
 
 
                            WATFIV_USER'S_GUIDE 
             
 
     CONTENTS....................................................Page 
  
 
     1. INTRODUCTION ............................................   1 
 
     2. CONTROL CARDS ...........................................   2 
 
   ×      2.1  WATFIV CONTROL CARDS .............................   2 
 
          2.2  OS/VS CONTROL CARDS ..............................   3 
   ×           2.2.1  WATFIV CATALOGUED PROCEDURE ...............   5 
 
     3. JOB CARD FORMAT .........................................   6 
 
          3.1  WATFIV OPTIONS ...................................   6 
               3.1.1  COMPILER CONTROL OPTIONS ..................   6 
               3.1.2  PROFILER CONTROL OPTIONS ..................   8 
 
          3.2  WATFIV CONTROL CARDS .............................   9 
   ×           3.2.1  CONTROL CARDS TO EDIT SOURCE LISTINGS .....   9 
               3.2.2  OTHER WATFIV CONTROL CARDS ................  10 
 
          3.3  STUDENT JOB STREAM ENVIRONMENT ...................  12 
 
     4. USING WATFIV UNDER INTERACTIVE SYSTEMS ..................  13 
 
          4.1  USING WATFIV UNDER TSO ...........................  13 
 
          4.2  USING WATFIV UNDER CMS ...........................  13 
               4.2.1  OPTIONS ...................................  14 
               4.2.2  USING THE CMS WATFIV COMMAND ..............  17 
 
          4.3  USING THE INTERACTIVE DEBUGGING FACILITIES .......  18 
               4.3.1  INTRODUCTION ..............................  18 
               4.3.2  COMMAND SET ...............................  18 
               4.3.3  MODIFYING AND DISPLAYING VARIABLES ........  20 
 
               4.3.4  EFFICIENCY CONSIDERATIONS .................  20 
 
          4.4  INTERACTIVE DEBUGGING OF WATFIV JOBS .............  21 
 
     5. JOB ACCOUNTING ..........................................  27 
 
     6. DIAGNOSTICS .............................................  28 
 
          6.1  ERROR DIAGNOSTICS ................................  28 
 
   ×      6.2  CONTROL OPTIONS FOR CERTAIN DIAGNOSTICS ..........  34 
 
          6.3  WATFIV DEBUGGING AIDS ............................  37 
   ×           6.3.1  EXECUTION-TIME PROFILER ...................  37 
   ×           6.3.2  STATEMENT TRACE FACILITY ..................  44 
               6.3.3  ON ERROR GOTO STATEMENT ...................  44 
 
 
 
 
                                    -i- 
 
 
 



 
 
 
     7. LANGUAGE ACCEPTED BY WATFIV .............................  46 
 
   ×      7.1  EXTENSIONS .......................................  46 
               7.1.1  FORMAT-FREE INPUT OUTPUT ..................  46 
               7.1.2  CHARACTER VARIABLES .......................  46 
               7.1.3  MULTIPLE ASSIGNMENT STATEMENTS ............  47 
               7.1.4  EXPRESSIONS IN OUTPUT LISTS ...............  47 
               7.1.5  INITIALIZING OF BLANK COMMON ..............  48 
               7.1.6  INITIALIZING COMMON BLOCKS ................  48 
               7.1.7  IMPLIED DO IN DATA STATEMENTS .............  48 
               7.1.8  SUBSCRIPTS IN FUNCTION DEFINITIONS ........  48 
               7.1.9  SUBSCRIPT USAGE ...........................  48 
               7.1.10 OBJECT OF DO STATEMENT ....................  49 
               7.1.11 EXCEEDING CONTINUATION CARD LIMIT .........  49 
               7.1.12 MULTIPLE STATEMENTS PER CARD ..............  49 
               7.1.13 COMMENTS ON FORTRAN STATEMENTS ............  50 
               7.1.14 DUMPLIST STATEMENT ........................  50 
               7.1.15 ON ERROR GOTO STATEMENT ...................  51 
               7.1.16 PSEUDO-VARIABLE DIMENSIONING ..............  51 
               7.1.17 STRUCTURED PROGRAMMING STATEMENTS .........  51 
 
          7.2  FORMAT-FREE INPUT OUTPUT .........................  51 
               7.2.1  SOURCE STATEMENT FORMS ....................  52 
               7.2.2  INPUT DATA FORMS ..........................  52 
               7.2.3  OUTPUT FORMS ..............................  54 
 
          7.3  RESTRICTIONS .....................................  54 
 
     8. CHARACTER VARIABLES .....................................  57 
 
          8.1  DECLARATION OF CHARACTER VARIABLES ...............  58 
               8.1.1  VARIABLE TYPE: CHARACTER ..................  58 
               8.1.2  IMPLICIT STATEMENT ........................  58 
               8.1.3  CHARACTER TYPE STATEMENT ..................  58 
 
          8.2  USIN±Ó 
          8.2  USING CHARACTER VARIABLES IN FORTRAN STATEMENTS ..  61 
               8.2.1  DIMENSION STATEMENT .......................  61 
               8.2.2  COMMON STATEMENT ..........................  61 
               8.2.3  NAMELIST STATEMENT ........................  61 
               8.2.4  DATA STATEMENT ............................  61 
               8.2.5  EQUIVALENCE STATEMENT .....................  61 
               8.2.6  CALL STATEMENT ............................  62 
               8.2.7  FUNCTION REFERENECE .......................  62 
               8.2.8  STATEMENT FUNCTION STATEMENTS .............  63 
               8.2.9  SUBROUTINE STATEMENT ......................  63 
               8.2.10 FUNCTION STATEMENT ........................  63 
               8.2.11 REPLACEMENT STATEMENT: A=B ................  63 
 
          8.3  CORE-TO-CORE I/O STATEMENTS ......................  65 
               8.3.1  WRITE STATEMENT ...........................  65 
               8.3.2  READ STATEMENT ............................  67 
               8.3.3  INPUT/OUTPUT LIST .........................  68 
 
 
 
 
 
                                   -ii- 
 
 
 



 
 
 
          8.4  ADDITIONAL CHARACTER FEATURES SUPPORT ............  68 
               8.4.1  USE AS SUBSCRIPTS .........................  69 
               8.4.2  USE WITH RELATIONAL OPERATORS .............  69 
 
   × 9. STRUCTURED PROGRAMMING STATEMENTS .......................  71 
 
          9.1  IF - THEN - ELSE .................................  71 
 
          9.2  WHILE - DO .......................................  73 
 
          9.3  DO CASE ..........................................  73 
 
          9.4  EXECUTE AND REMOTE BLOCK .........................  76 
 
          9.5  WHILE - EXECUTE ..................................  78 
 
          9.6  AT END DO ........................................  78 
 
          9.7  PROGRAMMING CONSIDERATIONS .......................  79 
 
          9.8  CONTROL STATEMENT TRANSLATOR .....................  80 
 
     10. INTERRUPTS .............................................  83 
 
     11. INPUT OUTPUT CONSIDERATIONS ............................  86 
 
          11.1  GENERAL NOTES ...................................  86 
 
          11.2  COMPILER DATA SET ASSUMPTIONS ...................  87 
 
          11.3  CONCATENTATING COMPILER INPUT ...................  87 
 
     12. SUBPROGRAM FACILITIES ..................................  90 
 
          12.1  SOURCES OF SUBPROGRAMS ..........................  90 
 
          12.2  FORTRAN SUPPLIED ROUTINES .......................  90 
 
          12.3  AUTOMATIC FUNCTION TYPING .......................  91 
 
          12.4  SUBPROGRAM ARGUMENTS ............................  92 
 
          12.5  USER LIBRARIES ..................................  94 
 
          12.6  PSEUDO-VARIABLE DIMENSIONING ....................  95 
 
          12.7  SUBPROGRAMS IN OBJECT DECK FORM .................  98 
 
          12.8  ADDITIONAL SUBPROGRAMS SUPPORTED BY WATFIV ...... 100 
               12.8.1  SPECIAL FUNCTIONS ........................ 100 
               12.8.2  STATEMENT COMPRESS/UNCOMPRESS ROUTINES ... 100 
 
 
 
 
 
 
                                   -iii- 
 
 
 



 
 
 
     13. RETURN CODES ........................................... 103 
 
     14. MISCELLANEOUS .......................................... 104 
 
          14.1  CARRIAGE-CONTROL CHARACTERS ..................... 104 
 
          14.2  TREATMENT OF LOGICAL VALUES ..................... 104 
 
          14.3  CHARACTER-SET CONVENTIONS ....................... 104 
 
          14.4  INCOMPATIBILITIES WITH IBM FORTRAN .............. 105 
 
     15. APPENDIX ............................................... 108 
 
          15.1  WATFIV ERROR MESSAGES ........................... 108 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                   -iv- 
 
 
 



 
                                                          INTRODUCTION 
 
 
 
     1.  INTRODUCTION 
 
          This section  provides information required  by the  user of 
          the  WATFIV   compiler,  and   could  be   duplicated,  with 
          appropriate   acknowledgements,  by   an  installation   for 
          distribution  as  a  "WATFIV   Programmer's  Guide".   Note, 
          however,  that  the  material  provided   is  based  on  the 
          'standard'  WATFIV  compiler,  and thus,  may  require  some 
          installation-dependent editing.  Major sections, subsections 
          or  paragraphs which  contain  details  that depend  on  the 
          options   described   in   section   2.7   of   the   WATFIV 
          Implementation Guide are  marked in the left  margin with an 
          '×'. 
 
          It is intended  that these marks would be used  as guides to 
          areas that may require editting, because of options selected 
          when the compiler was generated  at the installation, by the 
          person  responsible  for  preparation  of  this  manual  for 
          distribution to users. 
 
          It should be noted that this User's Guide is not a manual or 
          text on FORTRAN programming.  The  Guide is intended for the 
          'experienced' FORTRAN programmer, i.e.,  one who already has 
          some familiarity  with FORTRAN  in general  and likely  some 
          familiarity with  IBM's FORTRAN  compilers.  In  particular, 
          the authors of the Guide assume the reader has access to the 
          following IBM publications: 
 
     IBM System/360 FORTRAN IV Language, Form GC28-6515 
     IBM System/360 FORTRAN IV (G and H) Programmer's Guide, Form GC28-6817 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     _______________ 
 
     (1)  This WATFIV User's Guide has  been prepared using SCRIPT and 
          the unformatted input file is available on request. 
 
 
 
     INTRODUCTION                                               Page 1 
 
 
 



 
                                                         CONTROL CARDS 
 
 
 
     2.  CONTROL CARDS 
 
 
 
          Two levels  of control cards are  required to run  a program 
          using  WATFIV -  control cards  recognized  by the  compiler 
          itself,  and those  required  by  the operating  system  job 
          scheduler. 
 
 
   × 2.1 WATFIV CONTROL CARDS 
 
 
          Two control cards - $JOB and $ENTRY  - are required to run a 
          program under WATFIV.   Their use is shown  in the following 
          diagram which defines a WATFIV job. 
 
 
               $JOB           identification,parameters 
                    . 
                    . 
                    . FORTRAN program consisting of a main 
                    . program and any number of subprograms 
                    . 
                    . 
 
               $ENTRY 
                    . 
                    . any data required by the program 
                    . 
 
          The control field $JOB  is punched in columns 1 to  4 of the 
          card,  and  $ENTRY in  columns  1  to  6;  column 5  and  7, 
          respectively, must be blank.  Columns 8  to 80 of the $ENTRY 
          card are ignored.  Accounting information and job parameters 
 
          that may appear on the $JOB  card are described in section 3 
          on page   6. 
 
          The $ENTRY  card is  required to  initiate execution  of the 
          compiled program even if no data cards are present. 
 
          The FORTRAN  program and data  are punched according  to the 
          usual rules  of FORTRAN.  The  main program  and subprograms 
          follow one another, as shown in the following example: 
 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV CONTROL CARDS                                       Page 2 
 
 
 



 
                                                         CONTROL CARDS 
 
 
 
                            DIMENSION X(10) 
                             . 
                             . 
                             . 
                            END 
                            SUBROUTINE EXAMPLE 
                             . 
                             . 
                             . 
                            END 
                            FUNCTION FN (A) 
                             . 
                             . 
                             . 
                            END 
                            SUBROUTINE RTN (X,Y) 
                             . 
                             . 
                             . 
                            END 
 
          The main program need not appear first. 
 
 
     2.2 OS/VS CONTROL CARDS 
 
 
          The OS/VS  control cards are  necessary to load  WATFIV into 
          main  memory.  Once  there,  it can  process  any number  of 
          WATFIV jobs  in sequence, i.e., an  OS/VS job consists  of a 
          'batch' of one  or more WATFIV jobs.   Since the operations' 
          personnel at  your installation may collect  WATFIV programs 
          to run  as a  batch, or  batching may  be provided  by other 
          mechanisms,  knowledge of  the OS/VS  control  cards is  not 
          essential.   The details  are provided  for  those who  must 
          batch their own jobs for submission to the computer. 
 
          One form of  an OS/VS job to  run a batch of  WATFIV jobs is 
          shown in the next figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     OS/VS CONTROL CARDS                                        Page 3 
 
 
 



 
                                                         CONTROL CARDS 
 
 
 
                            //jobname  JOB  accounting 
                            //    EXEC    WATFIV 
                            //GO.SYSIN  DD  * 
   ×                        $JOB            id,parms 
 
                                  Program 1 
 
                            $ENTRY 
 
                                  Data 1 
 
                            $JOB             id,parms 
 
                                  Program 2 
 
                            $ENTRY 
 
                                  Data 2 
 
                            $JOB             id,parms 
 
                                  Program n 
 
                            $ENTRY 
 
                                  Data n 
 
                            $STOP 
                            /* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     _______________ 
 
     (1)  Optional as end of batch indicator. 
 
 
 
     OS/VS CONTROL CARDS                                        Page 4 
 
 
 



 
                                                         CONTROL CARDS 
 
 
 
   × 2.2.1 WATFIV CATALOGUED PROCEDURE 
 
          The following  catalogued procedure  is the  standard WATFIV 
          procedure.  The WATLIB DD  card references WATFIV's function 
          library and any data sets  containing subprograms that might 
          be called by  the user's program.  The  catalogued procedure 
          WATFIV also contains DD cards  for the card reader, printer, 
          and punch (Fortran  units 5, 6, and 7  respectively) and for 
          temporary sequential data  sets on units 1, 2, 3,  and 4 (DD 
          names,    FT01F001,     FT02F001,    FT03F001,     FT04F001, 
          respectively).  Certain files are  given read-only status by 
          WATFIV; see section 11.1 on page  86 for further information 
          on  this  feature.   Concatenation   of  compiler  input  is 
          discussed and illustrated  with examples in section  11.3 on 
          page  87.  Hereafter, the term 'job' will mean a WATFIV job. 
          A  listing  of the  WATFIV  procedure  for an  OS/VS  system 
          follows: 
 
 
     //WATFIV  PROC  PROG=WATFIV,LIB='WATFIV.FUNLIB',V='',VOL=WATFIV 
     //        JB='WATFIV.JOBLIB' 
     //GO      EXEC  PGM=&PROG,REGION=150K 
     //STEPLIB DD  DSN=&JB,DISP=SHR,UNIT=SYSDA,VOL=SER=&V.&VOL 
     //WATLIB  DD  DSN=&LIB,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),DISP=SHR, 
     //            VOLUME=SER±�R, 
     //            VOLUME=SER=&V.&VOL,UNIT=SYSDA 
     //        DD  DSN=WATFIV.WATLIB,DISP=SHR,VOL=SER=&V.&VOL,UNIT=SYSDA 
     //FT01F001  DD  SPACE=(TRK,(20,10)),DCB=(RECFM=VS,BLKSIZE=256),UNIT=SYSDA 
     //FT02F001  DD  SPACE=(TRK,(20,10)),DCB=(RECFM=VS,BLKSIZE=256),UNIT=SYSDA 
     //FT03F001  DD  SPACE=(TRK,(20,10)),DCB=(RECFM=VS,BLKSIZE=256),UNIT=SYSDA 
     //FT04F001  DD  SPACE=(TRK,(20,10)),DCB=(RECFM=VS,BLKSIZE=256),UNIT=SYSDA 
     //FT05F001  DD  DDNAME=SYSIN 
     //FT06F001  DD  SYSOUT=A,DCB=(RECFM=FA,BLKSIZE=133) 
     //FT07F001  DD  SYSOUT=B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     OS/VS CONTROL CARDS                                        Page 5 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
   × 3.  JOB CARD FORMAT 
 
 
          Starting in  column 16 of the  $JOB card you may  punch your 
          user account number or identification.  This may be followed 
          by a comma  and a selection of job parameters  from the list 
          below.  Otherwise,  leave at  least one  blank column  after 
          your account number to separate it from any comments. 
 
                           col.16 
                           × 
                           × 
                           v 
 
         e.g.,  (1)  $JOB  D059JOEUSER  NO PARAMETERS 
                (2)  $JOB  P7735YOURID,KP=29,TIME=1,NOLIST PARMS GIVEN 
 
 
          WATFIV control cards are identified by a C$ or $ starting in 
          column 1.  The  main advantage of the  C$ control characters 
          is  the  ability  to  compile the  source  program  under  a 
          FORTRAN  compiler other  than  WATFIV,  since these  control 
          cards will  be treated as  comments. WATFIV will  thus treat 
          the $  or C$  as valid  control characters  but all  control 
          cards will be  prefixed with a C$ when they  are printed out 
          (except $JOB and $ENTRY cards). 
 
     3.1 WATFIV OPTIONS 
 
          The following options may be used on the WATFIV $JOB card or 
          placed  on  the  C$OPTIONS   card.   Where  applicable,  the 
          standard default options are underlined,  and short forms of 
          the keywords are  placed in parentheses.  Where  a choice is 
          available, the options are separated by a /.  The parameters 
          may be  punched in any  order and  may extend to  column 79. 
          The last  parameter must be followed  by at least  one blank 
          column.  The C$OPTIONS or $JOB  card scan will be terminated 
          upon encountering the first blank  in the options field.  If 
          an option is mispunched a warning message will be issued but 
          the scan for remaining parameters (if any) is continued.  If 
          any parameter  is specified more  than once,  the right-most 
          value is used.   The C$OPTIONS card was  introduced to allow 
          the programmer to change  compile- or execution-time options 
          within the program.   Use of the C$OPTIONS card  is shown in 
          subsection 3.2.2 on page  10. 
 
     3.1.1 COMPILER CONTROL OPTIONS 
 
 
     (T)ime=s / (m) / (m,s) / (3) 
                              ___ 
          Specifies the time,  in minutes  and seconds, to  be used as 
          the upper limit for execution of your program. 
 
 
 
 
     WATFIV OPTIONS                                             Page 6 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
     (P)ages=n / 999 
                 ___ 
          Specifies the maximum number of pages  of output you wish to 
          allow your program to produce at execution time. 
 
     (L)ines=n / 63 
                 __ 
          Specifies the number of lines that  will be printed per page 
          at compile  and execution time.   If n  is set to  0, WATFIV 
          will suppress  all compiler-generated page ejects;  the page 
          count will be incremented after  every 63 lines printed.  If 
          n is greater  than 66 and the  job is run with  the DEBUGéœó 
          parm, the lines per page will be reset to 66. 
 
     CHECK / NOCHECK / FREE 
     _____ 
          The  CHECK  option will  cause  the  compiler to  check,  at 
          execution time,  for attempted use  of variables  which have 
          not been assigned a value (undefined variables). 
 
          Using  the  NOCHECK option  suppresses  this  execution-time 
          checking  of  undefined  variables  (except  those  used  as 
          subscripts of arrays), thereby reducing the amount of object 
          code produced  and execution time consumed.   (Note: NOCHECK 
          does  not suspend  subscript  error  checking; for  example, 
          attempting  to  use  an  undefinied  variable  as  an  array 
          subscript when NOCHECK is in effect would result in an error 
          message indicating that the subscript is undefined. 
 
          The  FREE option  is  the same  as  CHECK,  but WATFIV  will 
          initiate  execution of  your  program  even if  compile-time 
          errors were  encountered.  If an executable  statement which 
          contained  a  source  error   is  subsequently  encountered, 
          execution is terminated. 
 
     KP=29 / 26 
        __ 
          KP=29 specifies that the program was  punched on a model 029 
          (EBCDIC) keypunch.  KP=26  indicates that it was  punched on 
          an 026  (BCD) keypunch.   All WATFIV  programs typed  on any 
          key-driven terminal are in 29 keypunch mode. 
 
     LIST / NOLIST 
     ____ 
          LIST causes the compiler to produce  a source listing of the 
          program.  NOLIST suppresses this listing. 
 
     LIBLIST / NOLIBLIST 
               _________ 
          LIBLIST  causes the  compiler to  produce a  listing of  the 
          source subprograms retrieved from  the subprogram libraries. 
          NOLIBLIST suppresses  this listing of the  library routines. 
          This option is not in effect  if encountered in a subprogram 
          library.  Note  that the  LIST/NOLIST and  LIBLIST/NOLIBLIST 
 
     _______________ 
 
     (1)  The DEBUG parm is explained in subsection 3.3 on page  12. 
 
 
 
     WATFIV OPTIONS                                             Page 7 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
          parameters are independent. 
 
     WARN / NOWARN 
     ____ 
          WARN  causes the  compiler  to print  all  diagnostics of  a 
          severity less  than a  fatal error.   NOWARN suppresses  the 
          printing of these messages. 
 
     EXT / NOEXT 
           _____ 
          EXT causes  the compiler  to print  all extension  messages, 
          that is,  indications of  any WATFIV  features that  may not 
          work under  an IBM FORTRAN  compiler.  NOEXT  suppresses all 
          extension messages. 
 
     PGM=nnnnnn 
          If the WATFIV  program to be executed is  a mainline program 
          that  is  stored  in  a  library,  it  can  be  accessed  by 
          specifying its name as a "PGM=" operand. 
 
     SUB / NOSUB 
     ___ 
          Pseudo-Variable Dimensioning (PVD) was implemented in WATFIV 
          to  ease  the  programmer's task  of  implementing  existing 
          programs  which  use non-standard  FORTRAN  conventions  for 
          passing  arrays   to  subprograms.   WATFIV  will   allow  a 
          subprogram which receives an array through its argument list 
          (this  is  called  a  subprogram  dummy  array)  to  have  a 
          rightmost dimension of 1. With PVD, this rightmost dimension 
          of the  "dummy" array  will be adjusted  by the  compiler to 
          occupy as much  as possible of the storage  allocated to the 
          calling array.  For  such subprogram arrays, the  option SUB 
          causes checking  to be  done to  ensure that  each subscript 
          used in  this "dummy"  array does  not exceed  its limit  as 
          defined  in the  subprogram.  Specifying  NOSUB will  permit 
          access to  any member of  the dummy  array, as long  as this 
          array element is within the storage allocated to the calling 
          array. 
 
 
 
     3.1.2 PROFILER CONTROL OPTIONS 
 
 
          The options for  the WATFIV PROFILER (which  is discussed in 
          subsection  6.3.1 on  page  37)  are specified  in the  same 
          manner as the  above compiler options. They  cause WATFIV to 
          produce profiler output for the  sections marked by C$PROFON 
          and C$PROFOFF  cards described  below.  If  no C$PROFOFF  is 
          encountered, all  source statements  from the  C$PROFON card 
          on, including  any from  the library,  are profiled.   Three 
          different types of profiler output are available, and can be 
          obtained by using one or more  of the following options (the 
          last encountered form of each  option will determine whether 
          the corresponding output is produced): 
 
 
 
     WATFIV OPTIONS                                             Page 8 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
     PROFC / NOPROFC 
             _______ 
          PROFC turns  on the profile  count option; NOPROFC  turns it 
          off. 
 
     PROFP / NOPROFP 
             _______ 
          PROFP  turns on  the  percentage  histogram option;  NOPROFP 
          turns it off. 
 
     PROFA / NOPROFA 
             _______ 
          Turns on  the absolute  histogram option;  NOPROFA turns  it 
          off. 
 
     PROF / NOPROF 
            ______ 
          PROF is  equivalent to specifying  PROFC, PROFP,  and PROFA; 
          NOPROF is equivalent to NOPROFC, NOPROFP, and NOPROFA. 
 
     C$PROFON / C$PROFOFF 
                _________ 
          The C$PROFON card will activate the accumulation of PROFILER 
          statistics. The C$PROFOFF card will disable this collection. 
          Any number of groups of statements  can be surrounded by the 
          C$PROFON and  C$PROFOFF cards and  will be displayed  in the 
          PROFILER  output.  This   control  card  must  be   used  in 
 
          conjunction with the PROFILER control options on the $JOB or 
          C$OPTIONS CARD. 
 
     3.2 WATFIV CONTROL CARDS 
 
 
          The following  control cards may  be placed anywhere  in the 
          source program.  They must be punched with a 'C$' in columns 
          1 and  2.  WATFIV currently supports  a few C$...  cards not 
          described  in   this  section.   They  are   merely  earlier 
          implementations of features which are descibed in subsection 
          3.1.1 on  page   6.  Users should  attempt to use  the newly 
          introduced  C$OPTIONS card.   No warning/extension  messages 
          are issued to flag the use of these earlier control cards. 
 
 
 
   × 3.2.1 CONTROL CARDS TO EDIT SOURCE LISTINGS 
 
          The following  control cards  are never  printed and  can be 
          used for the final "production run"  to make the output look 
          more presentable.  These control  cards provide  no page  or 
          line skipping while the NOLIST option is in effect. 
 
 
 
     C$EJECT 
          This control card causes the compiler  to skip to the top of 
          the next page to continue the listing of the source program. 
 
 
 
 
     WATFIV CONTROL CARDS                                       Page 9 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
     C$SPACE n / 1 
                 _ 
          The insertion of  this control card will  cause the compiler 
          to leave n blank lines in the source listing. 
 
 
          A source deck using these new cards might be as follows: 
 
                           $JOB        D9999JOE.USER,NOLIST 
 
                                             cards not to be listed 
 
                           C$OPTIONS LIST 
 
                                             cards to be listed 
 
                                             END 
 
                           C$EJECT 
 
                                             subprograms 
 
                           C$SPACE 
 
                                             END 
 
                           $ENTRY 
 
                                             data cards 
 
 
          These control  cards can be used  to advantage when  a large 
          program  is being  tested.  By  suppressing  print in  areas 
          where  code has  not  been changed,  the  user  can save  on 
          machine  printout  time  and  thus have  the  job  run  more 
          economically. 
 
     3.2.2 OTHER WATFIV CONTROL CARDS 
 
 
     C$PROFON / C$PROFOFF 
               __________ 
          The C$PROFON card  will activate the generation  of PROFILER 
          statistics.  The C$PROFOFF card will disable this collection 
          of PROFILER statistics.  Any number  of groups of statements 
          can be  surrounded by the  C$PROFON and C$PROFOFF  cards and 
          will be displayed in the PROFILER output.  This control card 
          must be used  with the PROF option on the  $JOB or C$OPTIONS 
          card. 
 
     C$ISNON / C$ISNOFF 
               ________ 
          The C$ISNON  control card causes the  execution-time tracing 
          of  any following  statements  until  the C$ISNOFF  card  is 
          encountered.  At least one executable statement must precede 
 
 
 
     WATFIV CONTROL CARDS                                      Page 10 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
          a C$ISNON  card or a warning  message is given.  This  is an 
          execution-time control card in the sense that object code is 
          generated for these control cards  which must be executed to 
          activate or deactivate the "ISN trace". 
 
     C$OPTIONS 
          This control card provides the  programmer with the facility 
          of changing options part way through the program. 
          With the  recent proliferation of  options available  on the 
          $JOB card for WATFIV, the C$OPTIONS card has been introduced 
          to give  the user more  flexibility.  This card  may contain 
          any options permitted on WATFIV's  $JOB card.  An example of 
          possible applications of this new control card follows: 
± s: 
 
          $JOB     WATFIV 
                   REAL ARRAY (10,10) 
                   . 
                   . 
                   CALL SUB26 (ARG1,ARG2) 
                   . 
                   . 
                   CALL PVD (ARRAY) 
                   . 
                   . 
                   END 
          C 
          C  User changes keypunch mode to BCD and 
          C  permits extensions to be printed 
          C 
          C$OPTIONS KP=26,EXT 
          C 
                   SUBROUTINE SUB26 (X,Y) 
                   . 
                   . 
                   . 
                   END 
          C 
          C  User reverts back to EBCDIC and suppresses 
          C  source listing; the NOSUB option will permit 
          C  the programmer to specify any subscript for 
          C  array MATRIX as long as the array element 
          C  falls within the bounds of ARRAY. 
          C 
 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV CONTROL CARDS                                      Page 11 
 
 
 



 
                                                       JOB CARD FORMAT 
 
 
 
          C$OPTIONS KP=29,NOLIST,NOSUB 
          C 
                   SUBROUTINE PVD (MATRIX) 
                   REAL MATRIX (10,1) 
                   . 
                   . 
                   . 
                   MATRIX (50,2)=5 
                   . 
                   . 
                   . 
          C  User sets up options of 40 lines/page 
          C 
          C$OPTIONS LINES=40 
          $ENTRY 
                   . 
                   DATA 
                   . 
 
          Using this  feature, different options  can be  specified in 
          various sections of the program. 
 
     3.3 STUDENT JOB STREAM ENVIRONMENT 
 
          Besides WATFIV's  normal mode  of operation,  a student  job 
          stream environment can be activated by passing the parameter 
          'DEBUG'.   In this  environment, object  decks are  disabled 
          when encountered in  the input stream and  all direct-access 
          I/O statements are given execution-time error messages.  The 
          time, page, and  line count also have a  default and maximum 
          as follows: 
 
          ------------------------------------------------------------ 
                     Time (Sec)        Pages           Lines/Page 
          ------------------------------------------------------------ 
 
   ×      DEFAULT    2    ±¸ 
   ×      DEFAULT    2                 5               63 
   ×      MAXIMUM    3                 10              66 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     STUDENT JOB STREAM ENVIRONMENT                            Page 12 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     4.  USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     4.1 USING WATFIV UNDER TSO 
 
          A command procedure has been distributed with TSO WATFIV but 
          it  is  likely  that  each  installation  will  modify  this 
          procedure to meet its own requirements. 
 
