e applications of this new control card foll ows:

$JOB VATFI V
REAL ARRAY (10, 10)

CALL SUB26 (ARGL, AR®)
CALL PVD (ARRAY)

END

C
C User changes keypunch nbde to BCD and
C pernmts extensions to be printed
C
C$OPTI ONS KP=26, EXT
C

SUBROUTI NE SUB26 (X, Y)

END
C
C User reverts back to EBCDI C and suppresses
C source listing; the NOSUB option will permt
C the programmer to specify any subscript for
C array MATRI X as long as the array el enent
C falls within the bounds of ARRAY.
C

WATFI V. CONTROL CARDS Page 11

X

JOB CARD FORMAT

C$OPTI ONS KP=29, NOLI ST, NOSUB

C
SUBROUTI NE PVD (MATRI X)
REAL MATRI X (10, 1)

MATRI X (50, 2) =5

C User séts up options of 40 |ines/page
C

C$OPTI ONS LI NES=40

$ENTRY

DATA

Using this feature, different options can be specified in
various sections of the program

3.3 STUDENT JOB STREAM ENVI RONMENT

Besi des WATFIV's normal node of operation, a student job
stream envi ronnent can be activated by passing the paraneter
' DEBUG . In this environment, object decks are disabled
when encountered in the input streamand all direct-access
I/ O statenments are given execution-tinme error nessages. The
time, page, and Iline count also have a default and maxi mum
as follows:

DEFAULT 2 +
DEFAULT 2 5 63
MAXI MUM 3 10 66

STUDENT JOB STREAM ENVI RONVENT Page 12

4.

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

4.1 USI NG WATFI V UNDER TSO

A command procedure has been distributed with TSO WATFI V but
it is likely that each installation wll nodify this
procedure to nmeet its own requirenents.

The standard procedure is called WATFIV and will default to
doing all 1/Oto the termnal. The synbolic keyword operands
I NPUT and OUTPUT may be used to specify a file referenced by
FTO5F001 and FTO6F001. For a nore conplete description of
the WATFIV conmand type HELP WATFI V.

4.2 USI NG WATFI V UNDER CVB

An interface has been witten for WATFIV to sinplify its use
under CMs and to nake it nore flexible by taking advantage
of CM5 facilities. The interface allows a user to type a
programdirectly to WATFIV or to submit a programresiding
inadisk filetothe conpiler. Miltiple filenanes nay be
specified for input and using the options described bel ow,
it is possible to direct unit 6 output (listing output) to
the printer, the terminal or a disk file.

Further options allow the user to specify executi on node and
to have certain output typed at the terminal. The interface
routine provides FILEDEFs for the standard input and out put
units, 5 and 6, as well as for WATLIB, the function library.
Previously defined FILEDEFs are not overridden. Thus, the
user nmy, for exanple, input a program from a tape by
speci fying a tape FILEDEF for unit 5 and issuing the WATFIV
conmand (below) with a filename *, or the nanme of any

FORTRAN file. If a library concatenation has been
previously set up with a 'GOBAL MACLIB ...' command, it
will not be overridden by WATLIB's FILEDEF and the 'WATLIB
MACLIB' library will not be available unless it appeared in

the GLOBAL |ist. TXTLIB libraries will not be accessed by
WATFI'V, but conpatible object code subroutines may be used
froma MACLI B. Text and FORTRAN subroutines nust be added
to the MACLIB as files of type 'COPY' with the subroutine
name as file name (see the MACLIB command in the |IBM 370
Command Language User's Guide). The following conmrand
prototype may be used to i nvoke the WATFIV conpiler.

WATFIV fn-i ... (Disk Concat NODebug NOXtype Term NOSt ats)
Print NOConcat Debug XType NOTerm St at s
TYpe NOWar n
Ext
The fn-i (i=1,...) are the input filenanmes. They nust be

nanmes of disk files (of type FORTRAN or WATFIV) or *, which

USI NG WATFI V UNDER CMS Page 13

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

specifies that input is to be taken fromthe termnal.
WATFIV wll read all input files as one continuous job
stream If * is specified as the first filenane, a $JOB
card with the LIST option is provided and TYPE and STATS
will be the default output option. Since WATFIV itself
wites directly to the terminal there is no facility to
elimnate the printing of job statistics. Since WATFIV is a
batch processor it will attenpt to read another job when the
first is conpleted. If you do not wish to type in another
job, hit <carriage-return to signal end-of-file (end-of-
batch). Refer to exanples in subsection 4.2.2 on page 17
for further explanation.

4.2.1 OPTIONS

The default options for each group appear first. The
shortest abbreviation acceptable for each option is shown in
uppercase letters. |If nore than one of the options fromthe
sane group are specified, the last one typed is taken. The
options may be typed in any order and nust be separated by
at | east one blank (no conmas).

Li sting output options:

Dl sk The program listing and all wunit 6
output is wittento a disk file with .
filename fn-1 and filetype LISTING if
CONCAT is in effect. A filename of
WATFIV will be generated if fn-1 is *.
The NOCONCAT option will cause a
separate output disk file with filenane
fn-i for each input file.

Print (PRT) The Ilisting and wunit 6 output are
spooled to the virtual printer.

TYpe (*) The listing and unit 6 output are typed

at the termnal.

Note: If fn-1is *, then TYPE will becone the default and
all options controlling execution-tinme output, diagnostic
nmessages and job statistics will have no effect. The default
CONCAT option will cause output to be placed in a WATFIV
LISTING file. 1In the case of wusing the NOCONCAT option, if
two program batches are input to WATFIV fromthe term nal,
the listing file for the second will overwite and destroy
the listing file for the first.

USI NG WATFI V UNDER CMS Page 14

I+

,th

Conpi

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

| er-node options:

Concat This option causes WATFIV to treat all

NOCon

Execu

input files as one continuous job
stream Al output is witten to a disk
file wwth a filenane of the first file
speci fied (fn-1) and filetype of
LISTING |If * is specified for fn-1 the
filename will default to WATFIV and a
$JOB card wll be generated. Hitting
carriage return signifies end of file
for termnal input.

cat This option causes each input file to be
treated as a separate batch. |Input for
each filenane is conpiled separately.
Each fn-i should contain at |east one
compl ete WATFIV j ob.

ti on-npde options:

NODeb

Debug

Execu

ug WATFIV wil | execute normally without the
interactive execution-tine debuggi ng
facilities.

WATFIV wil execute in interactive
debuggi ng nbde. See subsection 4.3.1 on
page 18 for nore information regarding
debugging facilities.

The remaining options enable the user to elect to have unit
6 output typed at the termi nal when DI SK or PRINT has been
specified for listing output. The output selected by these
options for the terminal will also appear on the listing.
These options will have NO effect if the listing output
option is TYPE

tion-time output options:

NOXt y

XType

pe This option may be used to negate an
earlier XTYPE option speci fication.
O herwi se, this option has no effect.

Qutput on wunit 6 will be typed at the
termnal at execution-time as well as
being witten to the printer or a disk
file as specified by the listing output
option.

USI NG WATFI V UNDER CMS Page 15

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

Di agnosti c- nessage opti ons:

Term

Conpil e-tine error and warni ng nessages,
along with the statenments in error, wll
be typed at the termnal. Execution tine
errors and traceback information wll
al so be typed.

NOTer m No error, warning or extension nessages

will be typed at the terminal if not in
DEBUG npde. |If DEBUG is specified,
conpile-tine nessages will not be typed
but execution-tine error nessages wll
appear at the termnal.

NOWar n Error nessages will be typed at the

Ext

termnal, but warning and extension
nessages will not.

Extension nessages will be typed in
addition to error and warni ng messages.

Note that when the statenents in error are typed at the
termnal by the interface routine, the naximumlength for a
statenent is 20 cards (i.e., 19 continuation cards).
Installations allowing |longer statements wll get, at nost,
the last 20 lines of an erroneous statenment typed, unless
they nodify this interface to neet their needs.

Job statistics options:

NCSt at s No end-of-job statistics will be typed

Stats

at the termnal.

End- of -job statistics wll be typed at
the term nal.

USI NG WATFI V UNDER CMS Page 16

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

4.2.2 USING THE Cvs WATFI V COVVAND
An exanmpl e of the use of the WATFIV comrand fol | ows.
The file JOB WATFIV contains a $JOB card, wth NOLIST
specified as an option. The file ENTRY WATFIV contains a
$ENTRY card. The file EXI FORTRAN contains a small FORTRAN
program that reads fromunit 5 and wites on unit 6 until
an end-of file condition is encountered on unit 5.
watfiv job exl entry *(type
$J0B WATFI V C, KP=29, NOLI ST
$ENTRY
9 (The keyboard unl ocked at this point for input)
0. 9000000E 01 0. 8100000E 02
(A blank Iine was entered to signify end-of-file.)

CORE USAGE ...

C$STOP (This card was generated by WATFI V)
R

Anot her exanple follows. The file DATA WATFIV contains one
record with a data card.

watfiv job exl entry data(xtype
0. 788999E 02 0.6225207E 04
CORE USAGE ...

C$STOP (This card was generated by WATFI V)
R

USI NG WATFI V UNDER CMS Page 17

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

4.3 USI NG THE | NTERACTI VE DEBUGA NG FACI LI TI ES

4.3.1 | NTRODUCTI ON

A new package has been devel oped to suppl emrent the debuggi ng
facilities of the WATFIV conpiler. Essential |y, it
i ntroduces the capability of nonitoring the execution of a
WATFI V programinteractively, froma ternminal through CVS or
TSO. No additions or changes to your prograns are required
in order to use this facility.

4.3.2 COWAND SET

The command set is fairly small and sinple, yet it provides
some very useful debugging aids. It enables you to trace
portions of your program halt execution at various points,
di splay or nodify programvariables, alter the logic flow of
your program and correct certain execution-tinme errors
interactively. A list of the commands and their functions
fol | ow

TRACE | SN - RANGE TURNS ON TRACI NG I N G VEN RANGE

OFF

turns of f tracing.

STOP i sn specifies stop |location. Execution may

al so be stopped with the attention key
on the termn nal

RUN resunme execution where program st opped.

GOTO st nt - no. resunme execution at line |labelled by
gi ven statenment nunber.

A? di splay contents of variable A, where A
may be a sinple variable, array nane, or
array elenment (in the current program
segment é+0) .

A = val ue di spl ay contents of variable A where A
may be a sinple variable, array nane, or
array elenment (in the current program
segment) .

(1) isn: instruction sequence nunber (line nunber)

(2) A program segnent is a mainline programor any subprogram

USI NG THE | NTERACTI VE DEBUGA NG FACI LI TI ES Page 18

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

EXIT termnate debug session and return to
CMB or TSO

Execution-Tinme errors if the error can be corrected by the
nodi fication of variables, execution may
be restarted wher e i nterrupted.

O herwise, the error nay be branched
around with the GOIO command, or the
EXIT conmand may be used.

Debuggi ng commands are issued when the program is not
executing and will be pronpted for by the printing of 'CMD:'
at the termnal. The first comand pronpt will be typed
after successful conpilation of the program If conpile-
tinme errors are encountered in the program WATFIV will
return control to CMS or TSO wthout issuing a comrand
pronpt, unless the FREE option on the $JOB or C$OPTI ONS card

has been specified. |f FREE is specified and source errors
exist in the program unpredictable results using debuggi ng
comrands may result. Mre detailed i nformati on about

speci fic commands fol |l ows.

TRACI NG
The TRACE conmand causes the line nunmbers within the
specified range to be printed whenever the lines are
executed (i.e., 'LINE n'" s printed when Iline n is

executed). The range nust consist of two integers separated
by a comma or blanks. The integers do not necessarily have
to be valid line nunbers fromthe program For exanple

TRACE 1, 999

will trace the entire programif its length is not nore than
999 lines. Only one tracing range may be specified at one
tine. |If more than one trace command is issued, the range
specified by the nost recent one will be in effect. Tracing
may be turned off altogether with the OFF conmand.

STOPPI NG

Simlarly, only one STOP location is in effect at one tine
and this will be the one npst recently specified. Wen the
program halts execution at the specified line, the stop
location will no longer be in effect.

When using the attention key to stop program execution, it
may be found that nore statenents have been executed than

USI NG THE | NTERACTI VE DEBUGA NG FACI LI TI ES Page 19

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

was supposed. If the attention key is wused to stop
execution while tracing a program often the |line at which
the program stops is not the sane line for which the trace
last printed a line nunber. It mnight also be noticed that,
when the program is stopped in this way, the line at which
it stopped is beyond a print statenment in the sequence of
execution and the print |line has not yet appeared on the
term nal . These situations arise because the program
conti nues executing after the conmand to wite a line to the
termnal has been issued (by the program itself, or by
WATFI V). That is, execution does not wait for the line to
actually be printed, since this would slow it down
consi derabl y.

Goro

The GOTO conmand nmay only be applied to statenent nunbers
local to the current program segnment. WATFIV issues warning
nmessages for statenent nunmbers which are not referenced and
are on statenents following a transfer. Statenent nunbers,
for which such warni ngs have been issued, may not be used as
operands of the GOTO command. Note that if execution is
started with a GOTOin the mddle of a DO LOOP, unexpected
results may occur if DO index variables have not been
appropriately nodified.

4.3.3 MODI FYI NG AND DI SPLAYI NG VARI ABLES

The contents of a variable may be displayed by typing the
variable name followed by a question nmark. The contents
will be typed in a format appropriate to the variable type.
If an entire array is being displayed, the elenents will be
printed in storage order, as in WATFIV free format output
(see FORTRAN IV W TH WATFOR AND VATFI V:
CRESS/ DI RKSEN GRAHAM ch. 8 pp. 115-116). Simlarly, when
nodi fying a variable, the new value follow ng the equals
sign should conformto WATFIV free format rules for input.

A restriction on variable nodification is that the new val ue
must fit on one line. |If an array being nodified has nore
elenents than will fit on one line, an error message wll be
given; however, if the variable is then displayed, it wll
be found that the values which fit on the Iine have been
assigned to the appropriate elenents of the array. Not e
that only variables which are accessible to the current
program segnent nay be di spl ayed or nodified.

USI NG THE | NTERACTI VE DEBUGA NG FACI LI TI ES Page 20

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

4.3.4 EFFI Cl ENCY CONSI DERATI ONS

The processing of debugging commands clearly takes tinme and
thus will increase the cost of executing a program The
di splay and nodification of variables can be costly if the
program has a large nunber of variables, since these
comands require a search of the data area for the variable
name specified. Simlarly, the GOIO conmrand involves a
search of the statement nunber list to find the address of
the object code for the statement with the given statenent
nunber .

Tracing and stop locations require the nonitoring of line
nunbers during execution. These commands then add sone
overhead to execution time. Tracing also causes extra code
to be executed to print the line nunber each tine aline is

executed w thin the specified range. Thus, to mnimze
execution-time overhead, tracing should be limted to as
small a range as possible and should only be used when
necessary. Wen neither tracing nor a stop locationis in
ef fect, however, no nonitoring overhead is added to

execution tine.
4.4 | NTERACTI VE DEBUGE NG OF WATFIV JOBS

As nost FORTRAN progranmmers probably already know, WATFIV is
an excellent debugging conpiler. But even with WATFIV' s
superior diagnostic capabilities, debugging a program can be
a tedious job. The programmer finds a nistake, re-edits the
file containing the program (or re-types the card), and re-
runs the program Sone of this tediumcan be relieved by
using WATFIV Interactive Debug under CMS or TSO To use
this feature, all that is needed is an up-to-date source
listing of a program that has not been debugged, and, of
course, the programitself. Then, the programcan be run
under Debug node; when an error condition is encountered
control is returned to the programmer, who has the option of
displaying the value of any variable (sinple variables
arrays, or array elenents), re-assigning the value of any
variable, branching to any statenment nunber in the program
segnment, or instructing the conpiler to return control to
himor her at any specified |line. Wiile doing this, the
programmer can nmark on the listing any changes which are
necessary to make the programrun; all that is then required
to finish debugging is to edit the program once, making al
necessary changes, and then re-run it once, to ensure that
all required changes have been nade.

I NTERACTI VE DEBUGA NG OF WATFIV JOBS Page 21

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

An exanpl e of the use of Interactive Debug foll ows:

$JOB
1 REAL A(10), B(10)
2 DO 2 1=1,9
3 A(lI+1)=1*2.0/0. 19
4 2 B(1)=I*SQRT(1*2.1)/4.3
5 READ, N
6 14 CALL STLINE(A B, N, X,Y)
7 PRI NT, X, Y
8 STOP
9 END
10 SUBROUTI NE STLINE (X, Y, N, A B)
11 REAL X(N), Y(N)
12 65 SX = 0.0
13 SY = 0.0
14 SXX = 0.0
15 SXY = 0.0
16 25 DO9 1 =1, NN
17 XIo= X(1)
18 SX = SX + X
19 SXX = SXX + XI * Xl
20 Yl = Y(I)
21 SXY = SXY + XI * VI
22 SY = SY + VI
23 9 CONTI NUE
24 XN =
25 DEN = XN * SXX - SX * SX
26 A= (XN * SXY - SY * SX) / DEN
27 B = (SXX* SY - SX* SXY) / DEN
28 86 RETURN
29 END
$ENTRY
This is the programthat will be debugged. It is obvious

that it would probably be unnecessary to enpl oy sonething as
powerful as Interactive Debug on a programthis size; its
real capabilities are best denonstrated on a |arge program
However, a small programwill be used to nake the exanple
easier to follow. The subroutine STLINE accepts two real
arrays containing the X-coordinate and Y-coordi nate of a set
of points, and an integer specifying the nunber of points.
It fits a straight Iline through them and returns the
coefficients of the equation.

The program and data card is stored in the file "STLINE
FORTRAN A". The data card follows the $ENTRY card and
contains the value 10.4. The option DEBUG is specified, in
order to have the programrun under Debug node, the option
XTYPE is also specified to cause execution-time output to be
typed at the term nal.

I NTERACTI VE DEBUGA NG OF WATFIV JOBS Page 22

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

watfiv stline (xtype debug
CNVD:

n?

UUuUUUuuuuuuy

CMVD:
a(6)?

UUUUUUuuuuuuuuuy

CMVD:

As shown above, the lines in |ower-case are the ones entered
at the termnal and those in upper-case are the responses.
The programis conpiled, but before it begins execution, it
returns control to the user, by typing CMD: (at this point,
the user may enter any Debug command). The values of a few
variables are displayed by typing the variable nane,
i medi ately followed by a ?, but since execution has not yet
begun, everything is, of course, undefined. There is really
nothing to do but Ilet the programrun, which is done by
entering the command RUN

run
*** ERROR*** | MPROPER CHARACTER SEQUENCE OR | NVALI D CHARACTER | N | NPUT DATA
FI RST 80 CHARACTERS OF | NPUT RECORD ARE->'10. 4 '
EXECUTI ON Tl ME ERROR. ENTER CORRECTION OR EXI T
STOPPED AT LI NE 5
CMD:

The READ statenent at line 5 is executed, and receives a
value 10.4. This produces an error from WATFIV, because N
is an | NTEGER vari abl e, and a REAL val ue was specifed.

n?
UUUUUUUUUUUU
CM\D:

n=10

CMD:

goto 14

ERROR A DO LOOP PARAMETER |I'S UNDEFI NED OR OUT OF RANGE.

NN HAS THE VALUE -2139062144
EXECUTI ON TI ME ERROR. ENTER CORRECTION OR EXI T
STOPPED AT LI NE 16
CMD:

The value of N is displayed and found to be still undefined,
because of the error. It is assigned a value of 10, and
then the READ statenent is by-passed by using a GOTO 14 to
transfer to the statenent |abelled 14, the next statenent.
Note that a GOTO can only transfer control to a statenent

I NTERACTI VE DEBUGA NG OF WATFIV JOBS Page 23

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

| abel, not an internal statement nunber (ISN). Al l other
Debug commands operate on ISNs. An error at 1SN 16 is then
received, stating that NN is undefined or out of range

nn?
UUUUUUUUUUUU
CMD:
nn=10
CMD:
run
*** ERROR*** VALUE OF X(1) |S UNDEFI NED
EXECUTI ON TI ME ERROR. ENTER CORRECTI ON OR EXI T
STOPPED AT LI NE 17
CMD:
x(1)?
UUUUUUUUUUUUUUU
CMD:

The value of NN is displayed and found indeed to be
undefined. By examining the program it is determne that
this was a typing error, and NN should be just N To
rectify this problem assign NN the same value that N has

10, and proceed.

At line 17, it is found that X(1) is wundefined, and
displaying its value verifies this fact. Looking at the
algorithmin the mainline programfor defining the array A
(which gets passed to the array X in the subroutine) it can
be seen that the programmer indeed botched it, and neglected
to define the first element.

x(1)=3.98
CMVD:
X?
0. 3980000E 01 0.1052632E 02 0.2105263E 02 0.3157893E 02
0.4210526E 02 0.5263158E 02 0.6315788E 02 0.7368420E 02
0.8421053E 02 0.9473683E 02
CMD:
run
*** ERROR*** VALUE OF Y(10) |'S UNDEFI NED
EXECUTI ON TI ME ERROR. ENTER CORRECTION OR EXI T
STOPPED AT LI NE 20
CMVD:

X(1) is defined, and then the entire X array is displayed

since there are no nore undefined values, execution is
allowed to continue. However, a simlar error has caused
the tenth elenent of the array Y to be undefined.

I NTERACTI VE DEBUGA NG OF WATFIV JOBS Page 24

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

y(0)=9.6
*** ERROR*** SUBSCRI PT NUMBER 1 OF Y HAS THE VALUE
DEBUG ERROR. RE- ENTER

CMD:

y(10)=9.6

CMD:

stop 28
C\VD:

run
STOPPED AT LI NE 28
CM\D:

While trying to enter a value for Y(10), a 0 instead of a 10

was inadvertently typed. Debug informs the user

of this

error, and a correct value is entered. The wuser then
deci des that before | eaving the subroutine, the values of A
and B will be examned, so the conpiler is instructed to

stop when it reaches line 28, the RETURN statenent,
the user control

a?
0. 1068893E 00
C\VD:
b?
-0.4032579E 00
CMD:
x(3)=7.89
CMVD:
y(7)=4.82
CMD:

n=9
CMD:
nn=9
CMVD:
stop 28
CM\D:
goto 65
STOPPED AT LI NE 28
CMD:
a?
0. 9692568E- 01
CMD:
b?
0.1816178E-01
CMVD:

and give

The values of A and B are exanmined, sone variables are

reset, the conpiler is asked to stop again at 28
sent back to the statenment |abelled 65

I NTERACTI VE DEBUGA NG OF WATFIV JOBS

and is

Page 25

USI NG WATFI V UNDER | NTERACTI VE SYSTEMS

CVMD. nn=7

CMD: trace 12,999

CMD: goto 65

LI NE 12

LI NE 13

LI NE 14

LI NE 15

LI NE 16

LI NE 17

LI NE 18

LI NE 19

LI NE 20

LI NE 21

LI NE 22

LI NE 17

LI NE 18

LI NE 19

LI NE 20

LI NE '

CVMD: off

CVD: stop 28

CMD: run

STOPPED AT LI NE 28

CVD. a?

