
BASIC/370

A Manual for BASIC, the elementary
algebraic language designed for use

with Hercules and the MVS
Batch System

Or Z/OS

*** V1.0 ***
May 27, 2025

BASIC/370 © Copyright 2020, 2022, 2025
by Edward G Liss

All Right Reserved

BASIC/370 V1.0.0 User Reference

Page 2 of 44

BASIC/370 V1.0.0 User Reference

Table of Contents
I. Introduction..7
II. What’s New In BASIC370 Version 1.0.0...7
III. WHAT IS A PROGRAM?...7
IV. A BASIC PRIMER..8

1. An Example...8
2. Expressions, Numbers, and Variables..11
3. Loops..13
4. Errors and Debugging...15
5. Summary Elementary BASIC Statements...15

a) LET..15
b) READ, DATA and RESTORE...16
c) PRINT..16
d) GO TO and IF - THEN..17
e) FOR and NEXT..17
f) END...18
g) STOP...19
h) RANDOMIZE...19
i) INPUT..19

V. MORE ADVANCED BASIC...20
a) GET...20
b) PUT...20
c) More About PRINT...20
d) PRINT USING..21
e) EJECT Statement..22
f) Lists and Tables...23
g) Functions and Subroutines..23
h) Some Ideas for More Advanced Programmers...26

VI. BASIC Option Statements...29
VII. Library Access..30
VIII. Using BASIC370...31
IX. Defaults...31

6. Changing Default Limits...32
a) Override Default limits via the PROC...32
b) Override Defaults via PARM..32
c) Override Defaults via OPTIONS file..32
d) Permanent Override Changes...32

7. Changing Default Library..33
a) Override Default library via the PROC...33
b) Override Default Library via program options...33
c) Override Default Library via PARM..33
d) Override Default Library via OPTIONS file...33
e) Permanent Override Changes..33

X. Sample Programs...33
XI. Figures...34

Page 3 of 44

BASIC/370 V1.0.0 User Reference

1. Random Number Example...34
2. Sample Looping, Printing and INT/INR...35
3. Advanced Printing..36
4. Print Using Sample 1..37
5. Print Using Sample 2..38
6. Sample of a List..39
7. Example using *APPEND..40
8. Using *SAVE...41
9. Using INPUT Statement..42
10. Get/Put File I/O Example...44

Page 4 of 44

BASIC/370 V1.0.0 User Reference

BASIC

A Manual for BASIC, the elementary
algebraic language designed for use

with the Dartmouth Time Sharing System.

1 October 1964

©

Copyright 1964 by the Trustees of
Dartmouth College. Reproduction for
non-commercial use is permitted provided
due credit is given to Dartmouth College.

Page 5 of 44

BASIC/370 V1.0.0 User Reference

The development of the BASIC Language,
and of this Manual, has been supported

in part by the National Science Foundation
under the terms of Grant NSF GE 3864.

Page 6 of 44

BASIC/370 V1.0.0 User Reference

I. Introduction

BASIC/370 is an implementation of the BASIC computer programming language. BASIC370 is based on
the original document produced at Dartmouth in 1964. BASIC370 is a close implementation but it not a
exact implementation. The most significant difference is Dartmouth’s BASIC was interactive using
teletypewriters where as BASIC370 is batch based using “cards” as the input source.

The source for this document was an “nth” generation copy of the original mimeographed manual that
was OCR scanned into MS Word. The document was reformatted and revised to describe BASIC370.

Throughout this document, the terms BASIC and BASIC370 will be used interchangeably.

II. What’s New In BASIC370 Version 1.0.0

BASIC360 was originally intended for use by students learning the BASIC language. A “batch” of
program could be submitted and limits applied to stop run away loops (BASICMON). BASIC360 was later
cloned into a “stand alone” (BASIC1UP) with some limits could be overridden.

BASIC370
• drops support for the “batch” (BASICMON) since today’s environment is not “batch program”

oriented
• is a rename of BASIC1UP
• by default ignores sequence numbers in columns 73-80 since today’s environment is not card

oriented
• adds the file i/o statements GET and PUT
• adds the ability to override the default limits so larger programs could be written.

III. WHAT IS A PROGRAM?

A program is a set of directions, a recipe, that is used to provide an answer to some problem. It usually
consists of a set of instructions to be performed or carried out in a certain order. It starts with the given
data and parameters as the ingredients, and ends up with a set of answers, as the cake. And, as with
ordinary cakes, if you make a mistake in your program, you will end up with something else -- perhaps
hash!

Any program must fulfill two requirements before it can even be carried out. The first is that it must be
presented in a language that is understood by the "computer." If the program is a set of instructions for
solving linear equations, and the "computer" is a person, the program will be presented in some
combination of mathematical notation and English. If the person solving the equations is a Frenchman,
the program must be in French. If the" computer" is a high speed digital computer, the program must
be presented in a language the computer can understand.

Page 7 of 44

BASIC/370 V1.0.0 User Reference

The second requirement for all programs is that they must be completely and precisely stated. This
requirement is crucial when dealing with a digital computer, which has no ability to infer what you
meant -- it can act only upon what you actually present to it.

We are of course talking about programs that provide numerical answers to numerical problems. To
present a program in the English language, while easy on the programmer, poses great difficulties for
the computer because English, or any other spoken language is rich with ambiguities and redundancies,
those qualities which make poetry possible but computing impossible. Instead, you present your
program in a language that resembles ordinary mathematical notation, which has a simple vocabulary
and grammar and which permits a complete and precise specification of your program. The language
that you will use is BASIC (Beginner’s All purpose Symbolic instruction Code) which is at the same time
precise, simple, and easy to understand.

Your first introduction to the BASIC language will be through an example. Next you will learn how to use
the Dartmouth Time Sharing System to execute BASIC programs. Finally, you will study the language in
more detail with emphasis on its rules of grammar and on examples that show the application of
computing to a wide variety of problems.

IV. A BASIC PRIMER

1. An Example

The following example is a complete BASIC program for solving two simultaneous linear equations in
two unknowns with possibly several different right hand sides. The equations to be solved are

A₁X₁ + A₂X₂ = B₁
A₃X₁ + A₄X₂ = B₂

Since there are only two equations, we may find the solution by the formulas

X₁ = (B ₁ A ₄ – B ₂ A ₂) X₂ = (A ₁ B ₂ – A ₃ B ₁)
 (A₁A₄ – A₃A₂) (A₁A₄ – A₃A₂)

It is noted that a unique solution does not exist when the denominator (A₁A₄ – A₃A₂) is equal to zero.
Study the example carefully -- in most cases the purpose of each line in the program is self-evident.