          The standard procedure is called  WATFIV and will default to 
          doing all I/O to the terminal. The symbolic keyword operands 
          INPUT and OUTPUT may be used to specify a file referenced by 
          FT05F001 and  FT06F001. For a  more complete  description of 
          the WATFIV command type HELP WATFIV. 
 
     4.2 USING WATFIV UNDER CMS 
 
          An interface has been written for WATFIV to simplify its use 
          under CMS and  to make it more flexible  by taking advantage 
          of CMS  facilities.  The interface allows  a user to  type a 
          program directly to  WATFIV or to submit  a program residing 
          in a disk  file to the compiler.  Multiple  filenames may be 
          specified for input  and using the options  described below, 
          it is possible  to direct unit 6 output  (listing output) to 
          the printer, the terminal or a disk file. 
 
          Further options allow the user to specify execution mode and 
          to have certain output typed at the terminal.  The interface 
          routine provides FILEDEFs for the  standard input and output 
          units, 5 and 6, as well as for WATLIB, the function library. 
          Previously defined  FILEDEFs are not overridden.   Thus, the 
          user  may, for  example,  input a  program  from  a tape  by 
          specifying a tape FILEDEF for unit  5 and issuing the WATFIV 
          command  (below) with  a  filename *,  or  the  name of  any 
          FORTRAN  file.    If  a   library  concatenation   has  been 
          previously set  up with  a 'GLOBAL  MACLIB ...'  command, it 
          will not be  overridden by WATLIB's FILEDEF  and the 'WATLIB 
          MACLIB' library will not be  available unless it appeared in 
          the GLOBAL list.   TXTLIB libraries will not  be accessed by 
          WATFIV, but compatible  object code subroutines may  be used 
          from a MACLIB.   Text and FORTRAN subroutines  must be added 
          to the  MACLIB as files of  type 'COPY' with  the subroutine 
          name as  file name  (see the MACLIB  command in  the IBM/370 
          Command  Language  User's  Guide).   The  following  command 
          prototype may be used to invoke the WATFIV compiler. 
 
     WATFIV fn-i ... (DIsk  Concat   NODebug NOXtype Term   NOStats) 
                      Print NOConcat Debug   XType   NOTerm Stats 
                      TYpe                   NOWarn 
                                             Ext 
          The fn-i  (i=1,...) are  the input  filenames. They  must be 
          names of disk files (of type  FORTRAN or WATFIV) or *, which 
 
 
 
     USING WATFIV UNDER CMS                                    Page 13 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
          specifies  that input  is  to be  taken  from the  terminal. 
          WATFIV  will read  all  input files  as  one continuous  job 
          stream.  If  * is  specified as the  first filename,  a $JOB 
          card with  the LIST  option is provided  and TYPE  and STATS 
          will  be the  default output  option.   Since WATFIV  itself 
          writes  directly to  the terminal  there is  no facility  to 
          eliminate the printing of job  statistics. Since WATFIV is a 
          batch processor it will attempt to read another job when the 
          first is  completed. If you do  not wish to type  in another 
          job, hit  carriage-return  to  signal  end-of-file  (end-of- 
          batch).  Refer to  examples in subsection 4.2.2  on page  17 
          for further explanation. 
 
 
     4.2.1 OPTIONS 
 
          The  default  options  for  each  group  appear  first.  The 
          shortest abbreviation acceptable for each option is shown in 
          uppercase letters.  If more than one of the options from the 
          same group are  specified, the last one typed  is taken. The 
          options may be  typed in any order and must  be separated by 
          at least one blank (no commas). 
 
     Listing output options:  
 
 
     DIsk                     The  program  listing  and  all  unit  6 
                              output is  written to  a disk  file with . ±‚th 
                              filename  fn-1 and  filetype LISTING  if 
                              CONCAT  is  in effect.   A  filename  of 
                              WATFIV will  be generated if fn-1  is *. 
                              The   NOCONCAT  option   will  cause   a 
                              separate output disk  file with filename 
                              fn-i for each input file. 
 
     Print (PRT)              The  listing  and  unit   6  output  are 
                              spooled to the virtual printer. 
 
     TYpe (*)                 The listing and unit  6 output are typed 
                              at the terminal. 
 
          Note: If  fn-1 is *, then  TYPE will become the  default and 
          all  options controlling  execution-time output,  diagnostic 
          messages and job statistics will have no effect. The default 
          CONCAT option  will cause  output to be  placed in  a WATFIV 
          LISTING file.  In the case of  using the NOCONCAT option, if 
          two program batches  are input to WATFIV  from the terminal, 
          the listing file  for the second will  overwrite and destroy 
          the listing file for the first. 
 
 
 
 
 
 
     USING WATFIV UNDER CMS                                    Page 14 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     Compiler-mode options: 
 
 
     Concat                   This option  causes WATFIV to  treat all 
                              input  files   as  one   continuous  job 
                              stream. All output is  written to a disk 
                              file with  a filename of the  first file 
                              specified   (fn-1)   and   filetype   of 
                              LISTING.  If * is specified for fn-1 the 
                              filename will  default to  WATFIV and  a 
                              $JOB  card  will be  generated.  Hitting 
                              carriage  return signifies  end of  file 
                              for terminal input. 
 
     NOConcat                 This option causes each input file to be 
                              treated as  a separate batch.  Input for 
                              each  filename is  compiled  separately. 
                              Each fn-i  should contain  at least  one 
                              complete WATFIV job. 
 
     Execution-mode options: 
 
 
 
     NODebug                  WATFIV will execute normally without the 
                              interactive   execution-time   debugging 
                              facilities. 
 
     Debug                    WATFIV  will   execute  in   interactive 
                              debugging mode. See  subsection 4.3.1 on 
                              page  18 for  more information regarding 
                              debugging facilities. 
 
 
          The remaining options enable the user  to elect to have unit 
          6 output typed  at the terminal when DISK or  PRINT has been 
          specified for listing  output. The output selected  by these 
          options for  the terminal will  also appear on  the listing. 
          These  options will  have NO  effect if  the listing  output 
          option is TYPE. 
 
 
     Execution-time output options: 
 
 
     NOXtype                  This  option may  be used  to negate  an 
                              earlier   XTYPE  option   specification. 
                              Otherwise, this option has no effect. 
 
     XType                    Output on  unit 6 will  be typed  at the 
                              terminal  at execution-time  as well  as 
                              being written  to the printer or  a disk 
                              file as specified by  the listing output 
                              option. 
 
 
 
 
     USING WATFIV UNDER CMS                                    Page 15 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     Diagnostic-message options:  
 
 
     Term                     Compile-time error and warning messages, 
                              along with the statements in error, will 
                              be typed at the terminal. Execution time 
                              errors  and traceback  information  will 
                              also be typed. 
 
     NOTerm                   No error, warning  or extension messages 
                              will be typed at the  terminal if not in 
                              DEBUG  mode.  If   DEBUG  is  specified, 
                              compile-time messages will  not be typed 
                              but execution-time  error messages  will 
                              appear at the terminal. 
 
     NOWarn                   Error  messages  will be  typed  at  the 
                              terminal,  but  warning   and  extension 
                              messages will not. 
 
     Ext                      Extension  messages  will  be  typed  in 
                              addition to error and warning messages. 
 
 
          Note that  when the  statements in  error are  typed at  the 
          terminal by the interface routine,  the maximum length for a 
          statement  is  20  cards   (i.e.,  19  continuation  cards). 
          Installations allowing longer statements  will get, at most, 
          the last  20 lines of  an erroneous statement  typed, unless 
          they modify this interface to meet their needs. 
 
 
     Job statistics options: 
     ___ __________ ________ 
 
     NOStats                  No end-of-job  statistics will  be typed 
                              at the terminal. 
 
     Stats                    End-of-job statistics  will be  typed at 
                              the terminal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     USING WATFIV UNDER CMS                                    Page 16 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     4.2.2 USING THE CMS WATFIV COMMAND 
 
          An example of the use of the WATFIV command follows. 
 
          The  file  JOB WATFIV  contains  a  $JOB card,  with  NOLIST 
          specified as  an option.  The  file ENTRY WATFIV  contains a 
          $ENTRY card.  The file EX1  FORTRAN contains a small FORTRAN 
          program that reads   from unit 5 and writes on  unit 6 until 
          an end-of file condition is encountered on unit 5. 
 
 
          watfiv job ex1 entry *(type 
 
          $JOB   WATFIV  C,KP=29,NOLIST 
 
          $ENTRY 
          9            (The keyboard unlocked at this point for input) 
             0.9000000E 01   0.8100000E 02 
                       (A blank line was entered to signify end-of-file.) 
 
          CORE USAGE ... 
                     ... 
          C$STOP                  (This card was generated by WATFIV) 
          R; 
 
          Another example follows.  The file  DATA WATFIV contains one 
          record with a data card. 
 
          watfiv job ex1 entry data(xtype 
 
            0.788999E 02   0.6225207E 04 
 
          CORE USAGE ... 
                     ... 
          C$STOP                  (This card was generated by WATFIV) 
          R; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     USING WATFIV UNDER CMS                                    Page 17 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     4.3 USING THE INTERACTIVE DEBUGGING FACILITIES 
 
 
     4.3.1 INTRODUCTION 
 
          A new package has been developed to supplement the debugging 
          facilities  of   the  WATFIV   compiler.   Essentially,   it 
          introduces the capability  of monitoring the execution  of a 
          WATFIV program interactively, from a terminal through CMS or 
          TSO.  No additions or changes  to your programs are required 
          in order to use this facility. 
 
     4.3.2 COMMAND SET 
 
          The command set is fairly small  and simple, yet it provides 
          some very  useful debugging aids.   It enables you  to trace 
          portions of your program, halt  execution at various points, 
          display or modify program variables, alter the logic flow of 
          your  program  and  correct  certain  execution-time  errors 
          interactively.  A list  of the commands and  their functions 
          follow: 
 
 
 
     TRACE ISN   -RANGE       TURNS ON TRACING IN GIVEN RANGE 
 
     OFF                      turns off tracing. 
 
     STOP isn                 specifies stop  location. Execution  may 
                              also be  stopped with the  attention key 
                              on the terminal 
 
     RUN                      resume execution where program stopped. 
 
     GOTO stmt-no.            resume  execution  at line  labelled  by 
                              given statement number. 
 
     A ?                      display contents of variable  A, where A 
                              may be a simple variable, array name, or 
                              array  element (in  the current  program 
                              segmenté•ó). 
 
     A = value                display contents of variable  A, where A 
                              may be a simple variable, array name, or 
                              array  element (in  the current  program 
                              segment). 
 
 
     _______________ 
 
     (1)  isn: instruction sequence number (line number) 
     (2)  A program segment is a mainline program or any subprogram. 
 
 
 
     USING THE INTERACTIVE DEBUGGING FACILITIES                Page 18 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     EXIT                     terminate  debug session  and return  to 
                              CMS or TSO. 
 
     Execution-Time errors    if  the error  can be  corrected by  the 
                              modification of variables, execution may 
                              be    restarted    where    interrupted. 
                              Otherwise,  the  error may  be  branched 
                              around  with the  GOTO  command, or  the 
                              EXIT command may be used. 
 
 
 
          Debugging  commands  are  issued when  the  program  is  not 
          executing and will be prompted for by the printing of 'CMD:' 
          at the  terminal.  The  first command  prompt will  be typed 
          after successful compilation  of the  program.  If  compile- 
          time  errors are  encountered in  the  program, WATFIV  will 
          return  control to  CMS  or TSO  without  issuing a  command 
          prompt, unless the FREE option on the $JOB or C$OPTIONS card 
          has been specified.  If FREE is specified  and source errors 
          exist in the program,  unpredictable results using debugging 
          commands  may   result.  More  detailed   information  about 
          specific commands follows. 
 
 
     TRACING 
     _______ 
 
          The  TRACE  command  causes  the  line  numbers  within  the 
          specified  range  to  be  printed  whenever  the  lines  are 
          executed  (i.e.,  'LINE  n'  is   printed  when  line  n  is 
          executed).  The range must consist of two integers separated 
          by a comma or blanks.  The  integers do not necessarily have 
          to be valid line numbers from the program. For example 
 
                                  TRACE 1,999 
 
          will trace the entire program if its length is not more than 
          999 lines.  Only  one tracing range may be  specified at one 
          time.  If more  than one trace command is  issued, the range 
          specified by the most recent one will be in effect.  Tracing 
          may be turned off altogether with the OFF command. 
 
 
     STOPPING 
     ________ 
 
          Similarly, only one  STOP location is in effect  at one time 
          and this will be the one  most recently specified.  When the 
          program  halts execution  at the  specified  line, the  stop 
          location will no longer be in effect. 
 
          When using the  attention key to stop  program execution, it 
          may be  found that more  statements have been  executed than 
 
 
 
     USING THE INTERACTIVE DEBUGGING FACILITIES                Page 19 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
          was  supposed.   If  the  attention  key  is  used  to  stop 
          execution while tracing  a program, often the  line at which 
          the program stops  is not the same line for  which the trace 
          last printed a line number.  It  might also be noticed that, 
          when the program  is stopped in this way, the  line at which 
          it stopped  is beyond a print  statement in the  sequence of 
          execution and  the print  line has not  yet appeared  on the 
          terminal.   These  situations  arise   because  the  program 
          continues executing after the command to write a line to the 
          terminal  has been  issued  (by the  program  itself, or  by 
          WATFIV).  That is,  execution does not wait for  the line to 
          actually  be  printed,   since  this  would  slow   it  down 
          considerably. 
 
 
     GOTO 
     ____ 
 
          The GOTO  command may only  be applied to  statement numbers 
          local to the current program segment.  WATFIV issues warning 
          messages for statement numbers which  are not referenced and 
          are on statements following  a transfer.  Statement numbers, 
          for which such warnings have been issued, may not be used as 
          operands of  the GOTO  command.  Note  that if  execution is 
          started with a  GOTO in the middle of  a DO-LOOP, unexpected 
          results  may  occur if  DO  index  variables have  not  been 
          appropriately modified. 
 
     4.3.3 MODIFYING AND DISPLAYING VARIABLES 
 
          The contents  of a variable may  be displayed by  typing the 
          variable name  followed by  a question  mark.  The  contents 
          will be typed in a format  appropriate to the variable type. 
          If an entire array is being  displayed, the elements will be 
          printed in  storage order, as  in WATFIV free  format output 
          (see    FORTRAN     IV    WITH     WATFOR    AND     WATFIV: 
          CRESS/DIRKSEN/GRAHAM,  ch.8  pp.115-116).   Similarly,  when 
          modifying a  variable, the  new value  following the  equals 
          sign should conform to WATFIV free format rules for input. 
 
          A restriction on variable modification is that the new value 
          must fit on  one line.  If an array being  modified has more 
          elements than will fit on one line, an error message will be 
          given; however, if  the variable is then  displayed, it will 
          be found  that the values  which fit  on the line  have been 
          assigned to  the appropriate  elements of  the array.   Note 
          that  only variables  which are  accessible  to the  current 
          program segment may be displayed or modified. 
 
 
 
 
 
 
 
 
     USING THE INTERACTIVE DEBUGGING FACILITIES                Page 20 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     4.3.4 EFFICIENCY CONSIDERATIONS 
 
          The processing of debugging commands  clearly takes time and 
          thus will  increase the cost  of executing a  program.   The 
          display and modification  of variables can be  costly if the 
          program  has  a  large  number  of  variables,  since  these 
          commands require a search of the  data area for the variable 
          name  specified.  Similarly,  the  GOTO  command involves  a 
          search of the  statement number list to find  the address of 
          the object code  for the statement with  the given statement 
          number. 
 
          Tracing and  stop locations require  the monitoring  of line 
          numbers  during execution.   These  commands  then add  some 
          overhead to execution time.  Tracing  also causes extra code 
          to be executed to print the line  number each time a line is 
          executed  within the  specified  range.   Thus, to  minimize 
          execution-time  overhead, tracing  should be  limited to  as 
          small  a range  as possible  and  should only  be used  when 
          necessary.  When neither  tracing nor a stop  location is in 
          effect,  however,   no  monitoring   overhead  is  added  to 
          execution time. 
 
     4.4 INTERACTIVE DEBUGGING OF WATFIV JOBS 
 
          As most FORTRAN programmers probably already know, WATFIV is 
          an  excellent debugging  compiler.  But  even with  WATFIV's 
          superior diagnostic capabilities, debugging a program can be 
          a tedious job.  The programmer finds a mistake, re-edits the 
          file containing the program (or re-types  the card), and re- 
          runs the  program.  Some of this  tedium can be  relieved by 
          using WATFIV  Interactive Debug  under CMS  or TSO.   To use 
          this feature,  all that  is needed  is an  up-to-date source 
          listing of  a program  that has not  been debugged,  and, of 
          course, the  program itself.  Then,  the program can  be run 
          under Debug  mode; when an  error condition  is encountered, 
          control is returned to the programmer, who has the option of 
          displaying  the value  of  any  variable (simple  variables, 
          arrays, or  array elements), re-assigning  the value  of any 
          variable, branching to  any statement number in  the program 
          segment, or  instructing the compiler  to return  control to 
          him or  her at  any specified line.   While doing  this, the 
          programmer can  mark on  the listing  any changes  which are 
          necessary to make the program run; all that is then required 
          to finish debugging is to edit  the program once, making all 
          necessary changes, and  then re-run it once,  to ensure that 
          all required changes have been made. 
 
 
 
 
 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 21 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
          An example of the use of Interactive Debug follows: 
 
               $JOB 
           1         REAL A(10),B(10) 
           2         DO 2 I=1,9 
           3         A(I+1)=I*2.0/0.19 
           4   2     B(I)=I*SQRT(I*2.1)/4.3 
           5         READ,N 
           6   14    CALL STLINE(A,B,N,X,Y) 
           7         PRINT,X,Y 
           8         STOP 
           9         END 
          10             SUBROUTINE  STLINE (X,Y,N,A,B) 
          11         REAL X(N), Y(N) 
          12   65    SX = 0.0 
          13         SY = 0.0 
          14         SXX = 0.0 
          15         SXY = 0.0 
          16   25    DO 9 I = 1, NN 
          17            XI = X(I) 
          18            SX = SX + XI 
          19            SXX = SXX + XI * XI 
          20            YI = Y(I) 
          21            SXY = SXY + XI * YI 
          22            SY = SY + YI 
          23   9     CONTINUE 
          24         XN = N 
          25         DEN = XN * SXX - SX * SX 
          26         A = (XN * SXY - SY * SX) / DEN 
          27         B = (SXX * SY - SX * SXY) / DEN 
          28   86    RETURN 
          29         END 
               $ENTRY 
 
          This is  the program that will  be debugged.  It  is obvious 
          that it would probably be unnecessary to employ something as 
          powerful as  Interactive Debug on  a program this  size; its 
          real capabilities are best demonstrated  on a large program. 
          However, a  small program will be  used to make  the example 
          easier to  follow.  The subroutine  STLINE accepts  two real 
          arrays containing the X-coordinate and Y-coordinate of a set 
          of points, and  an integer specifying the  number of points. 
          It  fits  a straight  line  through  them, and  returns  the 
          coefficients of the equation. 
 
          The program  and data  card is  stored in  the file  "STLINE 
          FORTRAN  A".  The  data  card follows  the  $ENTRY card  and 
          contains the value 10.4.  The  option DEBUG is specified, in 
          order to have  the program run under Debug  mode, the option 
          XTYPE is also specified to cause execution-time output to be 
          typed at the terminal. 
 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 22 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     watfiv stline (xtype debug 
      CMD: 
     n? 
      UUUUUUUUUUUU 
      CMD: 
     a(6)? 
      UUUUUUUUUUUUUUU 
      CMD: 
 
          As shown above, the lines in lower-case are the ones entered 
          at the terminal  and those in upper-case  are the responses. 
          The program is compiled, but  before it begins execution, it 
          returns control to the user, by typing CMD:  (at this point, 
          the user may enter any Debug  command).  The values of a few 
          variables  are  displayed  by   typing  the  variable  name, 
          immediately followed by a ?, but since execution has not yet 
          begun, everything is, of course, undefined.  There is really 
          nothing to  do but  let the  program run,  which is  done by 
          entering the command RUN. 
 
 
     run 
     ***ERROR*** IMPROPER CHARACTER SEQUENCE OR INVALID CHARACTER IN INPUT DATA 
     FIRST 80 CHARACTERS OF INPUT RECORD ARE->'10.4                           ' 
       EXECUTION TIME ERROR. ENTER CORRECTION OR EXIT 
      STOPPED AT LINE    5 
      CMD: 
 
 
          The READ  statement at  line 5 is  executed, and  receives a 
          value 10.4.  This  produces an error from  WATFIV, because N 
          is an INTEGER variable, and a REAL value was specifed. 
 
 
     n? 
      UUUUUUUUUUUU 
      CMD: 
     n=10 
      CMD: 
     goto 14 
     ***ERROR*** A DO-LOOP PARAMETER IS UNDEFINED OR OUT OF RANGE. 
                 NN     HAS THE VALUE -2139062144 
      EXECUTION TIME ERROR. ENTER CORRECTION OR EXIT 
      STOPPED AT LINE   16 
      CMD: 
 
 
          The value of N is displayed and found to be still undefined, 
          because of  the error.  It  is assigned  a value of  10, and 
          then the READ  statement is by-passed by using a  GOTO 14 to 
          transfer to the  statement labelled 14, the  next statement. 
          Note that  a GOTO can only  transfer control to  a statement 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 23 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
          label, not  an internal statement  number (ISN).   All other 
          Debug commands operate on ISNs.  An  error at ISN 16 is then 
          received, stating that NN is undefined or out of range. 
 
     nn? 
      UUUUUUUUUUUU 
      CMD: 
     nn=10 
      CMD: 
     run 
     ***ERROR*** VALUE OF X( 1) IS UNDEFINED 
       EXECUTION TIME ERROR. ENTER CORRECTION OR EXIT 
      STOPPED AT LINE   17 
      CMD: 
     x(1)? 
      UUUUUUUUUUUUUUU 
      CMD: 
 
          The  value  of  NN  is displayed  and  found  indeed  to  be 
          undefined. By  examining the program,  it is  determine that 
          this  was a  typing  error, and  NN should  be  just N.   To 
          rectify this problem,  assign NN the same value  that N has, 
          10, and proceed. 
 
          At  line  17,  it  is found  that  X(1)  is  undefined,  and 
          displaying its  value verifies  this fact.   Looking at  the 
          algorithm in the  mainline program for defining  the array A 
          (which gets passed to the array  X in the subroutine) it can 
          be seen that the programmer indeed botched it, and neglected 
          to define the first element. 
 
 
     x(1)=3.98 
      CMD: 
     x? 
        0.3980000E 01  0.1052632E 02  0.2105263E 02  0.3157893E 02 
        0.4210526E 02  0.5263158E 02  0.6315788E 02  0.7368420E 02 
        0.8421053E 02  0.9473683E 02 
      CMD: 
     run 
     ***ERROR*** VALUE OF Y(10) IS UNDEFINED 
       EXECUTION TIME ERROR. ENTER CORRECTION OR EXIT 
      STOPPED AT LINE   20 
      CMD: 
 
 
          X(1) is defined,  and then the entire X  array is displayed; 
          since  there are  no  more  undefined values,  execution  is 
          allowed to  continue.  However, a  similar error  has caused 
          the tenth element of the array Y to be undefined. 
 
 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 24 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
     y(0)=9.6 
     ***ERROR*** SUBSCRIPT NUMBER 1 OF Y     HAS THE VALUE         0 
       DEBUG ERROR. RE-ENTER 
      CMD: 
     y(10)=9.6 
      CMD: 
     stop 28 
      CMD: 
     run 
      STOPPED AT LINE   28 
      CMD: 
 
 
          While trying to enter a value for Y(10), a 0 instead of a 10 
          was  inadvertently typed.  Debug informs  the  user of  this 
          error,  and  a correct  value  is  entered.  The  user  then 
          decides that before leaving the  subroutine, the values of A 
          and B  will be  examined, so the  compiler is  instructed to 
          stop when it reaches line 28, the RETURN statement, and give 
          the user control. 
 
     a? 
        0.1068893E 00 
      CMD: 
     b? 
       -0.4032579E 00 
      CMD: 
     x(3)=7.89 
      CMD: 
     y(7)=4.82 
      CMD: 
     n=9 
      CMD: 
     nn=9 
      CMD: 
     stop 28 
      CMD: 
     goto 65 
      STOPPED AT LINE   28 
      CMD: 
     a? 
        0.9692568E-01 
      CMD: 
     b? 
        0.1816178E-01 
      CMD: 
 
          The  values of  A and  B  are examined,  some variables  are 
          reset, the  compiler is asked  to stop  again at 28,  and is 
          sent back to the statement labelled 65. 
 
     n=7 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 25 
 
 
 



 
                                USING WATFIV UNDER INTERACTIVE SYSTEMS 
 
 
 
      CMD:  nn=7 
      CMD:  trace 12,999 
      CMD:  goto 65 
      LINE    12 
      LINE    13 
      LINE    14 
      LINE    15 
      LINE    16 
      LINE    17 
      LINE    18 
      LINE    19 
      LINE    20 
      LINE    21 
      LINE    22 
      LINE    17 
      LINE    18 
      LINE    19 
      LINE    20 
      LINE    ' 
              . 
      CMD:  off 
      CMD:  stop 28 
      CMD:  run 
      STOPPED AT LINE   28 
      CMD:  a? 
        0.9692568E-01 
      CMD:  b? 
        0.1816178E-01 
      CMD:  exit 
 
     R(00004); 
 
          This is  a simple program  with no  branches, but if  it did 
          have a number  of GO TOs, it  might be beneficial to  have a 
          TRACE of  all ISNs  that are  executed.  Some  variables are 
          reset, and WATFIV is instructed to trace all ISNs between 12 
          and  999, that  is,  the end  of  the  program.  Control  is 
          transferred  to the  statement labelled  65.  After  letting 
          some of the  trace messages print, the user  decides that no 
          further output is required, interrupts with the attention or 
          break key,  and stops  tracing by saying  OFF.  The  STOP is 
          reset at 28, and execution continues; when the stop at 28 is 
          encountered A and B are examined and found to be fine, so it 
          is  unnecessary to  return to  the main  program and  WATFIV 
          Debug is left by specifying EXIT. All that remains now is to 
          edit the original program, and make necessary changes. 
 
 
 
 
 
 
 
 
 
 
     INTERACTIVE DEBUGGING OF WATFIV JOBS                      Page 26 
 
 
 



 
                                                        JOB ACCOUNTING 
 
 
 
     5.  JOB ACCOUNTING 
 
 
 
          The last three lines of output for each job are generated by 
          the compiler and consist  of certain accounting information. 
          Specifically, the information provided is: 
 
                -     the  time,  in  seconds, taken  to  compile  the 
                      program 
 
                -     the   time,  in   seconds,   that  the   program 
                      executedéœó 
 
                -     the  amount,   in  bytes,   of  object   codeé•ó 
                      generated for the program 
 
                -     the amount,  in bytes,  of storage  used by  the 
                      program   for   arrays,   common   blocks,   and 
                      equivalenced  variables  (the  so-called  'array 
                      area') 
 
                -     the total storage, in  bytes, that was available 
                      for the run to contain object code and the array 
                      area 
 
                -     the number  of errors,  warnings and  extensions 
                      issued for the program 
 
                -     the date and time the program finished execution 
 
                -     the release date of version, and level of WATFIV 
                      in use 
 
 
                An example of accounting output follows: 
 
     CORE USAGE  OBJECT CODE = 320 BYTES, ARRAY AREA = 0 BYTES, 
                               TOTAL AREA AVAILABLE = 39008 BYTES 
     DIAGNOSTICS NUMBER OF ERRORS = 2, NUMBER OF WARNINGS = 3, 
                               NUMBER OF EXTENSIONS = 1 
     COMPILE TIME = 0.02 SEC, EXECUTION TIME = 1.23 SEC, 
                01.26.02 SATURDAY 14 FEB 76 WATFIV - JAN 1976 
 
 
 
     _______________ 
 
     (1)  The time  required to print  out the PROFILER  statistics is 
          not included in this value. 
 
     (2)  This  includes   constants,  temporaries,   non-equivalenced 
          simple variables, save  areas, any routines loaded  from the 
          object library, etc. 
 
 
 
     JOB ACCOUNTING                                            Page 27 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
     6.  DIAGNOSTICS 
         ___________ 
 
 
     6.1 ERROR DIAGNOSTICS 
 
          WATFIV issues  compile-time diagnostics  at three  levels of 
          severity -  EXTENSION, WARNING and  ERROR.  A  diagnostic is 
          generated in-line  in the source listing,  immediately below 
          the statement in which the condition was detected. 
 
          An EXTENSION message results if  an extension of the FORTRAN 
          language allowed by WATFIV was used.  These are described in 
          section 7.1  on page  46. The  diagnostic is issued  so that 
          the problem can  be eliminated,  should the  program be  re- 
          compiled with IBM's FORTRAN compilers. 
 
          A WARNING  is issued for  language violations for  which the 
          compiler can  take some reasonable corrective  action, e.g., 
          truncating a name of more than 6 characters. 
 
          An ERROR is  issued when a language  violation severe enough 
          to  prevent execution  is encountered.   In  this case,  the 
          compiler  will normally  inhibit execution  of the  program, 
          unless the FREE option has been specified. 
 
          At execution time, all errors are fataléœó in the sense that 
          the compiler will  terminate the current job  and proceed to 
          the next job  in the batch.  For  execution-time errors, the 
          compiler generates  a diagnostic and a  subprogram traceback 
          in the  printed output.  This gives  the line number  of the 
          statement  in which  the  error occurred,  the  name of  the 
          subprogram  in which  the error  occurred, the  name of  the 
          subprogram which  called it, etc., all  the way back  to the 
          main  program which  is referred  to as  M/PROG.  (The  line 
          number of  each statement appears to  the left of it  in the 
          source listing.  This line number is compiler generated, and 
          is  distinct from,  and  should not  be  confused with,  any 
          FORTRAN statement number the programmer may have assigned to 
          a statement). 
 
 
 
 
 
 
 
     _______________ 
 
     (1)  Exception:   If  a   hardware  I/O  error  occurs   and  the 
          programmer has specified an ERR=  return in the affected I/O 
          statement, an error message is  given and execution proceeds 
          at the statement specified by the ERR=. 
 