0. 9692568E- 01
CVD: b?
0.1816178E-01

CVMD: exit

R(00004) ;

This is a sinple program with no branches, but if it did
have a nunber of GO TGs, it might be beneficial to have a
TRACE of all ISNs that are executed. Sonme variables are
reset, and WATFIV is instructed to trace all |SNs between 12
and 999, that is, the end of the program Control is
transferred to the statenment |abelled 65. After letting
some of the trace nessages print, the user decides that no
further output is required, interrupts with the attention or
break key, and stops tracing by saying OFF. The STOP is
reset at 28, and execution continues; when the stop at 28 is
encountered A and B are exanined and found to be fine, so it
is wunnecessary to return to the main programand WATFIV
Debug is left by specifying EXIT. All that remains nowis to
edit the original program and nmake necessary changes.

I NTERACTI VE DEBUGA NG OF WATFI'V JOBS Page 26

JOB ACCOUNTI NG

5. JOB ACCOUNTI NG

The last three lines of output for each job are generated by
the conpiler and consist of certain accounting infornation
Specifically, the infornmation provided is

- the time, in seconds, taken to conpile the
program
- t he time, in seconds, that the program

execut edéod

- the anount, in bytes, of object codeés 0
generated for the program

- the anpbunt, in bytes, of storage used by the
program for arrays, conmmon bl ocks, and
equi val enced variables (the so-called 'array
area')

- the total storage, in bytes, that was avail able
for the run to contain object code and the array
area

- the nunmber of errors, warnings and extensions
i ssued for the program

- the date and time the programfini shed execution

- the rel ease date of version, and | evel of WATFIV
in use

An exanpl e of accounting output follows:

CORE USAGE OBJECT CCDE = 320 BYTES, ARRAY AREA = 0 BYTES
TOTAL AREA AVAI LABLE = 39008 BYTES
DI AGNOSTI CS NUMBER OF ERRORS = 2, NUMBER OF WARNINGS = 3
NUMBER OF EXTENSIONS = 1
COWPI LE TIME = 0.02 SEC, EXECUTION TIME = 1.23 SEC,
01.26. 02 SATURDAY 14 FEB 76 WATFIV - JAN 1976

(1) The time required to print out the PROFILER statistics is
not included in this val ue.

(2) This includes constants, tenporaries, non- equi val enced

simple variables, save areas, any routines |loaded fromthe
object library, etc.

JOB ACCOUNTI NG Page 27

6.

DI AGNCSTI CS

DI AGNOSTI CS

6.1 ERROR DI AGNCSTI CS

WATFI V issues conpile-tinme diagnostics at three |evels of
severity - EXTENSI ON, WARNING and ERROR A diagnostic is
generated in-line in the source listing, immediately bel ow
the statement in which the condition was detected.

An EXTENSI ON nessage results if an extension of the FORTRAN
| anguage al | owed by WATFIV was used. These are described in
section 7.1 on page 46. The diagnostic is issued so that
the problemcan be elinmnated, should the programbe re-
conmpiled with 1BM s FORTRAN conpil ers.

A WARNING is issued for |anguage violations for which the
conmpi l er can take sone reasonable corrective action, e.g.,
truncating a name of nore than 6 characters.

An ERROR is issued when a | anguage violation severe enough
to prevent execution is encountered. In this case, the
conpiler will normally inhibit execution of the program
unl ess the FREE option has been specified.

At execution tinme, all errors are fataléo® in the sense that
the compiler will terninate the current job and proceed to
the next job in the batch. For execution-tinme errors, the
conpi l er generates a diagnostic and a subprogram traceback
inthe printed output. This gives the line nunmber of the
statenent in which the error occurred, the nane of the
subprogram in which the error occurred, the nane of the
subprogramwhich called it, etc., all the way back to the
main programwhich is referred to as MPROG (The line
number of each statenment appears to the left of it in the
source listing. This line nunber is conpiler generated, and
is distinct from and should not be confused with, any
FORTRAN st at ement nunber the programer may have assigned to
a statenent).

(1)

Excepti on: If a hardware 1/O error occurs and the
programer has specified an ERR= return in the affected 1/0
statenent, an error nessage is given and execution proceeds
at the statenment specified by the ERR=.

ERROR DI AGNCSTI CS Page 28

DI AGNCSTI CS

Exanpl e of a traceback

*** ERROR* * * VALUE OF A

IS DEFI NED
PROGRAM WAS EXECUTI NG LI NE 15
9
4

N

N ROUTI NE RTN2 ~ WHEN TERM NATI ON OCCURRED
N ROUTINE RTN1 ~ WHEN TERM NATI ON OCCURRED
N RQUTI NE M PROG WHEN TERM NATI ON OCCURRED

PROGRAM WAS EXECUTI NG LI NE
PROGRAM WAS EXECUTI NG LI NE

One of the design goals of WATFIV is to supply good
di agnostics. W, the inplenmentors, think the goal has been
well net, but, sad to say, we have heard that a few users of
the conpiler at our installation have found sone of the
di agnostic nessages to be vague, obfuscatory, or hubristic.

It is hoped that the followi ng paragraphs will sinplify, for
the user, the interpretation of some of the error nessages
whi ch may, at present, be too brief or nmmy contain special
words with meanings entirely clear only to the conpiler
i mpl ement or s.

The user should be aware that an error in one statement may
lead to apparent errors in subsequent statenments. The case
may be that, if the first error is corrected, the others
wi Il disappear as well on a subsequent conpilation. This is
particularly true if the first error occurred in a
specification statenent. The reason is that the conpiler
scans each source statenment, colum by colum fromleft to
right, and usually abandons conpilation of a statenent when
a syntax error is encountered. Thus, correct information in
a statement nay be ignored if it follows a colum which
contai ned an error

Consi der the follow ng programas an exanple

DI MENSI ON A(10) , B(104+C(10)
(1) =2

Both the first and second statenments will be flagged with
error messages - the first since there is no matching
parenthesis for the dinension of B; the second since the
conpiler, lacking know edge that C is an array because of
the previous error, assunes that the second statenment is a
definition of a statenent function C (Staterment function
definitions nust have variable nanmes, not constants, as
dumy argunents). The second error w |l disappear when the
first error has been corrected

The point is that the programer, when confronted wth an
error nessage, nmust do sone analysis to see if it is a rea

ERROR DI AGNCSTI CS Page 29

DI AGNCSTI CS

error, or nerely an apparent error arising froman error in
a previous statenent.

Certain of the error nessages generated by the conpiler
imply a knowl edge, on the programmer's part, of the left to
right scan of statenents. These nessages usually relate to
the syntax of statements, and contain the word 'expecting',
for exanple, the statenent

DI MENSI ON+A(10)

is flagged with the nmessage

EXPECTI NG SYMBOL, BUT + BEFORE A WAS FOUND

This inplies that the conpiler, scanning the statenment from
left to right, expected to find a synbol after the keyword
DIMENSION in order to consider the statenent syntactically
correct according to the rules of FORTRAN.

The following glossary is provided to define sonme terns
whi ch appear in the WATFIV diagnostics and which nay not
have a 'standard' or accept ed meaning to FORTRAN
progr anmmers.

FORTRAN keyword - a word, such as STOP, READ, GOTO that

identifies a FORTRAN st at enent .

Pr ogr am Segnent - a subroutine or function subprogram or

a nmain program

Sinple Variable - a variable which is not an array

ASSI GNED GOTO | ndex - a variable wused in an ASSIGN statenent
or ASSI GNED GOTO statenent, e.g., | is an
ASSIGNED GOTO Index in the follow ng
stat enent .

ASSIGN 5 to |
St at enent Numnber - & is a statenent nunber constant in
Const ant the foll owi ng statenent.

CALL SUBR(X, &5)

Qper at or - usually an arithnetic operator such as
B '-', etc., but generally any
delimter, e.g., '"(', "&, ',", etc.

ERROR DI AGNCSTI CS Page 30

DI AGNCSTI CS

End- of - St at enent - the inplied end-of-statement operator
that the conpiler expects to find at the
end of a correct statement.

Synbol - a synbolic nane, i.e., the nane of a
vari abl e, array, subprogram etc.

Tenporary - a value which is the result of
eval uating an expression. For exanple,
3.*A+2. is a 'tenporary' in the follow ng
st at ement .

CALL RTN (3.*A+2.)

Ar gunent - a value passed to a subprogram For
exanmple, A 3.5, SINX) are argunents in
the foll owi ng statenent.

CALL SP1(A 3.5, SIN(X))

Par anet er - a synbolic value used in a subprogram
and which is replaced by a real argument
when the subprogram is referenced at
execution tinme; sonetinmes called 'dunmy
argunents’ by ot her aut hor s. For
exanple, A and B are paraneters in the
foll owi ng statenent.

SUBROUTI NE EGGMOR(A, B)

DO | oop Par anet er - a sinple integer variable or integer
constant used to control the nunber of
tines a DOloop is per f or med. For
example: 1,3,J,2 are DOl oop paraneters
in the foll ow ng statenent.

DO 17 1=3,J,2
Obj ect of a DO - the last statenent of a DO | oop. The
statenent nunbered 15 is the object of
the DO loop defined by the statenent
nunbered 7 in the foll ow ng exanple.
7 DO 15 1=3,J,2

15 X(1) = A(1)*B(I)

ERROR DI AGNCSTI CS Page 31

Di nensi on

Subscri pt

Type

Mode

Def i ned

ERROR DI AGNCSTI CS

DI AGNCSTI CS

a value wused to declare the maxi mum
value that a subscript of an array nmay
assume at execution tine. For exanpl e
10, 15, and 5 are dinensions of Ain the
follow ng statenent.

DI MENSI ON A(10, 15, 5)

a value used to refer to a nmenber of an
array. For exanple, |, 7, and 3*K+12 are
subscripts of A in the followng
st at enent .

Y=A(1, 7, 3*K+12)

this usually refers to one of the types

LOG CAL, |INTEGER, REAL, COWLEX, (and
with WATFIV), CHARACTER. However, it may
refer to a particular sub-type. For
exanple, the following statenents define
X to have type REAL*4, A to have type
REAL*8, and Z to have type LOG CAL

REAL X*4, A*8
LOG CAL Z

this generally refers to the usage of a
synbolic name within a subprogram or a
program as a whol e. By usage, we nean
vari able nane, common block nane, sub-
program nanme, etc. The nane AB has node
'comon bl ock' in the statenent

COWDON / AB/ X, Y, Z

Sonetines it nmay include type as well,
e.g., the synbolic nane FN has npde
"REAL*8 function subprogrami in t he
foll owi ng exanpl e.

REAL FUNCTI ON FN*8 (A, B)

at conpile tine, we say the node and/or
type of a synbolic nanme is defined when
there is no longer any doubt what its
node and/or type mght be. The node
and/ or type can be established explicitly
from i nformation in specification
STATEMENTS THAT REFER TO THE SYMBOLIC
nanme, or inplicitly fromthe first use of
the name in a program segnent. Once the
node and/or type of a nanme have been

Page 32

Undef i ned

ERROR DI AGNCSTI CS

DI AGNCSTI CS

defined, they my not be redefined
Consi der the foll owi ng sequence of state-
ment s:

REAL |, J(10),K, L*8/1. D0/
DI MENSI ON | (5)

EXTERNAL K

MeL + FN(I1)
The first statenent defines the type of
all four nanes, |, J, K, L. Furthernore
it also defines the nodes of nanes J and
L. J is explicitly identified as an

array, and L is assumed to be a sinple
variable since it is initialized and
initialization constitutes a use of a
namne. The second and third statenents
explicitly define the nodes of nanes
and K as array and subprogram respec-
tively. The fourth statenment inplicitly
defines the node and type of names M and
FN since they are used in that statenent.
Since this is their first use or appear-
ance in the program their types are de-
termined from the usual FORTRAN first
letter rule, and their nodes are estab-
lished fromtheir wusage - Mis a sinple
i nt eger vari abl e, FN is a REAL* 4
function.

At execution tine, a variable or array
el enent or function nane is defined if it
has been assi gned a val ue

at execution time, a variable or array

element is said to be undefined if it has
not had a value assigned to it. For ex-
ample, if the statenent

X=Y

were the first statement of a main
program then, at execution tinme, Y would
be undefined since there would be no way
it could have had a value assigned to it.

WATFIV wi Il check your program at execu-
tion time for attenpts to use undefined
vari abl es unless you specify NOCHECK on
the $JOB card or C$OPTI ONS card.

Page 33

DI AGNCSTI CS

NOTES:

1. The aut hors of the conpiler do not advocate the use of
the FREE option; it is provided for those progranmers who
feel it is desirable to obtain sonme execution-tinme output,
even froma programwhich may contain serious conpile-tine
errors. Note that sone errors are of such a serious nature
that execution will be inhibited even if FREE is specified,
e.g., if menory space cannot be allocated to contain arrays
declared in the program

2. Under CHECK or FREE, the conpiler will term nate your
job if you use an undefined variable in an expression, i.e.,
if you attenpt sonme evaluation that involves a variable that
has not been assigned a value. However, the conpiler wll
all ow you to print undefined values w thout term nating your
program Such val ues appear on the page as a string of U s.

For exanple, if the statenents

=1
K=2
PRINT, I,J,K
were the first to be executed in a program the I|ine of

out put produced by the PRI NT statenent woul d appear as
1 UuuuuuuuuuuJ 2

Note that U s are still printed for undefined variables even
under NOCHECK. NOCHECK suppresses only the check for
attenpted use of undefined variables in the evaluation of
expressi ons.

3. EXTENSION and WARNI NG nessages nmay be suppressed from
the source |listing by specifying NCEXT and NOMRN as $J0B

card paraneters. It 1is a good practice not to suppress
these diagnostics in the initial stages of debugging a
pr ogram

4. Section 15.1 on page 108 of this manual contains a

complete list of all diagnostics that the WATFIV conpiler
can produce.

5. The follow ng conpiler-generated nanes appear in sone
di agnosti cs.

M PROG - nane of the main program
/1 - nanme of the blank common bl ock

ERROR DI AGNCSTI CS Page 34

DI AGNCSTI CS

x 6.2 CONTROL OPTI ONS FOR CERTAI N DI AGNOSTI CS

Six control options are available to control the printing
and generation of certain diagnostics. The WARN and NOWARN
options control the printing of conpiler-generated warning
and extensi on nessages; the EXT and NOEXT options control
the printing of conpiler-generated extension nessages; the
CHECK and NOCHECK options control the conpiler's checking of
undefi ned vari abl es.

If the conpiler encounters the NOMRN option in the source
deck, all warning nessages will be suppressed from that
point on. A C$OPTIONS WARN card will allow the warning
nmessages to be restarted if the NOMRN option was punched on
the $JOB or CPOPTIONS card. The generating of extension
nessages nmay be controlled in a simlar way by the EXT and
NCEXT opti ons.
When the NOCHECK option is encountered by the conpiler, it
bypasses the generation of object code that checks for
undefined variables at execution time. A C3OPTIONS CHECK
card causes the conpiler to generate the checking code if
NOCHECK was specified (or defaulted) as a $JOB or CSCPTI ONS
card paraneter.
The source deck using these cards mi ght be as foll ows:
$JOB D9999JCE. USER, NOMARN

conpi l e with "CHECK"

no war ni ng messages
C3$OPTI ONS NOCHECK, EXT

conpile with "NOCHECK" and print extension nessages

END

C$OPTI ONS CHECK, WARN

subpr ogr ans

conpile with "CHECK' and print warning nessages

END

$ENTRY

data cards

CONTROL OPTI ONS FOR CERTAI N DI AGNCSTI CS Page 35

DI AGNCSTI CS

These options allow local control of their function. This
can be useful if a programis being debugged in stages, with
routi nes being added or changed over a sequence of runs. |If
the NOCHECK option can be used because a segnment of a
programis known to be free of undefined variables, several
advant ages can result:

- less object code is generated; thus, a somewhat
| arger programcan be conpiled for a given ambunt of
avai |l abl e nmenory.

- the program wll run sonewhat faster since
the checking code is not executed.

CONTROL OPTI ONS FOR CERTAI N DI AGNCSTI CS Page 36

DI AGNCSTI CS

6. 3 WATFI V DEBUGG NG Al DS

x 6.3.1 EXECUTI ON- TI ME PRCFI LER

WATFIV is a powerful tool for the witing and debuggi ng of
FORTRAN prograns. The diagnostic messages and debugging
ai ds provided have helped get prograns into the "execution

phase" with a great saving in progranmer tine. However,
once the program has been successfully debugged and tested
and is ready for use in the "production" stage, little or no

feedback is available on what it is doing. The PROFILE
option of WATFIV is an attenpt to address this critical area
of programm ng and should be wused to find bottlenecks and
deficiencies once the programis working. This new WATFIV
feature will provide information concerning what segnents of
the program are being executed npst often. The output from
the WATFIV PROFI LER provides a frequency count of the nunber
of tines each statement was executed, and a hi stogram scal ed
in percent or relative count.

The new options avail able under WATFIV are as foll ows:

PROFC Turns on the profile count option

PROFP Turns on the histogram percentage option
PROFA Turns on the histogram absol ute count option
PROF Equi val ent to specifying PROFC PROFP, and PROFA

The above options may appear on the $JOB card or on the
C3OPTIONS card. At least one of these options nust be
specified for formatting the output of the WATFIV PROFI LER
The actual enabling of the PROFILER is controlled by two new
control cards which are inserted around any group of
executabl e statements. Only statistics on these statenments
will be displayed in the PROFILER output. These control
cards are:

C$PROFON Turns on execution-tinme count facility
C$PROFOFF Turns of f execution-time count facility

If the C$PROFOFF card is ontted, then performance
nonitoring will be done until the end of the program

It is often the case that over 50% of the execution tine of
a program is spent in less than 10% of the source
statements. Up to nowthis critical area of a program has
been extrenely hard to pinpoint; the area of software
nonitoring has little room for intuition. Wth the
introduction of the WATFIV PROFILER, progranmers will be
abl e to receive sone neasurenent feedback.

By exami ning the PROFILER histogram in conjunction with all

WATFI V DEBUGG NG Al DS Page 37

DI AGNCSTI CS

control statenents, a restructuring of the program can be
done to mninmze the nunber of frequently taken branches.
Prograns operating in a paging environment will benefit by
adhering to this "locality of reference" concept.

The output fromthe WATFIV PROFILER only indicates frequency
count (execution time would be too conpiler dependent).
Those statenents with a high frequency count should be
examined to determine if a different algorithm or data
structure can be used to decrease some execution-tine
over head.

The follow ng programr ng techni ques have been adapted from
the STANFORD University Fortune User's Guide and can be
appl i ed when evaluating the output fromthe PROFILER:

1) Test for nmost probable cases first so the execution of
certain | F statenents can be elim nated.

2) Commonly referenced expressions should be cal cul ated and
stored in variables so that execution tinme is not
consuned in recal cul ati ng these val ues.

3) Milti-dinmensional arrays should be equivalenced to
vectors to avoid conplicated subscripting algorithns
(internal to the conpiler).

4) Certain subroutines should be nmmde in-line to elimnate
the calling sequence overhead.

Anot her advantage of the PROFILER is the ability to verify
the existence of good test data. The list of statenents not
executed can be examined and test data reconstructed to
ensure that this code is executed. The presence of a bl ock
of statements which 1is never executed indicates the
possibility of a bug in a working program

The usefulness of this new facility is denonstrated by the

followi ng prograns. A brief guide to interpreting the
PROFI LER out put follows the listings.