10 READ AI, A2, A3, A4
15 LET D = Al * A4 - A3 * A2
20 IF D = 0 THEN 65
30 READ B1, B2
37 LET Xl = (B1*A4 - B2*A2) / D
42 LET X2 = (A1*B2 - A3*B1)/D
55 PRINT Xl, X2
60 GO TO 30
65 PRINT "NO UNIQUE SOLUTION”
70 DATA 1, 2,4

Page 8 of 44

BASIC/370 V1.0.0 User Reference

80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

We immediately observe several things about the above sample program. First, all lines in the program
start with a line number. These serve to identify the lines in the program, each one of which is called a
statement; thus a program is made up of statements, most of which are instructions to be performed
by the computer. These line numbers also serve to specify the order in which the statements are to be
performed by the computer, which means that you could enter your program in any order. Before the
program is run by the computer, it lines must be in order by line number.

The second observation is that each statement starts, after its line number with an English word. This
word denotes the type of the statement. There are fifteen types of statements in BASIC, nine of which
are discussed in this chapter. Of these nine, seven appear in the sample program above.

The· third observation is that we use only capital letters, and that the letter “Oh” is distinguished from
the numeral "Zero" by shape of the letter – O vs. 0. This feature is made necessary by the fact that in a
computer program it is not always possible to tell from the context whether the letter or the number
was intended unless they have a different appearance. This distinction is made automatically by the
terminal, which also has a special key for the number "One" to distinguish it from the letter "Eye" or
lower case “L”.

A fourth observation, though perhaps less obvious than the first three, is that spaces have significance in
BASIC. This results in a more readable program. Line number must be separated from keywords by at
least one space. Keywords must be separated from the balance of a statement by at least one space.
For instance, statement 15 could have been typed as

15 LET D=Al*A4-A3*A2

a fully equivalent though less readable form.

Turning now to the individual statements in the program, we observe that the first statement,
numbered 10, is a READ statement. When the computer encounters a READ statement while executing
your program, it will cause the variables whose names are listed after the READ to be given values
according to the next available numbers in the DATA statements. Thus, in the example, when statement
10 is first encountered, it will cause the variable, A1 to be given the value 1, the variable A2 to be given
the value 2, the variable A3, to be given the value 4, and the variable A4 to be given the value 2.

The next statement, numbered 15, is a LET statement. It causes the computer to compute the value of
the expression (A₁A₄ – A₃A₂) and to assign this value to the variable D. The expression computed in a LET
statement can range from the very simple (consisting of only a single variable) to the very complex. The
rules for forming these expressions are given in detail in the next section, but for now we point out that:

1. Variable names consist of a capital letter possibly followed by up to 7 capital letters
and/or digits;

2. The symbol * (asterisk) is always used to denote multiplication;

Page 9 of 44

BASIC/370 V1.0.0 User Reference

3. Parentheses may be needed to specify the order of the computation because the entire
expression must appear on a single line;

4. No subscripts1 or superscripts as such are permitted, also because the expression must
appear on a single line.

In line 20 the computer asks a question "Is D equal to 0" If the answer is yes, then the next statement to
be executed by the computer is the one numbered 65. If the answer is no, the computer continues to
statement in line 30, the next higher numbered one after 20.

In line 30 the computer causes the variables B1 and B2 to be given the values next appearing in the
DATA statements elsewhere in the program. Since the first four data have already been used up, B1 is
given the fifth value -7, and B2 is given the sixth value 5.

The statements numbered 37 and 42 complete the computation of the solution, X1 and X2. Notice that
the denominator has been previously evaluated as the variable D. Thus it is not necessary to repeat the
formula given in statement 15. Notice also how parentheses are used to specify that the numerator of
the fraction consists of the entire quantity B1*A4 – B2*A2. If the parentheses had been omitted by
mistake, the expression computed as
 B1*A4 - B2*A2
 D
which is incorrect.

Now that the answers have been computed, they will be printed out for you to see when the computer
encounters statement 55. Notice that the comma is used to separate the Individual items in the list of
quantities to be printed out at that time.

Having completed the computation, the statement 60 tells the computer to execute next statement
number 30. We observe that the second encounter of statement 30 will cause the variables B1 and B2
be given the values 1 and 3, respectively, the next available ones in the DATA statements.

After completing the computation for the second set of right hand sides and printing the answers, the
computer will give the last values, 4 and -7 to the variables B1 and B2, compute and print the third set of
answers and then stop, because there is no more data when the READ statement 30 is encountered for
the fourth time.

If D, the determinant of the coefficients, is zero, we know that the set of equations does not have a
unique solution. In this case, statement 20 will cause the computer to execute statement 65 next.
Statement 65 is again a PRINT statement, but instead of numerical answers being printed out, it
will produce the English message

 NO UNlQUE SOLUTION

We could have used any other recognizable message between the two quotation marks that would have
indicated to us that no unique solution was possible for, the given coefficients.

1 This refers to the small lowered digits like ₂ and not references to an occurrence in a list or table.

Page 10 of 44

BASIC/370 V1.0.0 User Reference

After printing the warning message the computer will execute next statement 90, an END statement,
which stops the running of the program. (The running will also be stopped when a READ statement is
encountered for which there is not sufficient data.) It is extremely important to remember that all
programs must have an END statement. It does not always have be the highest numbered statement in
the program. When executed, it simply tells BASIC your program has ended execution. The intervening
DATA statements are never executed by the computer; therefore, they may be placed anywhere in your
program. The only requirement is that DATA statements are numbered in the order in which you wish
the data to be used by the various READ statements in your program.

2. Expressions, Numbers, and Variables

Expressions in BASIC look like mathematical formulas, and are formed from numbers, variables,
operators, and functions.

A number may contain up to six digits with or without a decimal point, and possibly with a minus sign.
For example, the following numbers are acceptable in BASIC:

5 2.5 123456 .123456 -123456

To extend the range of numbers, a factor of a power of ten may be attached, using the letter E to stand
for "times ten to the power". Again, the following examples are all acceptable forms for the same
number in BASIC:

-12.345 -12345E-3 -.12345E+2 -123450E-6 -.00012345E+5

It should be noted, however, that the E notation cannot stand alone; 1000 may be written 10E2 or 1E3
but not E3 (which looks like a variable and is so interpreted in BASIC.) It should also be noted that
.000123456789 is illegal and must be written as, say .123456E-3. Also, the last digit and the E should not
have space between them.

A variable in BASIC is denoted by any a capital letter possibly followed by up to 7 capital letters and/or
digits. For instance, these are acceptable variable names:

A X N5 X0 K9 SUM R2D2 C3P0

The difference between 02 and O and between I and 1 should be observed. Thus, I0 is acceptable while
any of 1O. 1O and 10 are not (the last one is the number ten.)