 
 
     ERROR DIAGNOSTICS                                         Page 28 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          Example of a traceback: 
 
     ***ERROR***     VALUE OF A IS UNDEFINED 
     PROGRAM WAS EXECUTING LINE 15 IN ROUTINE RTN2   WHEN TERMINATION OCCURRED 
     PROGRAM WAS EXECUTING LINE  9 IN ROUTINE RTN1   WHEN TERMINATION OCCURRED 
     PROGRAM WAS EXECUTING LINE  4 IN ROUTINE M/PROG WHEN TERMINATION OCCURRED 
 
          One  of  the  design  goals of  WATFIV  is  to  supply  good 
          diagnostics.  We, the implementors, think  the goal has been 
          well met, but, sad to say, we have heard that a few users of 
          the  compiler at  our installation  have found  some of  the 
          diagnostic messages to be vague, obfuscatory, or hubristic. 
 
          It is hoped that the following paragraphs will simplify, for 
          the user, the  interpretation of some of  the error messages 
          which may, at  present, be too brief or  may contain special 
          words  with meanings  entirely clear  only  to the  compiler 
          implementors. 
 
          The user should be aware that  an error in one statement may 
          lead to apparent errors in  subsequent statements.  The case 
          may be  that, if  the first error  is corrected,  the others 
          will disappear as well on a subsequent compilation.  This is 
          particularly  true  if   the  first  error  occurred   in  a 
          specification statement.   The reason  is that  the compiler 
          scans each source  statement, column by column  from left to 
          right, and usually abandons compilation  of a statement when 
          a syntax error is encountered.  Thus, correct information in 
          a statement  may be  ignored if  it follows  a column  which 
          contained an error. 
 
          Consider the following program as an example. 
 
                      DIMENSION A(10),B(104+C(10) 
                      C(1)=2 
                        . 
                        . 
                        . 
 
 
          Both the  first and second  statements will be  flagged with 
          error  messages  - the  first  since  there is  no  matching 
          parenthesis for  the dimension  of B;  the second  since the 
          compiler, lacking  knowledge that C  is an array  because of 
          the previous error,  assumes that the second  statement is a 
          definition of  a statement function C.   (Statement function 
          definitions  must have  variable  names,  not constants,  as 
          dummy arguments).  The second error  will disappear when the 
          first error has been corrected. 
 
          The point  is that the  programmer, when confronted  with an 
          error message, must do some analysis to  see if it is a real 
 
 
 
     ERROR DIAGNOSTICS                                         Page 29 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          error, or merely an apparent error  arising from an error in 
          a previous statement. 
 
          Certain  of the  error messages  generated  by the  compiler 
          imply a knowledge, on the programmer's  part, of the left to 
          right scan of statements.  These  messages usually relate to 
          the syntax of statements, and  contain the word 'expecting', 
          for example, the statement 
 
                           DIMENSION+A(10) 
 
          is flagged with the message 
 
 
               EXPECTING SYMBOL, BUT + BEFORE A WAS FOUND 
 
          This implies that the compiler,  scanning the statement from 
          left to right,  expected to find a symbol  after the keyword 
          DIMENSION in  order to consider the  statement syntactically 
          correct according to the rules of FORTRAN. 
 
          The  following glossary  is provided  to  define some  terms 
          which appear  in the  WATFIV diagnostics  and which  may not 
          have   a  'standard'   or   accepted   meaning  to   FORTRAN 
          programmers. 
 
     FORTRAN keyword        - a word,  such as  STOP, READ,  GOTO that 
                             identifies a FORTRAN statement. 
 
     Program Segment        - a subroutine or  function subprogram, or 
                             a main program. 
 
     Simple Variable        - a variable which is not an array 
 
     ASSIGNED GOTO Index    - a variable  used in an  ASSIGN statement 
                             or ASSIGNED GOTO statement, e.g., I is an 
                             ASSIGNED  GOTO  Index  in  the  following 
                             statement. 
 
                                        ASSIGN 5 to I 
 
     Statement Number        - &5  is a  statement number  constant in 
     Constant                the following statement. 
 
                                         CALL SUBR(X,&5) 
 
     Operator               - usually an  arithmetic operator  such as 
                             '+',   '-',  etc.,   but  generally   any 
                             delimiter, e.g., '(', '&', ',', etc. 
 
 
 
 
 
 
     ERROR DIAGNOSTICS                                         Page 30 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
     End-of-Statement       - the  implied  end-of-statement  operator 
                             that the compiler expects  to find at the 
                             end of a correct statement. 
 
     Symbol                 - a  symbolic name,  i.e., the  name of  a 
                             variable, array, subprogram, etc. 
 
     Temporary              - a   value  which   is   the  result   of 
                             evaluating an  expression.  For  example, 
                             3.*A+2. is a 'temporary' in the following 
                             statement. 
 
                                         CALL RTN (3.*A+2.) 
 
     Argument               - a  value passed  to  a subprogram.   For 
                             example, A, 3.5, SIN(X)  are arguments in 
                             the following statement. 
 
                                         CALL SP1(A,3.5,SIN(X)) 
 
     Parameter              - a symbolic  value used  in a  subprogram 
                             and which is replaced  by a real argument 
                             when  the  subprogram  is  referenced  at 
                             execution time;  sometimes called  'dummy 
                             arguments'   by   other   authors.    For 
                             example, A  and B  are parameters  in the 
                             following statement. 
 
                                         SUBROUTINE EGGMOR(A,B) 
 
     DO-loop Parameter      - a  simple  integer variable  or  integer 
                             constant used  to control  the number  of 
                             times  a   DO-loop  is   performed.   For 
                             example:  I,3,J,2 are  DO-loop parameters 
                             in the following statement. 
 
                                         D0 17 I=3,J,2 
 
     Object of a DO         - the last  statement of  a DO-loop.   The 
                             statement numbered  15 is  the object  of 
                             the  DO-loop  defined  by  the  statement 
                             numbered 7 in the following example. 
 
                                         7  DO  15   I=3,J,2 
                                                 . 
                                                 . 
                                                 . 
                                        15  X(I) = A(I)*B(I) 
 
 
 
 
 
 
 
     ERROR DIAGNOSTICS                                         Page 31 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
     Dimension              - a  value  used to  declare  the  maximum 
                             value that  a subscript  of an  array may 
                             assume at  execution time.   For example, 
                             10, 15, and 5 are  dimensions of A in the 
                             following statement. 
 
                                   DIMENSION A(10,15,5) 
 
     Subscript              - a value used to refer  to a member of an 
                             array.  For example, I, 7, and 3*K+12 are 
                             subscripts   of   A  in   the   following 
                             statement. 
 
                                   Y=A(I,7,3*K+12) 
 
     Type                   - this usually refers to  one of the types 
                             LOGICAL,  INTEGER,  REAL,  COMPLEX,  (and 
                             with WATFIV), CHARACTER.  However, it may 
                             refer  to  a  particular  sub-type.   For 
                             example, the following  statements define 
                             X to  have type  REAL*4, A  to have  type 
                             REAL*8, and Z to have type LOGICAL. 
 
                                         REAL X*4,A*8 
                                         LOGICAL Z 
 
     Mode                   - this generally refers to  the usage of a 
                             symbolic name  within a subprogram,  or a 
                             program as  a whole.   By usage,  we mean 
                             variable  name, common  block name,  sub- 
                             program name, etc.  The  name AB has mode 
                             'common block' in the statement 
 
                                         COMMON /AB/X,Y,Z 
 
                             Sometimes it  may include  type as  well, 
                             e.g.,  the  symbolic  name  FN  has  mode 
                             'REAL*8  function   subprogram'  in   the 
                             following example. 
 
                                         REAL FUNCTION FN*8 (A,B) 
 
     Defined                - at compile time, we  say the mode and/or 
                             type of  a symbolic name is  defined when 
                             there  is no  longer any  doubt what  its 
                             mode  and/or  type might  be.   The  mode 
                             and/or type can be established explicitly 
                             from    information   in    specification 
                             STATEMENTS  THAT  REFER TO  THE  SYMBOLIC 
                             name, or implicitly from the first use of 
                             the name in a  program segment.  Once the 
                             mode  and/or type  of  a  name have  been 
 
 
 
     ERROR DIAGNOSTICS                                         Page 32 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
                             defined,  they  may   not  be  redefined. 
                             Consider the following sequence of state- 
                             ments: 
 
                                         REAL I, J(10),K,L*8/1.D0/ 
                                         DIMENSION I(5) 
                                         EXTERNAL K 
                                         M=L + FN(I) 
 
                             The first  statement defines the  type of 
                             all four names, I, J, K, L.  Furthermore, 
                             it also defines the modes  of names J and 
                             L.   J  is explicitly  identified  as  an 
                             array, and  L is assumed  to be  a simple 
                             variable  since  it  is  initialized  and 
                             initialization  constitutes  a use  of  a 
                             name.   The second  and third  statements 
                             explicitly define  the modes  of names  I 
                             and K  as array  and subprogram,  respec- 
                             tively.  The fourth  statement implicitly 
                             defines the mode and type  of names M and 
                             FN since they are used in that statement. 
                             Since this is their  first use or appear- 
                             ance in the program,  their types are de- 
                             termined  from  the usual  FORTRAN  first 
                             letter rule,  and their modes  are estab- 
                             lished from their  usage - M is  a simple 
                             integer   variable,   FN  is   a   REAL*4 
                             function. 
 
                             At execution  time, a  variable or  array 
                             element or function name is defined if it 
                             has been assigned a value. 
 
     Undefined              - at execution  time, a variable  or array 
                             element is said to be undefined if it has 
                             not had a value assigned  to it.  For ex- 
                             ample, if the statement 
 
                                         X=Y 
 
                             were  the  first  statement   of  a  main 
                             program, then, at execution time, Y would 
                             be undefined since there  would be no way 
                             it could have had a value assigned to it. 
 
   ×                         WATFIV will check your  program at execu- 
                             tion time  for attempts to  use undefined 
                             variables unless  you specify  NOCHECK on 
                             the $JOB card or C$OPTIONS card. 
 
 
 
 
 
     ERROR DIAGNOSTICS                                         Page 33 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
     NOTES: 
     _____ 
 
          1.    The authors of the compiler do not advocate the use of 
          the FREE  option; it is  provided for those  programmers who 
          feel it is  desirable to obtain some  execution-time output, 
          even from a  program which may contain  serious compile-time 
          errors.  Note that some errors are  of such a serious nature 
          that execution will be inhibited  even if FREE is specified, 
          e.g., if memory space cannot  be allocated to contain arrays 
          declared in the program. 
 
          2.    Under CHECK or FREE,  the compiler will terminate your 
          job if you use an undefined variable in an expression, i.e., 
          if you attempt some evaluation that involves a variable that 
          has not been  assigned a value.  However,  the compiler will 
          allow you to print undefined values without terminating your 
          program.  Such values appear on the page as a string of U's. 
 
                         For example, if the statements 
 
                         I=1 
                         K=2 
                         PRINT,I,J,K 
 
          were the  first to  be executed  in a  program, the  line of 
          output produced by the PRINT statement would appear as 
 
                         1 UUUUUUUUUUUU     2 
 
          Note that U's are still printed for undefined variables even 
          under  NOCHECK.   NOCHECK  suppresses  only  the  check  for 
          attempted use  of undefined variables  in the  evaluation of 
          expressions. 
 
          3.  EXTENSION  and WARNING messages  may be  suppressed from 
          the source  listing by specifying  NOEXT and NOWARN  as $JOB 
          card  parameters.  It  is a  good practice  not to  suppress 
          these  diagnostics in  the  initial  stages of  debugging  a 
          program. 
 
          4.   Section 15.1  on page  108  of this  manual contains  a 
          complete list  of all diagnostics  that the  WATFIV compiler 
          can produce. 
 
          5.  The  following compiler-generated  names appear  in some 
          diagnostics. 
 
                         M/PROG - name of the main program 
                         //     - name of the blank common block 
 
 
 
 
 
 
     ERROR DIAGNOSTICS                                         Page 34 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
   × 6.2 CONTROL OPTIONS FOR CERTAIN DIAGNOSTICS 
 
 
          Six control  options are available  to control  the printing 
          and generation of certain diagnostics.   The WARN and NOWARN 
          options control  the printing of  compiler-generated warning 
          and extension  messages; the EXT  and NOEXT  options control 
          the printing  of compiler-generated extension  messages; the 
          CHECK and NOCHECK options control the compiler's checking of 
          undefined variables. 
 
          If the compiler  encounters the NOWARN option  in the source 
          deck,  all warning  messages will  be  suppressed from  that 
          point  on.  A  C$OPTIONS WARN  card will  allow the  warning 
          messages to be restarted if the NOWARN option was punched on 
          the $JOB  or C$OPTIONS  card.  The  generating of  extension 
          messages may be  controlled in a similar way by  the EXT and 
          NOEXT options. 
 
          When the NOCHECK  option is encountered by  the compiler, it 
          bypasses  the generation  of  object  code that  checks  for 
          undefined variables  at execution  time.  A  C$OPTIONS CHECK 
          card causes  the compiler to  generate the checking  code if 
          NOCHECK was specified (or defaulted)  as a $JOB or C$OPTIONS 
          card parameter. 
 
          The source deck using these cards might be as follows: 
 
          $JOB   D9999JOE.USER,NOWARN 
 
                compile with "CHECK" 
 
                no warning messages 
 
          C$OPTIONS NOCHECK,EXT 
 
                compile with "NOCHECK" and print extension messages 
 
                   END 
 
          C$OPTIONS CHECK,WARN 
 
                subprograms 
 
                compile with "CHECK" and print warning messages 
 
                   END 
 
          $ENTRY 
 
                data cards 
 
 
 
 
     CONTROL OPTIONS FOR CERTAIN DIAGNOSTICS                   Page 35 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          These options allow  local control of their  function.  This 
          can be useful if a program is being debugged in stages, with 
          routines being added or changed over a sequence of runs.  If 
          the  NOCHECK option  can  be used  because  a  segment of  a 
          program is known to be  free of undefined variables, several 
          advantages can result: 
 
                   - less object  code is generated; thus,  a somewhat 
                larger program can  be compiled for a  given amount of 
                available memory. 
 
                   - the  program  will   run  somewhat  faster  since 
                the checking code is not executed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     CONTROL OPTIONS FOR CERTAIN DIAGNOSTICS                   Page 36 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
     6.3 WATFIV DEBUGGING AIDS 
 
 
   × 6.3.1 EXECUTION-TIME PROFILER 
 
          WATFIV is a  powerful tool for the writing  and debugging of 
          FORTRAN  programs.  The  diagnostic  messages and  debugging 
          aids provided have  helped get programs into  the "execution 
          phase" with  a great  saving in  programmer time.   However, 
          once the program  has been successfully debugged  and tested 
          and is ready for use in the "production" stage, little or no 
          feedback  is available  on what  it is  doing.  The  PROFILE 
          option of WATFIV is an attempt to address this critical area 
          of programming  and should be  used to find  bottlenecks and 
          deficiencies once the  program is working.  This  new WATFIV 
          feature will provide information concerning what segments of 
          the program are being executed  most often.  The output from 
          the WATFIV PROFILER provides a frequency count of the number 
          of times each statement was executed, and a histogram scaled 
          in percent or relative count. 
 
          The new options available under WATFIV are as follows: 
 
          PROFC    Turns on the profile count option 
          PROFP    Turns on the histogram percentage option 
          PROFA    Turns on the histogram absolute count option 
          PROF     Equivalent to specifying PROFC  PROFP, and PROFA 
 
          The above  options may  appear on  the $JOB  card or  on the 
          C$OPTIONS  card.  At least  one  of  these options  must  be 
          specified for formatting the output  of the WATFIV PROFILER. 
          The actual enabling of the PROFILER is controlled by two new 
          control  cards  which  are  inserted  around  any  group  of 
          executable statements.  Only statistics  on these statements 
          will be  displayed in  the PROFILER  output.  These  control 
          cards are: 
 
          C$PROFON   Turns on execution-time count facility 
          C$PROFOFF  Turns off execution-time count facility 
 
          If  the   C$PROFOFF  card   is  omitted,   then  performance 
          monitoring will be done until the end of the program. 
 
          It is often the case that over  50% of the execution time of 
          a  program  is  spent  in  less   than  10%  of  the  source 
          statements.  Up to  now this critical area of  a program has 
          been  extremely  hard  to pinpoint;  the  area  of  software 
          monitoring  has   little  room  for  intuition.    With  the 
          introduction  of the  WATFIV PROFILER,  programmers will  be 
          able to receive some measurement feedback. 
 
          By examining the PROFILER histogram  in conjunction with all 
 
 
 
     WATFIV DEBUGGING AIDS                                     Page 37 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          control statements,  a restructuring of  the program  can be 
          done to  minimize the number  of frequently  taken branches. 
          Programs operating in  a paging environment will  benefit by 
          adhering to this "locality of reference" concept. 
 
          The output from the WATFIV PROFILER only indicates frequency 
          count  (execution time  would  be  too compiler  dependent). 
          Those  statements with  a  high  frequency count  should  be 
          examined  to determine  if  a  different algorithm  or  data 
          structure  can  be  used  to  decrease  some  execution-time 
          overhead. 
 
          The following programming techniques  have been adapted from 
          the  STANFORD University  Fortune User's  Guide  and can  be 
          applied when evaluating the output from the PROFILER: 
 
          1)  Test for most  probable cases first so  the execution of 
              certain IF statements can be eliminated. 
 
          2)  Commonly referenced expressions should be calculated and 
              stored  in  variables  so that  execution  time  is  not 
              consumed in recalculating these values. 
 
          3)  Multi-dimensional  arrays  should   be  equivalenced  to 
              vectors  to  avoid complicated  subscripting  algorithms 
              (internal to the compiler). 
 
          4)  Certain subroutines should be  made in-line to eliminate 
              the calling sequence overhead. 
 
          Another advantage of  the PROFILER is the  ability to verify 
          the existence of good test data.  The list of statements not 
          executed  can be  examined and  test  data reconstructed  to 
          ensure that this code is executed.   The presence of a block 
          of  statements   which  is  never  executed   indicates  the 
          possibility of a bug in a working program. 
 
          The usefulness of  this new facility is  demonstrated by the 
          following  programs.   A  brief guide  to  interpreting  the 
          PROFILER output follows the listings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV DEBUGGING AIDS                                     Page 38 
 
 
 



 
              $JOB           ************* 
              C 
              C 
              C     FORTRAN FACTORIAL FREQUENCY FOLLY 
              C 
              C 
              C$PROFON 
              C$OPTIONS PROFP,PROFA,L=0 
          1         INTEGER FACTOR/2/ 
          2         INTEGER KNT/0/ 
          3         DO 100 I=3,1000 
          4             FACTOR=FACTOR* (I*(I-1)) 
          5             IF( FACTOR .LT. 0)KNT=KNT+1 
          6   100   CONTINUE 
          7         STOP 
          8         END 
 
              $ENTRY 
 
                         WATFIV PROGRAM PROFILE § ±»LE 
 
              1997  STATEMENT(S) EXECUTED 
                 6  SECONDARY STATEMENT(S) EXECUTED 
                 0  STATEMENT(S) NOT EXECUTED 
 
 
                                                HISTOGRAM OF PERCENTAGE FREQUENCY COUNT 
 
         STMT    COUNT 0%       10%       20%       30%       40%       50%       60%       70%       80%       90%       100% 
            3        1 *         .         .         .         .         .         .         .         .         .         . 
            4      998 ***************************************************         .         .         .         .         . 
            5      998 ***************************************************         .         .         .         .         . 
       OBJECT        6 *         .         .         .         .         .         .         .         .         .         . 
                  2003 TOTAL STATEMENT(S) EXECUTED 
 
 
                                                 HISTOGRAM OF ABSOLUTE FREQUENCY COUNT 
         STMT    COUNT 
                       1       101       201       301       401       501       601       701       801       901      1001 
            3        1 *         .         .         .         .         .         .         .         .         .         . 
            4      998 ***************************************************************************************************** 
            5      998 ***************************************************************************************************** 
       OBJECT        6 **        .         .         .         .         .         .         .         .         .         . 
                  2003 TOTAL STATEMENT(S) EXECUTED 
 
     CORE USAGE       OBJECT CODE=     456 BYTES,ARRAY AREA=       0 BYTES,TOTAL AREA AVAILABLE=   51200  BYTES 
 
     DIAGNOSTICS        NUMBER OF ERRORS=       0, NUMBER OF WARNINGS=       0, NUMBER OF EXTENSIONS=       0 
 
     COMPILE TIME=     0.05 SEC,EXECUTION TIME=     0.09 SEC,     14.22.11    WEDNESDAY     7 APR 76    WATFIV - JAN 1976 V1L5 
 
 
 
 
 
     WATFIV DEBUGGING AIDS                                                                                                 Page 39 
 
 



 



 
 
 
 
              $JOB           ************* 
              C$OPTIONS  PROFC,PROFA,L=0 
              C$PROFON 
          1         CHARACTER*1 CARD(200,80),NCHAR1(5)/'@','<','%','&','#'/ 
          2         CHARACTER NCHAR2(5)/'''',')','(','+','='/ 
          3         CHARACTER KARD(200,80) 
          4         INTEGER TCHARS 
          5         TCHARS=0 
          6         DO 20 I1=1,200 
          7   10        READ(5,920)(CARD(I1,K),K=1,80) 
          8             AT END DO 
          9                 LL=I1-1 
         10                 WRITE(6,940)TCHARS 
         11                 WRITE(8,930)((CARD(L,KK),KK=1,80),L=1,LL) 
         12   940           FORMAT(' THE TOTAL NUMBER OF NON-BLANK CHARACTERS IS',I5) 
         13                 STOP 
         14   930           FORMAT(1X,80A1) 
         15   920           FORMAT(80A1) 
         16             END AT END 
         17             IF(CARD(I1,1) .NE. 'C')GOTO 25 
         18             LL=I1 
         19             DO 30 J=1,80 
         20                 DO 30 K=1,LL 
         21   30        KARD(K,J)=CARD(K,J) 
         22             GO TO 10 
         23   25        DO 20 I2=1,80 
         24                 IF(CARD(I1,I2).EQ.' ')THEN DO 
         25                     GO TO 20 
         26                 ELSE DO 
         27                    TCHARS=TCHARS+1 
         28                 END IF 
         29                 I3=1 
         30                 WHILE (I3.LE.5) DO 
         31                     IF(CARD(I1,I2).EQ.NCHAR1(I3))THEN DO 
         32                         CARD(I1,I2)=NCHAR2(I3) 
         33                         I3=99 
         34                     ELSE DO 
         35                         I3=I3+1 
         36                     END IF 
         37                 END WHILE 
         38   20    CONTINUE 
         39         STOP 
         40         END 
 
              $ENTRY 
     THE TOTAL NUMBER OF NON-BLANK CHARACTERS IS 6116 
 
 
     WATFIV DEBUGGING AIDS                                                                                                 Page 40 
 
 
 



 
 
                         WATFIV PROGRAM PROFILE 
 
            105471  STATEMENT(S) EXECUTED 
               164  SECONDARY STATEMENT(S) EXECUTED 
                 5  STATEMENT(S) NOT EXECUTED 
 
 
                                                       TABLE OF FREQUENCY COUNT 
 
         FROM       TO    COUNT          FROM       TO    COUNT          FROM       TO    COUNT          FROM       TO    COUNT 
            5        6        1             7        7      165             9       11        1            17       17      164 
           23       23      164            24       24    13120            25       25     7004            27       27     6116 
           28    ENDIF     6116            29       29     6116            30       30    26559            30 ENDWHILE     6116 
           31       31    20443            32       33     5172            34   ELSEDO     5172            35       35    15271 
           36    ENDIF    20443            38  LEVEL 2      164 
 
                    THE FOLLOWING STATEMENTS WERE NOT EXECUTED 
 
         FROM       TO             FROM       TO             FROM       TO             FROM       TO             FROM       TO 
           18       21               21  LEVEL 2               21  LEVEL 1               22       22               26   ELSEDO 
           38  LEVEL 1 
 
 
                                                 HISTOGRAM OF ABSOLUTE FREQUENCY COUNT 
         STMT    COUNT 
                       0      2656      5312      7968     10624     13280     15936     18592     21248     23904     26560 
            5        1 *         .         .         .         .         .         .         .         .         .         . 
            6        1 *         .         .         .         .         .         .         .         .         .         . 
            7      165 **        .         .         .         .         .         .         .         .         .         . 
            9        1 *         .         .         .         .         .         .         .         .         .         . 
           10        1 *         .         .         .         .         .         .         .         .         .         . 
           11        1 *         .         .         .         .         .         .         .         .         .         . 
           17      164 **        .         .         .         .         .         .         .         .         .         . 
       OBJECT      164 **        .         .         .         .         .         .         .         .         .         . 
 
           23      164 **        .         .         .         .         .         .         .         .         .         . 
           24    13120 **************************************************.         .         .         .         .         . 
           25     7004 ***************************   .         .         .         .         .         .         .         . 
           27     6116 ************************      .         .         .         .         .         .         .         . 
           29     6116 ************************      .         .         .         .         .         .         .         . 
           30    26559 ***************************************************************************************************** 
           31    20443 ******************************************************************************  .         .         . 
           32     5172 ********************.         .         .         .         .         .         .         .         . 
           33     5172 ********************.         .         .         .         .         .         .         .         . 
           35    15271 **********************************************************  .         .         .         .         . 
                105635 TOTAL STATEMENT(S) EXECUTED 
 
     CORE USAGE       OBJECT CODE=    6696 BYTES,ARRAY AREA=   32010 BYTES,TOTAL AREA AVAILABLE=  153600  BYTES 
 
     DIAGNOSTICS        NUMBER OF ERRORS=       0, NUMBER OF WARNINGS=       0, NUMBER OF EXTENSIONS=       7 
 
     COMPILE TIME=     0.20 SEC,EXECUTION TIME=     9.17 SEC,     20.38.04    WEDNESDAY     7 APR 76    WATFIV - JAN 1976 V1L5 
     WATFIV DEBUGGING AIDS                                                                                                 Page 41 
 



 
 



              $JOB           ************* 
              C     PALINDROMIC PROFILER PROGRAM 
              C$PROFON 
              C$OPTIONS PROF,L=0 
          1         DO 10 I=1,100 
          2           DO 10 J=1,100 
          3             DO 10 K=1,100 
          4               LL=I+J*K 
          5   10    CONTINUE 
          6         STOP 
          7         END 
 
              $ENTRY 
 
                         WATFIV PROGRAM PROFILE 
 
           1010101  STATEMENT(S) EXECUTED 
                 0  SECONDARY STATEMENT(S) EXECUTED 
                 0  STATEMENT(S) NOT EXECUTED 
 
 
                                                       TABLE OF FREQUENCY COUNT 
 
         FROM       TO    COUNT          FROM       TO    COUNT          FROM       TO    COUNT          FROM      TO     COUNT 
            1        1        1             2        2      100             3        3    10000             4        4  1000000 
            5  LEVEL 3    10000             5  LEVEL 2      100             5  LEVEL 1        1 
 
 
                                                HISTOGRAM OF PERCENTAGE FREQUENCY COUNT 
 
         STMT    COUNT 0%       10%       20%       30%       40%       50%       60%       70%       80%       90%       100% 
            1        1 *         .         .         .         .         .         .         .         .         .         . 
            2      100 *         .         .         .         .         .         .         .         .         .         . 
            3    10000 **        .         .         .         .         .         .         .         .         .         . 
            4  1000000 ****************************************************************************************************. 
               1010101 TOTAL STATEMENT(S) EXECUTED 
 
 
                                                 HISTOGRAM OF ABSOLUTE FREQUENCY COUNT 
         STMT    COUNT 
                       1    100001    200001    300001    400001    500001    600001    700001    800001    900001   1000001 
            1        1 *         .         .         .         .         .         .         .         .         .         . 
            2      100 *         .         .         .         .         .         .         .         .         .         . 
            3    10000 **        .         .         .         .         .         .         .         .         .         . 
            4  1000000 ***************************************************************************************************** 
               1010101 TOTAL STATEMENT(S) EXECUTED 
 
     CORE USAGE       OBJECT CODE=     416 BYTES,ARRAY AREA=       0 BYTES,TOTAL AREA AVAILABLE=   51200  BYTES 
 
     DIAGNOSTICS        NUMBER OF ERRORS=       0, NUMBER OF WARNINGS=       0, NUMBER OF EXTENSIONS=       0 
 
     COMPILE TIME=     0.05 SEC,EXECUTION TIME=    63.76 SEC,     14.28.40    WEDNESDAY     7 APR 76    WATFIV - JAN 1976 V1L5 
 
     WATFIV DEBUGGING AIDS                                                                                                 Page 42 
 



 
                                                           DIAGNOSTICS 
 
 
 
          The number  of statements  executed is  the actual  count of 
          executable   FORTRAN  statements   --  control   statements, 
          arithmetic and  logical IF  statements, I/O  statements, and 
          assignment statements.  Certain statements  are deemed to be 
          non-executable by  the WATFIV PROFILER.   Some of  these are 
          CONTINUE,  STOP,   END,  DATA,  FORMAT,  DEFINE   FILE,  and 
          specification statements.   Thus, they will  not show  up in 
          the PROFILER output (an END statement generated by WATFIV or 
          STOP as the object of a logical IF statement will show up in 
          the PROFILER count). 
 
          The number of secondary statements executed includes a count 
          for the number of times the OBJECT  of a logical IF or WHILE 
          EXECUTE statement  was executed.  The  final line  of output 
          includes   the  total   number   of  unexecuted   statements 
          encountered while the C$PROFON card was in effect. 
 