WATFI V DEBUGG NG Al DS Page 38

kkkkkkkkkhkhkhkx

$J0OB
C

C

C FORTRAN FACTORI AL FREQUENCY FOLLY
C

@]

C$PROFON
C3$OPTI ONS PROFP, PROFA, L=0

1 | NTEGER FACTOR/ 2/
2 | NTEGER KNT/ 0/
3 DO 100 |=3, 1000
4 FACTOR=FACTOR* (1*(1-1))
5 | F(FACTOR . LT. 0)KNT=KNT+1
6 100 CONTI NUE
7 STOP
8 END
$ENTRY
WATFI V PROGRAM PROFI LE § #»LE
1997 STATEMENT(S) EXECUTED
6 SECONDARY STATEMENT('S) EXECUTED
0 STATEMENT(S) NOT EXECUTED
H STOGRAM OF PERCENTAGE FREQUENCY COUNT
STMI COUNT 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
3 1
4 998 EaR R I R I R R
5 998 EaR R R I R
OBJECT 6 *

2003 TOTAL STATEMENT(S) EXECUTED

H STOGRAM OF ABSCLUTE FREQUENCY COUNT
STMI' COUNT

1 101 201 301 401 501 601 701 801 901 1001
3 1+
4 998 R R R R S R R R R R R R R RS R RS RS EEEEEEEEEEEEEEEEEEEEESEEEES
5 998 PR R R R R RS R R RS SR RS RS R R R R R SRR EEEEEEEEEEEEEEEEEEEERESEEESES
OBJECT 6 ** . .
2003 TOTAL STATEMENT(S) EXECUTED
CORE USAGE CBJECT CODE= 456 BYTES, ARRAY AREA= 0 BYTES, TOTAL AREA AVAI LABLE= 51200 BYTES
DI AGNCSTI CS NUMBER OF ERRORS= 0, NUMBER OF WARNI NGS= 0, NUMBER OF EXTENSI ONS= 0
COMPI LE TI ME= 0.05 SEC, EXECUTI ON TI ME= 0.09 SEC, 14.22.11 WEDNESDAY 7 APR 76 WATFIV - JAN 1976 VIL5

WATFI V DEBUGGE NG Al DS Page 39

$J(B kkhkkkkkkkkhkhkhkx

C3OPTI ONS PROFC, PROFA, L=0

C$PROFON

1 CHARACTER* 1 CARD(200, 80), NCHARL(5) /' @, "' <',' %, ' & ,' #' /
2 CHARACTER NCHAR2(5)/' " "', "), (", + ,' =/
3 CHARACTER KARD(200, 80)

4 | NTEGER TCHARS

5 TCHARS=0

6 DO 20 | 1=1, 200

7 10 READ(5, 920) (CARD(| 1, K) , K=1, 80)

8 AT END DO

9 LL=11-1

10 VR TE(6, 940) TCHARS

11 VR TE(8, 930) ((CARD(L, KK) , KK=1, 80) , L=1, LL)
12 940 FORMAT(' THE TOTAL NUMBER OF NON- BLANK CHARACTERS IS', I5)
13 STOP

14 930 FORMAT(1X, 80AL)

15 920 FORVAT(80AL)

16 END AT END

17 | F(CARD(11,1) .NE. 'C)GOTO 25

18 LL=I1

19 DO 30 J=1, 80

20 DO 30 K=1, LL

21 30 KARD(K, J) =CARD(K, J)

22 GO TO 10

23 25 DO 20 |2=1, 80

24 | F(CARD(11,12).EQ"' ')THEN DO
25 GO TO 20

26 ELSE DO

27 TCHARS=TCHARS+1

28 END I F

29 13=1
30 WHI LE (13.LE. 5) DO
31 | F(CARD(I 1, 1 2). EQ NCHARL(|3)) THEN DO
32 CARD(| 1, | 2) =NCHAR2(| 3)
33 | 3=99
34 ELSE DO
35 | 3=1 3+1
36 END | F
37 END WHI LE
38 20 CONTI NUE
39 STOP
40 END

$ENTRY

THE TOTAL NUMBER OF NON-BLANK CHARACTERS IS 6116

WATFI V DEBUGA NG Al DS Page 40

WATFI V. PROGRAM PRCFI LE
105471 STATEMENT(S) EXECUTED

164 SECONDARY STATEMENT(S) EXECUTED
5 STATEMENT(S) NOT EXECUTED

TABLE OF FREQUENCY COUNT

FROM TO COUNT FROM TO COUNT FROM TO COUNT FROM TO COUNT

5 6 1 7 7 165 9 11 1 17 17 164

23 23 164 24 24 13120 25 25 7004 27 27 6116

28 ENDI F 6116 29 29 6116 30 30 26559 30 ENDVWHI LE 6116

31 31 20443 32 33 5172 34 ELSEDO 5172 35 35 15271
36 ENDI F 20443 38 LEVEL 2 164

THE FOLLOWN NG STATEMENTS WERE NOT EXECUTED

FROM TO FROM TO FROM TO FROM TO FROM TO
18 21 21 LEVEL 2 21 LEVEL 1 22 22 26 ELSEDO
38 LEVEL 1

HI STOGRAM OF ABSCOLUTE FREQUENCY COUNT
STMI COUNT

0 2656 5312 7968 10624 13280 15936 18592 21248 23904 26560
5 1=
6 1=
7 165 **
9 1=
10 1~
11 1=
17 164 **
OBJECT 164 **
23 164 **
24 13120 *FHAEXK KKK KA K K KKK KA K KA KARK KKK K AXF KA KA KK AR KKk
25 TOOQ4 ***F*Hkxkkkxhkhhhhkhh kX h ok x k%
27 BL1B ***F*Fkxkkkxhkhhhkkhh kX kK%
29 BL1E ****kkkkkkkkkkhkkkhkkkkk** . .)))] . .
30 DBEEO Frxk ki k kA Ak ok kR K kA Ak kA Ak kA Rk A A A K AR A K A A Kk A R K K AR A AR K KRR KA AR KA AR K AR KA AR I A AR K AR KK AR R KA KK AR I KA I AR F AR Rk Kk
31 D044 *rrFkkhkkkkhkkkhhhhhkhhhhkkhkkkhhkkhkhkhkkkkkkkhkkhhkkhkhhhkkkhkkkhkkhkkkkkkk k k% %
32 D172 **xkkkkkkkkkkkkhkkkk*
33 D172 **x*kkxkkkkhhhxhkhxhk

35 15271 R R R S O o O O

105635 TOTAL STATEMENT(S) EXECUTED

CORE USAGE OBJECT CODE= 6696 BYTES, ARRAY AREA= 32010 BYTES, TOTAL AREA AVAI LABLE= 153600 BYTES
DI AGNCSTI CS NUMBER OF ERRCRS= 0, NUMBER COF WARNI NGS= 0, NUMBER OF EXTENSI ONS= 7
COWPI LE TI ME= 0. 20 SEC, EXECUTI ON TI ME= 9.17 SEC, 20. 38. 04 WEDNESDAY 7 APR 76 WATFIV - JAN 1976 VI1LS

WATFI V DEBUGA NG Al DS Page 41

$Jm R S o

C PALI NDROM C PROFI LER PROGRAM
C$PROFON
C$OPTI ONS PROF, L=0

1 DO 10 I =1, 100
2 DO 10 J=1, 100
3 DO 10 K=1, 100
4 LL=l +J*K
5 10 CONTI NUE
6 STCP
7 END
$ENTRY

WATFI V. PROGRAM PRCFI LE
1010101 STATEMENT(S) EXECUTED

0 SECONDARY STATEMENT('S) EXECUTED
0 STATEMENT(S) NOT EXECUTED

TABLE OF FREQUENCY COUNT

FROM TO COUNT FROM TO COUNT FROM TO COUNT FROM TO COUNT
1 1 1 2 2 100 3 3 10000 4 4 1000000
5 LEVEL 3 10000 5 LEVEL 2 100 5 LEVEL 1 1

HI STOGRAM OF PERCENTAGE FREQUENCY COUNT

STMI COUNT 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1 1~
2 100 *
3 10000 **
4 1000000 **.

1010101 TOTAL STATEMENT(S) EXECUTED

HI STOGRAM OF ABSCLUTE FREQUENCY CQOUNT

STMI COUNT
1 100001 200001 300001 400001 500001 600001 700001 800001 900001 1000001

1 1~
2 100 *
3 10000 **
4 1000000 EE R R O R O O R S R
1010101 TOTAL STATEMENT(S) EXECUTED
CORE USAGE OBJECT CODE= 416 BYTES, ARRAY AREA= 0 BYTES, TOTAL AREA AVAI LABLE= 51200 BYTES
DI AGNOSTI CS NUMBER OF ERRCRS= 0, NUMBER COF WARNI NGS= 0, NUMBER OF EXTENSI ONS= 0
COWPI LE TI ME= 0. 05 SEC, EXECUTI ON TI ME= 63. 76 SEC, 14. 28. 40 WEDNESDAY 7 APR 76 WATFIV - JAN 1976 VI1LS

WATFI V DEBUGAE NG Al DS Page 42

DI AGNCSTI CS

The nunber of statenents executed is the actual count of
execut abl e FORTRAN st at enents -- control statenents,
arithmetic and logical IF statenents, I/O statenments, and
assignnment statements. Certain statenments are deenmed to be
non- execut abl e by the WATFIV PROFI LER Sone of these are
CONTI NUE, STOPR, END, DATA, FORVAT, DEFINE FILE, and
specification statenents. Thus, they will not show up in
t he PROFILER output (an END statenent generated by WATFIV or
STOP as the object of a logical IF statenent will show up in
t he PROFILER count).

The nunber of secondary statenents executed includes a count
for the nunber of tines the OBJECT of a logical |IF or WH LE
EXECUTE st atement was executed. The final line of output
i ncl udes the total nunber of unexecuted statenents
encountered while the C$PROFON card was in effect.

The output of the PROFILER can consist of a variety of

formatted reports. The PROFC option will produce a
statement flow with a separate count for each contiguous
bl ock of source statenents. This wll consist of the

initial WATFIV ISN (Internal Statement Nunber) under the
FROM headi ng and the final |ISN under the TO heading. Were
the object of an IF or WHLE EXECUTE statenent is not
executed the sane number of tinmes as the initial IF or WH LE
EXECUTE clause, a count break condition is set and a
separate FROM TO and COUNT field is displayed. This wll
show up as the ISN under the FROMfield and the OBJECT or
WH LE EXECUTE under the TO field. This is because the
FORTRAN | anguage considers a "logical IF' to be two separate
statements. The PROFILER will then pinpoint the area where
it is advantageous to reprogram the condition being checked
by the |logical expression. Simlarly, all statenents
termnating a DOl oop structure will cause a count break and
the FROM and TO fields will contain the ISN termnating the
DO [oop and the nane of the DO construct. For a standard DO
| oop the name will show up as LEVELn, where n is the |evel
of nesting starting with the outernobst |oop as level 1. For
structured WATFIV | anguage constructs, the name will be of
the form ENDWH LE, ELSEDO, or ENDIF. The COUNT field
contains the nunmber of times the programfell through the
loop normally. The ENDIF count will include the nunber of
tinmes the ELSE DO cl ause made a normal exit.

In closing, hereis a practical approach to using the
PROFI LER.

1) Wite and debug the program
2) Once all "known" bugs are elinminated, use the PROFILER

facilities to find which routines contain nost of the
statenents bei ng execut ed.

WATFI V DEBUGG NG Al DS Page 43

DI AGNCSTI CS

3) Concentrate on these few statenents and see if they can
be witten nore efficiently or reprogrammed in a
conpletely different manner.

x 6.3.2 STATEMENT TRACE FACI LI TY

An execution-tine statenment trace or "I SN trace" feature may
be invoked. The trace is turned on using a C$l SNON card and
is turned off wusing a C$lI SNOFF card. At least one
executable statement nust precede a C$l SNON. A sanple
program fol | ows:

$JOB i d, paraneters
A=1
J=3
C$l SNON
(statenents to be traced)
C$l SNOFF
STOP
END
$ENTRY

6. 3.3 ON ERROR GOTO STATEMENT

The ON ERROR GOTO statenent allows a programwhich has an
error to recover and take sone alternate and possibly
corrective action, such as giving a diagnosis. This feature
can only be executed once in a program (to prevent infinite
| oops) however, any nunber of ON ERROR GOTO statements may
appear in the source program The last ON ERROR GOTO
statenent encountered before an error occurs is the one
whi ch is executed.

A programusing this feature nmght be as foll ows:

x $JOB id, paraneters
ON ERROR @GOTO 50

I =0
5 READ(5, *, END=40) A

I =l +1

PRI NT, A

O TO5
50 PRINT,' CARD NUMBER , I, 'IS I NVALID
40 STOP

END

X $ENTRY

The ON ERROR GOTO statenent is not an executabl e statenent;

WATFI V DEBUGG NG Al DS Page 44

DI AGNCSTI CS

it my be placed anywhere in the program However, it is
not advisable to place the object of an ON ERROR GOTO
statement within the range of a DO loop as no checking is
performed to determine if the transfer at execution tine
will be valid (i.e., infinite |ooping may result).

WATFI V DEBUGG NG Al DS Page 45

7.

LANGUAGE ACCEPTED BY WATFI V

LANGUAGE ACCEPTED BY WATFI V

WATFIV attenpts to support the | anguage described in the | BM
publication "IBM Systeni360 FORTRAN |V Language", form
GC28- 6515, éo® subject to the restrictions given below in
subsection 7.1.5. In addition, WATFIV supports a nunber of
extensions to the |anguage, which are described in section
7.1 bel ow.

x 7.1 EXTENSI ONS

Uses of the follow ng | anguage extensions, except for 1, 2,
12, 13, 14, 15 and 17 are flagged with *EXTENSI ON* nessages.
These nean that the programis acceptable to WATFIV but will
not likely conmpile on other conpilers. The nessages can be
suppressed by the use of the NOEXT paraneter on the $JOB or
CPOPTIONS card. (See section 3.1.1 on page 6.)

x 7.1.1 FORNMAT- FREE | NPUT QUTPUT

This allows the programrer to do |1/Owthout reference to a
FORMAT statenent. For exanple, the statenent

PRINT, A B
will cause the values of Aand B to be printed with a

standard format. Section 7.2 on page 51 describes fornmat-
free 1/Oin nore detail.

7.1.2 CHARACTER VARl ABLES

This variable allows the manipul ation of data in the form of
character strings. As a byproduct, in-core formatting of
data nay be perforned. See Chapter 8 on page 57 for
compl ete details.

A sinple exanpl e of the use of a CHARACTER vari abl e foll ows:

(D

The current |evel of WATFIV (V1L5 Jan/76) corresponds to
the -10 version of GC28-6515.

EXTENSI ONS Page 46

LANGUAGE ACCEPTED BY WATFI V
CHARACTER A*7

A=' EI NALLY'

7.1.3 MJILTI PLE ASSI GNMENT STATEMENTS
Statenents of the form
vl = v2 = ...= vn= expression
are all owed, where vl, v2, etc., represent variable names or
array elements. The effect is that of the sequence of

statenents

vn= expression

vk= vn
vl= v2
e.g., A=B(5 =C=1.5

7.1.4 EXPRESSIONS | N QUTPUT LI STS

Expressions may be placed in output statenments
e.g.,

VR TE(6, 2) SIN(X)**2, A*X+(B-C)/ 2
The expression may not, however, start wth a left
par ent hesi s because the conpiler uses this as a signal that
an inplied DO follows in the list. For exanple:

PRI NT, (A+B)/2
would result in an error nessage. However, the equival ent

PRI NT, +(A+B)/2 is acceptable.

Note that CHARACTER constants are forms of expressions
acceptable in output statenments, e.g.,

PRI NT, ' VALUE OF X=', X

EXTENSI ONS Page 47

LANGUAGE ACCEPTED BY WATFI V

7.1.5 INITI ALI ZI NG OF BLANK COMVON

Variables in blank common may be initialized i n DATA or type
statenents, e.g.,

COMMON X
| NTEGER X/ 3/

7.1.6 I NITI ALI ZI NG COMVON BLOCKS

Conmon bl ocks may be initialized in other than BLOCK DATA
subpr ogr ans.

7.1.7 | MPLI ED DO I N DATA STATEMENTS
Inplied DOs are allowed in DATA statenents, i.e., a
statenent of the form
DATA (C(1), 1=1,5,2)/3*.25/
is valid.
In fact,
DATA (A(1), 1=L,M N)/ constant list/
is acceptable if L,MN have been previously initialized and

at least MOD(ML,N)+1 constants are present in the constant
list.

7.1.8 SUBSCRI PTS | N FUNCTI ON DEFI NI TI ONS

Subscripts may be used on the right-hand side of the
statenment function definitions, e.g.,

F(X) = A(l)+X+B(I)

7.1.9 SUBSCRI PT USAGE

The real part of a conplex value is converted to an integer,
and this value is wused for indexing into the array. For
exanple, if Z is conmplex, and A is an array, then A(Z2) is
equivalent to A(INT(REAL(Z2))).

EXTENSI ONS Page 48

LANGUAGE ACCEPTED BY WATFI V

For rules and exanples of logical and character values as
subscripts, see subsection 8.4.1 on page 69.

7.1.10 OBJECT OF DO STATEMENT

A logical IF statement used as the |ast statenent (object)
of a DO loop nay contain a GOTO of any form a PAUSE, STOCP,
RETURN, or arithnetic |IF statenent.

e.g., DO 25 I=1, N

25 IF (X.EQA(l)) RETURN
7.1.11 EXCEEDI NG CONTI NUATI ON CARD LIM T

A statenment nmay be continued over nore cards than is allowed
by the, so-called, continuation card linmt éad.

7.1.12 MULTI PLE STATEMENTS PER CARD

WATFIV allows the programer to punch nore than one
statement on a single card. This is particularly suitable
for prograns that are to be stored on Ilibraries since |less
direct-access storage space is required, and fewer input
operations are necessary to retrieve a subprogram

The rules for this feature are:
(a) Only colums 7-72 may be used for statenents.

(b) A sem-colon is used to indicate the end of a
statenent.

(c) The normal continuation card rules are used for
a statement which is to be continued beyond
colum 72.

(d) Statenment nunbers appear in colum 1-5, as
usual, or following a semcolon and foll owed by

(1) The continuation card limt s installation dependent. The
value currently in use is 5.

EXTENSI ONS Page 49

LANGUAGE ACCEPTED BY WATFI V

a colon. They may not be split onto a
continuation card.

(e) Comment cards and FORMAT statenents nust be
punched in the conventional manner.

Col um 6
X
X
%
e.g., 25 A=B; C=D; 39: PRI NT A, B,
* C, D, X=A+B* C+D

PRI NT, X; 99: STOP; END

This coul d be punched in the conventional nmanner

as:
25 A=B
C=D
39 PRI NT, A, B,C, D
X=A+B*C+D
PRI NT, X
99 STOP
END

7.1.13 COMVENTS ON FORTRAN STATEMENTS

The conpiler termnates the left-to-right scan of a
particular card when a 0O (pronounced 'ziganorph', and
punched as a 12-11-0-7-8-9 multi-punch) is encountered.
Effectively, this nmeans coments may follow a FORTRAN
statement on the same card if a O is used to termnate the
FORTRAN st at enment .

Note that a O is unprintable, as well as being alnost
unpunchabl e.

e.g., X=A+SIN(Y) O EVALUATE X

7.1.14 DUWPLI ST STATEMENT

The DUMPLI ST statenent is designed especially as a program
debugging aid; it is used as follows:

(i) The DUMPLI ST statenent is essentially a NAMELI ST
statenent, except that the word DUMPLI ST repl aces the
wor d NAMELI ST. The usual rules for NAMELI ST
statenents apply. Sanple statenments are:

EXTENSI ONS Page 50

LANGUAGE ACCEPTED BY WATFI V

DUMPLI ST / XXX/ A, XYZ, APE/ LOK/ XX, NEXT
DUMPLI ST / THI S/ N, TWO, SI X, OLD

(ii) A DUMPLIST list nanme need never appear in a READ
or WRITE statenent.

(iii) A DUWMPLI ST statenment has no effect wunless the
programin which it appears is term nated because of
an error condition; then, WATFIV will automatically
generate NAMELI ST-1ike output of all DUWPLIST lists
appearing in program segnents whi ch have been entered.
The values printed are those which the variables had
when the program was terninated.

To avoid producing too nuch output, only a few key
vari abl es shoul d be placed in DUVPLI ST st at enments.

7.1.15 ON ERROR GOTO STATEMENT

The ON ERROR GOTO statenment was introduced to allow a
programto recover froma software error and possibly take
sone corrective action. This statement is described in nore
detail in subsection 6.3.3 on page 44.

7.1.16 PSEUDO- VARI ABLE DI MENSI ONI NG

WATFI V recogni zes the dinmensions of an array fromthe main
line program when that array is wused as a subprogram
argurment and the final dinension specified in the subprogram
is 1. See section 12.6 on page 95 for a conplete
descri ption.

7.1.17 STRUCTURED PROGRAMM NG STATEMENTS
A nunber of new control statenents have been added to WATFIV
to enable the FORTRAN programmer to design and wite
programs in a structured manner. See subsection 9 on page
71 for a conplete description of these statenents.
7.2 FORMAT- FREE | NPUT OQUTPUT
Format-free 1/O is a progranming convenience for at |east
the two foll owi ng reasons:
- learning and i nexperienced progranmers can defer the
use of FORMAT statements until some experience and
confidence have been gained in FORTRAN, vyet prograns

involving 1/O can be attenpted early on.

- experienced programmers will find format-free output

FORMAT- FREE | NPUT OUTPUT Page 51

LANGUAGE ACCEPTED BY WATFI V

statenents convenient for producing debuggi ng out put
wi thout having to bother w th codi ng associ ated FORMAT
statements.

7.2.1 SOURCE STATEMENT FORMS

Format-free 1/O has been inplemented in WATFIV to function
with statements of the forns:

READ, i st
PRI NT, list
PUNCH, |i st

READ(uni t, *, END=nl, ERR=nR) i st
WRI TE(unit,*) list

The I1/O for the first three forns is done on the standard

reader, printer, and punch units, i.e., 5,6,7, respectively.
The asterisks in the last two forns inply format-free 1/0Q
and ‘'unit' nmay be a constant, integer variable or a

character variable. The END and ERR returns are optional,
as with the convenitonal READ statenent.

Note that the two statenents

READ, | i st
READ(5, *) | i st

are equivalent, as are

PRI NT, I i st
VR TE(6, *) | i st

Sone exanpl es fol |l ow

READ, A, B, (X(1),1=1,N)
PRINT, (J ,2(J),J=NK L), I,P

99 WRI TE(6, *)' DEBUG OUTPUT' , 99, X, Y, Z+3. 5
READ(|, *, END=27) (X(J),J=1, N)
PUNCH, ' X=' , X

7.2.2 I NPUT DATA FORMVS

Data itenms nay be punched one per card, or many per card; in
the latter case, the data itens nust be separated by a comma
and/or one or nore blanks. The first data itemon a card
need not start in colum 1. A data itemmay not be
conti nued across two cards, i.e., the end of a card acts as
a delimter.

FORMAT- FREE | NPUT OUTPUT Page 52

LANGUAGE ACCEPTED BY WATFI V

Successive cards are read until enough itens have been found

to satisfy the requirements of the 'list' part of the
statenent. Any itens remaining on the last card read for a
particular READ statenent will be ignored since the next

READ st atenent executed will cause a new card to be read.

It is perfectly valid to use format-free READ statenents and
conventi onal READ statenents in the same program

The forms of data itens which nay be used for the various
types of FORTRAN vari ables are:

I nt eger - signed or unsigned integer constant

Real - signed or unsigned real constant in F,
E, or D fornms

Conpl ex - 2 real nunbers enclosed in parentheses
and separ at ed by a comm, e.g.,
(1.2,-3.8)

Logi cal - a string of characters containing at
least one T or F. The first Tor F
encount er ed det er mi nes the | ogi cal
val ue.

Char act er - a string of characters enclosed by
quot es. If a quote is required as

i nput,two successive quotes should be
punched. Section 14.3 on page 104
descri bes the use of the EBCDIC and BCD
quot es.

The type of data itemnust match the type of the variable it
is being read into.

A duplication factor nmay be given to avoid punching the sane
constant many times. For exanple, if we have

DI MENSI ON A(25)
READ, A

the data for the READ statenent coul d be punched as
15*0.,10*-3.8
Exanpl es:

(1) sour ce statement READ, X, I,Y,J
typi cal data 2.5 3,-7.9,-41

(i) source statenents COWPLEX Z(5)

FORMAT- FREE | NPUT OUTPUT Page 53

LANGUAGE ACCEPTED BY WATFI V

READ, (Z(1),1=1,3)
typi cal data (5.2,-16.0) 2*(0.,.5E-3)

(iii) source statenents LOE CAL L1,L2,L3

READ, L1, L2, L3

typi cal data T .FALSE. , CAT
(iv) source statenents CHARACTER A*1, B*3
READ, A, B
typi cal data A DOG
7.2.3 OQUTPUT FORMS
The conpiler supplies formatting for Ilist itens output by
format-free statenents. Line overflow is automatically
accounted for, i.e., several records may result from one
out put statenent.
The formats used are:
I nt eger - 112
Real *4 - E16.7
Real *8 - D28.16
Conpl ex*8 - '"(" E16.7 ',"' E16.7 ")
Conpl ex*16 - ' (' D28.16 ',' D28.16 ')
Logi cal - L8

7.3 RESTRI CTI ONS

The user
conpi l er.

1.

RESTRI CTI ONS

Character*n - An

of WATFIV should take note of the follow ng
restrictions

in language and facilities provided by the

The name of a common bl ock rmust be unique, i.e.
it may not also be used as the nane of a
vari able, array, or statenent function. This is
in violation of GC28-6515

The service subprograns DUVP and PDUMP defi ned
in Appendi x C of GC28-6515 are not supported.

Page 54

10.