A variable in BASIC stands for a number, usually one that is not known to the programmer at the time
the program was written. Variables are given or assigned values by LET or READ statements. The value
so assigned will not change until the next time a LET or READ statement is encountered that names that
variable.

Expressions are formed by combining variables and numbers together with arithmetic operations and
parentheses just as in ordinary mathematical formulas. The symbols

2 This is the digit zero

Page 11 of 44

BASIC/370 V1.0.0 User Reference

+ - * / ^
stand for "plus", "minus", "times", "divided by", and "to the power") respectively. Parentheses are used
in the usual way, as in (A1 + X)*(B – C^D7).

Because expressions must be presented as a single line, parentheses are often required where they
might not be needed in ordinary mathematical notation. Thus,
 A-B
 C is written as (A - B)/C
to show that the entire quantity A - B is to be divided by C. Omitting the parentheses would leave A -
B/C, which is interpreted as A - (B/C).

Another example that arises quite often is
 A A/(B*C)
B*C which is written as or
 A/B/C

A/B*C will be interpreted the same as (A/B)*C or (A*C)/B.

The way that expressions are interpreted can be summarized in terms of several rules, which
correspond to standard mathematical notation. These are:

1. The expression inside a parentheses pair is computed before the parenthesized quantity is used
in further computations.

2. Raising to a power is computed before multiply and/or divide, which in turn are computed
before addition and/or subtraction, in the absence of parentheses.

3. Several multiply-divides, or several addition-subtractions, are computed from left to right.

The first rule tells us that in (A + B)*C we compute A + B first, then multiply the result by C, an obvious
interpretation. The second rule tells us that in A + B * C ^ D we first compute C^iD , then multiply by
B, and finally add to A. An equivalent expression is A + (B * (C ^ D)).

The third rule states that A - B - C is interpreted as (A - B) - C and as A - (B - C) . Applied to multiplies and
divides, the rule tells us to interpret A/B/C as (A/B)/C and not as A/(B/C). For raising to a power, A ^ B ^
C means (A ^B) ^ C or, equivalently, A ^ (B*C). If you intend A ^ (B ^ C) , you must use that form.

In addition to the arithmetic operations, some of the more common standard functions are available.

For example, to compute √1 + X2 you would use SQR(1 + X ^ 2). The other standard functions are used
in this same way, that is, the BASIC name of the function followed by the argument enclosed in
parentheses .

Page 12 of 44

BASIC/370 V1.0.0 User Reference

Function Name Purpose
SlN(X) Sine of X. X must be in radians.
COS(X) Cosine of X. X must be in radians.
TAN(X) Tangent of X. X must be in radians.
ABS(X) Absolute value of X
SQR(X) Square root of X
RND(X) Generate Random number. The value of

X controls “seeding” of the generator.
INT(X) Integral Part of X – truncated at decimal

no rounding
INR(R) Integral Part of X rounded and truncated

at decimal
EXP(X) Raises the natural logarithm to the X

power
LOG(X) Finds the natural logarithm of x

Figure 1 Standard Basic Function

The functions, RND(X), INT(X), and INR(X) are explained on page 23 – Functions and Subroutines. A
sample program using the INT and INR can be found on page 35 - Figure 2 Sample Looping, Printing and
INT/INR use.

The argument of a function may be any expression, no matter how complicated. For example:

SQR(B^2- 4*A*C) - 17
Z - EXP(X1 +LOG(A/X1)) * TAN(A)
SQR(SIN(Q)^2 + COS(Q)^2)

are all acceptable in BASIC.

The use of the LOG and SQR functions requires a word of caution. In each case if the argument is
negative, the BASIC program will be terminated before applying the function, since neither function is
defined for negative arguments. Many times, though not always, an attempt to have the computer
extract the square root of a negative number implies a fundamental error in the program.

The user may define new function, using the DEF statement, which is discussed on page 23 – Functions
and Subroutines.

3. Loops

Perhaps the, single most important programming idea is that of a loop. While we can write useful
programs in which each statement is performed only once, such a restriction places a substantial
limitation on the power of the computer. Therefore, we prepare programs that have portions which are
performed not once but many times, perhaps with slight changes each time. This “looping back” is
present in the first program, which can be used to solve not one but many sets of simultaneous linear
equations having the same left hand sides.

Page 13 of 44

BASIC/370 V1.0.0 User Reference

Making tables of, say, square roots is another example where a loop is necessary. Suppose that we wish
to have the computer print a table of the first hundred whole numbers and their square roots. Without
loops, one can easily see that a program would require 101 lines, all but the last having the form:

17 PRINT 17, SQR(17)

And if one wished to go not to 100 but to 50 only, a new program would be required. Finally, if one
wanted to go to 10,000 the program would be absurd even if someone could be found to write it all
down.

We notice that the basic computation, in this case a very simple printing, is practically the same in all
cases - - only the number to be printed changes. The following program makes use of a Ioop.

10 LET X = 0
20 LET X = X + 1
30 PRINT X, SQR(X)
40 IF X < l00 THEN 20
50 END

Statement 10, which gives to X the value 0, is the initialization of the loop.

Statement 20. which increases the value of X by unity, is the statement that insures that the loop is not
merely repeating exactly the same thing -- an infinite loop! Statement 30 is the body of the loop, the
computation in which we are interested. And statement 40 provides an exit from the loop after the
desired computation has been completed. All loops contain these four characteristics: initialization,
modification each time through the loop, the body of the loop, and a way to get out.

Because loops are so important and because loops of the type shown in the example arise so often,
BASIC provides two statements to enable one to specify such a loop much more concisely. They are the
FOR and the NEXT statements, and would be used as follows in the example above:

10 FOR X = 1 TO 100
20 PRINT X, SQR(X)
30 NEXT X
40 END

Statement 10 contains both the initial and final values of X. Statement 30 specifies that X be increased
to its next value. In this case, the value by which X is increased each time is implied to be unity. If
instead we wished to print the square roots of the first 50 even numbers, we would have used

10 FOR X = 2 TO 100 STEP 2
20 PRINT X, SQR(X)
30 NEXT X
40 END

Omitting the STEP part is the same as assuming the step size to be unity.

Page 14 of 44

BASIC/370 V1.0.0 User Reference

To print the square roots of the multiples of 7 that are less than 100, one might use for line number 10

10 FOR X = 7 TO 100 STEP 7

The loop will be performed for all values of X that are less than or equal to 100, in this case, for X equal
to 7, 14, ... , 91, 98.

A sample program showing loops can be found on page 35 - Figure 2 Sample Looping, Printing and
INT/INR use.