          The  output of  the PROFILER  can  consist of  a variety  of 
          formatted  reports.    The  PROFC  option  will   produce  a 
          statement flow  with a  separate count  for each  contiguous 
          block  of  source  statements.  This  will  consist  of  the 
          initial  WATFIV ISN  (Internal Statement  Number) under  the 
          FROM heading and the final ISN  under the TO heading.  Where 
          the  object of  an  IF or  WHILE  EXECUTE  statement is  not 
          executed the same number of times as the initial IF or WHILE 
          EXECUTE  clause,  a  count  break condition  is  set  and  a 
          separate FROM, TO, and COUNT  field is displayed.  This will 
          show up as  the ISN under the  FROM field and the  OBJECT or 
          WHILE  EXECUTE under  the  TO field.   This  is because  the 
          FORTRAN language considers a "logical IF" to be two separate 
          statements.  The PROFILER will then  pinpoint the area where 
          it is advantageous to reprogram  the condition being checked 
          by  the  logical  expression.    Similarly,  all  statements 
          terminating a DO loop structure will cause a count break and 
          the FROM and TO fields will  contain the ISN terminating the 
          DO loop and the name of the DO construct.  For a standard DO 
          loop the name will  show up as LEVELn, where n  is the level 
          of nesting starting with the outermost loop as level 1.  For 
          structured WATFIV language  constructs, the name will  be of 
          the  form  ENDWHILE,  ELSEDO, or  ENDIF.   The  COUNT  field 
          contains the  number of times  the program fell  through the 
          loop normally.  The  ENDIF count will include  the number of 
          times the ELSE DO clause made a normal exit. 
 
          In  closing,  here is  a  practical  approach to  using  the 
          PROFILER. 
 
          1)  Write and debug the program. 
 
          2)  Once all "known"  bugs are eliminated, use  the PROFILER 
              facilities to  find which routines  contain most  of the 
              statements being executed. 
 
 
 
     WATFIV DEBUGGING AIDS                                     Page 43 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          3)  Concentrate on these few statements  and see if they can 
              be  written  more  efficiently   or  reprogrammed  in  a 
              completely different manner. 
 
   × 6.3.2 STATEMENT TRACE FACILITY 
 
          An execution-time statement trace or "ISN trace" feature may 
          be invoked.  The trace is turned on using a C$ISNON card and 
          is  turned  off  using  a   C$ISNOFF  card.   At  least  one 
          executable  statement  must  precede a  C$ISNON.   A  sample 
          program follows: 
 
 
          $JOB    id,parameters 
                  A=1 
                  J=3 
          C$ISNON 
                  (statements to be traced) 
          C$ISNOFF 
                  STOP 
                  END 
          $ENTRY 
 
     6.3.3 ON ERROR GOTO STATEMENT 
 
          The ON  ERROR GOTO statement allows  a program which  has an 
          error  to  recover  and take  some  alternate  and  possibly 
          corrective action, such as giving a diagnosis.  This feature 
          can only be executed once in  a program (to prevent infinite 
          loops) however, any  number of ON ERROR  GOTO statements may 
          appear  in  the source  program.   The  last ON  ERROR  GOTO 
          statement  encountered before  an error  occurs  is the  one 
          which is executed. 
 
                     A program using this feature might be as follows: 
 
 
          ×    $JOB  id,parameters 
                     ON ERROR  GOTO 50 
                     I=0 
               5     READ(5,*,END=40)A 
                     I=I+1 
                     PRINT,A 
                     GO TO 5 
               50    PRINT,'CARD NUMBER', I, 'IS INVALID' 
               40    STOP 
                     END 
 
          ×    $ENTRY 
 
 
          The ON ERROR GOTO statement  is not an executable statement; 
 
 
 
     WATFIV DEBUGGING AIDS                                     Page 44 
 
 
 



 
                                                           DIAGNOSTICS 
 
 
 
          it may  be placed anywhere in  the program.  However,  it is 
          not  advisable to  place  the object  of  an  ON ERROR  GOTO 
          statement within  the range of a  DO-loop as no  checking is 
          performed to  determine if  the transfer  at execution  time 
          will be valid (i.e., infinite looping may result). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV DEBUGGING AIDS                                     Page 45 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
     7.  LANGUAGE ACCEPTED BY WATFIV 
 
 
 
          WATFIV attempts to support the language described in the IBM 
          publication  "IBM  System/360  FORTRAN  IV  Language",  form 
          GC28-6515,éœó  subject to  the restrictions  given below  in 
          subsection 7.1.5.  In addition, WATFIV  supports a number of 
          extensions to the  language, which are described  in section 
          7.1 below. 
 
 
   × 7.1 EXTENSIONS 
 
 
          Uses of the following language  extensions, except for 1, 2, 
          12, 13, 14, 15 and 17 are flagged with *EXTENSION* messages. 
          These mean that the program is acceptable to WATFIV but will 
          not likely compile on other  compilers.  The messages can be 
          suppressed by the use of the  NOEXT parameter on the $JOB or 
          C$OPTIONS card.  (See section 3.1.1 on page   6.) 
 
 
   × 7.1.1 FORMAT-FREE INPUT OUTPUT 
 
          This allows the programmer to do  I/O without reference to a 
          FORMAT statement.  For example, the statement 
 
                                 PRINT, A,B 
 
          will  cause the  values of  A and  B  to be  printed with  a 
          standard format.  Section 7.2 on  page  51 describes format- 
          free I/O in more detail. 
 
 
     7.1.2 CHARACTER VARIABLES 
 
 
          This variable allows the manipulation of data in the form of 
          character strings.   As a  byproduct, in-core  formatting of 
          data  may be  performed.   See Chapter  8  on  page  57  for 
          complete details. 
 
          A simple example of the use of a CHARACTER variable follows: 
 
 
 
 
 
     _______________ 
 
     (1)  The current level of WATFIV (V1L5 Jan/76) corresponds to 
          the -10 version of GC28-6515. 
 
 
 
     EXTENSIONS                                                Page 46 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                            CHARACTER  A*7 
                               . 
                               . 
                               . 
                            A='FINALLY' 
                               . 
                               . 
                               . 
 
     7.1.3 MULTIPLE ASSIGNMENT STATEMENTS 
 
          Statements of the form 
 
                                 v1 = v2 = ...= vn= expression 
 
          are allowed, where v1, v2, etc., represent variable names or 
          array  elements.  The  effect  is that  of  the sequence  of 
          statements 
 
                                 vn= expression 
                                 vk= vn 
 
                                   . 
                                   . 
                                   . 
 
                                 v1= v2 
 
                           e.g.,     A = B(5) = C = 1.5 
 
 
     7.1.4 EXPRESSIONS IN OUTPUT LISTS 
 
                     Expressions may  be placed in  output statements, 
          e.g., 
 
                           WRITE(6,2) SIN(X)**2,A*X+(B-C)/2 
 
          The  expression  may   not,  however,  start  with   a  left 
          parenthesis because the compiler uses  this as a signal that 
          an implied DO follows in the list.  For example: 
 
                           PRINT, (A+B)/2 
 
          would result in an error message.  However, the equivalent 
 
                           PRINT, +(A+B)/2 is acceptable. 
 
          Note  that  CHARACTER  constants are  forms  of  expressions 
          acceptable in output statements, e.g., 
 
                           PRINT,'VALUE OF X=',X 
 
 
 
     EXTENSIONS                                                Page 47 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
     7.1.5 INITIALIZING OF BLANK COMMON 
 
          Variables in blank common may be initialized in DATA or type 
          statements, e.g., 
 
                                 COMMON X 
                                 INTEGER X/3/ 
 
     7.1.6 INITIALIZING COMMON BLOCKS 
 
 
          Common blocks  may be initialized  in other than  BLOCK DATA 
          subprograms. 
 
 
     7.1.7 IMPLIED DO IN DATA STATEMENTS 
 
 
          Implied  DOs  are  allowed  in   DATA  statements,  i.e.,  a 
          statement of the form 
 
                                 DATA  (C(I), I=1,5,2)/3*.25/ 
 
          is valid. 
 
                     In fact, 
 
                                 DATA (A(I), I=L,M,N)/ constant list/ 
 
          is acceptable if L,M,N have  been previously initialized and 
          at least MOD(M-L,N)+1 constants are  present in the constant 
          list. 
 
 
 
     7.1.8 SUBSCRIPTS IN FUNCTION DEFINITIONS 
 
 
 
          Subscripts  may  be  used  on the  right-hand  side  of  the 
          statement function definitions, e.g., 
 
                                 F(X) = A(I)+X+B(I) 
 
 
     7.1.9 SUBSCRIPT USAGE 
 
 
          The real part of a complex value is converted to an integer, 
          and this  value is  used for indexing  into the  array.  For 
          example, if Z  is complex, and A  is an array, then  A(Z) is 
          equivalent to A(INT(REAL(Z))). 
 
 
 
 
     EXTENSIONS                                                Page 48 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
          For rules  and examples of  logical and character  values as 
          subscripts, see subsection 8.4.1 on page  69. 
 
 
     7.1.10 OBJECT OF DO STATEMENT 
 
 
          A logical IF  statement used as the  last statement (object) 
          of a DO loop may contain a  GOTO of any form, a PAUSE, STOP, 
          RETURN, or arithmetic IF statement. 
 
                e.g.,             DO 25 I=1,N 
                                  . 
                                  . 
                                  . 
                          25      IF (X.EQ.A(I)) RETURN 
 
 
     7.1.11 EXCEEDING CONTINUATION CARD LIMIT 
 
 
          A statement may be continued over more cards than is allowed 
          by the, so-called, continuation card limit éœó. 
 
 
     7.1.12 MULTIPLE STATEMENTS PER CARD 
 
 
          WATFIV  allows  the  programmer  to   punch  more  than  one 
          statement on a  single card.  This is  particularly suitable 
          for programs that  are to be stored on  libraries since less 
          direct-access  storage space  is required,  and fewer  input 
          operations are necessary to retrieve a subprogram. 
 
                The rules for this feature are: 
 
                (a)   Only columns 7-72 may be used for statements. 
 
                (b)   A semi-colon  is used to  indicate the end  of a 
                      statement. 
 
                (c)   The normal continuation card  rules are used for 
                      a  statement which  is  to  be continued  beyond 
                      column 72. 
 
                (d)   Statement  numbers  appear  in  column  1-5,  as 
                      usual, or following a  semicolon and followed by 
 
     _______________ 
 
     (1)  The continuation card limit  is installation dependent.  The 
          value currently in use is 5. 
 
 
 
     EXTENSIONS                                                Page 49 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                      a  colon.   They   may  not  be  split   onto  a 
                      continuation card. 
 
                (e)   Comment  cards  and FORMAT  statements  must  be 
                      punched in the conventional manner. 
 
                                  Column 6 
                                         × 
                                         × 
                                         v 
 
                      e.g.,       25       A=B;C=D;39:PRINT A,B, 
                                         * C,D;X=A+B*C+D 
                                          PRINT, X; 99: STOP;END 
 
                      This could be punched in the conventional manner 
                      as: 
 
                      25   A=B 
                           C=D 
                      39   PRINT,A,B,C,D 
                           X=A+B*C+D 
                           PRINT,X 
                      99   STOP 
                           END 
 
 
     7.1.13 COMMENTS ON FORTRAN STATEMENTS 
 
 
          The  compiler   terminates  the  left-to-right  scan   of  a 
          particular  card  when  a  �  (pronounced  'zigamorph',  and 
          punched  as  a 12-11-0-7-8-9  multi-punch)  is  encountered. 
          Effectively,  this  means  comments  may  follow  a  FORTRAN 
          statement on the same card if a  �  is used to terminate the 
          FORTRAN statement. 
 
          Note  that a  �  is unprintable,  as  well  as being  almost 
          unpunchable. 
 
                      e.g.,    X=A+SIN(Y)  �  EVALUATE X 
 
 
     7.1.14 DUMPLIST STATEMENT 
 
          The DUMPLIST statement  is designed especially as  a program 
          debugging aid; it is used as follows: 
 
                (i)  The DUMPLIST statement  is essentially a NAMELIST 
                statement, except that the  word DUMPLIST replaces the 
                word   NAMELIST.   The   usual   rules  for   NAMELIST 
                statements apply.  Sample statements are: 
 
 
 
 
     EXTENSIONS                                                Page 50 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                                 DUMPLIST /XXX/A,XYZ,APE/LOK/XX,NEXT 
                                 DUMPLIST /THIS/N,TWO,SIX,OLD 
 
                (ii)  A DUMPLIST list name need never appear in a READ 
                or WRITE statement. 
 
                (iii) A  DUMPLIST statement has  no effect  unless the 
                program in which  it appears is terminated  because of 
                an error  condition; then,  WATFIV will  automatically 
                generate NAMELIST-like  output of  all DUMPLIST  lists 
                appearing in program segments which have been entered. 
                The values printed  are those which the  variables had 
                when the program was terminated. 
 
                To avoid  producing too  much output,  only a  few key 
                variables should be placed in DUMPLIST statements. 
 
     7.1.15 ON ERROR GOTO STATEMENT 
 
          The  ON  ERROR GOTO  statement  was  introduced to  allow  a 
          program to recover  from a software error  and possibly take 
          some corrective action. This statement  is described in more 
          detail in subsection 6.3.3 on page  44. 
 
     7.1.16 PSEUDO-VARIABLE DIMENSIONING 
 
          WATFIV recognizes the  dimensions of an array  from the main 
          line  program  when  that  array is  used  as  a  subprogram 
          argument and the final dimension specified in the subprogram 
          is  1.   See  section  12.6  on  page   95  for  a  complete 
          description. 
 
 
     7.1.17 STRUCTURED PROGRAMMING STATEMENTS 
 
          A number of new control statements have been added to WATFIV 
          to  enable  the  FORTRAN  programmer  to  design  and  write 
          programs in  a structured manner.  See subsection 9  on page 
          71 for a complete description of these statements. 
 
     7.2 FORMAT-FREE INPUT OUTPUT 
 
 
          Format-free I/O  is a programming  convenience for  at least 
          the two following reasons: 
 
                - learning and inexperienced programmers can defer the 
                use  of FORMAT  statements until  some experience  and 
                confidence have  been gained in FORTRAN,  yet programs 
                involving I/O can be attempted early on. 
 
                - experienced programmers will find format-free output 
 
 
 
     FORMAT-FREE INPUT OUTPUT                                  Page 51 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                statements convenient  for producing  debugging output 
                without having to bother with coding associated FORMAT 
                statements. 
 
 
     7.2.1 SOURCE STATEMENT FORMS 
 
 
          Format-free I/O has  been implemented in WATFIV  to function 
          with statements of the forms: 
 
                            READ, list 
                            PRINT, list 
                            PUNCH, list 
                            READ(unit,*,END=m1,ERR=m2) list 
                            WRITE(unit,*) list 
 
   ×      The I/O  for the first three  forms is done on  the standard 
          reader, printer, and punch units, i.e., 5,6,7, respectively. 
          The asterisks in  the last two forms  imply format-free I/O, 
          and  'unit'  may  be  a  constant,  integer  variable  or  a 
          character variable.  The  END and ERR returns  are optional, 
          as with the convenitonal READ statement. 
 
          Note that the two statements 
 
                            READ,list 
                            READ(5,*)list 
 
          are equivalent, as are 
 
                            PRINT,list 
                            WRITE(6,*)list 
 
          Some examples follow: 
 
                            READ,A,B,  (X(I),I=1,N) 
                            PRINT,(J ,Z(J),J=N,K,L),I,P 
                        99  WRITE(6,*)'DEBUG OUTPUT',99,X,Y,Z+3.5 
                            READ(I,*,END=27) (X(J),J=1,N) 
                            PUNCH,'X=' ,X 
 
     7.2.2 INPUT DATA FORMS 
 
 
          Data items may be punched one per card, or many per card; in 
          the latter case, the data items must be separated by a comma 
          and/or one  or more blanks.  The  first data item on  a card 
          need  not  start in  column  1.   A  data  item may  not  be 
          continued across two cards, i.e., the  end of a card acts as 
          a delimiter. 
 
 
 
 
     FORMAT-FREE INPUT OUTPUT                                  Page 52 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
          Successive cards are read until enough items have been found 
          to  satisfy  the requirements  of  the  'list' part  of  the 
          statement.  Any items remaining on the  last card read for a 
          particular READ  statement will  be ignored  since the  next 
          READ statement executed will cause a new card to be read. 
 
          It is perfectly valid to use format-free READ statements and 
          conventional READ statements in the same program. 
 
          The forms  of data items which  may be used for  the various 
          types of FORTRAN variables are: 
 
               Integer      - signed or unsigned integer constant 
 
               Real         - signed or  unsigned real constant  in F, 
                              E, or D forms 
 
               Complex      - 2 real  numbers enclosed  in parentheses 
                              and   separated   by  a   comma,   e.g., 
                              (1.2,-3.8) 
 
               Logical      - a  string  of characters  containing  at 
                              least  one T  or F.   The first  T or  F 
                              encountered   determines   the   logical 
                              value. 
 
               Character    - a  string  of   characters  enclosed  by 
                              quotes.   If  a  quote  is  required  as 
                              input,two  successive quotes  should  be 
                              punched.   Section  14.3   on  page  104 
                              describes the use of  the EBCDIC and BCD 
                              quotes. 
 
          The type of data item must match the type of the variable it 
          is being read into. 
 
          A duplication factor may be given to avoid punching the same 
          constant many times.  For example, if we have 
 
                            DIMENSION  A(25) 
                            READ,A 
 
          the data for the READ statement could be punched as 
 
                            15*0.,10*-3.8 
 
          Examples: 
 
                    (i)    source statement     READ,X,I,Y,J 
                           typical data         2.5 3,-7.9,-41 
 
                    (ii)   source statements    COMPLEX Z(5) 
 
 
 
     FORMAT-FREE INPUT OUTPUT                                  Page 53 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                                                READ, (Z(I),I=1,3) 
                           typical data         (5.2,-16.0) 2*(0.,.5E-3) 
 
                    (iii)  source statements    LOGICAL L1,L2,L3 
                                                READ,L1,L2,L3 
                           typical data         T    .FALSE. , CAT 
 
                    (iv)   source statements    CHARACTER  A*1, B*3 
                                                READ,A,B 
                           typical data         'A','DOG' 
 
 
 
     7.2.3 OUTPUT FORMS 
 
 
          The compiler  supplies formatting for  list items  output by 
          format-free  statements.   Line  overflow  is  automatically 
          accounted for,  i.e., several  records may  result from  one 
          output statement. 
 
                The formats used are: 
 
                      Integer     - I12 
 
                      Real*4      - E16.7 
 
                      Real*8      - D28.16 
 
                      Complex*8   - '(' E16.7 ',' E16.7 ')' 
 
                      Complex*16  - '(' D28.16 ',' D28.16 ')' 
 
                      Logical     - L8 
 
                      Character*n - An 
 
     7.3 RESTRICTIONS 
 
 
          The  user  of  WATFIV  should take  note  of  the  following 
          restrictions  in language  and  facilities  provided by  the 
          compiler. 
 
                1.    The name of a common block must be unique, i.e., 
                      it  may  not also  be  used  as  the name  of  a 
                      variable, array, or statement function.  This is 
                      in violation of GC28-6515. 
 
                2.    The service  subprograms DUMP and  PDUMP defined 
                      in Appendix C of GC28-6515 are not supported. 
 
 
 
 
     RESTRICTIONS                                              Page 54 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                3.    The Debug  Facility described  in Appendix  E of 
                      GC28-6515 is not supported. 
 
                4.    There  are   no  facilities   in  WATFIV   which 
                      correspond to the IBM FORTRAN options MAP, EDIT, 
                      XREF, OPT=, DECK, LOAD, NAME=, LIST. 
 
                5.    The Extended-Error Handling  facility (available 
                      with IBM FORTRAN is not supported. 
 
                6.    No  overlay facility  is  available; no  'module 
                      map' is produced. 
 
                7.    The number of continuation cards  and the use of 
                      operator messages with STOP and PAUSE statements 
                      are installation options. 
 
                8.    No more than 255 DO  statements are allowed in a 
                      program segment. 
 
                9.    FORMAT( is  a reserved  character sequence  when 
                      used as the  first 7 characters of  a statement. 
                      It is the only reserved character sequence.  For 
                                ____ 
                      example, 
 
                            FORMAT(I) = 3.5 
 
                      will result in FORMAT error messages, whereas 
 
                            X=FORMAT (I) 
 
                      is  legal, assuming  FORMAT to  be  an array  or 
                      function name. 
 
                10.   WATFIV is  a 'one-pass'  compiler, and  requires 
                      several  restrictions  on   statement  ordering. 
                      These are: 
 
                      (a)  Specification   statements   referring   to 
                           variables used  in NAMELIST or  DEFINE FILE 
                           statements  must  precede the  NAMELIST  or 
                           DEFINE FILE statements. 
 
                      (b)  COMMON or EQUIVALENCE  statements referring 
                           to variables  used in DATA  or initializing 
                           type statements  must precede  the DATA  or 
                           initializing statements. 
 
 
 
 
 
 
 
 
     RESTRICTIONS                                              Page 55 
 
 
 



 
                                           LANGUAGE ACCEPTED BY WATFIV 
 
 
 
                           e.g., REAL I/5.2/ 
                                 COMMON I 
 
                           will produce error messages, whereas, 
 
                                 COMMON I 
                                 REAL I/5.2/ 
 
                           is acceptable. 
 
                      (c)  A  variable may  appear  in an  EQUIVALENCE 
                           statement and  then in  subsequent explicit 
                           type statement  only if the  type statement 
                           does not declare the length of the variable 
                           to be  different than could be  assumed for 
                           it,  based  on  the  first  letter  of  the 
                           variable   name,  at   the   time  of   its 
                           appearance in the EQUIVALENCE statement. 
 
                           For example, 
 
                       
           EQUIVALENCE (A,B) 
                                 REAL*8 B 
 
                           will produce an error message, whereas, 
 
                                 REAL*8 B 
                                 EQUIVALENCE (A,B) 
 
                           will not.  Note that 
 
                                 EQUIVALENCE (A,B) 
                                 INTEGER B 
 
                           is acceptable since the length of B is not 
                           changed by the type statement. 
 
                11.   Not all  floating-point constants  are converted 
                      to the  correct internal hexadecimal  format; in 
                      addition   there  exists   differences  in   the 
                      handling of floating-point  constants at compile 
                      and execution time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
     RESTRICTIONS                                              Page 56 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
     8.  CHARACTER VARIABLES 
         _________ _________ 
 
 
          At a meeting held during the  SHARE XXVIII Conference in San 
          Francisco  in  February,  1967, the  SHARE  FORTRAN  Project 
          proposed  that  IBM adopt  a  new  type  of variable  as  an 
          extension  to  the  FORTRAN   language  supported  by  IBM's 
          compilers.  The following material is copied from Appendix B 
          of the minutes of that meeting  of the FORTRAN Project since 
          it defines,  for the most  part, WATFIV's  implementation of 
          CHARACTER variables.  Additional material  is given below in 
          subsection 8.4 on page  68. 
 
          Character data is recognized as a legitimate data form which 
          may be manipulated to a  limited extent.  The general effect 
          to the language is: 
 
                1.  CHARACTER is a variable type. 
 
                2.  Core-to-core READ and WRITE statements allow in-core 
                    formatting. 
 
                3.  Implicit record-size for CHARACTER arrays for FORMAT 
                    statement control is defined in the Type statement 
                    (not in the READ and WRITE statements). 
 
                4.  A WRITE statement may be used to define a variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     CHARACTER VARIABLES                                       Page 57 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
     8.1 DECLARATION OF CHARACTER VARIABLES 
 
 
     8.1.1 VARIABLE TYPE: CHARACTER 
 
 
          A variable of  type CHARACTER represents a  character string 
          (literal   data).    The  standard   and   optional   length 
          specifications which determine the number of characters that 
          are reserved for each character variable are: 
 
                Variable_Type    Standard  Optionaléœó 
                ________ ____    ________  ________ 
 
                  Character          1        1ènèm 
 
          where  m   should be the size  of the maximum print  line or 
          greater. 
 
          A programmer may declare a variable  to be of type CHARACTER 
          by use of the: 
 
                1.  IMPLICIT specification statement. 
 
                2.  Form of the explicit specification statement: 
                    CHARACTER. 
 
 
     8.1.2 IMPLICIT STATEMENT 
 
 
          The type  CHARACTER is permitted  in the  IMPLICIT statement 
          with a specified length.  If length is omitted, the standard 
          length of 1 is assumed. 
 
          Example: 
 
                  IMPLICIT CHARACTER*80 (A-D), CHARACTER ($,Z) 
 
          Explanation: 
          ___________ 
 
          All variables beginning with the  characters A through D are 
          declared as CHARACTER  type, each variable or  array element 
          80 characters  in size.   All variables  beginning with  the 
          character  $ and  Z  are declared  as  CHARACTER.  Since  no 
          length specifications was explicitly given, 1 character (the 
          standard  length  for  CHARACTER)   is  allocated  for  each 
 
 
 
     _______________ 
 
     (1)  WATFIV uses 255 for m. 
 
 
 
     DECLARATION OF CHARACTER VARIABLES                        Page 58 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          variable. 
 
     8.1.3 CHARACTER TYPE STATEMENT 
 
 
 
          The  general form  of  the CHARACTER  type  statement is  as 
          follows: 
 
          CHARACTER*s a*s1(k1)/x1/,b*s2(k2)/x2/,...,z*sn(kn)/xn/ 
                    _ _    _   _   _    _   _       _ _  _   _ 
 
          Where:  *s,*s1,*s2,...,*sn are optional.   Each s represents 
                   _  _   _       _ 
                            one    of    the     permissible    length 
                            specifications. 
 
                  a,b,...,z represent variable or array names. 
                  _ _     _ 
 
                  (k1),(k2),...,(kn) are optional.  Each k is composed 
                   _    _        _                       _ 
                            of 1 through 7  unsigned integer constants 
                            separated  by  commas,   representing  the 
                            maximum  value of  each  subscript in  the 
                            array.  Each k may  be an unsigned integer 
                                         _ 
                            variable only when the CHARACTER statement 
                            in which it appears is in a subprogram. 
 
                  /x1/,/x2/,...,/xn/   are  optional   and   represent 
                   _    _        _ 
                            initial data values. 
 
 
          The  information necessary  to allocate  storage for  arrays 
          (dimension   information)  may   be   included  within   the 
          statement.  However, if this information  does not appear in 
          a  CHARACTER statement,  it must  appear in  a DIMENSION  or 
          COMMON  statement  (see, "DIMENSION  Statement"  or  "COMMON 
          Statement"). 
 
          Initial data values  may be assigned to  variables or arrays 
          by use of /xn/  where xn is a constant or  list of constants 
                     _          _ 
          separated by commas. 
 
          This set  of constants  may be  in the  form "r*  constant", 
          where r is an unsigned  integer, called the repeat constant. 
          The initial  data values may  only be literal  constants and 
          must  be   the  same  length   as,  or  shorter   than,  the 
          corresponding  variable  or  array  element.   Initial  data 
          values will be truncated from the right and diagnosed if too 
          long, and  they will be padded  with blanks on the  right if 
          too short (see "Example 2" below). 
 
          An initially defined variable or element of an array may not 
          be in blank common.  In a  labelled common block they may be 
          initially defined only in a BLOCK DATA subprogram. 
 
 
 
     DECLARATION OF CHARACTER VARIABLES                        Page 59 
 
 



 



 
                                                   CHARACTER VARIABLES 
 
 
 
          The CHARACTER  statement overrides  the IMPLICIT  statement. 
          If  the length  specification  is  omitted (i.e.,  *s),  the 
                                                              _ 
          standard length of 1  is assumed.  If an array is  used in a 
          subprogram and is not in COMMON,  the size of this array may 
          be specified implicitly  by an integer variable  of length 4 
          which can appear  explicitly in the SUBROUTINE  statement or 
          implicitly in COMMON (adjustable dimensions). 
 
          Example_1: 
          _______ _ 
 
                CHARACTER*80 CARDS (10), LINES*132(56,2),TCARD 
 
          Explanation: 
          ___________ 
 
          This  statement declares  that the  variable  TCARD and  the 
          arrays  named CARDS  and LINES  are of  type character.   In 
          addition, it declares  the size of the array CARDS  to be 10 
          and  array LINES  to be  112 (2  groups of  56 each).   Each 
          element of the array LINES is  assigned 132 characters for a 
          total of 14,784 (112 times 132) for the array. 
 
          Each element  of the array CARDS  and the variable  TCARD is 
          assigned  80  characters  (the length  associated  with  the 
          type).   The  array  CARDS  is   assigned  a  total  of  800 
          characters. 
 
          Example_2: 
          _______ _ 
 
                CHARACTER X*3(4)/'ABC','DEFG','HI','JKL'/ 
 
          Explanation: 
          ___________ 
 
          This statement declares  that the array of  four elements of 
          three characters each named X has initial values: 
 
                      X(1)              ABC 
 
                      X(2)              DEF 
 
                      X(3)              HI 
 
                      X(4)              JKL 
 
          The  statement   is  incorrectly  written,  and   the  value 
          specified for X(2) has been altered by truncating. 
 
 
 
 
 
 
 
 
 
 
     DECLARATION OF CHARACTER VARIABLES                        Page 60 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
     8.2 USING CHARACTER VARIABLES IN FORTRAN STATEMENTS 
 
 
     8.2.1 DIMENSION STATEMENT 
 
 
          Character  type   array  names   may  appear   in  DIMENSION 
          statements. 
 
     8.2.2 COMMON STATEMENT 
 
 
          Character type variables or array names may appear in COMMON 
          statements. 
 
 
     8.2.3 NAMELIST STATEMENT 
 
 
          Character  type  variables  or array  names  may  appear  in 
          NAMELIST statements. 
 
 
     8.2.4 DATA STATEMENT 
 
 
          Character type variables, array element names or array names 
          may appear in DATA statements.  The  data values may only be 
          literal constants and must be the same length as, or shorter 
          than, the corresponding variable  or array element.  Initial 
          data values will  be truncated from the  right and diagnosed 
          if too  long, and  they will  be padded  with blanks  on the 
          right  if  too  short  (see  "Example  2"  under  "CHARACTER 
          Statement" above). 
 
 
 
     8.2.5 EQUIVALENCE STATEMENT 
 
 
          Character  type  variables,  arrays or  array  elements  may 
          appear in  EQUIVALENCE statements.  Character type  data may 
          be  equivalenced  to  other than  Character  type  data  but 
          implies storage sharing only. 
 
 
 
 
 
 
 
 
 
 
 
 
     USING CHARACTER VARIABLES IN FORTRAN STATEMENTS           Page 61 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          Example: 
          _______ 
                            . 
                            . 
                            . 
                       CHARACTER A*5,B*2,C*1 
                       CHARACTER D*1(5) 
                       EQUIVALENCE (D(1),A),(D(2),B),(D(5),C) 
                            . 
                            . 
                            . 
 