RESTRI CTI ONS

LANGUAGE ACCEPTED BY WATFI V

The Debug Facility described in Appendix E of
GC28- 6515 is not supported.

There are no facilities in WATFIV which
correspond to the | BM FORTRAN opti ons MAP, EDIT,
XREF, OPT=, DECK, LOAD, NAME=, LI ST.

The Extended-Error Handling facility (available
with | BM FORTRAN i s not supported.

No overlay facility is available; no 'nodule
map' i s produced.

The nunber of continuation cards and the use of
operator nessages with STOP and PAUSE st atenents
are installation options.

No nore than 255 DO statenents are allowed in a
program segment .

FORMAT(is a reserved character sequence when
used as the first 7 characters of a statenent.
It is the only reserved character sequence. For

exanpl e,
FORMAT(I) = 3.5

will result in FORMAT error nessages, whereas
X=FORMAT (1)

is legal, assuming FORMAT to be an array or
function nane.

WATFIV is a 'one-pass' conpiler, and requires
several restrictions on statenent ordering.
These are:

(a) Specification statenents referring to
vari abl es used in NAMELI ST or DEFINE FILE
statenents nust precede the NAMELIST or
DEFI NE FI LE st at enents.

(b) COWDN or EQUI VALENCE statenents referring
to variables wused in DATA or initializing
type statenments nust precede the DATA or
initializing statenents.

Page 55

LANGUAGE ACCEPTED BY WATFI V

e.g., REAL I/5.2/
COVIVON

wi Il produce error nessages, whereas

COMVON
REAL 1/5. 2/

i s acceptable

(c) A variable may appear in an EQU VALENCE
statenent and then in subsequent explicit
type statement only if the type statenent
does not declare the length of the variable
to be different than could be assuned for
it, based on the first letter of the
vari abl e nanme, at t he tine of its
appearance in the EQU VALENCE st at enent.

For exanpl e,

EQUI VALENCE (A, B)

11.

RESTRI CTI ONS

REAL*8 B
wi Il produce an error nessage, whereas,

REAL*8 B
EQUI VALENCE (A, B)

will not. Note that

EQUI VALENCE (A, B)
| NTEGER B

is acceptable since the length of B is not
changed by the type statenent.

Not all floating-point constants are converted
to the correct internal hexadecimal format; in
addi tion there exists differences in t he
handl i ng of floating-point constants at conpile
and execution tine

Page 56

CHARACTER VARI ABLES

8. CHARACTER VARI ABLES

At a neeting held during the SHARE XXVII| Conference in San

Franci sco
proposed

ext ensi on
conpi l ers.

in February, 1967, the SHARE FORTRAN Project

that IBMadopt a new type of variable as an

to the FORTRAN |anguage supported by IBMs
The following material is copied from Appendi x B

of the mnutes of that neeting of the FORTRAN Project since
it defines, for the nost part, WATFIV s inplenentation of
CHARACTER variables. Additional naterial is given belowin
subsection 8.4 on page 68.

Character data is recognized as a legitimte data form which
may be manipulated to a limted extent. The general effect
to the |l anguage is:

1.

2.

CHARACTER is a variable type.

Core-to-core READ and WRI TE statenents allow in-core
formatting.

Implicit record-size for CHARACTER arrays for FORVAT
statenent control is defined in the Type statenent
(not in the READ and WRI TE statenents).

A WRI TE statenent may be used to define a variable.

CHARACTER VARI ABLES Page 57

CHARACTER VARI ABLES

8.1 DECLARATI ON OF CHARACTER VARI ABLES

8.1.1 VARI ABLE TYPE: CHARACTER

A variable of type CHARACTER represents a character string
(literal dat a) . The standard and opti onal | engt h
specifications which deternmine the nunber of characters that
are reserved for each character variable are:

Vari abl e_Type Standard Optional éo®

Char act er 1 leném

where m should be the size of the maximumprint |line or
greater.

A programmer may declare a variable to be of type CHARACTER
by use of the:

1. IMPLICIT specification statenent.

2. Formof the explicit specification statenent:
CHARACTER

8.1.2 IMPLICI T STATEMENT

The type CHARACTER is permitted in the |IMPLICIT statenent
with a specified length. |If length is omtted, the standard
I ength of 1 is assuned.

Exanpl e:
I MPLICI' T CHARACTER*80 (A-D), CHARACTER ($, 2)

Expl anat i on:

Al'l variables beginning with the characters A through D are
decl ared as CHARACTER type, each variable or array el enent
80 characters in size. Al'l variables beginning with the
character $ and Z are declared as CHARACTER Since no
I ength specifications was explicitly given, 1 character (the
standard length for CHARACTER) is allocated for each

(D

WATFI V uses 255 for m

DECLARATI ON OF CHARACTER VARI ABLES Page 58

CHARACTER VARI ABLES

vari abl e.

8. 1.3 CHARACTER TYPE STATEMENT

The general form of the CHARACTER type statenment is as

foll ows:
CHARACTER*s a*s1(kl)/x1/,b*s2(k2)/x2/,...,z*sn(kn)/xn/
Where: *s,*sl,*s2,...,*sn are optional. Each s represents
- one “of t he perm ssible | ength
speci fications.
a,b,...,z represent variable or array nanes.
(k1),(k2),...,(kn) are optional. Each k is conposed
- of 1 t_hrough 7 unsigned int eaer constants
separated by comas, representing the
maxi mum value of each subscript in the
array. FEach k may be an unsigned integer
vari abl e onl y_when t he CHARACTER st at enent
in which it appears is in a subprogram
/x1/,1x2/,...,1xnl/ are optional and represent

initial data val ues.

The information necessary to allocate storage for arrays
(di mensi on information) may be included within the
statement. However, if this information does not appear in
a CHARACTER statenent, it must appear in a DI MENSION or
COWDON statenent (see, "DIMENSION Statenent” or "COWON
Statenent").

Initial data values may be assigned to variables or arrays
by use of /xn/ where xn is a constant or |ist of constants

separ at ed by commas.

This set of constants may be inthe form"r* constant”,
where r is an unsigned integer, called the repeat constant.
The initial data values may only be literal constants and
must be the same length as, or shorter than, the
corresponding variable or array elenent. Initial data
values will be truncated fromthe right and di agnosed if too
long, and they will be padded w th blanks on the right if
too short (see "Exanple 2" bel ow).

An initially defined variable or elenent of an array nmay not

be in blank common. |In a I|abelled common bl ock they nay be
initially defined only in a BLOCK DATA subprogram

DECLARATI ON OF CHARACTER VARI ABLES Page 59

CHARACTER VARI ABLES

The CHARACTER statenent overrides the IMPLICIT statenent.
If the length specification is onitted (i.e., *s), the

standard length of 1 is assuned. |If an array is wused in a
subprogram and is not in COMON, the size of this array may
be specified inplicitly by an integer variable of length 4
whi ch can appear explicitly in the SUBROUTINE statenent or
inmplicitly in COMWMON (adjustable dimensions).

CHARACTER*80 CARDS (10), LINES*132(56, 2), TCARD

Expl anat i on:

This statenent declares that the variable TCARD and the
arrays nanmed CARDS and LINES are of type character. In
addition, it declares the size of the array CARDS to be 10
and array LINES to be 112 (2 groups of 56 each). Each
el enent of the array LINES is assigned 132 characters for a
total of 14,784 (112 times 132) for the array.

Each elenent of the array CARDS and the variable TCARD is
assigned 80 characters (the length associated with the
type) . The array CARDS is assigned a total of 800
characters.

CHARACTER X*3(4)/'ABC ,'DEFG , ' H',"JKL"/

Expl anat i on:

This statenment declares that the array of four elenments of
three characters each naned X has initial val ues:

X(1) ABC
X(2) DEF
X(3) HI
X(4) JKL
The statenent is incorrectly witten, and the val ue

specified for X(2) has been altered by truncating.

DECLARATI ON OF CHARACTER VARI ABLES Page 60

CHARACTER VARI ABLES

8.2 USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS
8.2.1 DI MENSI ON STATEMENT
Character type array names nay appear

statenents.

8.2.2 COMMON STATEMENT

in DI MENSI ON

Character type variables or array nanes may appear in COVMON

stat enents.

8.2.3 NAMELI ST STATEMENT

Character type variables or array names nay appear in

NAMELI ST st at enent s.

8.2.4 DATA STATEMENT

Character type variables, array el ement nanes or array nanes
may appear in DATA statenents. The data values nay only be
literal constants and nust be the sanme | ength as, or shorter
than, the corresponding variable or array elenment. Initial

data values will be truncated fromthe right

and di agnosed

if too long, and they will be padded with blanks on the
right if too short (see "Exanple 2" wunder "CHARACTER

Statenent" above).

8.2.5 EQUI VALENCE STATEMENT

Character type variables, arrays or array

el ements may

appear in EQU VALENCE statements. Character type data nay
be equivalenced to other than Character type data but

i mplies storage sharing only.

USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS

Page 61

CHARACTER VARI ABLES

Exanpl e:

CHARACTER A*5, B*2, C*1
CHARACTER D*1(5)
EQUI VALENCE (D(1),A), (D(2),B), (X5),C

Expl anat i on:

These statenents cause the follow ng alignnment of
characters:

The use of the array D enables equivalencing to characters
in the mddle of the variable A

8.2.6 CALL STATEMENT

Character variable nanes, array elenent nanmes, array nanes,
and literal constants nay appear as paranmeters in a CALL
statenent .

8. 2.7 FUNCTI ON REFERENECE

Character variable nanes, array elenent nanes, array nanes,
and literal constants nmy appear as paraneters in a function
ref erence.

USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS Page 62

CHARACTER VARI ABLES

Exanpl e:

CHARACTER CARD* 80

READ (5, 1) CARD
1 FORMAT (AS0)

| F (COMPAR (CARD, 'END ,4)) 2, 3,2
3 STOP
2 CONTI NUE

Expl anat i on:

An 80 character image is read into the elenment CARD.
function, COWAR, is wused to conpare the first

A

f our

characters of CARD with END and used to return a positive,
negative, or zero numeric value which is used conditionally

to term nate the program

8.2.8 STATEMENT FUNCTI ON STATEMENTS

Non- subscripted character variable nanmes nmay appear
paraneters in a statement function statenent.

8. 2.9 SUBRCUTI NE STATEMENT

Character variable nanes and array nanes may appear
paranmeters in a SUBROUTI NE statenent.

8.2.10 FUNCTI ON STATEMENT
Character variable nanmes and array nanes nay appear

paranmeters in a FUNCTI ON statenent.

8.2.11 REPLACEMENT STATEMENT: A=B

A repl acement staterment in which all variables, constants

array elements are of type CHARACTER is perm ssible.

as

as

as

or
I'n

such a staterment the itemon the left-hand side may only be

a character variable nane or a character array el enent;

t he

item on the right hand-side may be a character variable

USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS Page 63

CHARACTER VARI ABLES

name, a character array element, or a character (literal)
const ant .

The elenment on the right-hand side nust be the sane |ength
as, or shorter in length than, the elenment on the |eft-hand
side. The value of the right-hand elenment will be truncated
fromthe right during replacenent and diagnosed if too |ong,
and will be padded with blanks on the right if too short.

NOTES:

1. The term "literal constant" should be replaced in
the | anguage definition by "character constant".

2. Mul tiple assi gnnent statenents for CHARACTER
variabl es are not supported by WATFI V.

USI NG CHARACTER VARI ABLES | N FORTRAN STATEMENTS Page 64

CHARACTER VARI ABLES

8.3 CORE- TO- CORE |/ O STATEMENTS

An additional type of I/O statement provides for core-to-
core transm ssion of data under FORMAT control. There are
two core-to-core |I/O statenents: READ and WRITE. In a
core-to-core operation no actual input/output takes place;
data conversion and transm ssion take place between an
internal buffer and the el ements specified by a list.

8.3.1 WRI TE STATEMENT

The general form of the core-to-core WRITE statenment is as
foll ows:

WRI TE (a, b) Ilist

Where: a is a character array, array elenent or variable

" name which specifies the starting location of the

i nternal buffer to whi ch data is to be
transmtted.

b is a statenment nunber of a FORMAT statenent or an

array name or array element indicating the
beginning location of a FORVAT statenent which
describes the data to be transmtted.

list is a series of variable or array nanes,

separated by commas, which may be indexed and
incremented. They specify the nunber of itens to
be witten and the l|ocations in storage from
which the data is taken.

This formof the WR TE statenent causes the data itens
specified by the list to be converted to character strings,
according to the FORMAT specified by b, and placed in

storage beginning at first character el enment speci fied by a.

Characters are placed into the buffer, starting with the
first character position of the first element specified by
a, in consecutive character positions. Wen a new record is

Begun, it starts at the first character position of the next
el ement .

The nunber of characters for a record caused to be generated
by the FORMAT statenent and list should not be greater than

the size of the elenents__gpecified by a. If fewer

characters are generated than are necessary to fill the
element, it is filled out with trailing bl anks.

CORE- TO- CORE |/ O STATEMENTS Page 65

CHARACTER VARI ABLES

CHARACTER Mr12

WRITE (M2) 1,3
2 FORMAT (2H(F, 12, 1H , 11, 1H))

Expl anat i on:

These statenents might be used to create, for later use, a
FORVAT stored in variable M The FORVAT so created would
appear as:

(F15. 7) bbbbb

where b represents the character bl ank.

CHARACTER Mr12, N¢132

K=FUNC (A, B, C, D)

2 WRITE (M4) K
4 FORMAT(1H(, |3, 6HX, 1H))
6 WRITE (N, M

Expl anat i on:

These statenents prepare a character string 132 long for use
in printer plotting. The print position Kis determ ned by
the functi on FUNC. Statenent 2 creates a FORMAT stored in
variable M which, for a value of K of 96, would appear as:

(b96X, 1H*) bb

CORE- TO- CORE |/ O STATEMENTS Page 66

CHARACTER VARI ABLES

Statenent 6 then used the above FORMAT (in variable M to
prepare a character string 132 long in variable N which
consists of all blanks except for an asterisk in the ninety-
seventh character.

8. 3.2 READ STATEMENT

The general formof the core-to-core READ statenment is as
fol | ows:

READ (a, b) list

Where: a is a character array, array elenent, or variable
"~ nane which specifies the starting | ocation of the
internal buffer from which data is to be

transm tted.

b is either the statement nunber of a FORMAT

statenent or a character array el enent indicating
the beginning location of a FORMAT statenent
whi ch describes the data to be transmtted.

list is a series of variable or array nanes,

separated by commas, which may be indexed and
incremented. They specify the nunber of itens to
be read and the locations in storage into which
the data is placed.

This formof the READ statenent causes the character string
beginning at the first character element specified by a to

be converted to data itens, according to the FORNMAT
specified by b, and stored in the elenents specified by the

|ist.

Characters are obtained fromthe buffer starting wth the
first character position of the first element specified by
a, from consecutive character positions. Wien a new record

is begun, it starts at the first character position of the
next el enent.

The FORMAT statenment and list should not require nore
- tre

characters froman el ement than the I ength of that elenent.

A new record is begun when specifically requested by the

FORVAT.

CORE- TO- CORE |/ O STATEMENTS Page 67

CHARACTER VARI ABLES

CHARACTER*80 R(10)

DO 20 =1, 10
3 READ (R(1),5) J
5 FORMAT (I1)

GO TO (11, 12, 13, 14, 15, 16, 17, 18, 19), J
11 READ (R(1),21) (A(K), K=1,10)
21 FORMAT (1X, 10F8.3)

GO TO 31
12 READ (R(1),22) K1, K2, K3, K4
22 FORMAT (1X, 415)

GO TO 32
13 READ (R(1), 23) X, Y, Z
23 FORMAT (1X, 3E20. 9)

etc.

Expl anat i on:

The statements illustrate a nethod of processing randomy
ordered input cards of varying format and data content. The
card type is identified by a digit fromone to nine in the
first colum. Statenent 3 converts the digit fromcharacter
form to integer form The GO TOthen transfers to the
READ/ FORMAT conbi nation prepared to process the specified
format.

8. 3.3 I NPUT/ QUTPUT LI ST

CHARACTER vari abl e nanes, array elenment nanmes, and array
names may appear in input/output |ists.

8.4 ADDI TI ONAL CHARACTER FEATURES SUPPCRT

The features of CHARACTER variabl es given in this subsection
were not described in the SHARE proposal of the |ast
subsection, and hence, are considered as extensions to that
proposal

It should also be nmentioned that WATFIV supplies no
particular alignment for CHARACTER variables, unless, of

ADDI TI ONAL CHARACTER FEATURES SUPPCRT Page 68

CHARACTER VARI ABLES

course, they are forced to sone half-word, full-word, or
doubl e-word boundary by COWDON and/ or EQUI VALENCE
st at enent s.

8.4.1 USE AS SUBSCRI PTS
Subscripts may be of LOd CAL or CHARACTER val ue. The first
character (left-mbst byte) in the quantity is used as the
| ow-order byte of a four-byte integer to form the actual
subscri pt. For exanple, A('123'") is the sane as A(241)
since the internal representation of the character '1',
taken as an integer value, is equivalent to 241.

Exanpl e of use: The following loop wll translate each
character of a card according to the translate table TRANSL.

CHARACTER*1 TRANSL(255) , CARD(80)

DO 1 I=1,80
1 CARD(|)=TRANSL(CARD(I))

8.4.2 USE W TH RELATI ONAL OPERATORS

CHARACTER variables nay be used as operands of relational
operators provided both operands are of type CHARACTER Al l
values are treated as if they were in IBM 360/370 EBCDI C
representation.

e.g., CHARACTER A*1, B*5, C*5(10)
IF (A.EQ C(1)) GO TO 10

IF (B .LE 'AAAAA) GO TO 30

For the purposes of the conparison when operands of unequal
I ength are involved, the shorter operand is considered as if
padded on the right with blanks to the length of the |onger
operand. A warning nessage is issued at conpile tinme when
operands of differing | engths are used.

ADDI TI ONAL CHARACTER FEATURES SUPPCRT Page 69

CHARACTER VARI ABLES

Note that this feature is highly dependent on the |BM
360/ 370 machi ne representati on of EBCDIC characters.

ADDI TI ONAL CHARACTER FEATURES SUPPCRT Page 70

STRUCTURED PROGRAMM NG STATEMENTS

9. STRUCTURED PROGRAMM NG STATEMENTS

A nunber of new control statenents have been added to WATFIV
to facilitate the control of programflow w thout the use of

GOTO st atenents. These statenents have been introduced to
enabl e the FORTRAN programmer to design and wite prograns
in a structured nanner. These statenents are clearly

extensions to FORTRAN-1V and are inconpatible with other
FORTRAN i npl enrent at i ons.

The statenents introduced are the follow ng:

| F- THEN- ELSE

WH LE- DO

DO CASE

EXECUTE and REMOTE BLOCK
VWHI LE- EXECUTE

AT END DO

cupwNE

It is hoped that the use of these new control statenents
wi || encourage better programm ng and design practices anong
beginners, and will aid the nore experienced programer in
writing bug-free prograns.

Since these new |anguage constructs are not available with
other conpilers, a translator has been witten to convert
structured control statements to standard FORTRAN. The
translator was witten using structured constructs and does
not contain a single GOTO. Prograns which do not use any
other WATFIV extensions to FORTRAN, and conpile correctly
under WATFIV, nay be translated by this programto a form
acceptable to I BM FORTRAN. Using the conbination of WATFIV
and the translator, programmers can wite well-structured
FORTRAN prograns, debug themusing WATFIV, then produce a
production version with the translator to be optim zed with

| BM FORTRAN.

The format of these new statenents and their blocks is
illustrated bel ow Following this the use and neaning of
each statenent is described and illustrated with exanpl es.
In each of these illustrations, the blocks are denoted by

"statenent(s)' and are delimted by the control statenents
and special END statenents.

9.1 IF - THEN - ELSE
The ELSE portion of this construct is optional, thus there
are two possible formats.

a) I F (1 ogical -expression) THEN DO

IF - THEN - ELSE Page 71

IF -

STRUCTURED PROGRAMM NG STATEMENTS

statenent (s)

END I F
b) I F (| ogical -expression) THEN DO
statenent(s)
ELSE DO
statenent (s)
END I F

This construct is an extension of the FORTRAN logical |IF
st at enent . If the value of the parenthesized |ogical
expression is true in case a, the block of statenents
following the THEN DO is executed, after which control
passes to the statement following the ENDIF, otherw se,
control will pass directly to the statenent follow ng the
END I F. Wen ELSE DOis used and the |ogical expression is
fal se, the block following the ELSE DO is executed and then
control passes to the statenent following the END I F.

Exanpl es follow which illustrate the use of the two fornats:

IF (1.EQO0) THEN DO

PRINT,'I 1S ZERO
=1
END | F
If I is zero when the IF statement is executed, the string
"I 1S ZERO will be printed, | will be assigned the value 1,
and the statenent following the END IF will be executed. |If

| is not zero when the IF statenent is executed, control
will pass to the statenent following the END | F.

IF (A .GT. B) THEN DO
PRI NT, 'A GREATER THAN B!

A=A-B
ELSE DO

PRI NT+ZDO

PRI NT, 'A NOT GREATER THAN B'
END | F

If the value of variable Ais greater than the value of B
when this |F statement is executed, the string 'A GREATER
THAN B' will be printed and A will be assigned the val ue of
the expression A-B. Control will then pass to the statenent
following the END I F.

If the value of Ais not greater than the value of B when
the IF statenent is executed, the string ' A NOT GREATER THAN
B' will be printed and control wll pass to the statenent
following the END | F.

THEN - ELSE Page 72

STRUCTURED PROGRAMM NG STATEMENTS

9.2 WH LE - DO

VWHI LE (I ogi cal - expressi on) DO
st at enent (s)

END VWHI LE
This control statenent causes its block of code to be
execut ed repeat edl y while the par ent hesi zed | ogi cal
expression is true. The |l ogical expression is evaluated
before entry to the block. |If the value is false, control

passes to the statenment followi ng the END WH LE statenent.
If the logical expression is true, the statenents of the
bl ock are executed. Wen the END WH LE statenent is
reached, the WH LE logical expressionis re-evaluated and
t he above program control decisions are repeated.

Note that the word DO nust be part of the WH LE statenent.
An exanple follows:

WHI LE (J. GT.0) DO
A(J) = B(1+J)
J=J-1

END WHI LE

| f J is zero or negative when the WH LE statenent is
executed, the WHILE bl ock of code w Il be by-passed and the
statement followi ng the END WHI LE wil | be execut ed.

If J is greater than zero when the WH LE statenent is
executed, the WHILE block will b executed repeatedly until
J becones equal to zero. The effect of this loop will be
to assign values to elenments of array A fromarray B,
starting with the element of A corresponding to the initial
value of J and working backwards down the array to el enent
1.