4. Errors and Debugging

It may occasionally happen that the first run of a new problem will be error-free and give the correct
answers. But it is much more common that errors will be present and have to be corrected. Errors are of
two types: Errors of form, or grammatical errors, that prevent even the running of the program; Logical
errors in the program which cause wrong answers or even no answers to be printed.

Errors of form will cause error messages to be printed out instead of the expected answers. These
messages give the nature of the error and the line number in which the error occurred. Logical errors
are often much harder to uncover, particularly when the program appears to give nearly correct
answers. But after careful analysis and when the incorrect statement or statements are discovered, the
correction is made by retyping the incorrect line or lines, by inserting new lines, or by deleting existing
lines.

5. Summary Elementary BASIC Statements

This section gives a short and concise but complete description of each of the nine types of BASIC
statements discussed earlier in this chapter.

The notation <L…> is used to denote a particular unspecified instance of the thing referred to inside the
<>. Thus, <line number> is used to stand for any particular line number. <variable> refers to any
variable, which is a single letter possibly followed by a single digit. <expression> stands for any particular
expression, no matter how complicated, so long as it follows the rules for forming expressions given in
section ”Expressions, Numbers, and Variables” starting on page 11. <number> stands for any constant
or data number.

a) LET

Form: <line number> LET <variable> = <expression>

Example: 100 LET X = X + 1
 259 LET W7 = (W - X4 ^ 3)*(Z – A1/(A - B)) - 17

Comment: The LET statement is not a statement of algebraic equality, but is rather a command to the
computer to perform certain computations and to assign the answer to a certain variable. Thus, the first

Page 15 of 44

BASIC/370 V1.0.0 User Reference

example tells the computer to take the current value of X, add 1 to it, and assign the answer to the
variable X. In other words, X is increased by unity.

b) READ, DATA and RESTORE

Form: <line number> READ list of <variable>

Example: 150 READ X, Y, Z, Xl, Y2, Z(K+I, J)

Form: <line number> DATA list of <numbers>

Example: 300 DATA 4, 2, 1. 5, 0.6734E-2, -174.3Z1

Form: <line number> RESTORE

Example: 200 RESTORE

Comment: A READ statement causes the variables listed in it to be given in order the next available
numbers in the collection of DATA statements.

Before the program is run, the computer takes all the DATA statements in the order in which they
appear and creates a large data block. Each time a READ statement is encountered anywhere in the
program, the data block supplies the next available number or numbers. If the data block runs out of
data, with a READ statement still asking for more, the program is terminated with an error message.
The RESTORE statement is used to reset the DATA list so the program may process the data again.

c) PRINT

Form: <line number> PRINT <list of expressions to be printed>

Example:· 100 PRINT X, Y, Z, B*B - 4*A*C, EXP(LOG(17))

Form: <line number> PRINT " <any string of characters> "

Example: 200 PRINT" THIS PROGRAM IS NO GOOD. "
 150 PRINT "COMPUTES X + Y = Z"

Comment: The numerical quantities printed need not be simple variables, they may be any expressions.
The expression is first evaluated, then printed. There may be any number of expressions separated by
commas or semi colons.

Example: 150 PRINT "X", "Y", "Z"

Page 16 of 44

BASIC/370 V1.0.0 User Reference

Comment: Several messages may be included in the list separated by commas. The effect is to print the
letter X in the first column, the letter Y in the 15th column, and the letter Z in the 29th column. Note
the print line is BASIC is divided into nine 14 character zones or tabs. See More About PRINT on page 20.

Example: 200 PRINT "X = ", X, "Y = ", Y

Comment: Labels and expressions may appear in the same print statement.

Comment: Much more variety is permitted in PRINT statements than is shown here. The additional
flexibility is explained in More About PRINT on page 20.

d) GO TO and IF - THEN

Form: <line number> GO TO <line number>

Example: 150 GO TO 75
 240 GO TO 850

Comment: Sometimes called an unconditional go to, GO TO is used to interrupt the normal sequence of
executing statements in the increasing order of their line numbers.

Form: <line number> IF <expression> <relation><expression> THEN <line number>

Example: 140 IF X > Y + Z THEN 200
 85 IF X * SIN(X) >= 1 THEN 100

Comment: Sometimes called a conditional go to, the IF-THEN statement provides a way to select one of
two sequences in the program depending on the results of some previous computation. If the condition
is met, the implied go to is performed; if the condition is not met, the next statement in sequence is
performed.

Any of the six standard relations may be used.

Symbol Meaning
< Less than
<= Less than or equal
= Equal
>= Greater than or equal
> Greater than
<> Not Equal

e) FOR and NEXT
<line number> FOR <variable> = <expression> TO <expression>
or

Page 17 of 44

BASIC/370 V1.0.0 User Reference

<line number> FOR <variable> = <expression> TO <expression> STEP <expression>

Example: 120 FOR X4 = (17 + COS(A))/3 TO 3*SQR(10) STEP 1/4
 (This represents the body of the loop.)
 235 NEXT X4

Comment: Omitting the STEP part of the FOR statement is equivalent to having the step size equal to
unity.

Comment: The above example will, assuming A to be equal to 0, cause the body of the loop to be
performed several times, first with X4 equal to 6, next with X4 equal to 6.25, then 6.50, and so on. The
last time the body of the loop will be performed is with X4 equal to 9. 25, which is less than or equal to
the final value 9.486 (approximately).

The FOR statement goes into the body of a loop if the variable has a value less than or equal to the final
value (in the case of a positive stepsize), or if the be variable has a value greater than or equal to the
final value (in the case of a negative stepsize.)

Upon leaving the loop the program continues with the statement following the NEXT; the variable used
in the FOR statement then has the value it had during the last passage through the loop r 9.2.5 in the
above example.

Example: 240 FOR X= 8 TO 3 STEP -1

Comment: The body of the loop is performed with X equal to 8, 7, 6, 5, 4, and 3, and X has the value 3
upon Ieaving the loop.

Example: 456 FOR J = -3 TO 12 STEP 2

Comment: The body of the loop will be performed with J equal to -3, -1, 1, 3, 5, 7, 9, and 11. J will have
the vaIue 11 upon leaving the loop.