          Explanation: 
          ___________ 
 
          These statements cause the following alignment of 
          characters: 
                       A----- 
 
                       B -- 
 
                       C    - 
 
          The use of  the array D enables  equivalencing to characters 
          in the middle of the variable A. 
 
 
     8.2.6 CALL STATEMENT 
 
 
          Character variable names, array  element names, array names, 
          and literal  constants may  appear as  parameters in  a CALL 
          statement. 
 
 
     8.2.7 FUNCTION REFERENECE 
 
 
          Character variable names, array  element names, array names, 
          and literal constants may appear as parameters in a function 
          reference. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     USING CHARACTER VARIABLES IN FORTRAN STATEMENTS           Page 62 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          Example: 
          _______ 
 
                       CHARACTER CARD*80 
                       . 
                       . 
                       . 
                       READ (5, 1) CARD 
                     1 FORMAT (A80) 
                       IF (COMPAR (CARD, 'END',4)) 2,3,2 
                     3 STOP 
                     2 CONTINUE 
                       . 
                       . 
                       . 
 
          Explanation: 
          ___________ 
 
          An 80  character image  is read  into the  element CARD.   A 
          function,  COMPAR,  is  used  to   compare  the  first  four 
          characters of CARD  with END and used to  return a positive, 
          negative, or zero numeric value  which is used conditionally 
          to terminate the program. 
 
 
     8.2.8 STATEMENT FUNCTION STATEMENTS 
 
 
          Non-subscripted  character  variable  names  may  appear  as 
          parameters in a statement function statement. 
 
 
     8.2.9 SUBROUTINE STATEMENT 
 
 
          Character  variable names  and  array  names may  appear  as 
          parameters in a SUBROUTINE statement. 
 
 
     8.2.10 FUNCTION STATEMENT 
 
 
          Character  variable names  and  array  names may  appear  as 
          parameters in a FUNCTION statement. 
 
     8.2.11 REPLACEMENT STATEMENT: A=B 
 
 
          A replacement statement in which all variables, constants or 
          array elements  are of  type CHARACTER  is permissible.   In 
          such a statement the item on  the left-hand side may only be 
          a character variable name or  a character array element; the 
          item  on the  right hand-side  may be  a character  variable 
 
 
 
     USING CHARACTER VARIABLES IN FORTRAN STATEMENTS           Page 63 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          name, a  character array element,  or a  character (literal) 
          constant. 
 
          The element on  the right-hand side must be  the same length 
          as, or shorter in length than,  the element on the left-hand 
          side.  The value of the right-hand element will be truncated 
          from the right during replacement and diagnosed if too long, 
          and will be padded with blanks on the right if too short. 
 
          NOTES: 
          _____ 
 
               1.  The term  "literal constant" should be  replaced in 
               the language definition by "character constant". 
               2.   Multiple   assignment  statements   for  CHARACTER 
               variables are not supported by WATFIV. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     USING CHARACTER VARIABLES IN FORTRAN STATEMENTS           Page 64 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
     8.3 CORE-TO-CORE I/O STATEMENTS 
 
 
          An additional type  of I/O  statement provides  for core-to- 
          core transmission of  data under FORMAT control.   There are 
          two  core-to-core I/O  statements:  READ  and  WRITE.  In  a 
          core-to-core operation  no actual input/output  takes place; 
          data  conversion  and  transmission take  place  between  an 
          internal buffer and the elements specified by a list. 
 
     8.3.1 WRITE STATEMENT 
 
          The general form  of the core-to-core WRITE  statement is as 
          follows: 
 
 
          WRITE (a, b) list 
                 _  _  ____ 
 
          Where:  a  is a  character array, array element  or variable 
                  _ 
                     name which specifies the starting location of the 
                     internal   buffer  to   which  data   is  to   be 
                     transmitted. 
 
                  b  is a statement number of a FORMAT statement or an 
                  _ 
                     array  name  or  array   element  indicating  the 
                     beginning location  of a  FORMAT statement  which 
                     describes the data to be transmitted. 
 
                  list   is  a  series of  variable  or  array  names, 
                  ____ 
                     separated  by commas,  which may  be indexed  and 
                     incremented.  They specify the number of items to 
                     be  written and  the  locations  in storage  from 
                     which the data is taken. 
 
 
          This  form of  the  WRITE statement  causes  the data  items 
          specified by the list to  be converted to character strings, 
          according  to  the FORMAT  specified  by  b, and  placed  in 
                                                    _ 
          storage beginning at first character element specified by a. 
                                                                    _ 
 
          Characters are  placed into  the buffer,  starting with  the 
          first character position  of the first element  specified by 
          a, in consecutive character positions.  When a new record is 
          _ 
          begun, it starts at the first character position of the next 
          element. 
 
          The number of characters for a record caused to be generated 
          by the FORMAT statement and list  should not be greater than 
                                      ____ 
          the  size  of  the  elements   specified  by  a.   If  fewer 
                                                        _ 
 
          characters  are generated  than are  necessary  to fill  the 
          element, it is filled out with trailing blanks. 
 
 
 
 



     CORE-TO-CORE I/O STATEMENTS                               Page 65 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          Example_1: 
          _______ _ 
 
                           CHARACTER M*12 
                              . 
                              . 
                              . 
                           I=15 
                           J= 7 
                              . 
                              . 
                              . 
                           WRITE (M,2) I,J 
                         2 FORMAT (2H(F,I2,1H.,I1,1H)) 
                              . 
                              . 
                              . 
 
          Explanation: 
          ___________ 
 
          These statements might  be used to create, for  later use, a 
          FORMAT stored  in variable M.   The FORMAT so  created would 
          appear as: 
 
                           (F15.7)bbbbb 
 
          where b represents the character blank. 
 
          Example_2: 
          _______ _ 
 
                           CHARACTER M*12, N*132 
                              . 
                              . 
                           K=FUNC (A, B, C, D) 
                              . 
                              . 
                              . 
                         2 WRITE (M,4) K 
                         4 FORMAT(1H(,I3,6HX,1H*)) 
                         6 WRITE (N,M) 
                              . 
                              . 
                              . 
                              . 
 
          Explanation: 
          ___________ 
 
          These statements prepare a character string 132 long for use 
          in printer plotting.  The print  position K is determined by 
          the function FUNC.   Statement 2 creates a  FORMAT stored in 
          variable M, which, for a value of K of 96, would appear as: 
 
                           (b96X,1H*)bb 
 
 
 
     CORE-TO-CORE I/O STATEMENTS                               Page 66 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
       ±Ä- 
          Statement 6  then used the above  FORMAT (in variable  M) to 
          prepare  a character  string 132  long in  variable N  which 
          consists of all blanks except for an asterisk in the ninety- 
          seventh character. 
 
     8.3.2 READ STATEMENT 
 
          The general  form of the  core-to-core READ statement  is as 
          follows: 
 
 
          READ (a, b) list 
                _  _  ____ 
 
          Where:  a  is a character array,  array element, or variable 
                  _ 
                     name which specifies the starting location of the 
                     internal  buffer   from  which  data  is   to  be 
                     transmitted. 
 
                  b  is  either  the  statement  number  of  a  FORMAT 
                  _ 
                     statement or a character array element indicating 
                     the  beginning  location of  a  FORMAT  statement 
                     which describes the data to be transmitted. 
 
                  list   is  a  series of  variable  or  array  names, 
                  ____ 
                     separated  by commas,  which may  be indexed  and 
                     incremented.  They specify the number of items to 
                     be read and  the locations in storage  into which 
                     the data is placed. 
 
 
          This form of the READ  statement causes the character string 
          beginning at the  first character element specified  by a to 
                                                                  _ 
          be  converted  to  data  items,   according  to  the  FORMAT 
          specified by b, and stored in  the elements specified by the 
                       _ 
          list. 
          ____ 
 
          Characters are  obtained from the  buffer starting  with the 
          first character position  of the first element  specified by 
          a, from consecutive character positions.   When a new record 
          _ 
          is begun, it  starts at the first character  position of the 
          next element. 
 
          The  FORMAT  statement  and list  should  not  require  more 
                                      ____            ± re 
                                      ____ 
          characters from an element than  the length of that element. 
          A new  record is  begun when  specifically requested  by the 
          FORMAT. 
 
 
 
 
 
 
 
 



 
     CORE-TO-CORE I/O STATEMENTS                               Page 67 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          Example: 
          _______ 
 
                      CHARACTER*80 R(10) 
                           . 
                           . 
                           . 
                      DO 20 I=1,10 
                   3  READ (R(I),5) J 
                   5  FORMAT (I1) 
                      GO TO (11, 12, 13, 14, 15, 16, 17, 18, 19), J 
                   11 READ (R(I),21) (A(K), K=1,10) 
                   21 FORMAT (1X, 10F8.3) 
                      GO TO 31 
                   12 READ (R(I),22) K1, K2, K3, K4 
                   22 FORMAT (1X,4I5) 
                      GO TO 32 
                   13 READ (R(I), 23) X, Y, Z 
                   23 FORMAT (1X,3E20.9) 
                      etc. 
                           . 
                           . 
                           . 
 
          Explanation: 
          ___________ 
 
          The statements  illustrate a  method of  processing randomly 
          ordered input cards of varying format and data content.  The 
          card type is identified  by a digit from one to  nine in the 
          first column.  Statement 3 converts the digit from character 
          form  to integer  form.  The  GO  TO then  transfers to  the 
          READ/FORMAT combination  prepared to  process the  specified 
          format. 
 
 
     8.3.3 INPUT/OUTPUT LIST 
 
 
          CHARACTER  variable names,  array element  names, and  array 
          names may appear in input/output lists. 
 
 
 
     8.4 ADDITIONAL CHARACTER FEATURES SUPPORT 
 
 
          The features of CHARACTER variables given in this subsection 
          were  not  described  in  the SHARE  proposal  of  the  last 
          subsection, and hence, are considered  as extensions to that 
          proposal. 
 
          It  should  also  be  mentioned   that  WATFIV  supplies  no 
          particular  alignment for  CHARACTER  variables, unless,  of 
 
 
 
     ADDITIONAL CHARACTER FEATURES SUPPORT                     Page 68 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          course, they  are forced  to some  half-word, full-word,  or 
          double-word   boundary   by    COMMON   and/or   EQUIVALENCE 
          statements. 
 
     8.4.1 USE AS SUBSCRIPTS 
 
          Subscripts may be of LOGICAL  or CHARACTER value.  The first 
                                                                 _____ 
          character (left-most  byte) in the  quantity is used  as the 
          low-order byte  of a  four-byte integer  to form  the actual 
          subscript.   For example,  A('123') is  the  same as  A(241) 
          since  the internal  representation  of  the character  '1', 
          taken as an integer value, is equivalent to 241. 
 
          Example  of use:   The following  loop  will translate  each 
          character of a card according to the translate table TRANSL. 
 
                            CHARACTER*1  TRANSL(255),CARD(80) 
                                 . 
                                 . 
                                 . 
                            DO 1 I=1,80 
                         1  CARD(I)=TRANSL(CARD(I)) 
                                 . 
                                 . 
                                 . 
 
     8.4.2 USE WITH RELATIONAL OPERATORS 
 
 
          CHARACTER variables  may be used  as operands  of relational 
          operators provided both operands are of type CHARACTER.  All 
          values are  treated as  if they were  in IBM  360/370 EBCDIC 
          representation. 
 
                e.g.,       CHARACTER A*1, B*5, C*5(10) 
                                 . 
                                 . 
                                 . 
                            IF (A .EQ. C(I)) GO TO 10 
                                 . 
                                 . 
                                 . 
                            IF (B .LE. 'AAAAA') GO TO 30 
      
                            . 
                                 . 
                                 . 
 
          For the purposes of the  comparison when operands of unequal 
          length are involved, the shorter operand is considered as if 
          padded on the right with blanks  to the length of the longer 
          operand.  A warning  message is issued at  compile time when 
          operands of differing lengths are used. 
 
 
 
     ADDITIONAL CHARACTER FEATURES SUPPORT                     Page 69 
 
 
 



 
                                                   CHARACTER VARIABLES 
 
 
 
          Note  that  this feature  is  highly  dependent on  the  IBM 
          360/370 machine representation of EBCDIC characters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     ADDITIONAL CHARACTER FEATURES SUPPORT                     Page 70 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
   × 9.  STRUCTURED PROGRAMMING STATEMENTS 
   ×     __________ ___________ __________ 
 
          A number of new control statements have been added to WATFIV 
          to facilitate the control of program flow without the use of 
          GOTO statements.   These statements have been  introduced to 
          enable the FORTRAN  programmer to design and  write programs 
          in  a  structured  manner.   These  statements  are  clearly 
          extensions  to FORTRAN-IV  and are  incompatible with  other 
          FORTRAN implementations. 
 
                     The statements introduced are the following: 
 
                     1.    IF-THEN-ELSE 
                     2.    WHILE-DO 
                     3.    DO  CASE 
                     4.    EXECUTE and REMOTE BLOCK 
                     5.    WHILE-EXECUTE 
                     6.    AT  END  DO 
 
          It is  hoped that  the use of  these new  control statements 
          will encourage better programming and design practices among 
          beginners, and will  aid the more experienced  programmer in 
          writing bug-free programs. 
 
          Since these new  language constructs are not  available with 
          other compilers,  a translator has  been written  to convert 
          structured  control  statements to  standard  FORTRAN.   The 
          translator was written using  structured constructs and does 
          not contain  a single GOTO.  Programs  which do not  use any 
          other WATFIV  extensions to  FORTRAN, and  compile correctly 
          under WATFIV,  may be translated by  this program to  a form 
          acceptable to IBM FORTRAN.  Using  the combination of WATFIV 
          and the  translator, programmers  can write  well-structured 
          FORTRAN programs,  debug them using  WATFIV, then  produce a 
          production version with the translator  to be optimized with 
          IBM FORTRAN. 
 
          The  format of  these  new statements  and  their blocks  is 
          illustrated below.   Following this the  use and  meaning of 
          each statement is described and illustrated with examples. 
 
          In each  of these illustrations,  the blocks are  denoted by 
          'statement(s)' and  are delimited by the  control statements 
          and special END statements. 
 
     9.1 IF - THEN - ELSE 
 
 
          The ELSE portion  of this construct is  optional, thus there 
          are two possible formats. 
 
               a)    IF (logical-expression) THEN DO 
 
 
 
     IF - THEN - ELSE                                          Page 71 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
                         statement(s) 
                     END IF 
 
               b)    IF (logical-expression) THEN DO 
                         statement(s) 
                     ELSE DO 
                         statement(s) 
                     END IF 
 
          This construct  is an  extension of  the FORTRAN  logical IF 
          statement.   If  the  value  of  the  parenthesized  logical 
          expression  is  true in  case  a,  the block  of  statements 
          following  the THEN  DO  is  executed, after  which  control 
          passes to  the statement  following the  END IF;  otherwise, 
          control will  pass directly to  the statement  following the 
          END IF.  When ELSE DO is  used and the logical expression is 
          false, the block following the ELSE  DO is executed and then 
          control passes to the statement following the END IF. 
 
          Examples follow which illustrate the use of the two formats: 
 
 
                     IF  (I.EQ.0) THEN DO 
                         PRINT,'I IS ZERO' 
                         I=1 
                     END IF 
 
          If I is  zero when the IF statement is  executed, the string 
          'I IS ZERO' will be printed, I will be assigned the value 1, 
          and the statement following the END IF will be executed.  If 
          I is  not zero  when the IF  statement is  executed, control 
          will pass to the statement following the END IF. 
 
 
                     IF  (A .GT. B) THEN DO 
                         PRINT, 'A GREATER THAN B' 
                         A = A - B 
                     ELSE DO 
                         PRINT±ŽDO 
                         PRINT, 'A NOT GREATER THAN B' 
                     END IF 
 
          If the value  of variable A is  greater than the value  of B 
          when this  IF statement is  executed, the string  'A GREATER 
          THAN B' will be printed and A  will be assigned the value of 
          the expression A-B.  Control will then pass to the statement 
          following the END IF. 
 
          If the value  of A is not  greater than the value  of B when 
          the IF statement is executed, the string 'A NOT GREATER THAN 
          B' will  be printed and control  will pass to  the statement 
          following the END IF. 
 
 
 
 
     IF - THEN - ELSE                                          Page 72 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
     9.2 WHILE - DO 
 
 
 
                WHILE (logical-expression) DO 
                    statement(s) 
                END WHILE 
 
          This  control  statement causes  its  block  of code  to  be 
          executed   repeatedly   while  the   parenthesized   logical 
          expression  is true.   The logical  expression is  evaluated 
          before entry to  the block.  If the value  is false, control 
          passes to the  statement following the END  WHILE statement. 
          If the  logical expression  is true,  the statements  of the 
          block  are  executed.   When  the  END  WHILE  statement  is 
          reached, the  WHILE logical  expression is  re-evaluated and 
          the above program control decisions are repeated. 
 
          Note that the  word DO must be part of  the WHILE statement. 
          An example follows: 
 
 
                WHILE (J.GT.0) DO 
                    A(J) = B(I+J) 
                    J = J-1 
                END WHILE 
 
          If   J  is  zero or  negative  when the  WHILE statement  is 
          executed, the WHILE block of code  will be by-passed and the 
          statement following the END WHILE will be executed. 
 
          If  J   is greater  than zero  when the  WHILE statement  is 
          executed, the WHILE  block will b executed  repeatedly until 
          J  becomes equal  to zero.  The effect of this  loop will be 
          to  assign values  to  elements of  array  A  from array  B, 
          starting with the element of A  corresponding to the initial 
          value of J  and working backwards down the  array to element 
          1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     DO CASE                                                   Page 73 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
 
 
 
     9.3 DO CASE 
 
 
 
                DO CASE index 
                CASE 
                     statement(s) 
                CASE 
                     statement(s) 
                 . 
                 . 
                 . 
                CASE 
                     statement(s) 
                IF NONE DO 
                     statement(s) 
                END CASE 
 
          In  the  above  definition  'index'   is  a  simple  integer 
          variable. 
 
          The DO CASE  construct is similar in concept  to the FORTRAN 
          computed GOTO.  It allows one of  a number of blocks of code 
          (case blocks)  to be selected for  execution by means  of an 
 
          integer CASE index variable. 
 
          The  first  block may  be  started  with a  CASE  statement; 
          however, this first CASE statement  is optional. The IF NONE 
          DO block is  also optional.  The last block is  ended by the 
          END CASE statement.  Intermediate  case blocks are separated 
          by CASE statements.   The number of cases  is optional, from 
          one to  many; however,  it is recommended  that the  DO CASE 
          construct  not  be  used  for   fewer  than  3  cases.   The 
          conditional  execution  of one  or  two  blocks of  code  is 
          handled more efficiently by the IF-THEN-ELSE construct. 
 
          When the  DO CASE  statement is executed  with index  i, the 
          i'th  case  block is  executed  and  control passes  to  the 
          statement following the  END CASE.  If the IF  NONE DO block 
          is omitted and the index is out of range when the DO CASE is 
          executed  (that is,  index variable  is  zero, negative,  or 
          exceeds the number of case blocks), control is passed to the 
          statement following the END CASE and none of the case blocks 
          is executed. 
 
 
 
 
 
 
 
 
     DO CASE                                                   Page 74 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
                DO  CASE  I 
                    Y = Y+X 
                    X = X*3.2 
                CASE 
                    Z = Y**2+X 
                    PRINT,X,Y,Z 
                CASE 
                    Y = Y*13.+X 
                    X = X - 0.213 
                CASE 
                    Z = X**2+Y**2 - 3.0 
                    Y = Y+1.5 
                    X = X*32.0 
                    PRINT,'CASE 4',X,Y,Z 
                END CASE 
 
          This example will execute in  the manner described below for 
          each of the possible values of variable I. 
 
          i)   I is zero or negative: 
          control will pass to the statement after the END CASE 
 
          ii)  I = 1: 
          the value of X will be added to Y 
          X will be multiplied by 3.2 
          control will pass to the statement after the END CASE 
 
          iii) I = 2: 
          Z will be assigned the value of the expression Y**2 + X 
          the values of X,Y and Z will be printed 
          control will pass to the statement after the END CASE 
 
          iv)  I = 3: 
          Y will be assigned the value of the expression Y* 13. + X 
          0.213 will be subtracted from X 
 
          control will pass to the statement after the END CASE 
 
          v)   I = 4: 
          Z,Y and X will be assigned new values 
          the string  'CASE 4', followed  by the  values of X,Y  and Z 
          will be printed 
          control will pass to the statement after the END CASE 
 
          vi)  I = 5,6,. . .: 
          control will pass to the statement after the END CASE 
 
 
 
 
 
 
 
 
 
 
     DO CASE                                                   Page 75 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          IF  NONE DO  allows  a block  of code  to  be specified  for 
          execution when  the CASE  index is  out of  range.  It  must 
          follow all  CASE blocks and  thus is  ended by the  END CASE 
          statement.  The IF NONE DO statement terminates the previous 
          and last  CASE block.  Note that  only one IF NONE  DO block 
          may be specified in a DO CASE construct. 
 
          If an IF  NONE DO block were included in  the above example, 
          it would be executed in cases  of the description.  After an 
          IF NONE  DO block  is executed, control  then passes  to the 
          statement after the END CASE. 
 
          Empty  or  null case  blocks  are  permitted (that  is,  two 
          delimiter statements  with no statements between).   The net 
          result  of executing  a null  case block  is to  effectively 
          bypass  the DO  CASE  construct.   These null  case  blocks, 
          however,  affect the  numbering  of  other case  blocks  for 
          indexing. 
 
 
 
     9.4 EXECUTE AND REMOTE BLOCK 
 
 
 
                EXECUTE   name 
                   . 
                   . 
                   . 
                REMOTE BLOCK name 
                     statement(s) 
                END BLOCK 
 
          where name is a valid FORTRAN symbolic name. 
 
          The EXECUTE  statement allows  a named block  of code  to be 
          executed.  The named  block of code may  be defined anywhere 
          in the same  program segment and is delimited  by the REMOTE 
          BLOCK and END BLOCK statements.  Executing a REMOTE BLOCK is 
          similar  in  concept  to  calling  a  subroutine,  with  the 
          advantage that shared variables do not  need to be placed in 
          a COMMON block  or passed in an argument  list.  In addition 
          there is less overhead involved  in executing a REMOTE BLOCK 
          than in calling a subroutine (in  both amount of object code 
          and execution time).  When execution  of the REMOTE BLOCK is 
          complete,  control returns  to the  statement following  the 
          EXECUTE which invoked it. 
 
          This feature is helpful in  avoiding duplication of code for 
          a function  (such as  I/O) required  in a  number of  places 
          throughout a  program.  It can also  be an aid to  writing a 
          well-structured program. 
 
 
 
     EXECUTE AND REMOTE BLOCK                                  Page 76 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          Each REMOTE block must have  a different name; however, they 
          need not  be different  than subprogram  or variable  names. 
          Note that a REMOTE block is  local to the program segment in 
          which it  is defined  and may  not be  referenced (executed) 
          from  another   program  segment.    Due  to   symbol  table 
          restrictions, a maximum of 255  REMOTE BLOCKs may be defined 
          in a program segment. 
 
          REMOTE  BLOCKs  may  be  defined  anywhere  in  the  program 
          segment; however,  they must be  preceded by  an instruction 
          causing transfer  of control.   Also, executable  statements 
          following a REMOTE BLOCK will  never be executed unless they 
          are numbered  and referenced by  a standard  FORTRAN control 
          statement.   The   END  BLOCK   is  implicitly   a  transfer 
          statement, since it returns program  control from the block; 
          thus REMOTE BLOCKs may follow each other and may precede the 
          END statement for the program segment. 
 
          Note  that the  nested definition  of REMOTE  BLOCKs is  not 
          permitted. 
 
                           . 
                           . 
                           . 
                     EXECUTE A 
                     PRINT, 'FIRST' 
                           . 
                           . 
                           . 
                     EXECUTE A 
                     PRINT, 'SECOND' 
                           . 
                           . 
                           . 
                     REMOTE BLOCK A 
                           I=I+1 
                           PRINT, 'I=',I 
                     END BLOCK 
                           . 
                           . 
                           . 
 
          Both  EXECUTE statements  will cause  REMOTE BLOCK  A to  be 
          executed.  That is,  variable I will be  incremented and its 
          value will be printed.  When the  block has been executed by 
          the first  EXECUTE, control returns  to the  PRINT statement 
          following it and the word FIRST is printed.  Similarly, when 
          the block is executed by the second EXECUTE, control returns 
          to the PRINT  statement following it and the  word SECOND is 
          printed. 
 
          REMOTE BLOCKs may be executed from other REMOTE BLOCKS.  For 
 
 
 
     EXECUTE AND REMOTE BLOCK                                  Page 77 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          example, REMOTE BLOCK A might  contain the statement EXECUTE 
          B,  where B  is  a REMOTE  BLOCK  defined  elsewhere in  the 
          program segment.  The execution of  REMOTE BLOCKs from other 
          REMOTE  BLOCKs may  take place  to any  level; however,  the 
          recursive  execution  of  REMOTE BLOCKs  is  not  permitted, 
          either directly or through a chain of EXECUTEs.  Attempts to 
          execute REMOTE BLOCKS recursively are  detected as errors at 
          execution time. 
 
 
 
     9.5 WHILE - EXECUTE 
 
 
                WHILE (logical-expression) EXECUTE name 
 
          This  control statement  is a  combination  of the  WHILE-DO 
          construct and the EXECUTE statement. 
 
                     WHILE (I.GT.0) EXECUTE A 
 
          When this statement  is executed, if the  logical expression 
          is not true,  control passes to the next  statement.  If the 
          expression is  true, REMOTE BLOCK  A (assumed to  be defined 
          elsewhere  in the  program  segment)  is executed,  and  the 
          logical expression is re-evaluated.   This is repeated until 
          the logical  expression, when  evaluated, is  false; control 
          then passes to the next statement. 
 
 
 
     9.6 AT END DO 
 
 
 
                (READ statement) 
                AT END DO 
                    statement(s) 
                END AT END 
 
          The AT   END  DO  control statement  is an extension  of the 
          'END=' option of  the FORTRAN READ statement  for sequential 
          files.   It  allows  a  block of  code  following  the  READ 
          statement to  be executed when  an end-of-file  condition is 
          encountered during the  READ and to be  by-passed otherwise. 
          The AT   END  DO  statement  must immediately follow  a READ 
          statement.  It  is not valid  to use this  control statement 
          with direct-access  or core-to-core  READs.  Clearly,  it is 
          not valid to use this statement  when 'END=' is specified in 
          the READ statement. 
 
 
 
 
     AT END DO                                                 Page 78 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
                READ,I,X 
                AT  END  DO 
                    PRINT,'END-OF-FILE ENCOUNTERED' 
                    EOFSW=.TRUE. 
                END  AT  END 
 
          If the READ statement is  executed without encountering end- 
          of-file, control passes  to the statement following  the END 
          AT   END.  If  an end-of-file  condition  occurs during  the 
          read,  the string,  'END-OF-FILE  ENCOUNTERED', is  printed, 
          logical variable  EOFSW is  assigned the  value .TRUE.,  and 
          control passes to the statement following the END  AT  END. 
 
     9.7 PROGRAMMING CONSIDERATIONS 
 
 
          In addition  to the  definitions and  examples of  these six 
          constructs, the following points should be noted: 
 
     1.   Any of the  new control statements with their  blocks may be 
          used within the block of  any other statement.  For example, 
          a WHILE-DO block may contain another WHILE-DO or an IF-THEN- 
          ELSE.  Blocks  may be  nested in  this manner  to any  level 
          within storage limitations.  An  important exception to this 
          rule is the REMOTE BLOCK.  A  REMOTE BLOCK may contain other 
          types  of blocks  (nested to  any  level); however,  another 
          REMOTE BLOCK may not be defined within it. 
 
     2.   When  nesting  blocks,  the  inner  blocks  must  always  be 
          completed with an  appropriate 'END' state before  the outer 
          blocks are terminated.  Similarly,  when nesting blocks with 
          DO-LOOPS, a DO-LOOP started within a block must be completed 
          before the block is completed.  A block started within a DO- 
          LOOP must  be terminated  before the  DO-LOOP is  completed. 
          Indenting the statements of each new  block, as shown in the 
          examples, is helpful  in avoiding invalid nesting  and helps 
          to make the structure of the program visually obvious. 
 
     3.   The normal flow of control of the new programming constructs 
          described earlier may be altered by standard FORTRAN control 
          statements.  For example, the program  may exit from a block 
          using  a GOTO,  STOP,  RETURN  or arithmetic  IF  statement. 
          Similarly, a block may be entered in the middle with some of 
          the  above statements.   When  a block  is  entered in  this 
          manner, the remainder of the block  (from the point of entry 
          on) will be executed and control  will pass to the statement 
          following  the special  END statement  which terminates  the 
          entire control structure.  For example,  if a CASE block was 
          entered with  a GOTO,  the remainder of  the block  would be 
          executed and control  would pass to the  statement following 
          the  END CASE.   However,  these  new constructs  allow  the 
          programmer to eliminate most of the transfer statements that 
 
 
 
     PROGRAMMING CONSIDERATIONS                                Page 79 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          would ordinarily appear in a program. 
 
          The WHILE-DO block is an exception  to the above rule.  When 
          entered this way,  the remainder of the  WHILE-DO block will 
          be executed  and control will  pass to the  WHILE statement, 
          where its logical expression is  evaluated.  If the value of 
          the  expression  is  false,  control   passes  to  the  next 
          statement after the  END WHILE.  If the  expression is true, 
          the  WHILE-DO block  is executed  normally  and is  repeated 
          until  the value  of the  WHILE  logical expression  becomes 
          false. 
 
          Another  exception  to  this  rule   is  the  REMOTE  BLOCK. 
          Transfer of control  into or out of a REMOTE  BLOCK by means 
          of  standard FORTRAN  control statements  is not  permitted. 
          Attempts to do this are flagged as errors during compilation 
          of the program. 
 
     4.   Special END statements, CASE, REMOTE BLOCK, IF NONE DO, ELSE 
          DO, and  AT END  DO statements are  branched to  directly by 
          means  of  a  GO  TO  statement  or  other  FORTRAN  control 
          statements. 
 