DO CASE Page 73

STRUCTURED PROGRAMM NG STATEMENTS

9. 3 DO CASE

DO CASE i ndex
CASE

statenment (s)
CASE

statenment (s)

CASE

st at enent (s)
I F NONE DO
st at enent (s)
END CASE
In the above definition 'index' is a sinple integer
vari abl e.

The DO CASE construct is similar in concept to the FORTRAN
conputed GOTO. It allows one of a nunber of blocks of code
(case blocks) to be selected for execution by nmeans of an

i nteger CASE i ndex vari abl e.
The first block may be started with a CASE statenent;

however, this first CASE statenent is optional. The |IF NONE
DO block is also optional. The last block is ended by the

END CASE statenent. Internediate case blocks are separated
by CASE statenents. The nunber of cases is optional, from
one to many; however, it is reconmended that the DO CASE
construct not be wused for fewer than 3 cases. The

conditional execution of one or tw blocks of code is
handl ed nore efficiently by the | F-THEN-ELSE construct.

Wien the DO CASE statement is executed wth index i, the
i'"th case block is executed and control passes to the
statenent following the END CASE. |If the IF NONE DO bl ock
is omtted and the index is out of range when the DO CASE is
executed (that is, index variable is =zero, negative, or
exceeds the nunber of case blocks), control is passed to the
statenent follow ng the END CASE and none of the case bl ocks
i s executed.

DO CASE Page 74

STRUCTURED PROGRAMM NG STATEMENTS

DO CASE |
Y = Y+X
X = X*3.2
CASE
Z = Y**2+X
PRINT, X, Y, Z
CASE
Y = Y*13. +X
X =X - 0.213
CASE
Z = X**2+Y**2 - 3.0
Y = Y+1.5
X = X*32.0
PRI NT,' CASE 4' , X, Y, Z
END CASE

This exanple will execute in the manner described bel ow for
each of the possible values of variable I.

i) | is zero or negative:
control will pass to the statenent after the END CASE

i) 1 =1

the value of X will be added to Y

Xwll be nmultiplied by 3.2

control will pass to the statenent after the END CASE

iii) 1 =2

Z will be assigned the value of the expression Y**2 + X
the values of X, Y and Z will be printed

control will pass to the statenent after the END CASE

iv) | =3
Y will be assigned the value of the expression Y* 13. + X
0.213 will be subtracted from X

control will pass to the statement after the END CASE

V) I = 4

Z,Y and X will be assigned new val ues

the string 'CASE 4', followed by the values of X,Y and Z
will be printed

control will pass to the statement after the END CASE

vi) | =5,6,. . .:
control will pass to the statenent after the END CASE

DO CASE Page 75

STRUCTURED PROGRAMM NG STATEMENTS

IF NONE DO allows a block of code to be specified for
execution when the CASE index is out of range. It nust
follow all CASE blocks and thus is ended by the END CASE
statement. The |F NONE DO statenment term nates the previous
and |l ast CASE block. Note that only one |F NONE DO bl ock
may be specified in a DO CASE construct.

If an I|F NONE DO bl ock were included in the above exanpl e,
it would be executed in cases of the description. After an
IF NONE DO block is executed, control then passes to the
statenent after the END CASE.

Enpty or null case blocks are permtted (that is, two

delimter statenents with no statenments between). The net
result of executing a null case block is to effectively
bypass the DO CASE construct. These null case bl ocks,
however, affect the nunbering of other case blocks for
i ndexi ng.

9.4 EXECUTE AND REMOTE BLOCK

EXECUTE nanme

REMOTE BLOCK nane
statenment (s)
END BLOCK

where nane is a valid FORTRAN synbolic nane.

The EXECUTE staterment allows a nanmed block of code to be
executed. The named block of code may be defined anywhere
in the same program segnent and is delimted by the REMOTE
BLOCK and END BLOCK statenents. Executing a REMOTE BLOCK is
simlar in concept to calling a subroutine, wth the
advant age that shared variables do not need to be placed in
a COWDN bl ock or passed in an argunment list. |In addition
there is | ess overhead involved in executing a REMOTE BLOCK
than in calling a subroutine (in both anpbunt of object code
and execution tinme). \When execution of the REMOTE BLOCK is
conplete, control returns to the statenent following the
EXECUTE whi ch invoked it.

This feature is helpful in avoiding duplication of code for
a function (such as 1/0 required in a nunber of places
throughout a program It can also be an aid to witing a
wel | -structured program

EXECUTE AND REMOTE BLOCK Page 76

STRUCTURED PROGRAMM NG STATEMENTS

Each REMOTE bl ock must have a different nane; however, they
need not be different than subprogram or variable nanes.
Note that a REMOTE block is local to the programsegnent in
which it is defined and may not be referenced (executed)
from another program segnent. Due to synbol table
restrictions, a maxi mumof 255 REMOTE BLOCKs nay be defined
in a program segnent.

REMOTE BLOCKs nmy be defined anywhere in the program
segment; however, they nust be preceded by an instruction
causing transfer of control. Al so, executable statenents
following a REMOTE BLOCK will never be executed unless they
are nunbered and referenced by a standard FORTRAN control
st at enent . The END BLOCK is inplicitly a transfer
statenent, since it returns program control fromthe bl ock;
t hus REMOTE BLOCKs may foll ow each other and may precede the
END st atement for the program segnent.

Note that the nested definition of REMOTE BLOCKs is not
permtted.

EXECUTE A
PRINT, ' FI RST'

EXECUTE A
PRI NT, ' SECOND

REMOTE BLOCK A
I=1+1
PRI NT, 'I=",
END BLOCK

Both EXECUTE statenents wll cause REMOTE BLOCK A to be
executed. That is, variable | will be increnmented and its
value will be printed. Wen the block has been executed by
the first EXECUTE, control returns to the PRINT statenent
following it and the word FIRST is printed. Simlarly, when
the bl ock is executed by the second EXECUTE, control returns
to the PRINT staterment following it and the word SECOND is
printed.

REMOTE BLOCKs may be executed from other REMOTE BLOCKS. For

EXECUTE AND REMOTE BLOCK Page 77

STRUCTURED PROGRAMM NG STATEMENTS

exanpl e, REMOTE BLOCK A might contain the statenent EXECUTE
B, where B is a REMOTE BLOCK defined elsewhere in the
program segnent. The execution of REMOTE BLOCKs from ot her
REMOTE BLOCKs may take place to any |evel; however, the
recursive execution of REMOTE BLOCKs is not pernitted,
either directly or through a chain of EXECUTEs. Attenpts to
execute REMOTE BLOCKS recursively are detected as errors at
execution tine.

9.5 WH LE - EXECUTE

VWHI LE (I ogi cal - expressi on) EXECUTE nane

This control statement is a conbination of the WH LE-DO
construct and the EXECUTE statenent.

VWH LE (I.GT.0) EXECUTE A

When this statement is executed, if the |ogical expression
is not true, control passes to the next statement. |If the
expression is true, REMOTE BLOCK A (assunmed to be defined
el sewhere in the program segnent) is executed, and the
| ogi cal expression is re-eval uated. This is repeated until
the logical expression, when evaluated, is false; control
then passes to the next statenent.

9.6 AT END DO

(READ st at enent)
AT END DO

st at enent (s)
END AT END

The AT END DO control statenent is an extension of the
"END=' option of the FORTRAN READ statenent for sequenti al
files. It allows a block of code following the READ
statenment to be executed when an end-of-file condition is
encountered during the READ and to be by-passed otherw se.
The AT END DO statenent nust imediately follow a READ
statement. It is not valid to use this control statenent
with direct-access or core-to-core READs. Cearly, it is
not valid to use this statenent when 'END=" is specified in
t he READ st at enent.

AT END DO Page 78

STRUCTURED PROGRAMM NG STATEMENTS

READ, | , X

AT END DO
PRI NT, ' END- OF- FI LE ENCOUNTERED
EOFSW. TRUE.

END AT END

If the READ statenent is executed w thout encountering end-
of-file, control passes to the statenent following the END
AT END. If an end-of-file condition occurs during the
read, the string, 'END OF-FILE ENCOUNTERED , is printed,
| ogical variable EOFSWis assigned the value .TRUE., and
control passes to the statenment following the END AT END.

9. 7 PROGRAMM NG CONSI DERATI ONS

In addition to the definitions and exanples of these six
constructs, the follow ng points should be noted:

1. Any of the new control statements with their blocks may be
used within the block of any other statenent. For exanple,
a WH LE-DO bl ock may contai n anot her WHI LE-DO or an | F- THEN-
ELSE. Blocks nay be nested in this manner to any |evel
within storage limtations. An inportant exception to this
rule is the REMOTE BLOCK. A REMOTE BLOCK nay contain other
types of blocks (nested to any |evel); however, another
REMOTE BLOCK may not be defined within it.

2. When nesting blocks, the inner blocks nust always be
conpleted with an appropriate 'END state before the outer
bl ocks are terminated. Simlarly, when nesting blocks with
DO LOOPS, a DO LOCOP started within a block must be conpl eted
before the block is conmpleted. A block started within a DO
LOOP nust be terminated before the DO LOOP is conpleted.
Indenting the statenments of each new block, as shown in the
exanples, is helpful in avoiding invalid nesting and hel ps
to nake the structure of the program visually obvious.

3. The normal flow of control of the new progranm ng constructs
described earlier may be altered by standard FORTRAN contr ol
statenents. For exanple, the program may exit froma bl ock
using a GOTO, STOP, RETURN or arithnmetic |F statenent.
Simlarly, a block may be entered in the nmiddle with sone of
the above statenents. Wien a block is entered in this
manner, the remainder of the block (fromthe point of entry
on) wll be executed and control wll pass to the statenent
following the special END statement which termnates the
entire control structure. For exanple, if a CASE bl ock was
entered with a GOTO, the remainder of the block would be
executed and control would pass to the statenment follow ng
t he END CASE. However, these new constructs allow the
programmer to elimnate nost of the transfer statenents that

PROGRAMM NG CONSI DERATI ONS Page 79

STRUCTURED PROGRAMM NG STATEMENTS

woul d ordinarily appear in a program

The WHI LE-DO bl ock is an exception to the above rule. Wen
entered this way, the remainder of the WH LE-DO block will

be executed and control will pass to the WH LE statenent,
where its logical expression is evaluated. |f the value of
the expression is false, control passes to the next
statenent after the END WHILE. |If the expression is true,
the WH LE-DO block is executed nornally and is repeated
until the value of the WH LE |ogical expression becones
fal se.

Anot her exception to this rule is the REMOTE BLOCK.
Transfer of control into or out of a REMOTE BLOCK by neans
of standard FORTRAN control statenments is not pernitted.
Attenpts to do this are flagged as errors during conpilation
of the program

4, Speci al END statenments, CASE, REMOTE BLOCK, |F NONE DO ELSE
DO, and AT END DO statenments are branched to directly by
nmeans of a GO TO statenent or other FORTRAN control
st atenents.

5. None of the new statements can formthe object of a LOG CAL
IF, or be the last statenent of a DO LOOP, with the one
exception of the EXECUTE st atenent.

6. Comments may follow the CASE and END BLOCK statenents. This
enabl es the user to nunber case bl ocks or denote the block's
function. Any valid characters follow ng the words CASE or
END BLOCK are ignored, with the exception of the assignnment
operator (=) which may result in the statenment being decoded
as an assi gnnment statenent.

7. The format and keywords of these new control statenents are
still under discussion and my be subject to change.
Comment s and suggestions will be wel core.

9.8 CONTROL STATEMENT TRANSLATCOR

TRANSL is a subroutine that translates a WATFIV program
containing structured statenents to standard FORTRAN
Prograns which do not use any other WATFIV extensions to
FORTRAN, and conpile correctly under WATFIYV, may be
translated by this program to a form acceptable to |BM
FORTRAN. A copy of this subprogramis in WATFIV' s standard
source subprogramlibrary --- WATFI V. WATLI B.

CONTROL STATEMENT TRANSLATOR Page 80

STRUCTURED PROGRAMM NG STATEMENTS

CALL TRANSL (DECK, PUNCH)
wher e DECK = wunit nunber for input data
PUNCH = unit nunber for output data

To read cards from the reader and punch a new deck, the
follow ng job may be run:

$JOB id, paraneters
CALL TRANSL(5, 7)
STOP
END

$ENTRY
i nput deck

A nunber of extension nessages wll be printed since TRANSL
uses structured control statenents. Printing of these
nessages nmay be suppressed by specifying the NOEXT option on
the $JOB card or on the CSOPTIONS card.

Restrictions:

1. Statenent nunbers 90000-99999 are reserved for the
transl ator. Vari able nanes beginning with '$ are
reserved for the transl ator.

2. Structured control statenent keywords (e.g., WHLE
ELSEDO) should not be wused as variable nanes on the
| eft-hand side of an assignnment statenent.

3. Structured control statenments nust be conplete on one
card, with the exception of |F-THEN and WH LE- DO header
statenents. For these exceptions 'IF(' and ' WH LE('
must be conplete on the first card of the statenent.

4. A maxi mum of 19 continuation cards will be allowed for
READ st at enent s.

5. Comment cards between continuation cards of a statenent
are not all owed.

6. Error checking is generally not performed by the
translator, but certain errors are detected by the
translation algorithm Translation is term nated when
such errors occur.

7. Rermote bl ock names nust be unique in their first 5

characters and renmpte block definitions nust follow all
their references.

CONTROL STATEMENT TRANSLATOR Page 81

st at enent

foll

STRUCTURED PROGRAMM NG STATEMENTS

" EXECUTE' as the object of a DO LOOP will not translate
correctly. This problem may be circunmvented by using a
" CONTI NUE'

owing the EXECUTE, as DO

obj ect .

The generated statenent 'IMPLICIT |NTEGER($)' may have
to be re-positioned in the output deck if subprograns
are transl ated separately or nultiple nainline prograns
are translated together. This is not necessary for
decks with mainline first, followed by subprograns.

Systens_Not es:

TRANSL generally does not perform error checking

Programs being translated should conpile correctly
under WATFIV and conform to the |Ilisted restrictions

In some circunstances, errors are detected by the
translation algorithmand a nessage is printed. |I|f an
error is not detected, WATFIV run-tinme error nessages
my result, or the translator may just produce
incorrect code

TRANSL has two sets of arrays which are defined with
one of the dinensions set at 50 in each:

1. LABEL1, LABEL2, TYPE, CASI N1, CASIN2
2. BNAME, STRTNO, RETRNS

Set 2 is used for renote blocks and set 1 is used for

all other blocks. |[If subscripting for any of these
arrays goes out of bounds, the dinmension set at 50 may
be increased. |If one array is increased in size, the

rest of the arrays in its set should be increased al so

This should not be necessary except for very large
prograns segnents. The translator wll translate
itself within the present array bounds

The follow ng notes nay help in diagnosing non-obvious
probl ens:

"GOTO 0" is generated as part of the 'EXECUTE code
when the renpte block referenced has been previously
def i ned.

'"GOTO 0 nmay also be generated for an ' EXECUTE when
two rempte bl ocks have nanes that are not wunique in
their first five characters

CONTROL STATEMENT TRANSLATOR Page 82

10.

| NTERRUPTS

| NTERRUPTS

This section provides information on the treatnment of
interrupts that may occur during the execution of a FORTRAN
program

Nornmal |y, WATFIV term nates execution of the programat the
first occurrence of an exponent overfl ow, exponent
underflow, fixed divide, or floating divide interrupt.
However, a library subroutine, TRAPS, is provided to allow
the programmrer to accept nore interrupts of the types just
mentioned. Thus, with appropriate uses of subroutine DVCHK
and OVERFL, a programmer nmmy handle, to sone extent, the
treatnent of interrupts.

A call to TRAPS nmay have up to five integer-valued
argunments, and these correspond to the nunber of fixed
overfl ows, exponent overflows, exponent underflows, fixed
divide, and floating divide interrupts the progranmer w shes
to allow. The argunents of TRAPS set wup internal counters
used by the conpiler's interrupt routine. The latter
routine decrenents the appropriate counter by 1 when an
i nterrupt occurs; when any counter reaches zero, the program
is term nated.

TRAPS may be call ed (and subsequently recalled) at any point
inthe main programor a subprogramto set (or reset) the
interrupt counters. Argunments of TRAPS are screened so that
the absolute value of any negative argument is used as a
positive count, and a zero value is taken to nean that the
current value of the corresponding interrupt counter shoul d
be left wunchanged. If the value of an argunent is
undefined, the program is termnated (unless NOCHECK has
been specified).

EXAMPLES:

1. CALL TRAPS (0,5,7,-3,1)
sets the interrupt counters so that the program
will be termnated on the occurence of the first
of the:
- Bth exponent overflow, or
- 7th exponent underflow, or

- 3rd fixed divide, or

- 1st floating divide exception follow ng
the execution of this call to TRAPS.

I NTERRUPTS Page 83

| NTERRUPTS

The statement CALL TRAPS (0,5,7,3) has the sane
effect.

2. LUNFLO = 100
LOVFLO = LUNFLO
CALL TRAPS (0, LUNFLO, LOVFLO

sets the counts to terminate the program
on the occurrence of the first of the:

- 100t h exponent overflow, or
- 100t h exponent underflow, or
- 1st fixed divide, or

- 1st floating divide exception follow ng
the execution of this call.

3. CALL TRAPS (14)
sets the fixed overflow counter to 14.

Termination would occur at the 1st exponent
overflow, underflow, or divide exception, or the
14th fixed overflowif +the installation has
activated this interrupt. Note that t he
distributed version of WATFIV operates with this
interrupt masked off, and furthernore, that this
is the normal node of operation of |BM FORTRAN.

OVERFL, DVCHK

These routines function as foll ows:
CALL DVCHK (j)

where j is an integer variable that is set to 1 if the
(pseudo-) divide-check indicator was on, or to 2 if off.
After testing, the indicator is turned off.

The indicator is set on when a fixed or floating divide
exception occurs.

CALL OVERFL (j)

where j is an integer variable that is set to reflect the
nost recent setting of a pseudo-indicator. The variable j
is set to 1 if an exponent overflow was |last to occur, to 2
i f no exponent overflow or underflow condition exists, or to
3 if an exponent wunderflow was last to occur. After

I NTERRUPTS Page 84

| NTERRUPTS

testing, the indicator is set for no condition, i.e., to 2.
NOTES:
1. The conpiler interrupt routine |oads the affected

machi ne floating-point register with zero or the properly
signed, largest floating-point nunber for exponent underflow
or overflow, respectively.

2. The five interrupt counters are initialized by the
conpiler to 1 at the start of each program The divi de-
check and overflow indicator are not initialized; it is the
programmer's responsibility to do this, e.g., by dumy

cal | s.

3. The termnating nessage is the only indication given
by the conpiler that interrupts have occurred. It is the
programmer's responsibility to nmonitor these using OVERFL
and DVCHK

4. WATFI V oper at es with the fixed overflow and
significance interrupts nasked off entirely.

5. WATFIV automatically corrects for boundary alignnent
errors at execution tine, but this is done not wthout sone
over head. Thus, programmers are advised to ensure that

operands are aligned properly, where possible, by steps
taken at the source |evel

I NTERRUPTS Page 85

11.

11.

1

I NPUT OUTPUT CONSI DERATI ONS

I NPUT CQUTPUT CONSI DERATI ONS

For execution-tine I/O on units other than 5 and 6, WATFIV
uses routines taken directly from IBMs FORTRAN |ibrary.
Consequently, the rules and considerations for performng
execution-time I/O are generally the same as are described
for | oad nmodul e execution in the | BM FORTRAN-I1V Programer's
Cuide (1BMform GC28-6817), to which the reader is directed.
Differences only are given in the foll owi ng notes.

GENERAL NOTES

1. Since the WATFIV conpiler is essentially a one-step
job, any DD cards for execution-tinme data sets nust be
included in the JCL used to invoke the conpiler. An
exanpl e using the cat al ogued procedure VWATFI V,

foll ows:

/1] obnare JOB accounting

/1 EXEC WATFI V

// GO. FT0O1F001 DD DSN=et c.

/1 GO. FT0O2F001 DD DSN=et c.

/1 GO. SYSI N DD *
WATFI V JOBS

/*

2. The conpiler reads the conpile-tine input (source

prograns) and execution-tine card-image data for unit
5 fromthe data set defined by a DD card with DD nane
FTO5F001. (The WATFIV procedure contains the DD card
// FTO5F001 DD DDNAME=SYSIN to redefine the conpiler
input to SYSIN.) Simlarly, conpile- and execution-
tinme output is on one data set defined by the FTO6F001
DD card.

3. The WATFIV procedure (see section 2.2.1 on page 5)
defines tenporary data sets for DD nanes FTO1F001,
FTO02F001, FTO3F001, and FTO4F001.

4, The upper limt, generated into the conpiler, for data
set reference nunbers is 16.

5. Files referenced by DD nanes FT15F001 and FT16F001 are
given read-only status. An execution-tine error
message W ll be issued when a programattenpts to
wite on data sets in this particular range of unit
nunbers.

6. Buf fer space and other dynamically obtained storage

GENERAL NOTES Page 86

I NPUT OUTPUT CONSI DERATI ONS

for DCBs, access nethod routines, etc., is not
included in the core usage figures given in the
accounting output for a job.

7. WATFIV error nessages relating to execution-time 1/0
give, where appropriate, the corresponding |BMerror
code (for which, see GC28-6817).

11. 2 COWPI LER DATA SET ASSUVPTI ONS

NOTE:

11.

3

WATFI V uses the Queued Sequential Access Method (QSAM to
process the data sets defined by the FTO5F001 and FTO6F001
DD cards (i.e., conpile-tine i nput and out put, and
execution-tinme input on unit 5 and output on unit 6).

The foll owi ng DCB assunpti ons are made:

RECFM LRECL BLKSI ZE BUFNO
FTO5F001 FB 80 80 2
FTO6F001 FBA 133 133 2
1. The BLKSI ZE and BUFNO val ues nmay be supplied fromthe

DD card or data set |label; the values given in the
tabl e above are defaults.

2. The BLKSIZE, if not that shown above, nust be a
multiple of the LRECL val ue.

CONCATENTATI NG COVPI LER | NPUT

WATFIV's input stream nay consist of a concatenation of

distinct data sets. The following exanples illustrate

potential uses of this feature:

1) Source programand execution card-inmage data to be
read by 'card reader' unit 5 can be in disjoint data

CONCATENTATI NG COVPI LER | NPUT Page 87

I NPUT OUTPUT CONSI DERATI ONS

sets.
//osjob JOB accounting
11 EXEC WATFIV
/1 GO. FTO5F001 DD DDNAME=PROG
11 DD DDNAME=DATA
/1 GO. PROG Db *
$JOB i d, parns
source program
$ENTRY
/1 GO. DATA DD DSN=WATFI V. SUBSUB(DATA) , DI SP=SHR
2) Segnments of the source programto be conpiled can cone

fromdifferent sources.