Example: 50 FOR Z = 2 TO -2

Comment: The body of the loop will not be performed. Instead, the computer will proceed to the
statement immediately following the corresponding NEXT. The value of Z will then be 1, which is the
initial value (2) minus the step size (1).

f) END

Form: <line number> END

Example: 999 END

Page 18 of 44

BASIC/370 V1.0.0 User Reference

Comment: An END statement is required in all programs. It indicate normal end of execution of a BASIC
program. More than one END statement may appear in a BASIC program.

g) STOP

Form: <line number> STOP

Example: 999 STOP

Comment: An STOP statement is optional in all programs. It indicate abnormal end of execution of a
BASIC program.

h) RANDOMIZE

Form: <line number> RANDOMIZE

Example: 123 RANDOMIZE

Comment: A RANDOMIZE statement is optional in all programs. It indicates that the RND function is to
be “reseeded” to the last 4 digits of the system time of day. An implicit RANDOMIZE is performed prior
to the execution of all BASIC program. It is also equivalent to a RND(X) when X<0.

i) INPUT

Form: <line number> INPUT list of numeric or string variables

Example: 123 INPUT X, Y, Z$,A$

Comment: Similar to the READ statement, the INPUT statement allows the user to enter numbers or
strings into running BASIC programs. The major difference is the source of the data. The READ takes the
data from the list of values supplied in the DATA statement. The INPUT statement accepts data from an
external source. This external source is referred to as the INPUT DD statement which is usually 80
character “card” images. Data is extracted from columns 1 to 80 for each “card”.

The INPUT file is processed like a stream of characters and not as records. When the first INPUT starts, a
“pointer” is set to the first column of the first card. If character at pointer is blank, the pointer advances
to the next non-blank character. All characters to the next blank or comma represent the value going to
the variable being INPUTed. Individual values end at the column 80 and cannot span over 2 cards.

Example: An input card is read (where b is a blank): b123 456 ZEBRA “TWO WORDS”
When INPUT X is executed, the number 123 will assigned to X. When INPUT Y is executed, the number
456 will be assigned to Y. When INPUT Z$ is executed, the string ZEBRA will be assigned to Z$.

Page 19 of 44

BASIC/370 V1.0.0 User Reference

There is a special case when a double quote (“) character is encountered as the first non blank character
of the input. All characters to the next double quote (“) character is assigned to a string variable. When
INPUT Z$ is executed, the string “TWO WORDS” will be assigned to Z$

V. MORE ADVANCED BASIC

a) GET

Form: <line number> GET list of numeric or string variables

Example: 123 GET X, Y, Z$,A$

Comment: Similar to the INPUT statement, the GET statement allows the user read data from a file. The
file is processed like a stream of characters and not as records. When the first GET starts, a “pointer” is
set to the first column of the first card. If character at pointer is blank, the pointer advances to the next
non-blank character. All characters to the next blank or comma represent the value going to the
variable being “GETed”. Individual values end at the column 80 and cannot span over 2 cards. The dd
name “GETFILE” is the source of data. See INPUT statement for how file is processed.

b) PUT

Form: <line number> PUT list of numeric or string variables

Example: 123 PUT X, Y, Z$,A$

Comment: The PUT statement allows the user write data to a file. The data is written to a file in a
format compatible with the GET and INPUT statement.

c) More About PRINT

One of the conveniences of BASIC is that the format of answers is automatically supplied for the
beginner. The PRINT statement does, however, permit a greater flexibility for the more advanced
programmer who wishes to specify a more elaborate output.

The print line is divided into nine zones of fourteen spaces each by BASIC, allowing the printing of up to
nine numbers per line. Three simple rules control the use of these zones.

1. A label, in quotes, is printed just as it appears.
2. A comma is a signal to move to the next print zone, or to the first print zone of the next

line if it has just filled the ninth print zone.
3. A semi colon is a signal to move to the next character in the current print zone.

Page 20 of 44

BASIC/370 V1.0.0 User Reference

4. The end of a PRINT statement signals a new line, unless a comma or semi colon is the
last symbol.

Each number occupies one zone. Each label occupies a whole number of zones; if it occupies part of a
zone, the rest of the zone is filled with blanks. If a label runs through the last zone, a new line is started
before the label is printed.

The example in Figure 3 Advanced Printing Example on page 36 illustrates some of the various ways in
which the PRINT statement can be used. It should be noted that a blank PRINT statement causes the
printer to move to the next line, as is implied by rule 4 above.

In line 37, the underlines for the 4 columns is printed with one PRINT. The comma causes the next
PRINT to print in the next zone. The PRINT in line 39 advances to the next line.

In line 50, the four values are printed, one to a zone because of the comma after each value. The format
in which the BASIC PRINT statement prints numbers is not under the control of the user. However, the
following rules may be used to guide the programmer in interpreting the results.

1. No more than six significant digits are printed (except for integers - - see rule 4.)
2. Any trailing zeros after the decimal point are not printed.
3. For numbers less than 0.000001, the form X. XXXXXE-Y is used unless the entire significant part

of the number can be printed as a six decimal number. Thus, .03456 means that the number is
exactly .0345600000, while 3.45600E-2 means that the number has been rounded to .0345600 .

4. If the number is an exact integer, the decimal point is not printed. Furthermore, integers of up
through nine digits are printed in full.

In line 120, note the TAB(J) in the print statement. The TAB function causes the next item to print to
start in column(J) of the print line. If J is invalid or greater than 120, an error message is issued and the
program terminated. If J is after the current print position, the next print position is set to column J.
Otherwise, a new line is started and the next print position is set to column J. Note the “,” after the TAB
does not skip to the next print zone. It functions like a “;”.

A packed form of output is available by using the character ";" instead of ",". Briefly, whereas "," tells
the computer to move to the next zone for the next answer, “;” tells the computer to move to the next
character in the current zone for the next answer instead of to the next zone. One can thus pack many
more than nine numbers on a line if the numbers themselves require less than a full zone to print.

With packed output using the semi-colon, mixtures of the three in subsequent lines may not line up, as
the example shows. The user should be careful about using the semi-colon with full length numbers
which might occur near the end of a print line. BASIC checks to see if there is enough room on a line. If
not, a new line is started and the item printed on the new line.

d) PRINT USING

One of the conveniences of BASIC is that the format of answers is automatically supplied for the
beginner. The PRINT USING statement does permit a greater flexibility for the more advanced

Page 21 of 44

BASIC/370 V1.0.0 User Reference

programmer who wishes to specify a more elaborate output. PRINT USING allows the program to
specify how the values or strings are printed.
Form: <line number> PRINT USING <edit string>,<items to print>

Example: 999 PRINT USING “THE AMOUNT DUE IS $ #,###.##”,100

Comment: This would print as THE AMOUNT DUE IS $ 100.00

The <items to print> is similar the same as for a PRINT statement. The exceptions are that “,” and “;” are
ignored except as the last character in the PRINT USING. The dangling “,” and “;” are the same as with
PRINT – either skip to new zone or next character in print line. TAB() is also ignored in PRINT USING.

The edit string controls the spacing. Currently, edit strings are limited to what can fit on a “card”, about
60 characters.

Items to print are mapped from left to right into the edit string. Each pattern in the edit string must
have a corresponding item in the items to print list AND the types (numeric and string) must match.