     5.   None of the new statements can  form the object of a LOGICAL 
          IF, or  be the  last statement  of a  DO-LOOP, with  the one 
          exception of the EXECUTE statement. 
 
     6.   Comments may follow the CASE and END BLOCK statements.  This 
          enables the user to number case blocks or denote the block's 
          function.  Any valid characters following  the words CASE or 
          END BLOCK are ignored, with  the exception of the assignment 
          operator (=) which may result in the statement being decoded 
          as an assignment statement. 
 
     7.   The format and keywords of  these new control statements are 
          still  under  discussion  and  may  be  subject  to  change. 
          Comments and suggestions will be welcome. 
 
     9.8 CONTROL STATEMENT TRANSLATOR 
 
          TRANSL  is a  subroutine that  translates  a WATFIV  program 
          containing  structured   statements  to   standard  FORTRAN. 
          Programs which  do not  use any  other WATFIV  extensions to 
          FORTRAN,  and   compile  correctly  under  WATFIV,   may  be 
          translated  by this  program  to a  form  acceptable to  IBM 
          FORTRAN. A copy  of this subprogram is  in WATFIV's standard 
          source subprogram library --- WATFIV.WATLIB. 
 
 
 
 
 
 
 
 
     CONTROL STATEMENT TRANSLATOR                              Page 80 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          How_To_Use: 
          ___ __ ___ 
 
                     CALL  TRANSL (DECK,PUNCH) 
 
          where      DECK  =  unit number for input data 
 
                     PUNCH =  unit number for output data 
 
          To read  cards from  the reader  and punch  a new  deck, the 
          following job may be run: 
 
                     $JOB  id,parameters 
                           CALL TRANSL(5,7) 
                           STOP 
                           END 
                     $ENTRY 
                           input deck 
 
          A number of extension messages  will be printed since TRANSL 
          uses  structured  control  statements.   Printing  of  these 
          messages may be suppressed by specifying the NOEXT option on 
          the $JOB card or on the C$OPTIONS card. 
 
          Restrictions: 
          ____________ 
 
          1.   Statement  numbers  90000-99999 are  reserved  for  the 
               translator.   Variable  names beginning  with  '$'  are 
               reserved for the translator. 
 
          2.   Structured  control  statement keywords  (e.g.,  WHILE, 
               ELSEDO) should  not be  used as  variable names  on the 
               left-hand side of an assignment statement. 
 
          3.   Structured control  statements must be complete  on one 
               card, with the exception of IF-THEN and WHILE-DO header 
               statements.  For  these exceptions  'IF(' and  'WHILE(' 
               must be complete on the first card of the statement. 
 
          4.   A maximum of 19 continuation  cards will be allowed for 
               READ statements. 
 
          5.   Comment cards between continuation cards of a statement 
               are not allowed. 
 
          6.   Error  checking  is  generally  not  performed  by  the 
               translator,  but certain  errors  are  detected by  the 
               translation algorithm.  Translation  is terminated when 
               such errors occur. 
 
          7.   Remote  block names  must be  unique in  their first  5 
               characters and remote block definitions must follow all 
               their references. 
 
 
 
     CONTROL STATEMENT TRANSLATOR                              Page 81 
 
 
 



 
                                     STRUCTURED PROGRAMMING STATEMENTS 
 
 
 
          8.   'EXECUTE' as the object of a DO LOOP will not translate 
               correctly.  This problem may be circumvented by using a 
               'CONTINUE'  
statement  following  the  EXECUTE,  as  DO- 
               object. 
 
          9.   The generated statement 'IMPLICIT  INTEGER($)' may have 
               to be re-positioned  in the output deck  if subprograms 
               are translated separately or multiple mainline programs 
               are  translated together.   This is  not necessary  for 
               decks with mainline first, followed by subprograms. 
 
               Systems_Notes: 
               _______ _____ 
 
               TRANSL  generally  does  not  perform  error  checking. 
               Programs  being  translated  should  compile  correctly 
               under WATFIV  and conform  to the  listed restrictions. 
               In  some  circumstances,  errors are  detected  by  the 
               translation algorithm and a message  is printed.  If an 
               error is  not detected, WATFIV run-time  error messages 
               may  result,   or  the  translator  may   just  produce 
               incorrect code. 
 
               TRANSL has  two sets of  arrays which are  defined with 
               one of the dimensions set at 50 in each: 
 
               1.   LABEL1, LABEL2, TYPE, CASIN1, CASIN2 
 
               2.   BNAME, STRTNO, RETRNS 
 
               Set 2 is used  for remote blocks and set 1  is used for 
               all other  blocks.  If  subscripting for  any of  these 
               arrays goes out of bounds, the  dimension set at 50 may 
               be increased.  If  one array is increased  in size, the 
               rest of the arrays in its set should be increased also. 
 
               This  should not  be necessary  except  for very  large 
               programs  segments.   The   translator  will  translate 
               itself within the present array bounds. 
 
               The following notes may  help in diagnosing non-obvious 
               problems: 
 
          1.   'GOTO 0'  is generated  as part  of the  'EXECUTE' code 
               when the  remote block  referenced has  been previously 
               defined. 
 
          2.   'GOTO 0'  may also be  generated for an  'EXECUTE' when 
               two remote  blocks have  names that  are not  unique in 
               their first five characters. 
 
 
 
 
 
 
     CONTROL STATEMENT TRANSLATOR                              Page 82 
 
 
 



 
                                                            INTERRUPTS 
 
 
 
     10.  INTERRUPTS 
          __________ 
 
          This  section  provides  information  on  the  treatment  of 
          interrupts that may occur during  the execution of a FORTRAN 
          program. 
 
          Normally, WATFIV terminates execution of  the program at the 
          first   occurrence  of   an   exponent  overflow,   exponent 
          underflow,  fixed  divide,  or  floating  divide  interrupt. 
          However, a library  subroutine, TRAPS, is provided  to allow 
          the programmer to  accept more interrupts of  the types just 
          mentioned.  Thus, with appropriate  uses of subroutine DVCHK 
          and OVERFL,  a programmer  may handle,  to some  extent, the 
          treatment of interrupts. 
 
          A  call  to  TRAPS  may   have  up  to  five  integer-valued 
          arguments,  and these  correspond  to  the number  of  fixed 
          overflows,  exponent overflows,  exponent underflows,  fixed 
          divide, and floating divide interrupts the programmer wishes 
          to allow.  The  arguments of TRAPS set  up internal counters 
          used  by  the  compiler's  interrupt  routine.   The  latter 
          routine  decrements the  appropriate counter  by  1 when  an 
          interrupt occurs; when any counter reaches zero, the program 
          is terminated. 
 
          TRAPS may be called (and subsequently recalled) at any point 
          in the  main program or a  subprogram to set (or  reset) the 
          interrupt counters.  Arguments of TRAPS are screened so that 
          the absolute  value of  any negative argument  is used  as a 
          positive count, and  a zero value is taken to  mean that the 
          current value of the  corresponding interrupt counter should 
          be  left  unchanged.   If  the   value  of  an  argument  is 
          undefined,  the program  is terminated  (unless NOCHECK  has 
          been specified). 
 
          EXAMPLES: 
          ________ 
 
                1.    CALL TRAPS (0,5,7,-3,1) 
 
                      sets the interrupt counters  so that the program 
                      will be terminated on the occurence of the first 
                      of the: 
 
                            - 5th exponent overflow, or 
 
                            - 7th exponent underflow, or 
 
                            - 3rd fixed divide, or 
 
                            - 1st floating  divide exception following 
                            the execution of this call to TRAPS. 
 
 
 
 
     INTERRUPTS                                                Page 83 
 
 
 



 
                                                            INTERRUPTS 
 
 
 
                      The statement CALL TRAPS  (0,5,7,3) has the same 
                      effect. 
 
 
                2.    LUNFLO = 100 
                      LOVFLO = LUNFLO 
                      CALL TRAPS (0, LUNFLO, LOVFLO) 
 
                            sets the  counts to terminate  the program 
                            on the occurrence of the first of the: 
 
                            - 100th exponent overflow, or 
 
                            - 100th exponent underflow, or 
 
                            - 1st fixed divide, or 
 
                            - 1st floating divide  exception following 
                              the execution of this call. 
 
                3.    CALL TRAPS (14) 
 
                      sets the fixed overflow counter to 14. 
 
                      Termination  would  occur at  the  1st  exponent 
                      overflow, underflow, or divide exception, or the 
                      14th  fixed  overflow if  the  installation  has 
                      activated   this  interrupt.    Note  that   the 
                      distributed version of WATFIV operates with this 
                      interrupt masked off, and furthermore, that this 
                      is the normal mode of operation of IBM FORTRAN. 
 
          OVERFL,_DVCHK 
          _______ _____ 
 
          These routines function as follows: 
 
                       CALL DVCHK (j) 
 
          where j  is an  integer variable  that is  set to  1 if  the 
          (pseudo-) divide-check  indicator was  on, or  to 2  if off. 
          After testing, the indicator is turned off. 
 
          The indicator  is set  on when  a fixed  or floating  divide 
          exception occurs. 
 
                       CALL OVERFL (j) 
 
          where j  is an integer variable  that is set to  reflect the 
          most recent setting  of a pseudo-indicator.  The  variable j 
          is set to 1 if an exponent  overflow was last to occur, to 2 
          if no exponent overflow or underflow condition exists, or to 
          3  if  an  exponent  underflow was  last  to  occur.   After 
 
 
 
     INTERRUPTS                                                Page 84 
 
 
 



 
                                                            INTERRUPTS 
 
 
 
          testing, the indicator is set for no condition, i.e., to 2. 
 
          NOTES: 
          _____ 
 
          1.     The compiler  interrupt  routine  loads the  affected 
          machine floating-point  register with  zero or  the properly 
          signed, largest floating-point number for exponent underflow 
          or overflow, respectively. 
 
          2.    The  five interrupt  counters are  initialized by  the 
          compiler to 1  at the  start of  each program.   The divide- 
          check and overflow indicator are  not initialized; it is the 
          programmer's  responsibility  to  do this,  e.g.,  by  dummy 
          calls. 
 
          3.    The terminating  message is the only  indication given 
          by the  compiler that interrupts  have occurred.  It  is the 
          programmer's responsibility  to monitor  these using  OVERFL 
          and DVCHK. 
 
   ×      4.      WATFIV  operates   with  the   fixed  overflow   and 
   ×      significance interrupts masked off entirely. 
 
          5.    WATFIV  automatically corrects for  boundary alignment 
          errors at execution time, but this  is done not without some 
          overhead.   Thus, programmers  are  advised  to ensure  that 
          operands  are aligned  properly,  where  possible, by  steps 
          taken at the source level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     INTERRUPTS                                                Page 85 
 
 
 



 
                                           INPUT OUTPUT CONSIDERATIONS 
 
 
 
     11.  INPUT OUTPUT CONSIDERATIONS 
          _____ ______ ______________ 
 
 
   ×      For execution-time I/O  on units other than 5  and 6, WATFIV 
          uses  routines taken  directly from  IBM's FORTRAN  library. 
          Consequently, the  rules and  considerations for  performing 
          execution-time I/O are  generally the same as  are described 
          for load module execution in the IBM FORTRAN-IV Programmer's 
          Guide (IBM form GC28-6817), to which the reader is directed. 
          Differences only are given in the following notes. 
 
     11.1 GENERAL NOTES 
 
          1.    Since the  WATFIV compiler  is essentially  a one-step 
                job, any DD cards for execution-time data sets must be 
                included in the  JCL used to invoke  the compiler.  An 
                example   using  the   catalogued  procedure   WATFIV, 
                follows: 
 
                           //jobname   JOB   accounting 
                           //  EXEC    WATFIV 
                           //GO.FT01F001  DD DSN=etc. 
                           //GO.FT02F001  DD DSN=etc. 
                           //GO.SYSIN     DD * 
 
                                  WATFIV JOBS 
                           /* 
 
 
   ×      2.    The  compiler  reads the  compile-time  input  (source 
   ×            programs) and execution-time card-image  data for unit 
                5 from the data set defined by  a DD card with DD name 
                FT05F001.  (The WATFIV procedure  contains the DD card 
                //FT05F001 DD  DDNAME=SYSIN to  redefine the  compiler 
                input to SYSIN.)   Similarly, compile-  and execution- 
                time output is on one data set defined by the FT06F001 
                DD card. 
 
   ×      3.    The WATFIV procedure  (see section 2.2.1 on  page   5) 
                defines  temporary data  sets for  DD names  FT01F001, 
                FT02F001, FT03F001, and FT04F001. 
 
   ×      4.    The upper limit, generated into the compiler, for data 
   ×            set reference numbers is 16. 
 
   ×      5.    Files referenced by DD names FT15F001 and FT16F001 are 
                given  read-only   status.  An   execution-time  error 
                message  will be  issued when  a  program attempts  to 
                write on  data sets in  this particular range  of unit 
                numbers. 
 
          6.    Buffer space  and other  dynamically obtained  storage 
 
 
 
     GENERAL NOTES                                             Page 86 
 
 
 



 
                                           INPUT OUTPUT CONSIDERATIONS 
 
 
 
                for  DCBs,  access  method   routines,  etc.,  is  not 
                included  in  the  core usage  figures  given  in  the 
                accounting output for a job. 
 
          7.    WATFIV error  messages relating to  execution-time I/O 
                give, where  appropriate, the corresponding  IBM error 
                code (for which, see GC28-6817). 
 
     11.2 COMPILER DATA SET ASSUMPTIONS 
 
   ×      WATFIV uses  the Queued Sequential  Access Method  (QSAM) to 
          process the data  sets defined by the  FT05F001 and FT06F001 
          DD  cards   (i.e.,  compile-time   input  and   output,  and 
          execution-time input on unit 5 and output on unit 6). 
 
          The following DCB assumptions are made: 
 
 
                      RECFM     LRECL     BLKSIZE     BUFNO 
                      _____     _____     _______     _____ 
 
          FT05F001      FB        80         80         2 
 
          FT06F001     FBA       133        133         2 
 
 
     NOTE: 
     ____ 
 
 
          1.    The BLKSIZE and BUFNO values  may be supplied from the 
                DD card  or data  set label; the  values given  in the 
                table above are defaults. 
 
          2.    The  BLKSIZE,  if not  that  shown  above, must  be  a 
                multiple of the LRECL value. 
 
 
     11.3 CONCATENTATING COMPILER INPUT 
 
          WATFIV's  input stream  may consist  of  a concatenation  of 
          distinct  data  sets.   The  following  examples  illustrate 
          potential uses of this feature: 
 
   ×      1)    Source  program and  execution card-image  data to  be 
   ×            read by 'card  reader' unit 5 can be  in disjoint data 
 
 
 
 
 
 
 
 
 
 
 
 
     CONCATENTATING COMPILER INPUT                             Page 87 
 
 
 



 
                                           INPUT OUTPUT CONSIDERATIONS 
 
 
 
                sets. 
                            //osjob   JOB   accounting 
                            //   EXEC   WATFIV 
                            //GO.FT05F001  DD  DDNAME=PROG 
                            //             DD  DDNAME=DATA 
                            //GO.PROG      DD  * 
                            $JOB   id,parms 
 
 
                                    source program 
 
 
                            $ENTRY 
                            //GO.DATA  DD  DSN=WATFIV.SUBSUB(DATA),DISP=SHR 
 
 
          2)    Segments of the source program to be compiled can come 
                from different sources. 
 
 
                            //osjob   JOB   accounting 
                            //   EXEC   WATFIV 
                            //GO.FT05F001  DD  DDNAME=JOB,DCB=BLKSIZE=800 
                            //             DD  DSN=WATFIV.MAINPROG,DISP=SHR 
                            //             DD  DSN=WATFIV.SUBSUB(SUB1),DISP=SHR 
                            //             DD  DSN=WATFIV.SUB2,DISP=SHR 
                            //             DD  DDNAME=ENTRY 
                            //GO.JOB       DD  * 
                            $JOB           id,parms 
                            //GO.ENTRY     DD  * 
                            $ENTRY 
 
 
                                        any data 
 
 
                            /* 
 
                (This  example  assumes the  operating  system  allows 
                multiple DD * data sets in the input stream.) 
 
                NOTES: 
                _____ 
 
          1.    All  data  sets  appearing in  the  concatenation  are 
                subject to the assumptions of section 11.2 above. 
 
          2.    When   compile-time   input  (i.e.,   source   program 
                components)  is  being  processed,  the  total  memory 
                required for  input buffers  (BLKSIZE*BUFNO) must  not 
                increase as the compiler proceeds from one data set to 
                the next  in the  concatenation.  (Input  buffer space 
                can  increase  when proceeding  from  compile-time  to 
 
 
 
     CONCATENTATING COMPILER INPUT                             Page 88 
 
 
 



 
                                           INPUT OUTPUT CONSIDERATIONS 
 
 
 
                execution-time input.) 
 
                Example  (b) above,  shows a  simple way  to meet  the 
                requirements of  Note 2.  This  is to put  the largest 
                BLKSIZE on the first DD  card of the concatenationéœó. 
                (For the purposes of the  example, the largest BLKSIZE 
                of the 5 data sets in  the concatenation is assumed to 
                be 800.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     _______________ 
 
     (1)  Strictly  speaking, this  restriction  applies  only if  the 
          compiler  has  been  generated   with  the  'dynamic  memory 
          allocation'  feature;  this  is  the   most  likely  way  of 
          generating the compiler. 
 
 
 
     CONCATENTATING COMPILER INPUT                             Page 89 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
     12.  SUBPROGRAM FACILITIES 
          __________ __________ 
 
          This  section provides  some information  on the  subprogram 
          facilities available  with the  WATFIV compiler.   Rules for 
          passing values between subprograms are also discussed. 
 
 
     12.1 SOURCES OF SUBPROGRAMS 
 
          Any subprogram  referenced in  a FORTRAN  program run  under 
          WATFIV must come from one of three possible sources: 
 
                -     card  decks  in  the   compiler's  input  stream 
                      (SYSIN), i.e., the usual program input. 
 
   ×            -     core-resident library  routines internal  to the 
   ×                  compiler itself.  For example, the routines EXP, 
                      DEXP, ALOG,  ALOG10, DLOG,  DLOG10, EXIT,  SQRT, 
                      etc., may be in core as an installation choice. 
 
                -     routines from libraries  stored on direct-access 
                      devices and  defined by appropriate DD  cards in 
                      the control cards used to invoke the compiler. 
 
          The  search  for  subprograms  is made  in  the  order  just 
          mentioned, i.e.,  a user may  supply a subprogram  EXIT, for 
          example, but an in-core version (assuming there is one) will 
          be used in preference to one which may be on a direct-access 
          library. 
 
          Normally, a user  need not be concerned  with which routines 
          are in core;  problems may arise only if an  attempt is made 
          to supply, from a direct-access library, routines with names 
          the same as any FORTRAN-supplied subprograms which happen to 
          be core-resident in the version of WATFIV being used.. 
 
     12.2 FORTRAN SUPPLIED ROUTINES 
 
          The user of WATFIV has available all function and subroutine 
          subprograms (except DUMP and PDUMP)  mentioned in Appendix C 
          of  the  IBM  publication  "IBM  System/360  and  System/370 
          FORTRAN IV Language",  form GC28-6515.  The coding  used for 
          the double precision versions  of the mathematical functions 
          is essentially that used with IBM's FORTRAN library (without 
          the Extended  Error Handling  Facility).  Consequently,  the 
          algorithms used and  error estimates for these  routines may 
          be  found  in the  IBM  publication  "FORTRAN IV  Library  - 
          Mathematical and Service Subprograms", form GC28-6818. 
 
          The following additional  points should  be noted.   Single- 
          precision  versions of  many of  the mathematical  functions 
          used  in   WATFIV  produce  the   truncated  value   of  the 
 
 
 
     FORTRAN SUPPLIED ROUTINES                                 Page 90 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          corresponding double-precision version.  (Exceptions are the 
          functions such as ABS, MOD, FLOAT, etc., which don't require 
          complicated  approximation  formulae.)    For  example,  the 
          evaluation of SQRT by WATFIV is essentially equivalent to 
 
                      SQRT(X)=SNGL(DSQRT(DBLE(X))) 
 
     12.3 AUTOMATIC FUNCTION TYPING 
 
          Since the initial release of  WATFIV, the method of handling 
          FORTRAN built-in functions has been incompatible with all of 
          IBM's FORTRAN  compilers.  The major problem  encountered is 
          WATFIV's requirement that  the type of these  functions must 
          be  explicitly  declared if  it  is  different than  can  be 
          assumed from the  implicit rules.  This restriction  has now 
          been removed  and the  method of  handling FORTRAN  built-in 
          functions conforms to the current FORTRAN standards. 
 
          The following example shows that the DSQRT function need not 
          be explicitly declared REAL*8. 
 
          $JOB     WATFIV 
                   REAL*8 VALUE,X(100),X(100) 
                   . 
                   . 
                   . 
                   VALUE(I)=X(I)*DSQRT(Y(I)) 
                   . 
                   . 
                   . 
                   END 
          $ENTRY 
 
          To determine  if a  built-in (intrinsic)  function is  being 
          invoked, the following requirements must be met: 
 
          1)  The name of the function must  not appear in an EXTERNAL 
              statement.   It may  not  be the  name  of  an array,  a 
              character  variable,   a  subprogram,  or   a  statement 
              function. 
 
          2)  This name may not appear in a specification statement of 
              type different  from that of  the function  specified in 
              the list of  FORTRAN Built-in Functions (see  Appendix A 
              of    FORTRAN   IV    with   WATFOR    and   WATFIV    - 
              Cress/Dirksen/Graham). 
 
          3)  The  appearance of  the symbol  name (except  in a  type 
              statement   as  described   in  2)   must  be   followed 
              immediately  by  an  actual argument  list  enclosed  in 
              parentheses. 
 
 
 
 
     AUTOMATIC FUNCTION TYPING                                 Page 91 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          Essentially, if  you wish  to use a  function with  the same 
          name as the built-in function and it is not supplied in your 
          source deck, then  you must specify the name  in an EXTERNAL 
          statement to  direct the  compiler to  use the  function you 
          supplied. 
 
 
 
 
 
     12.4 SUBPROGRAM ARGUMENTS 
 
          The  rules  for  passing   values  between  subprograms  are 
          generally the same as those described in the IBM publication 
          "IBM System /360 FORTRAN IV  Language", form GC28-6515.  The 
          relevant  sections  in  that  manual  are  "Arguments  in  a 
          Function or  Subroutine Subprogram", "Multiple Entry  into a 
          Subprogram",   "Object-time  Dimensions".    The   following 
          remarks augment the rules stated in GC28-6515. 
 
          If a dummy argument of a called subprogram is an array, then 
          GC28-6515 specifies  that the corresponding  actual argument 
          provided by a calling routine must  be (1) an array name, or 
          (2) an array element.  Furthermore, in  case (1) the size of 
          the dummy  array as declared  in the called  subprogram must 
          not exceed  the size  of the  actual array  provided by  the 
          calling subprogram.  (here 'size' means amount, in bytes, of 
          memory allocated.)  In case (2), the size of the dummy array 
          must not exceed the size of that portion of the actual array 
          that follows and includes the specified element. 
 
          WATFIV allows a  third possibility, namely, that  the actual 
          argument may be a simple variable (or expression).  The rule 
          is similar to that of case (1);  the size of the dummy array 
          must not exceed  the number of bytes occupied  by the simple 
          variable. 
 
          All three rules can be stated more briefly, if somewhat less 
          precisely, by the single rule that  the dummy array must fit 
          into the  space provided by  the actual argument,  i.e., the 
          dummy array  may be smaller, but  may not be  larger.  These 
          rules are  in the  language presumably  so that  programmers 
          will  not  index  beyond  the confines  of  an  array,  thus 
          possibly  clobbering other  data or  program areas.   WATFIV 
          takes the trouble to make sure the rules are not violated at 
          execution time by making checks on arguments that are passed 
          to dummy  arrays.  If  a rule  is violated,  the program  is 
          presumed to  be at  fault, and is  terminated with  an error 
          message and a subprogram traceback. 
 
          An example of  case (2) follows in which the  dummy array is 
          smaller than the actual array.   Note that, according to the 
 
 
 
     SUBPROGRAM ARGUMENTS                                      Page 92 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          rules, B could be dimensioned at, but not greater than, 76. 
 
 
                      DIMENSION A(100) 
                        . 
                        . 
                        . 
                      CALL RTN (A(25)) 
                        . 
                        . 
                        . 
                      END 
                      SUBROUTINE RTN(B) 
                      DIMENSION B(50) 
                        . 
                        . 
                        . 
                      END 
          Object-time  dimensions  can  be very  useful  for  creating 
 
          subprograms  for  which  it is  not  known  beforehand  what 
          dimensions  should  be  used  for  dummy  arrays.   See  the 
          following example. 
 
 
                      C**  ADVERTISEMENT FOR OBJECT-TIME DIMENSIONS 
                              DIMENSION A(100) 
                                . 
                                . 
                                . 
                              CALL RTN (A(25),76) 
                                . 
                                . 
                                . 
                              CALL RTN (A(I),101-I) 
                                . 
                                . 
                                . 
                              END 
                              SUBROUTINE RTN(B,N) ±ÕN) 
                              DIMENSION B(N) 
                                . 
                                . 
                                . 
                              END 
          The  following  remarks  pertain to  the  use  of  Hollerith 
          constants   as   subprogram  arguments.    Since   CHARACTER 
          variables  are  implemented  in   WATFIV,  a  Hollerith  (or 
          CHARACTER) constant  should be  passed to  a dummy  argument 
          which is a  CHARACTER variable of appropriate  length.  This 
          is merely an application of the  general rule that an actual 
          argument  should   agree  in  type   and  length   with  its 
          corresponding dummy argument.  An example follows. 
 
 
 
     SUBPROGRAM ARGUMENTS                                      Page 93 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
                                . 
                                . 
                           CALL RTN('LENGTHIS9') 
                                . 
                                . 
                                . 
                           END 
                           SUBROUTINE RTN(X) 
                           CHARACTER*9 X 
                                . 
                                . 
                                . 
          However, to allow some compatibility with existing programs, 
          Hollerith constants  used as  subprogram arguments  are also 
          treated  in  the  following  way.   The  compiler  pads  the 
          constant on  the right,  with blanks, to  make its  length a 
          multiple of  four, if  necessary.  It is  then treated  as a 
          vector, with  a dimension equal to  the number of  words the 
          constant occupies.   Thus, the corresponding  dummy argument 
          must be  a vector of  appropriate dimension.   The following 
          example illustrates this. 
 
 
                                . 
                                . 
                                . 
                           CALL RTN('LENGTHIS9',3) 
                                . 
                                . 
                                . 
                           END 
                           SUBROUTINE RTN(I,N) 
                           DIMENSION I(N) 
                                . 
                                . 
                                . 
 
 
          Hollerith constants are always aligned on a word boundary. 
 
 
     12.5 USER LIBRARIES 
 
          As mentioned above, WATFIV will  retrieve subprograms from a 
          direct-access  library.    In  fact,   the  FORTRAN-supplied 
          subprograms  not kept  in core  are handled  this way.   The 
          mechanism for retrieving subprograms is sufficiently general 
          that  it   will  retrieve   subprograms  from   communal  or 
          installation-supplied libraries. 
 
          For  assistance on  how  to set  up  and specify  libraries, 
 
 
 
     USER LIBRARIES                                            Page 94 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          contact the system programmer responsible for WATFIV at your 
          installation.  Complete details are given  in section 4.1 of 
          the WATFIV Implementation Guide. 
 
 
     12.6 PSEUDO-VARIABLE DIMENSIONING 
 
          Certain  distributed   subroutine  packages  such   as  IMSL 
          (International   Mathematical   and   Statistical   Library) 
          produced  execution-time error  messages  under WATFIV  when 
          some dummy parameters in the subroutines were dimensioned at 
          1.  To  eliminate  this  problem,  the  concept  of  pseudo- 
          variable dimensioning (or PVD) was implemented. 
 
          WATFIV has been modified  to internally generate information 
          about all dummy  array arguments whose last  dimension is 1. 
          Upon invocation of a subroutine,  the total array storage of 
          the   calling  argument   and  the   dummy  parameters   are 
          calculated.  If the dummy array does  not fit into the space 
          provided by the actual argument (that is, the dummy array is 
          smaller)  and  its  last  subscript  is  1,  then  the  last 
          subscript declared for the dummy array is changed internally 
          so that the storage required for both arrays is the same. 
 
          Consider the following programmes: 
 
          Example 1: 
 
          $JOB   WATFIV  P1234J.USER 
                 REAL A(10),A1(25) 
                 CALL SUB1(A) 
                 CALL SUB1(A1) 
                 STOP 
                 END 
 
                 SUBROUTINE SUB1(B) 
                 REAL B(1) 
                 DO 20 I=1,30 
          20     B(I)=FLOAT(I) 
                 RETURN 
                 END 
          $ENTRY 
 
          When running Example  1 under V1L4 (the  previous version of 
          WATFIV) the error  message "SUBSCRIPT NUMBER 1 OF  B HAS THE 
          VALUE 2"  would be  issued when  attempting to  access B(2). 
          Under the new version, the dimension of  B is set to 10 when 
          passing argument  A, and  is set  to 25  when A1  is passed. 
          This pseudo-variable dimensioning only takes effect when the 
          parameter B has  a last dimension of 1.  If  argument A were 
          passed to SUB1,  and a reference to B(11) was  made in SUB1, 
          the error message "SUBSCRIPTS EXCEED BOUNDS OF ACTUAL ARRAY" 
 
 
 
     PSEUDO-VARIABLE DIMENSIONING                              Page 95 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          would  be  generated.   A  similar  message  is  issued  for 
          argument  A1 if  the  program attempts  to  modify the  26th 
          element of B. 
 
          Example 2: 
 
          $JOB   WATFIV  P1234J.USER 
                 REAL A(100) 
                 CALL SUB1(A) 
                 CALL SUB2(A) 
                 STOP 
                 END 
 
                 SUBROUTINE SUB1(B) 
                 REAL B(5,1) 
                 DO 20 I=1,20 
          20     B(5,I)=0.0 
                 RETURN 
                 END 
 
                 SUBROUTINE SUB2(C) 
                 REAL C(2,2) 
                 DO 10 I=1,10 
                 DO 10 J=1,10 
          10     C(I,J)=0.0 
                 RETURN 
                 END 
          $ENTRY 
 
          In Example 2,  the size of array B in  subroutine SUB1 would 
          be modified to 5 rows and  20 columns while the dimension of 
          C in  subroutine SUB2  would remain  the same  and an  error 
          message  would  result  when C(1,3)  was  referenced.   This 
          demonstrates  that  PVD  takes effect  only  when  the  last 
          dimension of a dummy parameter is 1. 
 