/1 osj ob JOB accounting
/1 EXEC WATFIV
/1 GO. FTO5F001 DD DDNAME=JOB, DCB=BLKSI ZE=800
DD DSN=WATFI V. MAI NPROG, DI SP=SHR
DD DSN=WATFI V. SUBSUB(SUB1) , DI SP=SHR
/1 DD DSN=WATFI V. SUB2, DI SP=SHR
DD DDNAME=ENTRY
m *

/1 GO JOB
$JOB i d, parns
/1 GO. ENTRY DD *
$ENTRY

any data
/*

(This exanple assunmes the operating system allows
multiple DD * data sets in the input stream)

NOTES:

1. Al data sets appearing in the concatenation are
subj ect to the assunptions of section 11.2 above.

2. When conpile-time input (i.e., sour ce program
conmponents) is being processed, the total nenory
required for input buffers (BLKSIZE*BUFNO nust not
i ncrease as the conpil er proceeds fromone data set to
the next in the concatenation. (Input buffer space
can increase when proceeding from conpile-tine to

CONCATENTATI NG COVPI LER | NPUT Page 88

I NPUT QUTPUT CONSI DERATI ONS

execution-tine input.)

Exanpl e (b) above, shows a sinple way to neet the
requirements of Note 2. This is to put the |argest
BLKSI ZE on the first DD card of the concatenati onéo®.
(For the purposes of the exanple, the |argest BLKSIZE
of the 5 data sets in the concatenation is assuned to
be 800.)

(D

Strictly speaking, this restriction applies only if the
conmpil er has been generated with the 'dynamic nenory
allocation' feature; this is the nost likely way of
generating the conpiler

CONCATENTATI NG COVPI LER | NPUT Page 89

12.

12.

12.

1

2

SUBPROGRAM FACI LI TI ES

SUBPROGRAM FACI LI TI ES

This section provides some information on the subprogram
facilities available wth the WATFIV conpiler. Rul es for
passi ng val ues between subprograns are al so di scussed.

SOURCES OF SUBPROGRAMS

Any subprogram referenced in a FORTRAN programrun under
WATFI V rmust conme from one of three possible sources:

- card decks in the conpiler's input stream
(SYSIN), i.e., the usual programi nput.

- core-resident library routines internal to the
conpiler itself. For exanple, the routines EXP,
DEXP, ALOG, ALOGLO, DLOG DLOGLO, EXIT, SQRT,
etc., may be in core as an installation choice.

- routines fromlibraries stored on direct-access
devi ces and defined by appropriate DD cards in
the control cards used to invoke the conpiler.

The search for subprograns is made in the order just
nentioned, i.e., a user may supply a subprogram EXIT, for
exanpl e, but an in-core version (assumng there is one) wll
be used in preference to one which nmay be on a direct-access
library.

Normal |y, a user need not be concerned wth which routines
are in core; problems nay arise only if an attenpt is nade
to supply, froma direct-access library, routines with nanmes
the same as any FORTRAN- supplied subprogranms which happen to
be core-resident in the versi on of WATFIV being used..

FORTRAN SUPPLI ED ROUTI NES

The user of WATFIV has available all function and subroutine
subprograns (except DUVP and PDUMP) nentioned in Appendix C
of the IBM publication "IBM System 360 and System 370
FORTRAN |V Language", form GC28-6515. The coding used for
the doubl e precision versions of the mathenatical functions
is essentially that used with IBMs FORTRAN library (without
the Extended Error Handling Facility). Consequently, the
algorithms used and error estinmates for these routines may
be found in the IBM publication "FORTRAN IV Library -
Mat hemati cal and Service Subprograns", form GC28-6818.

The followi ng additional points should be noted. Si ngl e-
precision versions of many of the mathematical functions
used in WATFIV produce the truncated value of the

FORTRAN SUPPLI ED ROUJTI NES Page 90

SUBPROGRAM FACI LI TI ES

correspondi ng doubl e-preci sion version. (Exceptions are the
functions such as ABS, MOD, FLOAT, etc., which don't require
conplicated approximation fornulae.) For exanple, the
eval uati on of SQRT by WATFIV is essentially equivalent to

SQRT(X) =SNGL(DSQRT(DBLE(X)))
12.3 AUTOVATI C FUNCTI ON TYPI NG

Since the initial release of WATFIV, the nmethod of handling
FORTRAN built-in functions has been inconpatible with all of
IBM's FORTRAN conpilers. The najor problem encountered is
WATFI V' s requirenent that the type of these functions nust
be explicitly declared if it 1is different than can be
assunmed fromthe inplicit rules. This restriction has now
been renpved and the nethod of handling FORTRAN built-in
functions conforns to the current FORTRAN standards.

The foll owi ng exanpl e shows that the DSQRT function need not
be explicitly decl ared REAL*8.

$J0B VATFI V
REAL*8 VALUE, X(100), X(100)

VALUE(1) =X(1)* DSQRT(Y(1))
END
$ENTRY

To determine if a built-in (intrinsic) function is being
i nvoked, the follow ng requirenents nust be net:

1) The name of the function nmust not appear in an EXTERNAL

st at enent . It my not be the nane of an array, a
character variable, a subprogram or a statenent
function.

2) This name nmay not appear in a specification statenent of
type different fromthat of the function specified in
the list of FORTRAN Built-in Functions (see Appendix A
of FORTRAN IV with WATFOR and WATFI V -
Cress/ Di rksen/ Grahan).

3) The appearance of the synbol nane (except in a type
st at enent as described in 2) must be fol | owed
imediately by an actual argunent list enclosed in
par ent heses.

AUTQOVATI C FUNCTI ON TYPI NG Page 91

12.

4

SUBPROGRAM FACI LI TI ES

Essentially, if you wish to use a function with the sane
name as the built-in function and it is not supplied in your
source deck, then you nust specify the name in an EXTERNAL
statement to direct the conpiler to use the function you
suppl i ed

SUBPROGRAM ARGUMENTS

The rules for passing val ues between subprograns are
generally the same as those described in the | BM publication
"I BM System / 360 FORTRAN IV Language", form GC28-6515. The
rel evant sections in that manual are "Argunents in a
Function or Subroutine Subprogrant, "Miltiple Entry into a
Subpr ogr ant', "Object-time D nensions". The foll ow ng
remar ks augnent the rules stated in GC28-6515

If a dummy argunment of a called subprogramis an array, then
GC28-6515 specifies that the corresponding actual argument
provided by a calling routine nust be (1) an array nane, or
(2) an array element. Furthernore, in case (1) the size of
the dummy array as declared in the called subprogram nust
not exceed the size of the actual array provided by the
cal ling subprogram (here 'size' neans anopunt, in bytes, of
nenory allocated.) 1In case (2), the size of the dummy array
nmust not exceed the size of that portion of the actual array
that follows and includes the specified el enent.

WATFIV allows a third possibility, nanmely, that the actua
argunent may be a sinmple variable (or expression). The rule
is simlar to that of case (1); the size of the dummy array
must not exceed the nunber of bytes occupied by the sinple
vari abl e.

Al'l three rules can be stated nore briefly, if somewhat |ess
precisely, by the single rule that the dumy array nust fit
into the space provided by the actual argunent, i.e., the
dunmy array nay be snmaller, but may not be larger. These
rules are in the |anguage presunably so that progranmers
will not index beyond the confines of an array, thus
possibly clobbering other data or program areas. WATFI V
takes the trouble to nake sure the rules are not violated at
execution time by making checks on argunents that are passed
to dummy arrays. |If arule is violated, the program is
presumed to be at fault, and is termnated with an error
message and a subprogram traceback.

An exanple of case (2) follows in which the dummy array is
smal l er than the actual array. Note that, according to the

SUBPROGRAM ARGUMENTS Page 92

SUBPROGRAM FACI LI TI ES

rules, B could be di mensioned at, but not greater than, 76.

DI MENSI ON' A(100)
CALL RTN (A(25))

END
SUBROUTI NE RTN(B)
DI MENSI ON B(50)

END
Ooj ect-tinme dinensions can be very wuseful for creating
subprogranms for which it is not known beforehand what

di mensi ons should be wused for dumy arrays. See the
foll owi ng exanpl e.

C*+ ADVERTI SEMENT FOR OBJECT- TI ME DI MENSI ONS
DI MENSI ON' A(100)
CALL RTN (A(25),76)

CALL RTN (A(1),101-1)

END)
SUBROUTI NE RTN(B, N) +CN)
DI VENSI ON B(N)

END

The following remarks pertainto the use of Hollerith
constants as subprogram argunents. Si nce CHARACTER

variables are inplenented in WATFIV, a Hollerith (or
CHARACTER) constant should be passed to a dummy argunent
which is a CHARACTER vari abl e of appropriate length. This
is merely an application of the general rule that an actual
argument shoul d agree in type and length with its
correspondi ng dummy argunent. An exanple foll ows.

SUBPROGRAM ARGUVENTS Page 93

12.

5

SUBPROGRAM FACI LI TI ES

CALL RTN(' LENGTHI S9')

END
SUBROUTI NE RTN(X)
CHARACTER*9 X

However, to allow sonme conpatibility with existing prograns,
Hollerith constants used as subprogram argunents are also

treated in the following way. The conpiler pads the
constant on the right, wth blanks, to nmake its length a
multiple of four, if necessary. It is then treated as a
vector, with a dinmension equal to the number of words the
constant occupi es. Thus, the corresponding dummy argunent
must be a vector of appropriate dinmension. The foll ow ng
exanple illustrates this.

CALL RTN(' LENGTHI S9' , 3)

END
SUBROUTI NE RTN(1, N)
DI MENSI ON | (N)

Hollerith constants are always aligned on a word boundary.

USER LI BRARI ES

As mentioned above, WATFIV will retrieve subprograns froma
direct-access library. In fact, the FORTRAN-supplied
subprograms not kept in core are handled this way. The
mechani smfor retrieving subprograns is sufficiently general
that it will retrieve subprograms from communal or

installation-supplied libraries.

For assistance on how to set wup and specify libraries,

USER LI BRARI ES Page 94

SUBPROGRAM FACI LI TI ES

contact the system programmer responsible for WATFIV at your
installation. Conplete details are given in section 4.1 of
the WATFIV | npl enentati on Gui de

12. 6 PSEUDO- VARI ABLE DI MENSI ONI NG

Certain distributed subrouti ne packages such as | MsL
(I nternational Mat hemat i cal and Statistical Li brary)
produced execution-tine error nessages under WATFIV when
some dummy paraneters in the subroutines were di nensioned at
1. To elinnate this problem the concept of pseudo-
variabl e di mensioning (or PVD) was inpl enented.

WATFIV has been nodified to internally generate information
about all dummy array argunents whose |last dinensionis 1.
Upon invocation of a subroutine, the total array storage of
t he calling argunent and the dunmy paraneters are
calculated. If the dummy array does not fit into the space
provided by the actual argunent (that is, the dummy array is
smaller) and its last subscript is 1, then the |ast
subscript declared for the dummy array is changed internally
so that the storage required for both arrays is the sane.

Consi der the foll owi ng progranres:
Exanpl e 1:

$JOB WATFIV P1234J. USER
REAL A(10), AL(25)
CALL SUBL(A)
CALL SUBL(AL)
STOP
END

SUBROUTI NE SUBL(B)
REAL B(1)
DO 20 1=1, 30

20 B(1)=FLOAT(1)
RETURN
END

$ENTRY

When runni ng Exanple 1 under V1L4 (the previous version of
WATFI V) the error nessage "SUBSCRI PT NUMBER 1 OF B HAS THE
VALUE 2" would be issued when attenpting to access B(2).
Under the new version, the dinmension of B is set to 10 when
passing argument A, and is set to 25 when Al is passed

Thi s pseudo-vari abl e di nensioning only takes effect when the
paranmeter B has a last dinension of 1. |If argument A were
passed to SUB1, and a reference to B(11) was nmmde in SUBL,
the error message "SUBSCRI PTS EXCEED BOUNDS OF ACTUAL ARRAY"

PSEUDO- VARI ABLE DI MENSI ONI NG Page 95

SUBPROGRAM FACI LI TI ES

woul d be generated. A simlar nmessage is issued for
argunent Al if the programattenpts to modify the 26th
el ement of B

Exanpl e 2

$JOB WATFIV P1234J. USER
REAL A(100)
CALL SUBL(A)
CALL SUB2(A)
STOP
END

SUBROUTI NE SUBL(B)
REAL B(5, 1)
DO 20 I =1, 20
20 B(5,1)=0.0
RETURN
END

SUBROUTI NE SUB2(C)
REAL C(2, 2)
DO 10 1=1, 10
DO 10 J=1, 10
10 o(1,3)=0.0
RETURN
END
$ENTRY

In Exanple 2, the size of array B in subroutine SUB1 woul d
be nodified to 5 rows and 20 colums while the dimension of
Cin subroutine SUB2 would renain the same and an error
nessage would result when C(1,3) was referenced. Thi s
denonstrates that PVD takes effect only when the |ast
di nension of a dummy paraneter is 1.

Exanpl e 3:

$JOB WATFIV P1234J. USER
REAL A(3)
CALL SUBL(A)
STOP
END

SUBROUTI NE SUBL(B)
COVPLEX B(1)
B(1)=(1.0, 2.0)
B(2) =3.0, 4. 0)
RETURN
END

$ENTRY

PSEUDO- VARI ABLE DI MENSI ONI NG Page 96

SUBPROGRAM FACI LI TI ES

In Exanple 3, the size of Ain the calling program is 12
bytes. In the subroutine, the dummy argunent B is COVPLEX,
and will therefore occupy 8 bytes if dinensioned at 1, or 16
bytes, if dimensioned at 2. It wll be dinmensioned at 1 to
fit into the space provided by the calling array, and hence
an error nessage will result when B (2) is referenced.

Al'though this feature is transparent to existing programes,
it allows the programmer to use subroutine packages such as
I MSL w thout nodification. The concept of PVD (although
i nconpatible with standard FORTRAN) elim nates the need for
passi ng down vari abl e di mensi ons as argunents or the need to
restrict the size of arrays that subroutines can process.

WATFIV now permits the specification of two new options on
either the $J0OB or C$OPTIONS cards. These options, "NOSUB"
and "SUB", will only be used while PVDis in effect. The
NOSUB job card paraneter pernmts the user to access any
nenber of a dummy array as long as this array elenent is
within the storage reserved for the calling array. The SUB
option forces the wuser to neke sure that the subscripts
specified for an array el ement do not exceed the
correspondi ng subscripts specified in the declaration of the

dunmy array.

The following exanple illustrates the different error
nessages received for this option.

$J0B VATFI V
REAL A(10, 10)/100*0. /
CALL SUBL(A)
STOP
END

SUBROUTI NE SUB1(B)
REAL B(10, 1)
B(50, 2) =1.
RETURN
END
$ENTRY

Since SUB is the default, this job will receive the error
nessage "SUBSCRIPT NUMBER 1 OF B HAS THE VALUE 50" when
attenpting to access B(50,2). Specifying the NOSUB option
will permt the progranmmer to specify any subscript for
array B as long as the array elenent falls wthin the area
defined by A Attenpting to access B(51,2) will cause the
error nessage "ARRAY BOUNDS EXCEEDED FOR ARRAY B".

When the SUB option is activated (that is, array subscript

checking is in effect) the nethod of checking subscripts is
done from right to left due to the design of the WATFIV

PSEUDO- VARI ABLE DI MENSI ONI NG Page 97

SUBPROGRAM FACI LI TI ES

conpi l er.
Consi der the follow ng program

$J0B VATFI V
REAL A(1,2,1,3,1,2 3)
CALL SUBL(A)
STOP
END

SUBROUTI NE SUB1(B)

REAL B(1,2,1,2,1,2, 1)

B(91, 92, 93, 94, 95, 96, 3) =1. 1
RETURN

END

Si nce subscript checking is in effect, the first subscript
of B, which has the value 91 should be diagnosed as invalid.
However the array size calculations are done fromright to
left for vari able dinmensioning and thus the nessage
" SUBSCRI PT NUMBER 6 OF B HAS THE VALUE 96" will be issued.

Finally, an extension nessage of the form "PSEUDO VAR ABLE
DI MENSI ONI NG ASSUMED FOR ARRAY B" is now issued to inform
users when PVDis in effect.

12. 7 SUBPROGRAVS | N OBJECT DECK FORM

WATFIV will accept subprograns in object deck form from
either the input stream (SYSIN) or libraries. |In fact, all
routines in the library, WATFIV. FUNLIB, of FORTRAN supplied
subprograns are in object deck form

A subprogram in object deck formmy appear in any place
that a subprogram in source formnay appear, but object
decks are never |listed. The exanple below shows a job
conmposed of a main program and two subprograns, Rl and R2,
in object deck and source form respectively.

SUBPROGRAMS | N OBJECT DECK FORM Page 98

SUBPROCGRAM FACI LI TI ES
$JOB | i d, paraneters
C,:ALL R2(A) Mai n program
END
oj ect deck for R1

SUBROUTI NE R2(X)

Y=R1(X) R2 in source form
END
$ENTRY
Any data
The question naturally arises: "My object decks acquired
fromthe |BMFORTRAN conpilers be wused?" The answer is:
“Under certain circunstances."” However, the circunstances

are so restrictive that, effectively, the answer is: "No".
The intention is that the object-deck loading facility of
WATFIV wll be wused with special-purpose routines, e.g.,
plotter routines, hand-coded in Assenbl er |anguage.

Since the cal li ng-sequence conventions are not unlike those
used with the |IBM FORTRAN conpilers, anyone who has coded
assenbl er subroutines before should have little difficulty
adapting the subprograns for wuse wth WATFIV. Conpl ete
details can be found in section 4.3 of the WATFIV
| npl ement ati on Gui de.

SUBPROGRAMS | N OBJECT DECK FORM Page 99

SUBPROGRAM FACI LI TI ES

12. 8 ADDI TI ONAL SUBPROGRAMS SUPPORTED BY WATFI V

12.8.1 SPECI AL FUNCTI ONS

WATFI V supports the four function subprograns described in

the follow ng table.

The term "word |l ength" refers to any type of variable which
occupies four bytes, e.g., |NTEGER*4, REAL*4, LOG CAL*4,
CHARACTER*4, etc. Al 32 bits of each argunment are used in

conposing the result of the function eval uation.

Functi on Pur pose Nunber of Type of Type of

Nane Argurent s Argunent s Resul t

AND Logi cal 'and' of 2 or nore Word | ength REAL* 4
argunents

R Logical 'or' of 2 or nore Word | ength REAL* 4
arguments

EOR Excl usive 'or' of 2 or nore Word | ength REAL* 4
arguments

COVPL Logi cal 1's conpl ement 1 Word | ength REAL* 4

of argunent

12. 8.2 STATEMENT COVPRESS/ UNCOMPRESS RQOUTI NES

FIVPAK is a subroutine that conpresses 'one statenent per
card" FORTRAN source decks into 'multi-statenents per card'

decks usable in WATFIV. (UNPACK reverses the process.)

The conpressed form of source input is efficient if prograns
are to be stored in source form in data sets on disks since

the results are:
(a) faster conpile tine
(b) less disk space required

Met hod:

Bl anks are renmoved fromall FORTRAN statenents, except where
they are enbedded between apostrophies. Comrent cards are

ADDI TI ONAL SUBPROGRAMS SUPPORTED BY WATFI V Page 100

SUBPROGRAM FACI LI TI ES

reproduced as read.
DATA A B/ 2H *,' *'/
X=5.0
36 Q0 TO (3,8), 1
is conpressed into,
DATAA, B/ 2H *,' *'[; X=5.0; 36: GOT((3, 8), |

The cards produced are sequence nunbered in increments of
10.

How t o_Use

CALL FI VPAK(NREAD, NPUNCH), or CALL UNPACK(NREAD, NPUNCH)
wher e
NREAD = unit nunber for input data
NPUNCH = unit nunber for output data
Both prograns nust be called from a program run under
WATFI Véo®, since they use CHARACTER variables. To read
cards from the reader and punch a new deck, the follow ng
job may be run:
x $JOB id, KP=26, NOMRN
CALL FI VPAK(5, 7)
STOP
END
X $ENTRY

one-statenent-per-card deck to be conpressed

NOTE: More than one programdeck nmay be conpressed using

FI VPAK by placing a card with an asterisk (*) in colum 1

(1) FIVPAK and UNPACK reside in WATFIV's source library,
WATFI V. WATLI B.

ADDI TI ONAL SUBPROGRAMS SUPPORTED BY WATFI V Page 101

SUBPROGRAM FACI LI TI ES

bet ween each conpl ete deck. UNPACK does not require such a
"separator" card. The output from FIVPAK or UNPACK will be
produced on the unit specified by NPUNCH as well as the

printer.

ADDI TI ONAL SUBPROGRAMS SUPPORTED BY WATFI V Page 102

13.

RETURN CCDES

A return code is provided by the conpiler after a batch of
WATFIV jobs has been executed. The highest return code
generated by any job in the batch is returned.

RETURN CODE EXPLANATI ON

0 End of batch; no non-zero return codes
generated (no diagnostics of any type were
generated for all the jobs in the batch)

1 Extension at conpile tine

2 Warni ng at conpile tine or execution tine

3 Error at conpile tine

4 Error at execution tinme

5 Conmpiler error - remainder of jobs in
bat ch abandoned; conpiler term nation
successful, i.e., files closed, dynanic

areas freed

8 Compiler error - remminder of jobs in
bat ch abandoned; conpiler term nation may
be unsuccessful .

These return codes have been chosen to give the programer
control over executing the next step when running under
OS/VS. The return code should be used in conjunction with
the COND paraneter on the EXEC card to specify conditions
under which the step is not to be executed

RETURN CCDES Page 103

14.

14.1

14.2

14.3

M SCELLANEQUS

M SCELLANEQUS

CARRI AGE- CONTROL CHARACTERS
WATFIV wll replace, wthout warning, invalid carriage
control characters by bl anks. Valid carriage contro

characters, with correspondi ng neani ngs, are
bl ank Advance one |ine before printing
0 Advance two |ines before printing
- Advance three |lines before printing
1 Advance to first line of next page
+ No advance

Note that both EBCDI C and BCD '+' are supported.

TREATMENT OF LOG CAL VALUES

If a logical variable has been assigned a value of .TRUE
or .FALSE., a T or F, respectively, will be printed for the
variable under L format. WATFIV also considers two other
cases: if the variable has not been assigned a value, i.e.
is 'undefined', a U is printed. If a value has been
assigned but it is not the internal representation of . TRUE
or .FALSE., a J (for Junk) is printed. The latter case
could arise through inproper use of EQU VALENCE

Note that WATFIV uses only the high-order byte of a four-

byte |l ogical wvariable in conputations. For exanple, if A

and B are four-byte | ogical variables, then the statenent
A=B

i nvol ves the nmovenent of only one byte in nenory.

CHARACTER- SET CONVENTI ONS

WATFIV allows a programto be punched on either the Mde
029 or 026 keypunches, i.e., EBCDI C or BCD npdes
Interm xing of EBCDIC and BCD within a programis all owed,
subject to the followi ng restrictions.