The first “#” encountered defines the beginning of number pattern. The next space, if any, ends the
number pattern. In the example above, the number pattern is “#,###.##”. The first item to print must
be numeric since this pattern is numeric. The value 100 will be edited into the number
pattern“#,###.##” to yield “bb100.00” where b=blank. The edit rules are:

1. if fraction is to print, indicated by a “.” in the pattern, the corresponding digit in the
value is printed;

2. leading zeros are suppressed. If the number is negative, the “-“ will be placed in front of
the 1st significant digit (i.e. -100 would edit as “b-100.00”)

3. Any character other than a “#” is a fill character and will be included in the result unless
there are no significant digits to the left. (i.e. 100 would edit as bb100.00 there are no
significant digits to the left of it).

4. The first “.” Starting at the left is considered the decimal point. Any other “.” Are
considered fill characters per rule 3.

The first “&” encountered defines the beginning of a string pattern. The next space, if any, ends the
string pattern. Any characters between the 1st & and the space define the string pattern. The
corresponding print item must be a string item. Edit rules for string patterns are:

1. If the pattern is a single &, the entire string is substituted;
2. If the pattern is more one &, the string is adjusted to fit into the number of characters in

the pattern;
3. No fill characters are supported for strings.

Referring to Figure 4 Print Using Sample 1 on page 37, the sample program demonstrates the interaction
of the PRINT and PRINT USING statements. Lines 200 to 260 print the output using the “,”. In Figure 5
Print Using Sample 2 on page 38, the program is the same except the PRINT statement use the “;” to end
the lines. Notice the difference in how the items are positioned.

e) EJECT Statement

Page 22 of 44

BASIC/370 V1.0.0 User Reference

The EJECT statement causes the printer skip to the top of a new page. When an EJECT is executed, it is
equivalent to a PRINT statement followed by a skip to top of page.

20 EJECT

f) Lists and Tables

In addition to the ordinary variables used by BASIC, there are variables that can be used to designate
lists or tables. For instance, A(7), would denote the seventh item in a list called A; B(3,7) denotes the
item in the third row and seventh column of the table called B. We commonly write A7 and B3,7 for those
same items, and use the term subscripts to denote the numbers that point to the desired items in the
list or table. (The reader may recognize that lists and tables are called, respectively, vectors and
matrices by mathematicians.)

The name of a list or table must follow the naming rule for a variable. See Expressions, Numbers, and
Variables on page 11 for rules. The subscript may be any expression, no matter how complicated, as
long as they have non-negative integer values.

BASIC provides that each list has a subscript running from 0 to 10, inclusive. Each subscript in a table
may run from 0 to 10. All lists and tables must be defined with a DIM statement. For example,

10 DIM A(17)

indicates to the computer that the subscript of the list A runs from 0 to 17, inclusive; similarly,

20 DIM S(3,4)

means that the first subscript of the table S runs from 0 through 3 and the second subscript of the table
S runs from 0 through 4. The numbers used to denote the size of a list in a DIM statement must be
integer numbers. The DIM statement is used not only to indicate that lists and tables are larger than 0-
10 in each subscript, but also to allocate storage space in very large programs by telling the computer
that only, say, 4 spaces are needed for the list 8 as shown above.

It should be mentioned that using a DIM statement does not require the user to use all of the spaces so
allocated.

Figure 6 Sample of a list on page 39 is an example of using lists. A list of values is created in the first loop
and the second list prints that list in reverse order.

g) Functions and Subroutines

Three additional functions that are in the BASIC repertory but which were not described in Expression,
Numbers and Variables (see page 11) are INT, INR and RND. INT is used to determine the integer part of
a number that might not be a whole number. Thus INT(7.8) is equal to 7. As with the other functions,
the argument of INT may be any expression. One use of INT is to round numbers3 to the nearest whole

3 The INR function is INT with rounding built in.

Page 23 of 44

BASIC/370 V1.0.0 User Reference

integer. If the number is positive, use INT(X + .5). The reader should verify that this process is
equivalent to the familiar process of rounding. If the number is negative, INT(X - .5) must be used. The
reason is that INT(-7.8) is -7, not -8. INT always operates by chopping off the fractional part, whether
the number is positive or negative.

 INT can be used to round to any specific number of decimal places. Again, for positive numbers,

INT(100*X + . 5) /100

will round X to the nearest correct two decimal number.

The INR function is the INT function with rounding built in. INR(7.7) is equal to 8. INR(-7.7) is -8.

The function RND produces a random number between 0 and 1. The form of RND requires an argument;
thus, we commonly choose a single letter such as X and use RND(X). The value of X is significant.

 When X=0, a new seed is generated by the RND function.
 When X>0, the value of X become the new seed. It is recommended that the value of X be

greater than 1000 for best results.
 When X<0, the random number is “seeded”, as described by the RANDOMIZE statement on

page 19 .

The property of RND is that it produces a new and different random number each time it is used in a
program. Thus, to produce and print 20 random digits, one might write a program like that shown in
Figure 1 - Random Number Program on page 34.

Additional flexibility is provided in BASIC by three statements that permit the use of user defined
functions and subroutines.

The DEF statement permits the user to define a function other than the standard functions listed in
Figure 1 Standard Basic Function (page 13) so that it doesn’t have to be repeated for the function each
time it is used in the program.

The name of a defined function must be three letters, the first two of which are FN. The user thus may
define up to 26 functions. The following examples illustrate the form of the DEF statement:

25 DEF FNF(Z) = SIN(Z*P) (where P has the value of 3. 14159265/180)

40 DEF FNL(X)= LOG(X)/ LOG(10)

Thus, FNF is the sine function measured in degrees, and FNL is the function log-to-the-base-ten.

The DEF statement may occur anywhere in the program before it is used. The user needs to be
cautioned that the variable used in the DEF statement must not be subscripted, and that it is used every
time that function is used. Thus, in a program containing FNF as above defined, it is best not to use the
variable Z elsewhere in the program.

Page 24 of 44

BASIC/370 V1.0.0 User Reference

The expression on the right of the equal sign' can be any expression that can be fit into one line. It could
involve many other variables besides the one denoting the argument of the function; Thus,

60 DEF FNX(X) = SQR(X*X + Y*Y)

may be used to set up a function that computes the square root of the sum of the squares of X and Y. To
use FNX, one might use the following:

10 LET Y = 30
20 LET S1 = FNX(40)

Of course, S1 would end up having the value 50. It should be noted that one does not need DEF unless
the defined function must appear at two or more locations in the program. Thus,

10 DEF FNF(Z) = SIN(Z*P)
20 LET P = 3. 14159265/180
30 FOR X = 0 TO 90
40 PRINT X, FNF(X)
50 NEXT X
60 END

might be more, efficiently written as

20 LET P = 3. 14159265/180
30 FOR X = 0 TO 90
40 PRINT X, SIN(X*P)
50 NEXT X
60 END

to compute a table of values of the sine function in degrees.