          Example 3: 
 
          $JOB   WATFIV P1234J.USER 
                 REAL A(3) 
                 CALL SUB1(A) 
                 STOP 
                 END 
 
                 SUBROUTINE SUB1(B) 
                 COMPLEX B(1) 
                 B(1)=(1.0,2.0) 
                 B(2)=3.0,4.0) 
                 RETURN 
                 END 
          $ENTRY 
 
 
 
 
     PSEUDO-VARIABLE DIMENSIONING                              Page 96 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          In Example  3, the size  of A in  the calling program  is 12 
          bytes.  In the subroutine, the  dummy argument B is COMPLEX, 
          and will therefore occupy 8 bytes if dimensioned at 1, or 16 
          bytes, if dimensioned at 2.  It  will be dimensioned at 1 to 
          fit into the space provided by  the calling array, and hence 
          an error message will result when B (2) is referenced. 
 
          Although this feature is transparent to existing programmes, 
          it allows the programmer to  use subroutine packages such as 
          IMSL  without modification.   The concept  of PVD  (although 
          incompatible with standard FORTRAN)  eliminates the need for 
          passing down variable dimensions as arguments or the need to 
          restrict the size of arrays that subroutines can process. 
 
          WATFIV now permits  the specification of two  new options on 
          either the $JOB or C$OPTIONS  cards.  These options, "NOSUB" 
          and "SUB",  will only be used  while PVD is in  effect.  The 
          NOSUB  job card  parameter permits  the user  to access  any 
          member of  a dummy array  as long  as this array  element is 
          within the storage reserved for  the calling array.  The SUB 
          option  forces the  user to  make sure  that the  subscripts 
          specified  for   an  array   element  do   not  exceed   the 
          corresponding subscripts specified in the declaration of the 
          dummy array. 
 
          The  following  example  illustrates   the  different  error 
          messages received for this option. 
 
          $JOB     WATFIV 
                   REAL A(10,10)/100*0./ 
                   CALL SUB1(A) 
                   STOP 
                   END 
 
                   SUBROUTINE SUB1(B) 
                   REAL B(10,1) 
                   B(50,2)=1. 
                   RETURN 
                   END 
          $ENTRY 
 
 
          Since SUB  is the default, this  job will receive  the error 
          message "SUBSCRIPT  NUMBER 1  OF B  HAS THE  VALUE 50"  when 
          attempting to  access B(50,2).  Specifying the  NOSUB option 
          will  permit the  programmer to  specify  any subscript  for 
          array B as  long as the array element falls  within the area 
          defined by A.   Attempting to access B(51,2)  will cause the 
          error message "ARRAY BOUNDS EXCEEDED FOR ARRAY B". 
 
          When the SUB  option is activated (that  is, array subscript 
          checking is in effect) the  method of checking subscripts is 
          done from  right to  left due  to the  design of  the WATFIV 
 
 
 
     PSEUDO-VARIABLE DIMENSIONING                              Page 97 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          compiler. 
 
          Consider the following program: 
 
          $JOB     WATFIV 
                   REAL A(1,2,1,3,1,2,3) 
                   CALL SUB1(A) 
                   STOP 
                   END 
 
                   SUBROUTINE SUB1(B) 
                   REAL B(1,2,1,2,1,2,1) 
                   B(91,92,93,94,95,96,3)=1.1 
                   RETURN 
                   END 
 
          Since subscript checking  is in effect, the  first subscript 
          of B, which has the value 91 should be diagnosed as invalid. 
          However the array  size calculations are done  from right to 
          left  for   variable  dimensioning  and  thus   the  message 
          "SUBSCRIPT NUMBER 6 OF B HAS THE VALUE 96" will be issued. 
 
          Finally, an extension  message of the form  "PSEUDO VARIABLE 
          DIMENSIONING ASSUMED  FOR ARRAY B"  is now issued  to inform 
          users when PVD is in effect. 
 
     12.7 SUBPROGRAMS IN OBJECT DECK FORM 
 
   ×      WATFIV  will accept  subprograms in  object  deck form  from 
   ×      either the input stream (SYSIN)  or libraries.  In fact, all 
          routines in the library,  WATFIV.FUNLIB, of FORTRAN-supplied 
          subprograms are in object deck form. 
 
          A subprogram  in object  deck form may  appear in  any place 
          that  a subprogram  in source  form may  appear, but  object 
          decks  are never  listed.   The example  below  shows a  job 
          composed of a  main program and two subprograms,  R1 and R2, 
          in object deck and source form, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     SUBPROGRAMS IN OBJECT DECK FORM                           Page 98 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
   ×                  $JOB          id,parameters 
                              . 
                              . 
                              . 
                             CALL R2(A)           Main program 
                              . 
                              . 
                              . 
                             END 
 
 
                                    Object deck for R1 
 
 
                             SUBROUTINE R2(X) 
                              . 
                              . 
                              . 
                             Y=R1(X)              R2 in source form 
                              . 
                              . 
                              . 
                             END 
   ×                         $ENTRY 
 
 
 
                                  Any data 
 
 
 
          The question  naturally arises:  "May object  decks acquired 
          from the  IBM FORTRAN  compilers be  used?"  The  answer is: 
          "Under certain  circumstances."  However,  the circumstances 
          are so restrictive  that, effectively, the answer  is: "No". 
          The intention  is that the  object-deck loading  facility of 
          WATFIV  will be  used with  special-purpose routines,  e.g., 
          plotter routines, hand-coded in Assembler language. 
 
          Since the calling-sequence conventions  are not unlike those 
          used with  the IBM FORTRAN  compilers, anyone who  has coded 
          assembler subroutines  before should have  little difficulty 
          adapting  the subprograms  for  use  with WATFIV.   Complete 
          details  can  be   found  in  section  4.3   of  the  WATFIV 
          Implementation Guide. 
 
 
 
 
 
 
 
 
 
 
     SUBPROGRAMS IN OBJECT DECK FORM                           Page 99 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
     12.8 ADDITIONAL SUBPROGRAMS SUPPORTED BY WATFIV 
 
 
     12.8.1 SPECIAL FUNCTIONS 
 
          WATFIV supports  the four function subprograms  described in 
          the following table. 
 
          The term "word length" refers to  any type of variable which 
          occupies  four bytes,  e.g.,  INTEGER*4, REAL*4,  LOGICAL*4, 
          CHARACTER*4, etc.  All 32 bits of  each argument are used in 
          composing the result of the function evaluation. 
 
 
     _______________________________________________________________________ 
 
     Function          Purpose           Number of       Type of     Type of 
       Name                              Arguments      Arguments    Result 
     _______________________________________________________________________ 
 
        AND     Logical 'and' of         2 or more     Word length   REAL*4 
                arguments 
 
        OR      Logical 'or' of          2 or more     Word length   REAL*4 
                arguments 
 
        EOR     Exclusive 'or' of        2 or more     Word length   REAL*4 
                arguments 
 
        COMPL   Logical 1's complement       1         Word length   REAL*4 
                of argument 
 
     _______________________________________________________________________ 
 
     12.8.2 STATEMENT COMPRESS/UNCOMPRESS ROUTINES 
 
          FIVPAK is  a subroutine that  compresses 'one  statement per 
          card' FORTRAN source decks  into 'multi-statements per card' 
          decks usable in WATFIV.  (UNPACK reverses the process.) 
 
          The compressed form of source input is efficient if programs 
          are to be stored in source form  in data sets on disks since 
          the results are: 
 
                (a)  faster compile time 
 
                (b)  less disk space required 
 
          Method: 
          ______ 
 
          Blanks are removed from all FORTRAN statements, except where 
          they are  embedded between apostrophies.  Comment  cards are 
 
 
 
     ADDITIONAL SUBPROGRAMS SUPPORTED BY WATFIV               Page 100 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          reproduced as read. 
 
                            DATA A,B/2H *,' *'/ 
                            X=5.0 
                      36    GO TO (3,8),I 
 
 
          is compressed into, 
 
                            DATAA,B/2H *,' *'/;X=5.0;36:GOTO(3,8),I 
 
 
          The cards  produced are sequence  numbered in  increments of 
          10. 
 
 
          How_to_Use 
          ___ __ ___ 
 
              CALL FIVPAK(NREAD,NPUNCH), or CALL UNPACK(NREAD,NPUNCH) 
 
          where 
 
              NREAD = unit number for input data 
 
              NPUNCH = unit number for output data 
 
          Both  programs  must be  called  from  a program  run  under 
          WATFIVéœó,  since they  use  CHARACTER  variables.  To  read 
          cards from  the reader and punch  a new deck,  the following 
          job may be run: 
 
 
     ×                $JOB  id,KP=26,NOWARN 
 
                            CALL FIVPAK(5,7) 
 
                            STOP 
 
                            END 
 
     ×                $ENTRY 
 
                          one-statement-per-card deck to be compressed 
 
 
     NOTE:       More than  one program deck  may be  compressed using 
     ____ 
          FIVPAK by  placing a card with  an asterisk (*) in  column 1 
 
     _______________ 
 
     (1)  FIVPAK  and  UNPACK  reside   in  WATFIV's  source  library, 
          WATFIV.WATLIB. 
 
 
 
     ADDITIONAL SUBPROGRAMS SUPPORTED BY WATFIV               Page 101 
 
 
 



 
                                                 SUBPROGRAM FACILITIES 
 
 
 
          between each complete deck.  UNPACK  does not require such a 
          "separator" card.  The output from  FIVPAK or UNPACK will be 
          produced on  the unit  specified by  NPUNCH as  well as  the 
          printer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     ADDITIONAL SUBPROGRAMS SUPPORTED BY WATFIV               Page 102 
 
 
 



 
                                                          RETURN CODES 
 
 
 
     13.  RETURN CODES 
          ______ _____ 
 
          A return code  is provided by the compiler after  a batch of 
          WATFIV  jobs has  been executed.   The  highest return  code 
          generated by any job in the batch is returned. 
 
 
          RETURN CODE                   EXPLANATION 
 
               0            End  of batch;  no  non-zero return  codes 
                            generated (no diagnostics of any type were 
                            generated for all the jobs in the batch) 
 
               1            Extension at compile time 
 
               2            Warning at compile time or execution time 
 
               3            Error at compile time 
 
               4            Error at execution time 
 
               5            Compiler  error  - remainder  of  jobs  in 
                            batch   abandoned;  compiler   termination 
                            successful,  i.e., files  closed,  dynamic 
                            areas freed. 
 
               8            Compiler  error  - remainder  of  jobs  in 
                            batch abandoned; compiler  termination may 
                            be unsuccessful. 
 
 
          These return codes  have been chosen to  give the programmer 
          control  over executing  the next  step  when running  under 
          OS/VS.  The return  code should be used  in conjunction with 
          the COND  parameter on the  EXEC card to  specify conditions 
          under which the step is not to be executed. 
                                  ___ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     RETURN CODES                                             Page 103 
 
 
 



 
                                                         MISCELLANEOUS 
 
 
 
     14.  MISCELLANEOUS 
          _____________ 
 
 
 
     14.1 CARRIAGE-CONTROL CHARACTERS 
 
 
          WATFIV  will  replace,  without  warning,  invalid  carriage 
          control  characters  by  blanks.    Valid  carriage  control 
          characters, with corresponding meanings, are: 
 
   ×                  blank   Advance one line before printing 
 
                        0     Advance two lines before printing 
 
                        -     Advance three lines before printing 
 
                        1     Advance to first line of next page 
 
                        +     No advance 
 
          Note that both EBCDIC and BCD '+' are supported. 
 
 
     14.2 TREATMENT OF LOGICAL VALUES 
 
 
          If a  logical variable has been  assigned a value  of .TRUE. 
          or .FALSE., a T or F,  respectively, will be printed for the 
          variable under  L format.  WATFIV  also considers  two other 
          cases:  if the variable has not been assigned a value, i.e., 
          is  'undefined',  a U  is  printed.   If  a value  has  been 
          assigned but it is not the internal representation of .TRUE. 
          or .FALSE.,  a J  (for Junk)  is printed.   The latter  case 
          could arise through improper use of EQUIVALENCE. 
 
          Note that WATFIV  uses only the  high-order byte of  a four- 
          byte logical  variable in computations.   For example,  if A 
          and B are four-byte logical variables, then the statement 
 
                                  A=B 
 
          involves the movement of only one byte in memory. 
 
 
 
     14.3 CHARACTER-SET CONVENTIONS 
 
          WATFIV allows  a program to be  punched on either  the Model 
          029  or   026  keypunches,  i.e.,   EBCDIC  or   BCD  modes. 
          Intermixing of EBCDIC  and BCD within a  program is allowed, 
          subject to the following restrictions. 
 
 
 
 
     CHARACTER-SET CONVENTIONS                                Page 104 
 
 
 



 
                                                         MISCELLANEOUS 
 
 
 
   ×            (1)   The user specifies  by the KP= parameter  on the 
   ×                  $JOB or C$OPTIONS  card the keypunch mode  to be 
                      considered  as   the  principal  mode   for  the 
                      program. 
 
                (2)   The left  parenthesis, right  parenthesis, equal 
                      sign of  either character  set may  be used.   A 
                      warning message is issued so that the card could 
                      be  repunched  for  a  subsequent  recompilation 
                      under the G or H compilers. 
 
                (3)   Quote marks may not be  intermixed.  If KP=29 is 
                                      ___ 
                      specified or assumed by default, then the EBCDIC 
                      quote  or  apostrophe  (')  must  be  used  when 
                      delimiting Hollerith  constants or  as the  unit 
                      number/record number separator  in direct-access 
                      I/O statements, e.g., 
 
 
                            FORMAT('HOLLERITH INFORMATION') 
                            FIND(3'I) 
 
 
                      If KP=26 is specified or  assumed, the BCD quote 
                      @ must be used, e.g., 
 
 
                            FORMAT(@HOLLERITH INFORMATION@) 
                            FIND(3@I) 
 
 
                (4)   If  KP=29  is  specified or  assumed,  then  the 
                      EBCDIC & (12 punch) and the BCD + (12 punch) are 
                      taken   as   the   statement   number   argument 
                      indicator, e.g., CALL RTN(&2).   The only 'plus' 
                      sign is the EBCDIC + (12-8-6 punch). 
 
                      If  KP=26  is  specified or  assumed,  then  the 
                      EBCDIC  +, BCD  +,  and EBCDIC  &  are taken  as 
                      'plus'.    To   indicate  a   statement   number 
                      argument,  use  a  $,  i.e.,  the  IBM  compiler 
                      convention, e.g., CALL RTN($2). 
 
     14.4 INCOMPATIBILITIES WITH IBM FORTRAN 
 
          Note that  the differences listed  below do not  include the 
          language extensions and  restrictions given in Chapter  7 on 
          page   46.  Nor  do  they  include differences  which  arise 
          either because  object programs  compiled under  IBM FORTRAN 
          are freely allowed to violate  the language rules defined in 
          GC28-6515 (e.g., passing an argument  of type INTEGER to the 
          SQRT subroutine), or because the IBM compilers accept syntax 
 
 
 
     INCOMPATIBILITIES WITH IBM FORTRAN                       Page 105 
 
 
 



 
                                                         MISCELLANEOUS 
 
 
 
          not defined in GC28-6515, e.g., 
 
                            WRITE(6,2) (A(I), A(2)) 
 
          The  major causes  of  differences  between WATFIV  and  IBM 
          FORTRAN are likely  to be the treatment  of FORTRAN-supplied 
          functions and number conversions. 
 
          1.    WATFIV   provides   execution-time    page   skipping, 
                controlled by the LINES= job-parameter. 
 
          2.    WATFIV allows any number of contiguous comments cards; 
                comments cards may precede a continuation card. 
 
          3.    WATFIV  uses only  the high-order  byte  of a  logical 
                quantity in logical operations.  For example, if A and 
                B are of type LOGICAL *4, execution of the statement 
 
                                       A=B 
 
                causes only one byte to be moved. 
 
          4.    DO-loops may be nested to any depth in WATFIV. 
 
          5.    WATFIV supports  both EBCDIC and  BCD '+'  as carriage 
                control characters. 
 
          6.    WATFIV  considers the  program to  be in  error if  it 
                executes a RETURNi statement in which the value of 'i' 
                is  zero, negative,  undefined,  or  greater than  the 
                number of statement number arguments which appeared in 
                the argument list of the  CALL statement which invoked 
                the subprogram from which the return is being made. 
 
          7.    WATFIV  prints no  message equivalent  to the  IHC210I 
                ("old PSW is ...") message when an interrupt occurs. 
 
          8.    With WATFIV, a use of T  format that does a 'backward' 
                tab  in  an  output buffer  does  not  cause  existing 
                characters  in the  buffer  to  be blanked  out.   For 
                example, consider the statements: 
 
                            K= 9 
                            J= 1 
                            WRITE (6,7)K,J 
                      7     FORMAT (' $$$.00',T3,I2,T6,I2) 
 
                With WATFIV, the line appears as: 
 
                            $$9.01 
 
 
 
 
 
     INCOMPATIBILITIES WITH IBM FORTRAN                       Page 106 
 
 
 



 
                                                         MISCELLANEOUS 
 
 
 
                With IBM FORTRAN, it appears as: 
 
                            $ 9. 1 
 
                Actually,  this is  a  consequence  of the  fact  that 
                WATFIV's formatting  routines assume the buffer  to be 
                blanked before  any filling of  it occurs,  i.e., only 
                significant characters are moved into the buffer. 
 
          9.    REAL*4  values  are  printed  with   a  maximum  of  7 
                significant    digits.    If    the   output    format 
                specification calls for more, i.e., E20.10, zeroes are 
                supplied on the right. 
 
          10.   WATFIV treats  FORTRAN-supplied functions  differently 
                than IBM FORTRAN as follows: 
 
                (a)   WATFIV  makes no  distinction between  'in-line' 
                      and 'out-of-line'  functions; all  functions are 
                      out-of-line  and thus  no code  is generated  at 
                      compile time. 
 
                (b)   WATFIV  evaluates  all  functions  that  require 
                    
   approximation  formulae  in   double  precision, 
                      i.e., 
 
                            SQRT(X) 
 
                      is calculated as, essentially, 
 
                            SNGL(DSQRT(DBLE(X))). 
 
          11.   WATFIV handles  FORMAT statements  differently than  G 
                and H as follows: 
 
                (a)   WATFIV allows  more than  the maximum  number of 
                      continuation cards for FORMAT statements. 
 
                (b)   WATFIV does not  allow group or field  counts to 
                      be zero. 
 
          12.   Execution-time data  cards read  on the  standard card 
                reader  unit  by  WATFIV-compiled   programs  may  not 
                contain a $ in column 1 or C$ in columns 1-2. 
 
          13.   With WATFIV, a particular labelled COMMON block can be 
                initialized in  more than  one BLOCK  DATA subprogram. 
                This allows undetected violations of  rule 6, page 112 
                of GC28-6515-10. 
 
 
 
 
 
 
     INCOMPATIBILITIES WITH IBM FORTRAN                       Page 107 
 
 
 



 
                                                              APPENDIX 
 
 
 
     15.  APPENDIX 
          ________ 
 
 
     15.1 WATFIV ERROR MESSAGES 
 
     'ASSEMBLER LANGUAGE SUBPROGRAMMES' 
     AL-0   'MISSING END CARD ON ASSEMBLY LANGUAGE OBJECT DECK' 
     AL-1   'ENTRY-POINT OR CSECT NAME IN AN OBJECT DECK WAS PREVIOUSLY 
            DEFINED.FIRST DEFINITION USED' 
 
     'BLOCK DATA STATEMENTS' 
     BD-0   'EXECUTABLE STATEMENTS ARE ILLEGAL IN BLOCK DATA SUBPROGRAMS' 
     BD-1   'IMPROPER BLOCK DATA STATEMENT' 
 
     'CARD FORMAT AND CONTENTS' 
     CC-0   'COLUMNS 1-5 OF CONTINUATION CARD ARE NOT BLANK. 
            PROBABLE CAUSE:STATEMENT PUNCHED TO LEFT OF COLUMN 7' 
     CC-1   'LIMIT OF 5 CONTINUATION CARDS EXCEEDED' 
     CC-2   'INVALID CHARACTER IN FORTRAN STATEMENT.A'$' WAS INSERTED IN THE 
            SOURCE LISTING' 
     CC-3   'FIRST CARD OF A PROGRAM IS A CONTINUATION CARD. 
            PROBABLE CAUSE:STATEMENT PUNCHED TO LEFT OF COLUMN 7' 
     CC-4   'STATEMENT TOO LONG TO COMPILE (SCAN-STACK OVERFLOW)' 
     CC-5   'A BLANK CARD WAS ENCOUNTERED' 
     CC-6   'KEYPUNCH USED DIFFERS FROM KEYPUNCH SPECIFIED ON JOB CARD' 
     CC-7   'THE FIRST CHARACTER OF THE STATEMENT WAS NOT ALPHABETIC' 
     CC-8   'INVALID CHARACTER(S) ARE CONCATENATED WITH THE FORTRAN KEYWORD' 
     CC-9   'INVALID CHARACTERS IN COLUMNS 1-5.STATEMENT NUMBER IGNORED. 
            PROBABLE CAUSE:STATEMENT PUNCHED TO LEFT OF COLUMN 7' 
     CC-A   'CONTROL CARDS MAY NOT BE CONTINUED' 
     CC-B   'CONTROL CARDS MUST BE IN PROGRAM SEGMENT' 
 
     'COMMON' 
     CM-0   'THE VARIABLE IS ALREADY IN COMMON' 
     CM-1   'OTHER COMPILERS MAY NOT ALLOW COMMONED VARIABLES TO BE INITIALIZED IN 
            OTHER THAN A BLOCK DATA SUBPROGRAM' 
     CM-2   'ILLEGAL USE OF A COMMON BLOCK OR NAMELIST NAME' 
 
     'FORTRAN TYPE CONSTANTS' 
     CN-0   'MIXED REAL*4,REAL*8 IN COMPLEX CONSTANT;REAL*8 ASSUMED FOR BOTH' 
     CN-1   'AN INTEGER CONSTANT MAY NOT BE GREATER THAN 2,147,483,647 (2**31-1)' 
     CN-2   'EXPONENT ON A REAL CONSTANT IS GREATER THAN 2 DIGITS' 
     CN-3   'A REAL CONSTANT HAS MORE THAN 16 DIGITS.IT WAS TRUNCATED TO 16' 
     CN-4   'INVALID HEXADECIMAL CONSTANT' 
     CN-5   'ILLEGAL USE OF A DECIMAL POINT' 
     CN-6   'CONSTANT WITH MORE THAN 7 DIGITS BUT E-TYPE EXPONENT,ASSUMED TO BE 
            REAL*4' 
     CN-7   'CONSTANT OR STATEMENT NUMBER GREATER THAN 99999' 
     CN-8   'AN EXPONENT OVERFLOW OR UNDERFLOW OCCURRED WHILE CONVERTING A CONSTANT 
            IN A SOURCE STATEMENT' 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 108 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'COMPILER ERRORS' 
     CP-0   'COMPILER ERROR - LANDR/ARITH' 
     CP-1   'COMPILER ERROR.LIKELY CAUSE:MORE THAN 255 DO STATEMENTS' 
     CP-2   'COMPILER ERROR' 
     CP-4   'COMPILER ERROR - INTERRUPT AT COMPILE TIME,RETURN TO SYSTEM' 
 
     'CHARACTER VARIABLE' 
     CV-0   'A CHARACTER VARIABLE IS USED WITH A RELATIONAL OPERATOR' 
     CV-1   'LENGTH OF A CHARACTER VALUE ON RIGHT OF EQUAL SIGN EXCEEDS THAT ON 
            LEFT. TRUNCATION WILL OCCUR' 
     CV-2   'UNFORMATTED CORE-TO-CORE I/O NOT IMPLEMENTED' 
 
     'DATA STATEMENT' 
     DA-0   'REPLICATION FACTOR IS ZERO OR GREATER THAN 32767. 
            IT IS ASSUMED TO BE 32767' 
     DA-1   'MORE VARIABLES THAN CONSTANTS' 
     DA-2   'ATTEMPT TO INITIALIZE A SUBPROGRAM PARAMETER IN A DATA STATEMENT' 
     DA-3   'OTHER COMPILERS MAY NOT ALLOW NON-CONSTANT SUBSCRIPTS IN DATA 
            STATEMENTS' 
     DA-4   'TYPE OF VARIABLE AND CONSTANT DO NOT AGREE.  (MESSAGE ISSUED ONCE FOR 
            AN ARRAY)' 
     DA-5   'MORE CONSTANTS THAN VARIABLES' 
     DA-6   'A VARIABLE WAS PREVIOUSLY INITIALIZED.THE LATEST VALUE IS USED. 
            CHECK COMMONED AND EQUIVALENCED VARIABLES' 
     DA-7   'OTHER COMPILERS MAY NOT ALLOW INITIALIZATION OF BLANK COMMON' 
     DA-8   'A LITERAL CONSTANT HAS BEEN TRUNCATED' 
     DA-9   'OTHER COMPILERS MAY NOT ALLOW IMPLIED DO-LOOPS IN DATA STATEMENTS' 
 
     'DEFINE FILE STATEMENTS' 
     DF-0   'THE UNIT NUMBER IS MISSING' 
     DF-1   'INVALID FORMAT TYPE' 
     DF-2   'THE ASSOCIATED VARIABLE IS NOT A SIMPLE INTEGER VARIABLE' 
     DF-3   'NUMBER OF RECORDS OR RECORD SIZE IS ZERO OR GREATER THAN 32767' 
 
     'DIMENSION STATEMENTS' 
     DM-0   'NO DIMENSIONS ARE SPECIFIED FOR A VARIABLE IN A DIMENSION STATEMENT' 
     DM-1   'THE VARIABLE HAS ALREADY BEEN DIMENSIONED'  ±ÓD' 
     DM-2   'CALL-BY-LOCATION PARAMETERS MAY NOT BE DIMENSIONED' 
     DM-3   'THE DECLARED SIZE OF ARRAY EXCEEDS SPACE PROVIDED BY CALLING ARGUMENT' 
 
     'DO LOOPS' 
     DO-0   'THIS STATEMENT CANNOT BE THE OBJECT OF A DO-LOOP' 
     DO-1   'ILLEGAL TRANSFER INTO THE RANGE OF A DO-LOOP' 
     DO-2   'THE OBJECT OF THIS DO-LOOP HAS ALREADY APPEARED' 
     DO-3   'IMPROPERLY NESTED DO-LOOPS' 
     DO-4   'ATTEMPT TO REDEFINE A DO-LOOP PARAMETER WITHIN THE RANGE OF THE LOOP' 
     DO-5   'INVALID DO-LOOP PARAMETER' 
     DO-6   'ILLEGAL TRANSFER TO A STATEMENT WHICH IS INSIDE THE RANGE OF A DO-LOOP' 
 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 109 
 
 
 



 
                                                              APPENDIX 
 
 
 
     DO-7   'A DO-LOOP PARAMETER IS UNDEFINED OR OUT OF RANGE' 
     DO-8   'BECAUSE OF ONE OF THE PARAMETERS,THIS DO-LOOP WILL TERMINATE AFTER THE 
            FIRST TIME THROUGH' 
     DO-9   'A DO-LOOP PARAMETER MAY NOT BE REDEFINED IN AN INPUT LIST' 
     DO-A   'OTHER COMPILERS MAY NOT ALLOW THIS STATEMENT TO END A DO-LOOP' 
 
     'EQUIVALENCE AND/OR COMMON' 
     EC-0   'EQUIVALENCED VARIABLE APPEARS IN A COMMON STATEMENT' 
     EC-1   'A COMMON BLOCK HAS A DIFFERENT LENGTH THAN IN A PREVIOUS 
            SUBPROGRAM:GREATER LENGTH USED' 
     EC-2   'COMMON AND/OR EQUIVALENCE CAUSES INVALID ALIGNMENT. 
            EXECUTION SLOWED.REMEDY:ORDER VARIABLES BY DECREASING LENGTH' 
     EC-3   'EQUIVALENCE EXTENDS COMMON DOWNWARDS' 
     EC-4   'A SUBPROGRAM PARAMETER APPEARS IN A COMMON OR EQUIVALENCE STATEMENT' 
     EC-5   'A VARIABLE WAS USED WITH SUBSCRIPTS IN AN EQUIVALENCE STATEMENT BUT HAS 
            NOT BEEN PROPERLY DIMENSIONED' 
 
     'END STATEMENTS' 
     EN-0   'MISSING END STATEMENT:END STATEMENT GENERATED' 
     EN-1   'AN END STATEMENT WAS USED TO TERMINATE EXECUTION' 
     EN-2   'AN END STATEMENT CANNOT HAVE A STATEMENT NUMBER. STATEMENT NUMBER 
            IGNORED' 
     EN-3   'END STATEMENT NOT PRECEDED BY A TRANSFER' 
 
     'EQUAL SIGNS' 
     EQ-0   'ILLEGAL QUANTITY ON LEFT OF EQUALS SIGN' 
     EQ-1   'ILLEGAL USE OF EQUAL SIGN' 
     EQ-2   'OTHER COMPILERS MAY NOT ALLOW MULTIPLE ASSIGNMENT STATEMENTS' 
     EQ-3   'MULTIPLE ASSIGNMENT IS NOT IMPLEMENTED FOR CHARACTER VARIABLES' 
     EQ-4   'ILLEGAL QUANTITY ON RIGHT OF EQUALS SIGN' 
 
     'EQUIVALENCE STATEMENTS' 
     EV-0   'ATTEMPT TO EQUIVALENCE A VARIABLE TO ITSELF' 
     EV-2   'A MULTI-SUBSCRIPTED EQUIVALENCED VARIABLE HAS BEEN INCORRECTLY 
            RE-EQUIVALENCED.REMEDY:DIMENSION THE VARIABLE FIRST' 
 