CHARACTER- SET CONVENTI ONS Page 104

M SCELLANEOUS

(1) The user specifies by the KP= paraneter on the
$JOB or C3OPTIONS card the keypunch node to be
consi dered as the principal node for the
pr ogram

(2) The left parenthesis, right parenthesis, equal
sign of either character set nay be used. A
war ni ng message is issued so that the card could
be repunched for a subsequent reconpilation
under the G or H conpilers.

(3) Quote narks may not be interm xed. |If KP=29 is

specified or assuned by default, then the EBCDI C
guote or apostrophe (') nmust be wused when
delimting Hollerith constants or as the wunit
nunber/record nunber separator in direct-access
I/O statenents, e.g.,

FORMAT(' HOLLERI TH | NFORVATI ON')
FIND(3'I)

If KP=26 is specified or assunmed, the BCD quote
@ must be used, e.g.,

FORMAT(@HOLLERI TH | NFORVATI ON@
FINX(3@)

(4) If KP=29 is specified or assuned, then the
EBCDI C & (12 punch) and the BCD + (12 punch) are
t aken as t he st at enent nurber ar gurment
i ndicator, e.g., CALL RTN(&2). The only ' plus'
sign is the EBCDIC + (12-8-6 punch).

If KP=26 1is specified or assuned, then the
EBCDIC +, BCD +, and EBCDIC & are taken as
"plus'. To indicate a statenent nunber
argunent, use a $, i.e., the IBM conpiler
convention, e.g., CALL RTN($2).

14. 4 | NCOWPATI BI LI TITES W TH | BM FORTRAN

Note that the differences |listed below do not include the
| anguage extensions and restrictions given in Chapter 7 on
page 46. Nor do they include differences which arise
ei ther because object prograns conpiled under |BM FORTRAN
are freely allowed to violate the |Ianguage rules defined in
GC28- 6515 (e.g., passing an argunent of type INTEGER to the
SQRT subroutine), or because the |IBM conpil ers accept syntax

I NCOVPATI BI LI TTES WTH | BM FORTRAN Page 105

M SCELLANEOUS

not defined in GC28-6515, e.g.,
WRI TE(6, 2) (A(l), A(2))

The nmjor causes of differences between WATFIV and |BM
FORTRAN are likely to be the treatnment of FORTRAN- supplied
functions and nunber conversions.

1. WATFIV provides execution-tine page ski pping,
controlled by the LI NES= job-paraneter.

2. WATFI V al | ows any nunber of contiguous conments cards;
comments cards nmay precede a continuation card.

3. WATFIV uses only the high-order byte of a |[ogical
quantity in logical operations. For exanple, if A and
B are of type LOGd CAL *4, execution of the statenent

A=B
causes only one byte to be noved.
4, DO | oops nmay be nested to any depth in WATFI V.

5. WATFI V supports both EBCDIC and BCD '+' as carriage
control characters.

6. WATFIV considers the programto be in error if it
executes a RETURNI statenent in which the value of "i
is zero, negative, undefined, or greater than the
nunber of statenment nunber argunments which appeared in
the argunent list of the CALL statement which invoked
the subprogram from which the return is being nade.

1

7. WATFIV prints no nessage equivalent to the |HC210l
("old PSWis ...") message when an interrupt occurs.

8. Wth WATFIV, a use of T fornat that does a 'backward'
tab in an output buffer does not cause existing
characters in the buffer to be blanked out. For

exanpl e, consider the statenents:

K= 9
J=1
WRI TE (6, 7)K, J
7 FORMAT (' $$$.00',T3,12,T6,12)

Wth WATFIV, the |ine appears as:

$$9. 01

I NCOVPATI BI LI TTES W TH | BM FORTRAN Page 106

10.

appr oxi mati on

11.

12.

13.

M SCELLANEOUS

Wth | BM FORTRAN, it appears as:
$9. 1

Actually, this is a consequence of the fact that
WATFIV's formatting routines assune the buffer to be
bl anked before any filling of it occurs, i.e., only
significant characters are noved into the buffer.

REAL*4 values are printed wth a maxinmm of 7
si gni fi cant digits. | f the output f or mat
specification calls for nore, i.e., E20.10, zeroes are
supplied on the right.

WATFIV treats FORTRAN-supplied functions differently
than |1 BM FORTRAN as fol | ows:

(a) WATFIV makes no distinction between 'in-line'
and 'out-of-line' functions; all functions are
out-of-line and thus no code is generated at
conpile tine.

(b) WATFIV evaluates all functions that require

formulae in doubl e precision,
i.e.,

SQRT(X)

is calculated as, essentially,
SNGL(DSQRT(DBLE(X))) .

WATFI V handl es FORMAT statenents differently than G
and H as follows:

(a) WATFIV allows nore than the naxi mum nunber of
continuation cards for FORMAT statenents.

(b) WATFI V does not allow group or field counts to
be zero.

Execution-tinme data cards read on the standard card
reader wunit by WATFIV-conpiled prograns nmay not
contain a $in colum 1 or C$ in colums 1-2.

Wth WATFIV, a particular |abelled COMWON bl ock can be
initialized in nore than one BLOCK DATA subprogram
This allows undetected violations of rule 6, page 112
of (GC28-6515-10.

I NCOVPATI BI LI TTES WTH | BM FORTRAN Page 107

APPENDI X

15. APPENDI X

15.1 WATFI V ERROR MESSAGES

' ASSEMBLER LANGUAGE SUBPROGRAMVES'

AL-0 "M SSI NG END CARD ON ASSEMBLY LANGUAGE OBJECT DECK

AL-1 " ENTRY- PO NT OR CSECT NAME | N AN OBJECT DECK WAS PREVI QUSLY
DEFI NED. FI RST DEFI NI TI ON USED

' BLOCK DATA STATEMENTS
BD-0 ' EXECUTABLE STATEMENTS ARE | LLEGAL I N BLOCK DATA SUBPROGRAMS'
BD-1 ' 1 MPROPER BLOCK DATA STATEMENT'

' CARD FORMAT AND CONTENTS'

CC-0 " COLUMNS 1-5 OF CONTI NUATI ON CARD ARE NOT BLANK.
PROBABLE CAUSE: STATEMENT PUNCHED TO LEFT OF COLUWN 7'

CC1 "LIMT OF 5 CONTI NUATI ON CARDS EXCEEDED

CC-2 "I NVALI D CHARACTER | N FORTRAN STATEMENT. A'$' WAS | NSERTED I N THE
SOURCE LI STI NG

CC-3 "FIRST CARD CF A PROGRAM IS A CONTI NUATI ON CARD.
PROBABLE CAUSE: STATEMENT PUNCHED TO LEFT OF COLUWN 7'

CC-4 ' STATEMENT TOO LONG TO COWPI LE (SCAN- STACK OVERFLOW '

CC-5 " A BLANK CARD WAS ENCOUNTERED

CC-6 " KEYPUNCH USED DI FFERS FROM KEYPUNCH SPECI FI ED ON JOB CARD

CcC-7 ' THE FI RST CHARACTER COF THE STATEMENT WAS NOT ALPHABETI C

CC-8 "1 NVALI D CHARACTER(S) ARE CONCATENATED W TH THE FORTRAN KEYWORD

CC-9 "I NVALI D CHARACTERS | N COLUMNS 1-5. STATEMENT NUMBER | GNORED.
PROBABLE CAUSE: STATEMENT PUNCHED TO LEFT OF COLUWN 7'

CC-A ' CONTROL CARDS MAY NOT BE CONTI NUED

CC-B ' CONTROL CARDS MUST BE | N PROGRAM SEGVENT'

" COMMON

CM0 'THE VAR ABLE | S ALREADY I N COMVON

CM1 ' OTHER COWPI LERS MAY NOT ALLOW COMVONED VARI ABLES TO BE I NI TIALI ZED I N
OTHER THAN A BLOCK DATA SUBPROGRAM

CM2 "ILLEGAL USE OF A COMMON BLOCK COR NAMELI ST NAME'

' FORTRAN TYPE CONSTANTS

CN-0 "M XED REAL*4, REAL*8 | N COVPLEX CONSTANT; REAL*8 ASSUMED FCOR BOTH
CN-1 " AN | NTEGER CONSTANT MAY NOT BE GREATER THAN 2, 147, 483, 647 (2**31-1)'
CN-2 " EXPONENT ON A REAL CONSTANT | S GREATER THAN 2 DIG TS

CN-3 " A REAL CONSTANT HAS MORE THAN 16 DI G TS. I T WAS TRUNCATED TO 16'

CN-4 "I NVALI D HEXADECI MAL CONSTANT'

CN-5 "ILLEGAL USE OF A DECI MAL PO NT'

CN-6 ' CONSTANT WTH MORE THAN 7 DI G TS BUT E- TYPE EXPONENT, ASSUMED TO BE
REAL* 4

CN-7 ' CONSTANT OR STATEMENT NUMBER GREATER THAN 99999
CN-8 " AN EXPONENT OVERFLOW CR UNDERFLOW OCCURRED WHI LE CONVERTI NG A CONSTANT
IN A SOQURCE STATEMENT'

WATFI V. ERROR MESSAGES Page 108

APPENDI X

' COWPlI LER ERRCRS'

CP-0 ' COWPILER ERROR - LANDR/ ARI TH

CP-1 ' COWI LER ERROR. LI KELY CAUSE: MORE THAN 255 DO STATEMENTS'
CP-2 ' COWI LER ERRCR

CP-4 ' COWPI LER ERROR - | NTERRUPT AT COWPI LE TI ME, RETURN TO SYSTEM

' CHARACTER VARI ABLE'

Cv-0 " A CHARACTER VARI ABLE IS USED W TH A RELATI ONAL OPERATOR

Cv-1 ' LENGTH OF A CHARACTER VALUE ON RI GHT OF EQUAL SI GN EXCEEDS THAT ON
LEFT. TRUNCATI ON W LL OCCUR

Cv-2 " UNFORMATTED CORE- TO- CORE |/ O NOT | MPLEMENTED

' DATA STATEMENT'

DA-0 ' REPLI CATI ON FACTOR |'S ZERO OR GREATER THAN 32767.
I T I'S ASSUMED TO BE 32767

DA-1 ' MORE VAR ABLES THAN CONSTANTS'

DA-2 ' ATTEMPT TO I NI TI ALl ZE A SUBPROGRAM PARAMVETER | N A DATA STATEMENT'

DA-3 ' OTHER COMPI LERS MAY NOT ALLOW NON- CONSTANT SUBSCRI PTS | N DATA
STATEMENTS'

DA-4 ' TYPE OF VARI ABLE AND CONSTANT DO NOT AGREE. (MESSAGE | SSUED ONCE FOR
AN ARRAY) '

DA-5 ' MORE CONSTANTS THAN VARI ABLES'

DA-6 ' A VAR ABLE WAS PREVI QUSLY | NI TI ALI ZED. THE LATEST VALUE | S USED.
CHECK COMMONED AND EQUI VALENCED VARI ABLES'

DA-7 ' OTHER COMPI LERS MAY NOT ALLOW I NI TI ALI ZATI ON OF BLANK COVMON

DA-8 A LI TERAL CONSTANT HAS BEEN TRUNCATED

DA-9 ' OTHER COMPI LERS MAY NOT ALLOW | MPLI ED DO- LOOPS | N DATA STATEMENTS

' DEFI NE FI LE STATEMENTS

DF-0 "THE UNIT NUMBER | S M SSI NG

DF-1 "I NVALI D FORVAT TYPE

DF- 2 ' THE ASSOCI ATED VARI ABLE IS NOT A SI MPLE | NTEGER VARI ABLE'

DF- 3 " NUMBER OF RECORDS OR RECORD SIZE | S ZERO OR GREATER THAN 32767

DI MENSI ON STATEMENTS'

DV O " NO DI MENSI ONS ARE SPECI FI ED FOR A VARI ABLE I N A DI MENSI ON STATEMENT'
DMt 1 ' THE VARI ABLE HAS ALREADY BEEN DI MENSI ONED +OD

DM 2 ' CALL- BY- LOCATI ON PARAMETERS MAY NOT BE DI MENSI ONED

DM 3 ' THE DECLARED SI ZE OF ARRAY EXCEEDS SPACE PROVI DED BY CALLI NG ARGUMENT'

' DO LOOPS'

DO-0 ' TH S STATEMENT CANNOT BE THE OBJECT OF A DO- LOCP

DO 1 "I LLEGAL TRANSFER | NTO THE RANGE OF A DO- LOOP

DO- 2 ' THE OBJECT OF THI S DO-LOOP HAS ALREADY APPEARED

DO 3 ' | MPROPERLY NESTED DO- LOOPS'

DO- 4 " ATTEMPT TO REDEFI NE A DO- LOOP PARAMETER W THI N THE RANGE OF THE LOOP
DO 5 "I NVALI D DO- LOOP PARAMETER

DO- 6 "I LLEGAL TRANSFER TO A STATEMENT WHI CH | S I NSI DE THE RANGE OF A DO- LOOP

WATFI V. ERROR MESSAGES Page 109

APPENDI X

DO 7 " A DO- LOOP PARAMETER |'S UNDEFI NED OR QUT OF RANCE

DO- 8 ' BECAUSE OF ONE OF THE PARAMETERS, THI' S DO- LOOP W LL TERM NATE AFTER THE
FI RST TI ME THROUGH

DO 9 " A DO LOOP PARAMETER MAY NOT BE REDEFI NED IN AN | NPUT LI ST

DO-A ' OTHER COWPI LERS MAY NOT ALLOW TH' S STATEMENT TO END A DO- LOOP

' EQUI VALENCE AND/ OR COMMVON
EC-0 ' EQUI VALENCED VARI ABLE APPEARS | N A COVMON STATEMENT'
EC-1 'A COWON BLOCK HAS A DI FFERENT LENGTH THAN I N A PREVI QUS
SUBPROGRAM GREATER LENGTH USED
EC-2 ' COWON AND/ OR EQUI VALENCE CAUSES | NVALI D ALI GNIVENT.
EXECUTI ON SLOWED. REMEDY: CRDER VARI ABLES BY DECREASI NG LENGTH
EC-3 ' EQUI VALENCE EXTENDS COVMMON DOWNWARDS'
EC-4 ' A SUBPROGRAM PARAMETER APPEARS | N A COVMON CR EQUI VALENCE STATEMENT'
EC-5 'A VAR ABLE WAS USED W TH SUBSCRI PTS I N AN EQUI VALENCE STATEMENT BUT HAS
NOT BEEN PROPERLY DI MENSI ONED

' END STATEMENTS'

EN-O ' M SSI NG END STATEMENT: END STATEMENT CGENERATED

EN-1 ' AN END STATEMENT WAS USED TO TERM NATE EXECUTI ON

EN-2 ' AN END STATEMENT CANNOT HAVE A STATEMENT NUMBER STATEMENT NUMBER
| GNORED

EN-3 ' END STATEMENT NOT PRECEDED BY A TRANSFER

' EQUAL SI GN\S'
EQ O 'ILLEGAL QUANTITY ON LEFT OF EQUALS SI G\
EQ1 'ILLEGAL USE OF EQUAL SIGN

EQ 2 ' OTHER COWPI LERS MAY NOT ALLOW MULTI PLE ASSI GNVENT STATEMENTS'
EQ 3 " MULTI PLE ASSI GNVENT |'S NOT | MPLEMENTED FOR CHARACTER VARI ABLES
EQ 4 "I LLEGAL QUANTITY ON RI GHT OF EQUALS SI GN

" EQUI VALENCE STATEMENTS

EV-0 ' ATTEMPT TO EQUI VALENCE A VARI ABLE TO | TSELF

EV-2 ' A MILTI - SUBSCRI PTED EQUI VALENCED VARI ABLE HAS BEEN | NCORRECTLY
RE- EQUI VALENCED. REMVEDY: DI MENSI ON THE VARI ABLE FI RST'

' PONERS AND EXPONENTI ATI ON'

EX-0 "| LLEGAL COVPLEX EXPONENTI ATl ON
EX-1 "1**J WHERE | =J=0'
EX-2 "I**J WHERE =0, J.LT.O

EX-3 '0.0**Y WHERE Y. LE. 0.0’

EX-4 '0.0**J WHERE J=0'

EX-5 '0.0**J WHERE J.LT.O'

EX-6 'X**Y WHERE X .LT. 0.0, Y IS NOT TYPE INTEGER OR . NE. 0.0’

WATFI V. ERROR MESSAGES Page 110

APPENDI X

' ENTRY STATEMENT'

EY-0
EY-1
EY-2

EY-3

EY-4
EY-5

" ENTRY- PO NT NAME WAS PREVI QUSLY DEFI NED

" PREVI OQUS DEFI NI TION OF FUNCTI ON NAME | N AN ENTRY | S | NCORRECT'

' THE USAGE OF A SUBPROGRAM PARAMETER | S | NCONSI STENT W TH A PREVI QUS
ENTRY- PO NT'

" A PARAMETER HAS APPEARED | N A EXECUTABLE STATEMENT BUT IS NOT A
SUBPROGRAM PARAMETER

" ENTRY STATEMENTS ARE | NVALID IN THE MAI N PROGRAM

" ENTRY STATEMENT | NVALI D I NSI DE A DO LOOP

" FORVAT'
SOVE FORMAT ERROR MESSAGES G VE CHARACTERS I N WHI CH ERROR WAS DETECTED

FM 0
FM 1
FM 2
FM 4
FM 5

FM 6
FM 7
FT-0
FT-1
FT-2
FT-3
FT-4
FT-5
FT-6
FT-7
FT-8
FT-9
FT-A
FT-B
FT-C
FT-D
FT-D
FT-E
FT-F
FT-G
FT-H
FT-1

' | MPMROPER CHARACTER SEQUENCE CR | NVALI D CHARACTER I N | NPUT DATA
' NO STATEMENT NUMBER ON A FORVAT STATEMENT'
' FORVAT CODE AND DATA TYPE DO NOT MATCH
' FORVMAT PROVI DES NO CONVERSI ON SPECI FI CATI ON FOR A VALUE IN I/ O LI ST'
"AN I NTEGER IN THE | NPUT DATA IS TOO LARCE.
(MAXI MUME2, 147, 483, 647=2**31-1)"
" A REAL NUMBER I N THE | NPUT DATA | S OQUT OF MACH NE RANCE (1.E-78, 1. E+75)'
" UNREFERENCED FORMAT STATEMENT'
" FI RST CHARACTER OF VARI ABLE FORVAT | S NOT A LEFT PARENTHESI S'
"I NVALI D CHARACTER ENCOUNTERED | N FORNMAT'
"I NVALI D FORM FOLLOW NG A FORVAT CODE'
"I NVALI D FI ELD OR GROUP COUNT'
"A FI ELD OR GROUP COUNT GREATER THAN 255'
" NO CLOSI NG PARENTHESI S ON VARI ABLE FORVAT'
" NO CLOSI NG QUOTE I N A HOLLERI TH FI ELD
"I NVALI D USE OF COMVA
' FORMAT STATEMENT TOO LONG TO COWPI LE (SCAN- STACK OVERFLOW
"I NVALI D USE CF P FORVAT CODE
"I NVALI D USE CF PERI OD(.)"
' MORE THAN THREE LEVELS OF PARENTHESES
"I NVALI D CHARACTER BEFORE A RI GHT PARENTHESI S'
"M SSI NG OR ZERO LENGTH HOLLERI TH ENCOUNE(S'
"M SSI NG OR ZERO LENGTH HOLLERI TH ENCCQUNTERED
" NO CLCSI NG RI GHT PARENTHESI S
' CHARACTERS FOLLOW CLOSI NG Rl GHT PARENTHESI S'
" WRONG QUOTE USED FOR KEY- PUNCH SPECI FI ED
' LENGTH OF HOLLERI TH EXCEEDS 255'
" EXPECTI NG COMVA BETWEEN FORVAT | TEMS'

" FUNCTI ONS AND SUBROUTI NES'

FN- 1
FN- 2
FN- 4

FN-5
FN- 6

" A PARAMETER APPEARS MORE THAN ONCE | N A SUBPROGRAM OR STATEMENT
FUNCTI ON DEFI NI TI ON'
' SUBSCRI PTS ON RI GHT- HAND SI DE OF STATEMENT FUNCTI ON.