The use of DEF is limited to those cases where the value of the function can be computed within a single
BASIC statement. Often much more complicated functions, or perhaps even pieces of program that are
not functions, must be calculated at several different points within the program. For this, the GOSUB
statement may frequently be useful.

The form of a GOSUB statement is illustrated as follows:

25 GOSUB 180

The effect of the GOSUB is exactly the same as a GOTO except that note is taken by the, computer as to
where the GOSUB statement is in the program. As soon as a RETURN statement is encountered, the
computer automatically goes back to the statement immediately following the GOSUB. As a skeleton
example:

100 LET X=3
110 GOSUB 400
120 PRINT U, V, W

Page 25 of 44

BASIC/370 V1.0.0 User Reference

200 LET X = 5
210 GOSUB 400

220 LET Z = U + 2*V + 3*W

400 LET U = X*X
410 LET V = X*X*X
420 LET W = X*X*X*X + X*X*X + X*X + X
430 RETURN

When statement 400 is entered by the GOSUB 400 in line 110, the computations in lines 400, 410, and
420 are performed, after which the computer goes back to statement 120. When the subroutine is
entered from staternent 210, the computer goes back to statement 220.

As a complete illustration, the next page contains a program that determines the Greatest Common
Divisor of three integers, using the celebrated Euclidean algorithm as a subroutine. The subroutine is
contained in lines 200 to 310, and is applied to two integers only. The main routine applies this
subroutine to the first two integers, and then to the GCD of these and the third integer. The GCD is then
printed, and a new case considered.

h) Some Ideas for More Advanced Programmers

An important part of any computer program is the description of what it does, and what data should be
supplied. This description is commonly called documentation. One of the ways a computer program can
be documented is by supplying remarks along with the program itself. BASIC provides for this capability
with the REM statement. For example:

10 PRINT "A", "B", "C", "GCD”
20 READ A, B, C
30 LET X = A
40 LET Y = B
50 G0SUB 200
60 LET X = G
70 LET Y = C
80 G0SUB 200
90 PRINT A, B, C, G
100 G0 T0 20
110 DATA 60, 90, 120
120 DATA 38456, 64872, 98765
130 DATA 32, 384, 72
200 LET Q = INT(X/Y)

Page 26 of 44

BASIC/370 V1.0.0 User Reference

210 LET R : X - Q*Y
220 IF R = 0 THEN 300
230 LET X = Y
240 LET Y = R
250 G0TO 200
300 LET G = Y
310 RETURN
999 END

Each user quickly learns how much documentation he needs to permit him to understand his program,
and where to put REM statements. But it is certain that REM's are needed in any saved program. It
should be emphasized that REM's have absolutely no effect on the computation.

Sometimes a program will have two or more natural ending points. In such a case the programmer
might use a GOTO to the END statement. Such a statement can be replaced by a STOP with nothing
following the word STOP. Thus,
400 GOTO 999
710 GOTO 999
999 END
may be replaced by
400 STOP
710 STOP
999 END

BASIC allows GO TO and IF - THEN statements to point to REM and DATA statements. The effect is to
perform a vacuous statement having that number and proceed to the next numbered statement. In the
case of DATA statements, the END statement might eventually be reached. However, for REM
statements the programmer might deliberately have his GO TO’s point to REM statements, the remark
part identifying that part of the program.

One of the most important and difficult problems in computing is that of round-off error. It exerts its
influence in subtle ways, and sometimes in ways not so subtle. A full treatment of the effects of round-
off error is beyond the scope of this manuaI, but one fairly common situation will be discussed.

Most programmers eventually write or encounter a program something like this:

5 LET S = 0
10 LET X =0
20 LET S = S + X
30 IF X >= 2 THEN 60
40 LET X = X + .1
50 GO TO 20
60 PRINT S
70 END

for computing the sum of all the non-negative multiples of .1 less than or equal to 2. The correct answer
is 21, but invariably the program will produce 23. 1 as the answer. What is wrong? Round-off has
reared its ugly head high enough for us to see. The explanation is that the computer works in the binary

Page 27 of 44

BASIC/370 V1.0.0 User Reference

number system, and cannot express .1 exactly. Just as 1/3 cannot be expressed in terms of a single
decimal number, neither can .1 be expressed in terms of a single, binary number. It turns out that. 1 in
the computer is a number very slightly less than. 1. Thus, when the loop in the above example has been
performed 21 times, the value of X is not 2 exactly, but is very slightly less than 2. The IF statement in
line 30 determines that the final value, exactly 2, has not been achieved or exceeded, and so calls for
one more passage through the loop.

If the programmer had known that the computer treats .1 as a number slightly less, he could have
compensated by writing 1.95 in place of 2 in statement 30. A better way rests on the fact that the
computer performs exactly correct arithmetic for integers. The user may thus count the number of
times through the loop with integers. The example may be rewritten as follows:

5 LET S = 0
10 LET N = 0
20 LET S = S + N/10
30 IF N> 20 THEN 60
40 LET N = N + 1
50 GOTO 20
60 PRINT S
70 END

Better still a FOR statement can shorten the program to

10 LET X = 0
20 FOR N = 1 TO 20
30 LET S = S + N/10
40 NEXT N
50 PRINT S
60 END

One of the most exasperating problems confronting programmers is that of a fairly long and complex
program that looks like it should work simply refuses to do so. (Presumably, all errors of form have been
detected and removed.) The locating and removing of logical error is called debugging, and the methods
to be used depend on the nature of the program and also on the programmer himself. All important
part of debugging is intuition, but it is possible to suggest some approaches that might be useful in many
cases.

The first thing to do with an apparently incorrect program is to check very carefully the method used. If
that does not uncover the bug, then examine very carefully your programming to see if you have mixed
up any of the variables. It is often difficult to spot such errors because one tends to see in a program
what he expects to see rather than what is there.

Another method that is extremely useful in providing clues as to the nature and location of the bug or
bugs is tracing. In BASIC this tracing may be accomplished by inserting superfluous PRINT statements at
various places in your program to print the values of some of the intermediate quantities. When the
program is then, RUN, the values of these intermediate quantities often suggest the exact nature of the
error. When the program has been debugged and is working properly, these statements are removed.

Page 28 of 44

BASIC/370 V1.0.0 User Reference

There are some matters that do not affect the correct running of programs, but pertain to style and
neatness. For instance, as between two or more similar ways to prepare a part of a program, one
should select the one that is most easily understood unless there is an important reason not to do so.