     'POWERS AND EXPONENTIATION' 
     EX-0   'ILLEGAL COMPLEX EXPONENTIATION' 
     EX-1   'I**J WHERE I=J=0' 
     EX-2   'I**J WHERE I=0, J.LT.0' 
     EX-3   '0.0**Y WHERE Y.LE.0.0' 
     EX-4   '0.0**J WHERE J=0' 
     EX-5   '0.0**J WHERE J.LT.0' 
     EX-6   'X**Y WHERE X .LT. 0.0, Y IS NOT TYPE INTEGER OR .NE. 0.0' 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 110 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'ENTRY STATEMENT' 
     EY-0   'ENTRY-POINT NAME WAS PREVIOUSLY DEFINED' 
     EY-1   'PREVIOUS DEFINITION OF FUNCTION NAME IN AN ENTRY IS INCORRECT' 
     EY-2   'THE USAGE OF A SUBPROGRAM PARAMETER IS INCONSISTENT WITH A PREVIOUS 
            ENTRY-POINT' 
     EY-3   'A PARAMETER HAS APPEARED IN A EXECUTABLE STATEMENT BUT IS NOT A 
            SUBPROGRAM PARAMETER' 
     EY-4   'ENTRY STATEMENTS ARE INVALID IN THE MAIN PROGRAM' 
     EY-5   'ENTRY STATEMENT INVALID INSIDE A DO-LOOP' 
 
     'FORMAT' 
        SOME FORMAT ERROR MESSAGES GIVE CHARACTERS IN WHICH ERROR WAS DETECTED 
     FM-0   'IMPROPER CHARACTER SEQUENCE OR INVALID CHARACTER IN INPUT DATA' 
     FM-1   'NO STATEMENT NUMBER ON A FORMAT STATEMENT' 
     FM-2   'FORMAT CODE AND DATA TYPE DO NOT MATCH' 
     FM-4   'FORMAT PROVIDES NO CONVERSION SPECIFICATION FOR A VALUE IN I/O LIST' 
     FM-5   'AN INTEGER IN THE INPUT DATA IS TOO LARGE. 
              (MAXIMUM=2,147,483,647=2**31-1)' 
     FM-6   'A REAL NUMBER IN THE INPUT DATA IS OUT OF MACHINE RANGE (1.E-78,1.E+75)' 
     FM-7   'UNREFERENCED FORMAT STATEMENT' 
     FT-0   'FIRST CHARACTER OF VARIABLE FORMAT IS NOT A LEFT PARENTHESIS' 
     FT-1   'INVALID CHARACTER ENCOUNTERED IN FORMAT' 
     FT-2   'INVALID FORM FOLLOWING A FORMAT CODE' 
     FT-3   'INVALID FIELD OR GROUP COUNT' 
     FT-4   'A FIELD OR GROUP COUNT GREATER THAN 255' 
     FT-5   'NO CLOSING PARENTHESIS ON VARIABLE FORMAT' 
     FT-6   'NO CLOSING QUOTE IN A HOLLERITH FIELD' 
     FT-7   'INVALID USE OF COMMA' 
     FT-8   'FORMAT STATEMENT TOO LONG TO COMPILE (SCAN-STACK OVERFLOW)' 
     FT-9   'INVALID USE OF P FORMAT CODE' 
     FT-A   'INVALID USE OF PERIOD(.)' 
     FT-B   'MORE THAN THREE LEVELS OF PARENTHESES' 
     FT-C   'INVALID CHARACTER BEFORE A RIGHT PARENTHESIS' 
     FT-D   'MISSING OR ZERO LENGTH HOLLERITH ENCOUN±(S' 
     FT-D   'MISSING OR ZERO LENGTH HOLLERITH ENCOUNTERED' 
     FT-E   'NO CLOSING RIGHT PARENTHESIS' 
     FT-F   'CHARACTERS FOLLOW CLOSING RIGHT PARENTHESIS' 
     FT-G   'WRONG QUOTE USED FOR KEY-PUNCH SPECIFIED' 
     FT-H   'LENGTH OF HOLLERITH EXCEEDS 255' 
     FT-I   'EXPECTING COMMA BETWEEN FORMAT ITEMS' 
 
     'FUNCTIONS AND SUBROUTINES' 
     FN-1   'A PARAMETER APPEARS MORE THAN ONCE IN A SUBPROGRAM OR STATEMENT 
            FUNCTION DEFINITION' 
     FN-2   'SUBSCRIPTS ON RIGHT-HAND SIDE OF STATEMENT FUNCTION. 
             PROBABLE CAUSE:VARIABLE TO LEFT OF EQUAL SIGN NOT DIMENSIONED' 
     FN-4   'ILLEGAL LENGTH MODIFIER' 
     FN-5   'INVALID PARAMETER' 
     FN-6   'A PARAMETER HAS THE SAME NAME AS THE SUBPROGRAM' 
 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 111 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'GO TO STATEMENTS' 
     GO-0   'THIS STATEMENT COULD TRANSFER TO ITSELF' 
     GO-1   'THIS STATEMENT TRANSFERS TO A NON-EXECUTABLE STATEMENT' 
     GO-2   'ATTEMPT TO DEFINE ASSIGNED GOTO INDEX IN AN ARITHMETIC STATEMENT' 
     GO-3   'ASSIGNED GOTO INDEX MAY BE USED ONLY IN ASSIGNED GOTO AND ASSIGN 
            STATEMENTS' 
     GO-4   'INDEX OF AN ASSIGNED GOTO IS UNDEFINED OR OUT OF RANGE,OR INDEX OF 
            COMPUTED GOTO OR CASE IS UNDEFINED' 
     GO-5   'ASSIGNED GOTO INDEX MAY NOT BE AN INTEGER*2 VARIABLE' 
 
     'HOLLERITH CONSTANTS' 
     HO-0   'ZERO LENGTH SPECIFIED FOR H-TYPE HOLLERITH' 
     HO-1   'ZERO LENGTH QUOTE-TYPE HOLLERITH' 
     HO-2   'NO CLOSING QUOTE OR NEXT CARD NOT A CONTINUATION CARD' 
     HO-3   'UNEXPECTED HOLLERITH OR STATEMENT NUMBER CONSTANT' 
 
     'IF STATEMENTS (ARITHMETIC AND LOGICAL)' 
     IF-0   'AN INVALID STATEMENT FOLLOWS THE LOGICAL IF' 
     IF-1   'ARITHMETIC OR INVALID EXPRESSION IN LOGICAL IF OR WHILE' 
     IF-2   'LOGICAL,COMPLEX OR INVALID EXPRESSION IN ARITHMETIC IF' 
 
     'IMPLICIT STATEMENT' 
     IM-0   'INVALID DATA TYPE' 
     IM-1   'INVALID OPTIONAL LENGTH' 
     IM-3   'IMPROPER ALPHABETIC SEQUENCE IN CHARACTER RANGE' 
     IM-4   'A SPECIFICATION IS NOT A SINGLE CHARACTER.THE FIRST CHARACTER IS USED' 
     IM-5   'IMPLICIT STATEMENT DOES NOT PRECEDE OTHER SPECIFICATION STATEMENTS' 
     IM-6   'ATTEMPT TO DECLARE THE TYPE OF A CHARACTER MORE THAN ONCE' 
     IM-7   'ONLY ONE IMPLICIT STATEMENT PER PROGRAM SEGMENT ALLOWED. THIS ONE 
            IGNORED' 
 
     'INPUT/OUTPUT' 
     IO-0   'I/O STATEMENT REFERENCES NON-FORMAT STATEMENT. PROBABLE CAUSE : 
            STATEMENT DEFINED AS NON-FORMAT' 
     IO-1   'A VARIABLE FORMAT MUST BE AN ARRAY NAME' 
     IO-2   'INVALID ELEMENT IN INPUT LIST OR DATA LIST' 
     IO-3   'OTHER COMPILERS MAY NOT ALLOW EXPRESSIONS IN OUTPUT LISTS' 
     IO-4   'ILLEGAL USE OF END= OR ERR= PARAMETERS' 
     IO-5   'INVALID UNIT NUMBER' 
     IO-6   'INVALID FORMAT' 
     IO-7   'ONLY CONSTANTS,SIMPLE INTEGER*4 VARIABLES,AND CHARACTER VARIABLES ARE 
            ALLOWED AS UNIT' 
     IO-8   'ATTEMPT TO PERFORM I/O IN A FUNCTION WHICH IS CALLED IN AN OUTPUT 
            STATEMENT' 
     IO-9   'UNFORMATTED WRITE STATEMENT MUST HAVE A LIST' 
     IO-A   'EXPECTING STATEMENT TO BE A FORMAT. PREVIOUSLY REFERENCED IN I/O 
            STATEMENT' 
 
     'JOB CONTROL CARDS' 
     JB-0   'CONTROL CARD ENCOUNTERED DURING COMPILATION; 
            PROBABLE CAUSE:MISSING C$ENTRY CARD' 
     JB-1   'MIS-PUNCHED JOB OPTION' 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 112 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'JOB TERMINATION' 
     KO-0   'SOURCE ERROR ENCOUNTERED WHILE EXECUTING WITH RUN=FREE' 
     KO-1   'LIMIT EXCEEDED FOR FIXED-POINT DIVISION BY ZERO' 
     KO-2   'LIMIT EXCEEDED FOR FLOATING-POINT DIVISION BY ZERO' 
     KO-3   'EXPONENT OVERFLOW LIMIT EXCEEDED' 
     KO-4   'EXPONENT UNDERFLOW LIMIT EXCEEDED' 
     KO-5   'FIXED-POINT OVERFLOW LIMIT EXCEEDED' 
     KO-6   'JOB-TIME EXCEEDED' 
     KO-7   'COMPILER ERROR - EXECUTION TIME:RETURN TO SYSTEM' 
     KO-8   'TRACEBACK ERROR. TRACEBACK TERMINATED' 
     KO-9   'CANNOT OPEN WATFIV.ERRTEXTS. RUN TERMINATED' 
     KO-A   'I/O ERROR ON TEXT FILE' 
 
     'LOGICAL OPERATIONS' 
     LG-0   '.NOT. WAS USED AS A BINARY OPERATOR' 
 
     'LIBRARY ROUTINES' 
     LI-0   'ARGUMENT OUT OF RANGE DGAMMA OR GAMMA. (1.382E-76 .LT. X .LT. 57.57)' 
     LI-1   'ABS(X) .GE. 175.366 FOR SINH,COSH,DSINH OR DCOSH OF X' 
     LI-2   'SENSE LIGHT OTHER THAN 0,1,2,3,4 FOR SLITE OR 1,2,3,4 FOR SLITET' 
     LI-3   'REAL PORTION OF ARGUMENT .GT. 174.673, CEXP OR CDEXP' 
     LI-4   'ABS(AIMAG(Z)) .GT. 174.673 FOR CSIN, CCOS, CDSIN OR CDCOS OF Z' 
     LI-5   'ABS(REAL(Z)) .GE. 3.537E15 FOR CSIN, CCOS, CDSIN OR CDCOS OF Z' 
     LI-6   'ABS(AIMAG(Z)) .GE. 3.537E15 FOR CEXP OR CDEXP OF Z' 
     LI-7   'ARGUMENT .GT. 174.673, EXP OR DEXP' 
     LI-8   'ARGUMENT OF CLOG OR CDLOG IS ZERO' 
     LI-9   'ARGUMENT IS NEGATIVE OR ZERO, ALOG, ALOG10, DLOG OR DLOG10' 
     LI-A   'ABS(X) .GE. 3.537E15 FOR SIN, COS, DSIN OR DCOS OF X' 
     LI-B   'ABSOLUTE VALUE OF ARGUMENT .GT. 1, FOR ARSIN, ARCOS, DARSIN OR DARCOS' 
     LI-C   'ARGUMENT IS NEGATIVE, SQRT OR DSQRT' 
     LI-D   'BOTH ARGUMENTS OF DATAN2 OR ATAN2 ARE ZERO' 
     LI-E   'ARGUMENT TOO CLOSE TO A SINGULARITY, TAN, COTAN, DTAN OR DCOTAN' 
     LI-F   'ARGUMENT OUT OF RANGE DLGAMA OR ALGAMA. (0.0  .LT. X .LT. 4.29E73)' 
     LI-G   'ABSOLUTE VALUE OF ARGUMENT .GE. 3.537E15, TAN, COTAN, DTAN, DCOTAN' 
 
     'MIXED MODE' 
     MD-0   'RELATIONAL OPERATOR HAS LOGICAL OPERAND' 
     MD-1   'RELATIONAL OPERATOR HAS COMPLEX OPERAND' 
     MD-2   'MIXED MODE - LOGICAL OR CHARACTER WITH ARITHMETIC' 
     MD-3   'OTHER COMPILERS MAY NOT ALLOW SUBSCRIPTS OF TYPE COMPLEX,LOGICAL OR 
            CHARACTER' 
 
     'MEMORY OVERFLOW' 
     MO-0   'INSUFFICIENT MEMORY TO COMPILE THIS PROGRAM.REMAINDER WILL BE ERROR 
            CHECKED ONLY' 
     MO-1   'INSUFFICIENT MEMORY TO ASSIGN ARRAY STORAGE. JOB ABANDONED' 
     MO-2   'SYMBOL TABLE EXCEEDS AVAILABLE SPACE,JOB ABANDONED' 
     MO-3   'DATA AREA OF SUBPROGRAM EXCEEDS 24K -- SEGMENT SUBPROGRAM' 
     MO-4   'INSUFFICIENT MEMORY TO ALLOCATE COMPILER WORK AREA OR WATLIB BUFFER' 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 113 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'NAMELIST STATEMENTS' 
     NL-0   'NAMELIST ENTRY MUST BE A VARIABLE,NOT A SUBPROGRAM PARAMETER' 
     NL-1   'NAMELIST NAME PREVIOUSLY DEFINED' 
     NL-2   'VARIABLE NAME TOO LONG' 
     NL-3   'VARIABLE NAME NOT FOUND IN NAMELIST' 
     NL-4   'INVALID SYNTAX IN NAMELIST INPUT' 
     NL-6   'VARIABLE INCORRECTLY SUBSCRIPTED' 
     NL-7   'SUBSCRIPT OUT OF RANGE' 
     NL-8   'NESTED BLANKS ARE ILLEGAL IN NAMELIST INPUT' 
 
     'PARENTHESES' 
     PC-0   'UNMATCHED PARENTHESIS' 
     PC-1   'INVALID PARENTHESIS NESTING IN I/O LIST' 
 
     'PAUSE, STOP STATEMENTS' 
     PS-0   'OPERATOR MESSAGES NOT ALLOWED:SIMPLE STOP ASSUMED FOR STOP, 
            CONTINUE ASSUMED FOR PAUSE' 
 
     'RETURN STATEMENT' 
     RE-1   'RETURN I, WHERE I IS OUT OF RANGE OR UNDEFINED' 
     RE-2   'MULTIPLE RETURN NOT VALID IN FUNCTION SUBPROGRAM' 
     RE-3   'VARIABLE IS NOT A SIMPLE INTEGER' 
     RE-4   'A MULTIPLE RETURN IS NOT VALID IN THE MAIN PROGRAM' 
 
     'ARITHMETIC AND LOGICAL STATEMENT FUNCTIONS' 
         PROBABLE CAUSE OF SF ERRORS - VARIABLE ON LEFT OF = WAS NOT DIMENSIONED 
     SF-1   'A PREVIOUSLY REFERENCED STATEMENT NUMBER APPEARS ON A STATEMENT 
            FUNCTION DEFINITION' 
     SF-2   'STATEMENT FUNCTION IS THE OBJECT OF A LOGICAL IF STATEMENT' 
     SF-3   'RECURSIVE STATEMENT FUNCTION DEFINITION:NAME APPEARS ON BOTH SIDES OF 
            EQUAL SIGN.LIKELY CAUSE:VARIABLE NOT DIMENSIONED' 
     SF-4   'A STATEMENT FUNCTION DEFINITION APPEARS AFTER THE FIRST EXECUTABLE 
            STATEMENT' 
     SF-5   'ILLEGAL USE OF A STATEMENT FUNCTION NAME' 
 
     'STRUCTURED PROGRAMMING BLOCKS' 
     SP-0   'AT END STATEMENT MUST FOLLOW IMMEDIATELY AFTER A READ' 
     SP-1   'AT END FOLLOWS CORE TO CORE, DIRECT ACCESS OR INVALID READ STATEMENT' 
     SP-2   'AT END NOT VALID WHEN 'END=' SPECIFIED IN THE READ STATEMENT' 
     SP-3   'MISSING OR INVALID DO CASE, WHILE, AT END, OR  IF-THEN STATEMENT' 
     SP-4   'IMPROPER NESTING OF BLOCK OR CONSTRUCT' 
     SP-5   'IMPROPER NESTING OF DO-LOOP' 
     SP-6   'IMPROPER NESTING WITH DO-LOOP' 
     SP-7   'MISSING END CASE, END WHILE, END AT END, OR END IF STATEMENT' 
     SP-8   'OTHER COMPILERS MAY NOT ALLOW IF-THEN-ELSE, DO CASE, WHILE, EXECUTE, 
            REMOTE BLOCK OR AT END STATEMENTS' 
     SP-9   'IF NONE BLOCK ALREADY DEFINED FOR CURRENT DO CASE CONSTRUCT' 
     SP-A   'IF NONE BLOCK MUST FOLLOW ALL CASE BLOCKS' 
     SP-B   'ATTEMPT TO TRANSFER CONTROL ACROSS REMOTE BLOCK BOUNDARIES' 
     SP-C   'REMOTE BLOCK NOT PRECEDED BY A TRANSFER' 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 114 
 
 
 



 
                                                              APPENDIX 
 
 
 
     SP-D   'REMOTE BLOCK PREVIOUSLY DEFINED' 
     SP-E   'REMOTE BLOCK STATEMENT MISSING OR INVALID' 
     SP-F   'LAST REMOTE BLOCK NOT COMPLETED' 
     SP-G   'REMOTE BLOCK IS NOT DEFINED' 
     SP-H   'REMOTE BLOCK IS NOT REFERENCED' 
     SP-I   'ATTEMPT TO NEST REMOTE BLOCK DEFINITIONS' 
     SP-J   'MISSING OR INVALID REMOTE BLOCK NAME' 
     SP-K   'ATTEMPT TO EXECUTE A REMOTE BLOCK RECURSIVELY' 
     SP-L   'NUMBER OF REMOTE BLOCKS EXCEEDS 255' 
 
     'SUBPROGRAMS' 
     SR-0   'MISSING SUBPROGRAM' 
     SR-1   'SUBPROGRAM REDEFINES A CONSTANT,EXPRESSION,DO-PARAMETER OR ASSIGNED 
            GOTO INDEX' 
     SR-2   'THE SUBPROGRAM WAS ASSIGNED DIFFERENT TYPES IN DIFFERENT PROGRAM 
            SEGMENTS' 
     SR-3   'ATTEMPT TO USE A SUBPROGRAM RECURSIVELY' 
     SR-4   'INVALID TYPE OF ARGUMENT IN REFERENCE TO A SUBPROGRAM' 
     SR-5   'WRONG NUMBER OF ARGUMENTS IN A REFERENCE TO A SUBPROGRAM' 
     SR-6   'A SUBPROGRAM WAS PREVIOUSLY DEFINED. THE FIRST DEFINITION IS USED' 
     SR-7   'NO MAIN PROGRAM' 
     SR-8   'ILLEGAL OR MISSING SUBPROGRAM NAME' 
     SR-9   'LIBRARY PROGRAM WAS NOT ASSIGNED THE CORRECT TYPE' 
     SR-A   'METHOD FOR ENTERING SUBPROGRAM PRODUCES UNDEFINED VALUE FOR 
            CALL-BY-LOCATION PARAMETER' 
     SR-B   'MAINLINE PROGRAM NOT IN LIBRARY' 
 
     'SUBSCRIPTS' 
     SS-0   'ZERO SUBSCRIPT OR DIMENSION NOT ALLOWED' 
     SS-1   'ARRAY SUBSCRIPT EXCEEDS DIMENSION' 
     SS-2   'INVALID SUBSCRIPT FORM' 
     SS-3   'SUBSCRIPT IS OUT OF RANGE' 
     SS-4   'SUBSCRIPTS EXCEED BOUNDS OF ACTUAL ARRAY' 
 
     'STATEMENTS AND STATEMENT NUMBERS' 
     ST-0   'MISSING STATEMENT NUMBER' 
     ST-1   'STATEMENT NUMBER GREATER THAN 99999' 
     ST-2   'STATEMENT NUMBER HAS ALREADY BEEN DEFINED' 
     ST-3   'UNDECODEABLE STATEMENT' 
     ST-4   'UNNUMBERED EXECUTABLE STATEMENT FOLLOWS A TRANSFER' 
     ST-5   'STATEMENT NUMBER IN A TRANSFER IS A NON-EXECUTABLE STATEMENT' 
     ST-6   'ONLY CALL STATEMENTS MAY CONTAIN STATEMENT NUMBER ARGUMENTS' 
     ST-7   'STATEMENT SPECIFIED IN A TRANSFER STATEMENT IS A FORMAT STATEMENT' 
     ST-8   'MISSING FORMAT STATEMENT' 
     ST-9   'SPECIFICATION STATEMENT DOES NOT PRECEDE STATEMENT FUNCTION DEFINITIONS 
            OR EXECUTABLE STATEMENTS' 
     ST-A   'UNREFERENCED STATEMENT FOLLOWS A TRANSFER' 
     ST-B   'STATEMENT NUMBER MUST END WITH COLON. STATEMENT NUMBER WAS IGNORED' 
 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 115 
 
 
 



 
                                                              APPENDIX 
 
 
 
     'SUBSCRIPTED VARIABLES' 
     SV-0   'THE WRONG NUMBER OF SUBSCRIPTS WERE SPECIFIED FOR A VARIABLE' 
     SV-1   'AN ARRAY OR SUBPROGRAM NAME IS USED INCORRECTLY WITHOUT A LIST' 
     SV-2   'MORE THAN 7 DIMENSIONS ARE NOT ALLOWED' 
     SV-3   'DIMENSION OR SUBSCRIPT TOO LARGE (MAXIMUM 10**8-1)' 
     SV-4   'A VARIABLE USED WITH VARIABLE DIMENSIONS IS NOT A SUBPROGRAM PARAMETER' 
     SV-5   'A VARIABLE DIMENSION IS NOT ONE OF SIMPLE INTEGER VARIABLE,SUBPROGRAM 
            PARAMETER,IN COMMON' 
     SV-6   'PSEUDO VARIABLE DIMENSIONING ASSUMED FOR ARRAY ' 
 
     'SYNTAX ERRORS' 
     SX-0   'MISSING OPERATOR' 
     SX-1   'EXPECTING OPER±ÓR' 
     SX-1   'EXPECTING OPERATOR' 
     SX-2   'EXPECTING SYMBOL' 
     SX-3   'EXPECTING SYMBOL OR OPERATOR' 
     SX-4   'EXPECTING CONSTANT' 
     SX-5   'EXPECTING SYMBOL OR CONSTANT' 
     SX-6   'EXPECTING STATEMENT NUMBER' 
     SX-7   'EXPECTING SIMPLE INTEGER VARIABLE' 
     SX-8   'EXPECTING SIMPLE INTEGER VARIABLE OR CONSTANT' 
     SX-9   'ILLEGAL SEQUENCE OF OPERATORS IN EXPRESSION' 
     SX-A   'EXPECTING END-OF-STATEMENT' 
     SX-B   'SYNTAX ERROR' 
 
     'TYPE STATEMENTS' 
     TY-0   'THE VARIABLE HAS ALREADY BEEN EXPLICITLY TYPED' 
     TY-1   'THE LENGTH OF THE EQUIVALENCED VARIABLE MAY NOT BE CHANGED. 
            REMEDY: INTERCHANGE TYPE AND EQUIVALENCE STATEMENTS' 
 
     'I/O OPERATIONS' 
     UN-0   'CONTROL CARD ENCOUNTERED ON UNIT 5 AT EXECUTION. 
            PROBABLE CAUSE:MISSING DATA OR INCORRECT FORMAT' 
     UN-1   'END OF FILE ENCOUNTERED (IBM CODE IHC217)' 
     UN-2   'I/O ERROR (IBM CODE IHC218)' 
     UN-3   'NO DD STATEMENT WAS SUPPLIED (IBM CODE IHC219)' 
     UN-4   'REWIND,ENDFILE,BACKSPACE REFERENCES UNIT 5, 6 OR 7' 
     UN-5   'ATTEMPT TO READ ON UNIT 5 AFTER IT HAS HAD END-OF-FILE' 
     UN-6   'AN INVALID VARIABLE UNIT NUMBER WAS DETECTED (IBM CODE IHC220)' 
     UN-7   'PAGE-LIMIT EXCEEDED' 
     UN-8   'ATTEMPT TO DO DIRECT ACCESS I/O ON A SEQUENTIAL FILE OR VICE VERSA. 
            POSSIBLE MISSING DEFINE FILE STATEMENT (IBM CODE IHC231)' 
     UN-9   'WRITE REFERENCES 5 OR READ REFERENCES 6 OR 7' 
     UN-A   'DEFINE FILE REFERENCES A UNIT PREVIOUSLY USED FOR SEQUENTIAL I/O (IBM 
            CODE IHC235)' 
     UN-B   'RECORD SIZE FOR UNIT EXCEEDS 32767,OR DIFFERS FROM DD STATEMENT 
            SPECIFICATION (IBM CODES IHC233,IHC237)' 
     UN-C   'FOR DIRECT ACCESS I/O THE RELATIVE RECORD POSITION IS NEGATIVE,ZERO,OR 
            TOO LARGE (IBM CODE IHC232)' 
     UN-D   'ATTEMPT TO READ MORE INFORMATION THAN LOGICAL RECORD CONTAINS (IBM CODE 
            IHC213)' 
     UN-E   'FORMATTED LINE EXCEEDS BUFFER LENGTH (IBM CODE IHC212)' 
     UN-F   'I/O ERROR - SEARCHING LIBRARY DIRECTORY' 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 116 
 
 
 



 
                                                              APPENDIX 
 
 
 
     UN-G   'I/O ERROR - READING LIBRARY' 
     UN-H   'ATTEMPT TO DEFINE THE OBJECT ERROR FILE AS A DIRECT ACCESS FILE 
            (IBM CODE IHC234)' 
     UN-I   'RECFM IS NOT V(B)S FOR I/O WITHOUT FORMAT CONTROL (IBM CODE IHC214)' 
     UN-J   'MISSING DD CARD FOR •�)' 
     UN-J   'MISSING DD CARD FOR WATLIB.NO LIBRARY ASSUMED' 
     UN-K   'ATTEMPT TO READ OR WRITE PAST THE END OF CHARACTER VARIABLE BUFFER' 
     UN-L   'ATTEMPT TO READ ON AN UNCREATED DIRECT ACCESS FILE (IHC236)' 
     UN-M   'DIRECT ACCESS SPACE EXCEEDED' 
     UN-N   'UNABLE TO OPEN WATLIB DUE TO I/O ERROR; NO LIBRARY ASSUMED' 
     UN-P   'ATTEMPT TO WRITE ON A READ ONLY FILE' 
     UN-Q   'DIRECT ACCESS UNAVAILABLE IN DEBUG MODE' 
 
     'UNDEFINED VARIABLES' 
     UV-0   'VARIABLE IS UNDEFINED' 
     UV-3   'SUBSCRIPT IS UNDEFINED' 
     UV-4   'SUBPROGRAM IS UNDEFINED' 
     UV-5   'ARGUMENT IS UNDEFINED' 
     UV-6   'UNDECODABLE CHARACTERS IN VARIABLE FORMAT' 
 
     'VARIABLE NAMES' 
     VA-0   'A NAME IS TOO LONG.IT HAS BEEN TRUNCATED TO SIX CHARACTERS' 
     VA-1   'ATTEMPT TO USE AN ASSIGNED OR INITIALIZED VARIABLE OR DO-PARAMETER IN A 
            SPECIFICATION STATEMENT' 
     VA-2   'ILLEGAL USE OF A SUBROUTINE NAME' 
     VA-3   'ILLEGAL USE OF A VARIABLE NAME' 
     VA-4   'ATTEMPT TO USE THE PREVIOUSLY DEFINED NAME AS A FUNCTION OR AN ARRAY' 
     VA-5   'ATTEMPT TO USE A PREVIOUSLY DEFINED NAME AS A SUBROUTINE' 
     VA-6   'ATTEMPT TO USE A PREVIOUSLY DEFINED NAME AS A SUBPROGRAM' 
     VA-7   'ATTEMPT TO USE A PREVIOUSLY DEFINED NAME AS A COMMON BLOCK' 
     VA-8   'ATTEMPT TO USE A FUNCTION NAME AS A VARIABLE' 
     VA-9   'ATTEMPT TO USE A PREVIOUSLY DEFINED NAME AS A VARIABLE' 
     VA-A   'ILLEGAL USE OF A PREVIOUSLY DEFINED NAME' 
 
     'EXTERNAL STATEMENT' 
     XT-0   'A VARIABLE HAS ALREADY APPEARED IN AN EXTERNAL STATEMENT' 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     WATFIV ERROR MESSAGES                                    Page 117 
     - 233,IHC237)' 
     UN-C   'FOR DIRECT ACCESS I/O THE RELATIVE RECORD POSITION IS NEGATIVE,ZERO,OR 
            TOO LARGE (IBM CODE IHC232)' 
     UN-D   'ATTEMPT TO READ MORE INFORMATION THAN LOGICAL RECORD CONTAINS (IBM CODE 
            IHC213)' 
     UN-E   'FORMATTED LINE EXCEEDS BUFFER LENGTH (IBM CODE IHC212)' 
     UN-F   'I/O ERROR - SEARCHING LIBRARY DIRECTORY' 
 



 
 
     WATFIV ERROR MESSAGES                                    Page 116 
 
 
 



 
                                                              APPENDIX 
 
 
 
     UN-G   'I/O ERROR - READING LIBRARY' 
     UN-H   'ATTEMPT TO DEFINE THE OBJECT ERROR FILE AS A DIRECT ACCESS FILE 
            (IBM CODE IHC234)' 
     UN-I   'RECFM IS NOT V(B)S FOR I/O WITHOUT FORMAT CONTROL (IBM CODE IHC2 
 