PROBABLE CAUSE: VARI ABLE TO LEFT OF EQUAL SI GN NOT DI MENSI ONED
"| LLEGAL LENGTH MODI FI ER
"I NVALI D PARAMETER
" A PARAMETER HAS THE SAME NAME AS THE SUBPROGRAM

WATFI V. ERROR MESSAGES Page 111

APPENDI X

' GO TO STATEMENTS'

GO0 "' TH S STATEMENT COULD TRANSFER TO | TSELF

GO 1 "THI S STATEMENT TRANSFERS TO A NON- EXECUTABLE STATEMENT'

GO 2 " ATTEMPT TO DEFI NE ASSI GNED GOTO | NDEX | N AN ARI THVETI C STATEMENT'

GO 3 " ASSI GNED GOTO | NDEX MAY BE USED ONLY | N ASSI GNED GOTO AND ASSI GN
STATEMENTS'

GO 4 "I NDEX OF AN ASSI GNED GOTO |'S UNDEFI NED OR OUT OF RANGE, CR | NDEX OF
COVPUTED GOTO OR CASE |'S UNDEFI NED

GO 5 " ASSI GNED GOTO | NDEX MAY NOT BE AN | NTEGER*2 VARI ABLE'

" HOLLERI TH CONSTANTS'

HO-0 ' ZERO LENGTH SPECI FI ED FOR H TYPE HOLLERI TH

HO-1 ' ZERO LENGTH QUOTE- TYPE HOLLERI TH

HO-2 ' NO CLCSI NG QUOTE OR NEXT CARD NOT A CONTI NUATI ON CARD
HO-3 ' UNEXPECTED HOLLERI TH OR STATEMENT NUMBER CONSTANT'

F STATEMENTS (ARl THVETI C AND LOGQ CAL)'

"

IF-0 " AN I NVALI D STATEMENT FOLLOWS THE LOGE CAL | F

IF-1 "ARITHVETIC OR I NVALI D EXPRESSION I N LOG CAL | F OR WHI LE
IF-2 'LOG CAL, COVWPLEX OR | NVALI D EXPRESSI ON I N ARI THMETIC | F

5

LI CI T STATEMENT'
"I NVALI D DATA TYPE
"I NVALI D OPTI ONAL LENGTH
" | MPROPER ALPHABETI C SEQUENCE | N CHARACTER RANGE
"A SPECI FI CATION I S NOT A SI NGLE CHARACTER THE FI RST CHARACTER | S USED
"I MPLICI T STATEMENT DCES NOT PRECEDE OTHER SPECI FI CATI ON STATEMENTS'
" ATTEMPT TO DECLARE THE TYPE OF A CHARACTER MORE THAN ONCE
"ONLY ONE | MPLI CI' T STATEMENT PER PROGRAM SEGVENT ALLOAED. THI S ONE

szgzzE=x
~No o~ wWER O

| GNORED
"I NPUT/ QUTPUT
100 "1/ O STATEMENT REFERENCES NON- FORVAT STATEMENT. PROBABLE CAUSE :

STATEMENT DEFI NED AS NON- FORVAT
101 ' A VAR ABLE FORVMAT MUST BE AN ARRAY NANE'

102 "I NVALI D ELEMENT I N I NPUT LI ST OR DATA LI ST

103 ' OTHER COWPI LERS MAY NOT ALLOW EXPRESSI ONS | N QUTPUT LI STS
104 "I LLEGAL USE OF END= OR ERR= PARAMETERS

105 "I NVALI D UNI T NUMBER

106 "I NVALI D FORVAT'

1067 " ONLY CONSTANTS, SI MPLE | NTEGER*4 VARI ABLES, AND CHARACTER VARI ABLES ARE
ALLOAED AS UNI T'

10-8 " ATTEMPT TO PERFORM I/ O IN A FUNCTI ON WHICH | S CALLED I N AN QUTPUT
STATEMENT'

109 " UNFORVATTED WRI TE STATEMENT MUST HAVE A LI ST

IO-A ' EXPECTI NG STATEMENT TO BE A FORVAT. PREVI QUSLY REFERENCED IN I/ 0O
STATEMENT'

' JOB CONTROL CARDS'

JB-0 ' CONTROL CARD ENCOUNTERED DURI NG COWVPI LATI ON,
PROBABLE CAUSE: M SSI NG C$ENTRY CARD

JB-1 "M S- PUNCHED JOB OPTI ON

WATFI V. ERROR MESSAGES Page 112

APPENDI X

' JOB TERM NATI ON

KO- 0 ' SQURCE ERRCR ENCOUNTERED WHI LE EXECUTI NG W TH RUN=FREE'
KO- 1 "LIMT EXCEEDED FOR FI XED- PO NT DI VI SI ON BY ZERO
KO- 2 "LIM T EXCEEDED FOR FLQATI NG PO NT DI VI SI ON BY ZERO
KGO 3 ' EXPONENT OVERFLOW LI M T EXCEEDED

KO- 4 ' EXPONENT UNDERFLOW LI M T EXCEEDED

KO- 5 " FI XED- PO NT OVERFLOW LI M T EXCEEDED

KO- 6 ' JOB- TI ME EXCEEDED

KO- 7 ' COWPI LER ERRCOR - EXECUTI ON TI ME: RETURN TO SYSTEM
KO- 8 ' TRACEBACK ERROR. TRACEBACK TERM NATED

KO- 9 ' CANNOT OPEN WATFI V. ERRTEXTS. RUN TERM NATED

KO-A 'I/0O ERROR ON TEXT FI LE

' LOG CAL OPERATI ONS'
LG 0O '.NOI. WAS USED AS A BI NARY OPERATCR

' LI BRARY ROUTI NES

LI-0 ' ARGUMENT OUT OF RANGE DGAMMA OR GAMMVA. (1.382E-76 .LT. X .LT. 57.57)°
LI-1 "ABS(X) .GE. 175.366 FOR S| NH, COSH, DSI NH OR DCOSH OF X'

LI-2 ' SENSE LIGHT OTHER THAN 0, 1,2,3,4 FOR SLITE OR 1,2,3,4 FOR SLI TET'
LI-3 ' REAL PORTI ON OF ARGUVENT . GT. 174.673, CEXP OR CDEXP'

LI-4 "ABS(AIMAG(Z)) .GT. 174.673 FOR CSIN, CCOS, CDSIN OR CDCCS OF Z'

LI-5 "ABS(REAL(Z)) .GE. 3.537E15 FOR CSIN, CCOS, CDSIN OR CDCCS OF Z

LI-6 'ABS(AIMAG Z)) .GE. 3.537E15 FOR CEXP OR CDEXP OF Z'

LI-7 " ARGUMENT .GT. 174.673, EXP OR DEXP'

LI-8 ' ARGUMENT OF CLOG OR CDLOG |'S ZERO

LI-9 " ARGUMENT |'S NEGATI VE OR ZERO, ALOG, ALOGLO, DLOG OR DLOGLO'

LI-A "ABS(X) .GE. 3.537E15 FOR SIN, COS, DSIN OR DCOS OF X'

LI-B ' ABSOLUTE VALUE OF ARGUMENT . GT. 1, FOR ARSIN, ARCOS, DARSIN OR DARCOS
LI-C ' ARGUMENT |S NEGATI VE, SQRT OR DSQRT'

LI-D ' BOTH ARGUMENTS OF DATAN2 OR ATAN2 ARE ZERO

LI-E ' ARGUMENT TOO CLOSE TO A SI NGULARI TY, TAN, COTAN, DTAN OR DCOTAN

LI-F " ARGUMENT OUT OF RANGE DLGAMA OR ALGAMA. (0.0 .LT. X .LT. 4.29E73)'
LI-G ' ABSOLUTE VALUE OF ARGUMENT .GE. 3.537E15, TAN, COTAN, DTAN, DCOTAN

"M XED MODE'

MD- 0 ' RELATI ONAL CPERATOR HAS LOG CAL OPERAND

MD- 1 ' RELATI ONAL COPERATOR HAS COVPLEX OPERAND

MD- 2 "M XED MODE - LOG CAL OR CHARACTER W TH ARI THVETI C

MD- 3 ' OTHER COWPI LERS MAY NOT ALLOW SUBSCRI PTS OF TYPE COWPLEX, LOG CAL COR

CHARACTER

" MEMCRY OVERFLOW

MO-0 ' I NSUFFI CI ENT MEMORY TO COWPI LE TH S PROGRAM REMAI NDER W LL BE ERRCOR
CHECKED ONLY'

MO-1 ' I NSUFFI CI ENT MEMORY TO ASSI GN ARRAY STORAGE. JOB ABANDONED

MO-2 ' SYMBOL TABLE EXCEEDS AVAI LABLE SPACE, JOB ABANDONED
MO-3 ' DATA AREA OF SUBPROGRAM EXCEEDS 24K -- SEGVENT SUBPROGRAM
MO-4 ' I NSUFFI CI ENT MEMORY TO ALLOCATE COWPI LER WORK AREA CR WATLI B BUFFER

WATFI V. ERROR MESSAGES Page 113

APPENDI X

" NAMELI ST STATEMENTS'

NL- 0 " NAMELI ST ENTRY MUST BE A VARI ABLE, NOT A SUBPROGRAM PARAMETER
NL- 1 " NAMELI ST NAME PREVI QUSLY DEFI NED

NL- 2 ' VARI ABLE NAME TOO LONG

NL- 3 " VARI ABLE NAME NOT FCUND | N NAMELI ST'

NL- 4 "I NVALI D SYNTAX | N NAMELI ST | NPUT'

NL- 6 ' VARI ABLE | NCORRECTLY SUBSCRI PTED

NL- 7 ' SUBSCRI PT QUT OF RANGE

NL- 8 ' NESTED BLANKS ARE | LLEGAL | N NAMELI ST | NPUT'

' PARENTHESES'
PC-0 ' UNVATCHED PARENTHESI S'
PC-1 ' INVALI D PARENTHESI S NESTING IN I/ O LI ST

' PAUSE, STOP STATEMENTS
PS-0 ' OPERATOR MESSAGES NOT ALLOWED: SI MPLE STOP ASSUMED FOR STOP,
CONTI NUE ASSUMED FOR PAUSE'

" RETURN STATEMENT'

RE-1 '"RETURN I, WHERE | IS QUT OF RANGE OR UNDEFI NED
RE-2 ' MULTI PLE RETURN NOT VALID I N FUNCTI ON SUBPROGRAM
RE-3 ' VARI ABLE IS NOT A SI MPLE | NTEGER

RE-4 ' A MULTIPLE RETURN IS NOT VALID I N THE MAI N PROGRAM

" ARI THVETI C AND LOG CAL STATEMENT FUNCTI ONS'
PROBABLE CAUSE OF SF ERRCRS - VARI ABLE ON LEFT OF = WAS NOT DI MENSI ONED

SF-1 " A PREVI QUSLY REFERENCED STATEMENT NUMBER APPEARS ON A STATEMENT
FUNCTI ON DEFI NI TI ON'

SF-2 ' STATEMENT FUNCTION IS THE OBJECT OF A LOG CAL | F STATEMENT'

SF-3 ' RECURSI VE STATEMENT FUNCTI ON DEFI NI TI ON: NAME APPEARS ON BOTH S| DES OF
EQUAL SI GN. LI KELY CAUSE: VARI ABLE NOT DI MENSI ONED

SF-4 " A STATEMENT FUNCTI ON DEFI NI TI ON APPEARS AFTER THE FI RST EXECUTABLE
STATEMENT'

SF-5 "I LLEGAL USE OF A STATEMENT FUNCTI ON NAME

' STRUCTURED PROGRAMM NG BLOCKS'

SP-0 " AT END STATEMENT MUST FOLLOW | MVEDI ATELY AFTER A READ

SP-1 " AT END FOLLOAS CORE TO CORE, DI RECT ACCESS OR | NVALI D READ STATEMENT'
SP-2 " AT END NOT VALI D WHEN ' END=" SPECI FI ED | N THE READ STATEMENT'

SP-3 "M SSING OR I NVALI D DO CASE, WHI LE, AT END, OR |F-THEN STATEMENT'

SP-4 " | MPROPER NESTI NG OF BLOCK OR CONSTRUCT'
SP-5 " | MPROPER NESTI NG OF DO- LOOP
SP- 6 ' | MPROPER NESTI NG W TH DO- LOOP

SP-7 "M SSI NG END CASE, END WHI LE, END AT END, OR END | F STATEMENT'

SP-8 ' OTHER COVPI LERS MAY NOT ALLOW | F- THEN- ELSE, DO CASE, WH LE, EXECUTE,
REMOTE BLOCK OR AT END STATEMENTS

SP-9 "I F NONE BLOCK ALREADY DEFI NED FCR CURRENT DO CASE CONSTRUCT'

SP-A "I F NONE BLOCK MUST FOLLOW ALL CASE BLOCKS'

SP-B ' ATTEMPT TO TRANSFER CONTROL ACROSS REMOTE BLOCK BCUNDARI ES'

SP-C ' REMOTE BLOCK NOT PRECEDED BY A TRANSFER

WATFI V. ERROR MESSAGES Page 114

APPENDI X

SP-D ' REMOTE BLOCK PREVI QUSLY DEFI NED

SP-E ' REMOTE BLOCK STATEMENT M SSI NG CR | NVALI D
SP-F ' LAST REMOTE BLOCK NOT COVMPLETED

SP-G ' REMOTE BLOCK | S NOT DEFI NED

SP-H ' REMOTE BLOCK |'S NOT REFERENCED

SP- | " ATTEMPT TO NEST REMOTE BLOCK DEFI NI TI ONS'

SP-J "M SSI NG OR | NVALI D REMOTE BLOCK NAME'

SP-K " ATTEMPT TO EXECUTE A REMOTE BLOCK RECURSI VELY'
SP-L " NUMBER OF REMOTE BLOCKS EXCEEDS 255'

' SUBPROGRAMS'
SR-0 ' M SSI NG SUBPROGRAM
SR-1 ' SUBPROGRAM REDEFI NES A CONSTANT, EXPRESSI ON, DO- PARAMETER CR ASSI GNED

GOTO | NDEX

SR-2 ' THE SUBPROGRAM WAS ASSI GNED DI FFERENT TYPES | N DI FFERENT PROGRAM
SEGMVENTS'

SR-3 " ATTEMPT TO USE A SUBPROGRAM RECURSI VELY'

SR-4 "I NVALID TYPE OF ARGUVMENT | N REFERENCE TO A SUBPROGRAM

SR-5 " VWRONG NUMBER OF ARGUMENTS I N A REFERENCE TO A SUBPROGRAM
SR-6 ' A SUBPROGRAM WAS PREVI QUSLY DEFI NED. THE FI RST DEFINITION | S USED
SR-7 ' NO MAI N PROGRAM
SR-8 "ILLEGAL OR M SSI NG SUBPROGRAM NAME'
SR-9 ' LI BRARY PROGRAM WAS NOT ASSI GNED THE CORRECT TYPE'
SR-A ' METHOD FOR ENTERI NG SUBPROGRAM PRODUCES UNDEFI NED VALUE FOR
CALL- BY- LOCATI ON PARAMETER
SR-B ' MAI NLI NE PROGRAM NOT | N LI BRARY'

' SUBSCRI PTS'

SS-0 ' ZERO SUBSCRI PT OR DI MENSI ON NOT ALLOWED
SS-1 " ARRAY SUBSCRI PT EXCEEDS DI MENSI ON

SS-2 "I NVALI D SUBSCRI PT FORM

SS-3 " SUBSCRI PT | S QUT OF RANGE'

SS-4 ' SUBSCRI PTS EXCEED BOUNDS OF ACTUAL ARRAY'

' STATEMENTS AND STATEMENT NUMBERS'

ST-0 ' M SSI NG STATEMENT NUMBER'

ST-1 ' STATEMENT NUMBER GREATER THAN 99999’

ST-2 ' STATEMENT NUMBER HAS ALREADY BEEN DEFI NED

ST-3 ' UNDECODEABLE STATEMENT'

ST-4 " UNNUMBERED EXECUTABLE STATEMENT FOLLOANS A TRANSFER

ST-5 ' STATEMENT NUMBER | N A TRANSFER IS A NON- EXECUTABLE STATEMENT'

ST-6 " ONLY CALL STATEMENTS NMAY CONTAI N STATEMENT NUMBER ARGUMENTS'

ST-7 ' STATEMENT SPECI FI ED I N A TRANSFER STATEMENT | S A FORMAT STATEMENT'

ST-8 ' M SSI NG FORVAT STATEMENT'

ST-9 ' SPECI FI CATI ON STATEMENT DOES NOT PRECEDE STATEMENT FUNCTI ON DEFI NI TI ONS
OR EXECUTABLE STATEMENTS'

ST-A " UNREFERENCED STATEMENT FOLLOAS A TRANSFER

ST-B ' STATEMENT NUMBER MUST END W TH CCOLON. STATEMENT NUMBER WAS | GNORED

WATFI V. ERROR MESSAGES Page 115

APPENDI X

' SUBSCRI PTED VARI ABLES

SV-0 ' THE VV\RONG NUMBER OF SUBSCRI PTS WERE SPECI FI ED FOR A VARI ABLE'

Sv-1 " AN ARRAY OR SUBPROGRAM NAME | S USED | NCORRECTLY W THOUT A LI ST

SV-2 " MORE THAN 7 DI MENSI ONS ARE NOT ALLOWED

SV-3 ' DI MENSI ON OR SUBSCRI PT TOO LARGE (MAXI MUM 10**8-1)"

Sv-4 " A VAR ABLE USED W TH VARI ABLE DI MENSI ONS | S NOT A SUBPROGRAM PARAMETER

SV-5 " A VAR ABLE DI MENSI ON IS NOT ONE OF SI MPLE | NTEGER VARI ABLE, SUBPROGRAM
PARAMETER, | N COMVON'

SV-6 ' PSEUDO VARI ABLE DI MENSI ONI NG ASSUMED FOR ARRAY '

' SYNTAX ERRORS

SX-0 ' M SSI NG OPERATCR

SX-1 ' EXPECTI NG OPER+OR

SX-1 ' EXPECTI NG OPERATOR

SX-2 ' EXPECTI NG SYMBOL'

SX-3 " EXPECTI NG SYMBOL OR OPERATOR

SX-4 ' EXPECTI NG CONSTANT'

SX-5 " EXPECTI NG SYMBOL OR CONSTANT'

SX-6 ' EXPECTI NG STATEMENT NUMBER

SX-7 " EXPECTI NG S| MPLE | NTEGER VARI ABLE'

SX-8 ' EXPECTI NG SI MPLE | NTEGER VARI ABLE OR CONSTANT'
SX-9 "I LLEGAL SEQUENCE OF OPERATORS | N EXPRESSI ON
SX-A " EXPECTI NG END- OF- STATEMENT'

SX-B ' SYNTAX ERROR

' TYPE STATEMENTS'

TY-0 ' THE VARI ABLE HAS ALREADY BEEN EXPLI CI TLY TYPED

TY-1 ' THE LENGTH OF THE EQUI VALENCED VARI ABLE NMAY NOT BE CHANGED.
REMEDY: | NTERCHANGE TYPE AND EQUI VALENCE STATEMENTS

' 1/ O OPERATI ONS

UN-O ' CONTROL CARD ENCOUNTERED ON UNI T 5 AT EXECUTI ON.
PROBABLE CAUSE: M SSI NG DATA OR | NCORRECT FORMAT'

UN-1 ' END OF FILE ENCOUNTERED (| BM CODE | HC217)"

UN-2 '1/0 ERROR (|1 BM CODE | HC218)"

UN-3 ' NO DD STATEMENT WAS SUPPLI ED (| BM CODE | HC219)"

UN-4 ' REW ND, ENDFI LE, BACKSPACE REFERENCES UNIT 5, 6 OR 7'

UN-5 ' ATTEMPT TO READ ON UNIT 5 AFTER I T HAS HAD END- OF- FI LE'

UN-6 ' AN | NVALI D VAR ABLE UNI T NUMBER WAS DETECTED (| BM CODE | HC220) "

UN-7 ' PAGE-LIM T EXCEEDED

UN-8 ' ATTEMPT TO DO DI RECT ACCESS |/0O ON A SEQUENTI AL FILE OR VI CE VERSA.
POSSI BLE M SSI NG DEFI NE FI LE STATEMENT (| BM CODE | HC231)'

UN-9 ' WRI TE REFERENCES 5 OR READ REFERENCES 6 OR 7'

UN-A ' DEFINE FILE REFERENCES A UNI T PREVI OUSLY USED FOR SEQUENTI AL |/0O (1 BM
CODE | HC235) '

UN-B ' RECORD SI ZE FOR UNI T EXCEEDS 32767, OR DI FFERS FROM DD STATEMENT
SPECI FI CATI ON (| BM CODES | HC233, | HC237) '

UN-C ' FOR DI RECT ACCESS |/ O THE RELATIVE RECORD POSI TI ON | S NEGATI VE, ZERO, OR
TOO LARGE (| BM CODE | HC232)"

UN-D ' ATTEMPT TO READ MORE | NFORMATI ON THAN LOGI CAL RECORD CONTAI NS (| BM CODE

| HC213) "
UN-E ' FORVATTED LI NE EXCEEDS BUFFER LENGTH (| BM CODE | HC212)"
UN-F '1/0 ERROR - SEARCHI NG LI BRARY DI RECTCRY'

WATFI V. ERROR MESSAGES Page 116

APPENDI X

UN-G '1/0 ERROR - READI NG LI BRARY'
UN-H ' ATTEMPT TO DEFI NE THE OBJECT ERROR FILE AS A DI RECT ACCESS FI LE
(1 BM CODE | HC234) '
UN-I "RECFM IS NOT V(B)S FOR |/ O W THOUT FORMAT CONTROL (| BM CODE | HC214) "
UN-J "M SSING DD CARD FOR +[J)"
UN-J ' M SSING DD CARD FOR WATLI B. NO LI BRARY ASSUVED
UN-K * ATTEMPT TO READ OR WRI TE PAST THE END OF CHARACTER VARI ABLE BUFFER
UN-L ' ATTEMPT TO READ ON AN UNCREATED DI RECT ACCESS FI LE (1 HC236)"
UN-M ' DI RECT ACCESS SPACE EXCEEDED
UN-N ' UNABLE TO OPEN WATLIB DUE TO |/ O ERROR, NO LI BRARY ASSUNVED
UN-P ' ATTEMPT TO WRI TE ON A READ ONLY FI LE'
UN-Q ' DI RECT ACCESS UNAVAI LABLE | N DEBUG MODE'

" UNDEFI NED VARI ABLES'

Uv-0 ' VARI ABLE | S UNDEFI NED

UV- 3 ' SUBSCRI PT | S UNDEFI NED

uv-4 ' SUBPROGRAM | S UNDEFI NED

UV-5 " ARGUMENT |'S UNDEFI NED

UV- 6 ' UNDECODABLE CHARACTERS | N VARI ABLE FORVAT'

' VARI ABLE NAMES'

VA-0 "A NAME | S TOO LONG | T HAS BEEN TRUNCATED TO SI X CHARACTERS

VA-1 " ATTEMPT TO USE AN ASSI GNED OR | NI TI ALI ZED VARI ABLE OR DO- PARAMETER IN A
SPECI FI CATI ON STATEMENT'

VA- 2 "I LLEGAL USE OF A SUBROUTI NE NANME

VA- 3 "I LLEGAL USE OF A VARI ABLE NAME

VA- 4 " ATTEMPT TO USE THE PREVI QUSLY DEFI NED NAME AS A FUNCTI ON CR AN ARRAY'

VA-5 " ATTEMPT TO USE A PREVI OQUSLY DEFI NED NAME AS A SUBROUTI NE

VA- 6 " ATTEMPT TO USE A PREVI QUSLY DEFI NED NAME AS A SUBPROGRAM

VA-7 " ATTEMPT TO USE A PREVI QUSLY DEFI NED NAME AS A COVMMON BLOCK'

VA- 8 " ATTEMPT TO USE A FUNCTI ON NAME AS A VARI ABLE'

VA-9 " ATTEMPT TO USE A PREVI QUSLY DEFI NED NAME AS A VARI ABLE'

VA-A "I LLEGAL USE OF A PREVI QUSLY DEFI NED NAME'

" EXTERNAL STATEMENT'
XT-0 ' A VAR ABLE HAS ALREADY APPEARED | N AN EXTERNAL STATEMENT'

WATFI V ERROR MESSAGES Page 117

- 233, 1 HC237)"

UN-C ' FOR DI RECT ACCESS |/ O THE RELATIVE RECORD POSI TI ON | S NEGATI VE, ZERO, OR
TOO LARGE (| BM CODE | HC232)"

UN-D ' ATTEMPT TO READ MORE | NFORMATI ON THAN LOGI CAL RECORD CONTAI NS (| BM CODE
| HC213) "

UN-E ' FORVATTED LI NE EXCEEDS BUFFER LENGTH (1 BM CODE | HC212) "

UN-F '1/0 ERROR - SEARCHI NG LI BRARY DI RECTORY'

WATFI V. ERROR MESSAGES Page 116

APPENDI X

UN-G '1/0 ERROR - READI NG LI BRARY'

UN-H ' ATTEMPT TO DEFI NE THE OBJECT ERROR FILE AS A DI RECT ACCESS FI LE
(1 BM CODE | HC234) '

UN-I "RECFM IS NOT V(B)S FOR |/ O W THOUT FORMAT CONTROL (| BM CODE | HC2