More experienced programmers will tend to group the data in DATA statements so that it reflects the
READ statements that correspond. The first example on linear equations represents bad style, but was
done purposely to illustrate that one can arbitrarily group the data in the DATA statements .

 One tends after a while to place his data statements near the end of the program, or near the
beginning, but at least in one group to avoid confusing himself with DATA statements spread throughout
the program. Some programmers also tend to give the END statement a number like 9999 to insure that
it will be the one with the highest number.

No doubt the user will be able to devise ways to make a program neat and readable. But again, the
important consideration in style is to program in a way that makes it more understandable and useful to
both oneself and others in the future.

BASIC370 has the ability to put multiple statements per line by replacing line numbers with the “\”
character. For example, this sample code fragment produce the same results.

10 LET X = 0
20 FOR N = 1 TO 20
30 LET S = S + N/10
40 NEXT N
50 PRINT S
60 END

10 LET X = 0
20 FOR N = 1 TO 20\LET S = S + N/10\NEXT N
50 PRINT S\END

VI. BASIC Option Statements

BASIC supports a number options statements to direct actions to take place. These options can appear
in the BASIC program and are identified with a “*” in column 1. Below is a list options and explainations.

OPTION Meaning
*REM Alternate way of specifying a remark.
*LIST Print the program listing (default)
*NOLIST Do not print the program listing.
*NOEXEC Compile the BASIC program but don’t execute it.
*RENUM Renumber the programs line numbers. First line

will be 10 stepping by 10.
*RENUM10 Renumber the programs line numbers. First line

will be 10 stepping by 10.
*RENUM100 Renumber the programs line numbers. First line

will be 100 stepping by 10.
*RENUM1000 Renumber the programs line numbers. First line

will be 1000 stepping by 10.

Page 29 of 44

BASIC/370 V1.0.0 User Reference

*RENUM10000 Renumber the programs line numbers. First line
will be 10000 stepping by 10.

*LIB=HERC01.BASICLIB.BAS Specifies an alternate library for *APPEND and
*SAVE. If not specified, default is shown.

*APPEND=M1234567 Specifies the program name to be added to the
end of the current program.

*SAVE=M1234567 Specifies the name of the current program should
be saved as.

*NUM Program has sequence numbers in col 73-80
*NONUM Process all 80 columns of program code (default)
*TABLE Debugging tool not normally used.
*DUMP Debugging tool not normally used.
*STACK Debugging tool not normally used.
*ICODE Debugging tool not normally used.
*TRACE Debugging tool not normally used.

VII. Library Access

BASIC360 provides a facility for storing and retrieving BASIC code. There are 3 option statements
described on page 29.The *LIB allows the current program to access a library other than the current
default. The default library is HERC01.BASICLIB.BAS. To change the default for all programs in a batch
run, the library name is passed via the parm on the exec statement. For example, the change the
default to AUSER.PROJECT.STUFF for all programs in a run, code this for line 2 in the above example:

 // EXEC BASICMON,LIB=’AUSER.PROJECT.STUFF’

The *APPEND causes the named item to be copied from the library and appended to the end of the
current program. The line numbers in appended code must be larger than the last line in current
program. You may use as many *APPENDs as you like as long as the above rule is followed.
Referring to Figure 7 Example using *APPEND on page 40, the submitted program ends at line 180.
Everything after the *REM was copied from library item TRIGPLOT.

The *SAVE causes the current program less any appended code to be added or replaced in the library.
Referring to Figure 8 Example using *SAVE on page 41, all the lines up to line number 180 would be
saved in the library as MYPROG. Everything starting with the *REM will not be saved.

Page 30 of 44

BASIC/370 V1.0.0 User Reference

VIII. Using BASIC370

BASIC370 V1.0.0 is implemented to be run on MVS 3.8 Hercules mainframe environment using the TK5
system. It was successfully test on a Z/OS system4. BASIC programs will be prepared and saved in a
dataset, usually a PDS (partitioned data set). In this document, these will be referred to as libraries.
Programs will be prepared using a TSO editor (like RPF, FSE or SPFLite) and be submitted to run as batch
jobs. The output can then be reviewed using a output display tool (like OUTPUT command or the
LISTING tool). This is all outside of the scope of this manual.

BASIC370, like its predecessor BASIC1UP, is designed to execute only 1 program per job step and
optionally override all of the defaults parameters.

Below is a sample of a typical job. The first 2 lines tell MVS what to do with the job. The last two lines
are the data being supplied to process the INPUT statement.

//HERC01B JOB CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A
// EXEC BASIC370
//BASIC.SYSIN DD *
10 REM TEST INPUT STATEMENT
20 PRINT "CONTINUE (Y/N)?"
30 INPUT A$
35 PRINT "BLANK1"
40 PRINT "ANSWER IS ";A$
45 PRINT "BLANK2"
50 END
//INPUT DD *
MAYBE

IX. Defaults
BASIC370 has a number of default limits.

DATA_STACK 500 MAX NUMBER OF DATA NUMBERS AND STRING
MAX_LINES 500 MAX NUMBER OF LINES IN BASIC PROGRAM
MAX_SYM 200 MAX NUMBER DATA ELEMENTS IN SYMBOL TABLE
MAX_PCODE 500 MAX NUMBER OF PCODES
MAX_EXECS 5000 MAX PCODES BEFORE ABORTED AS LOOPED. I

If zero, no loop checking takes place.
DEFAULT_DSN HERC01.BASICLIB.BAS LIBRARY PDS

4Since BASIC370 was compiled with PL/I (F), for systems other than TK5, ‘SYS1.PL1LIB’ must be in the STEPLIB,
JOBLIB or linklib.

Page 31 of 44

BASIC/370 V1.0.0 User Reference

6. Changing Default Limits
Any of these default limits can be overriden for a BASIC program. Note - most indexes are defined as
half words so you should not make any of the defaults greater that 32767. MAX_EXECS is the exception.
It is defined as a full word and it may be set up 16M. If set to zero, no limit is imposed.

a) Override Default limits via the PROC
This is the simplest way to override the default limits. Listed below is the definition of the proc and the
keywords.

//BASIC370 PROC SOUT='*',
// LIB='HERC01.BASIC370.BAS',
// STACK=500, MAXIMUM DATA STACK
// SYM=200, MAXIMUM NUMBER OF SYMBOLS
// LINES=500, MAXIMUM NUMBER OF BASIC LINES
// PCODE=500, MAXIMUM NUMBER OF PCODES
// EXECS=5000 NUMBER OF PCODES EXECUTED TO
//* DECLARE RUNAWAY PROGRAM

There are seven keywords defined in the PROC BASIC370. To change any or all of them, code them on
the EXEC statement. Example:

//step EXEC BASIC370,EXECS=10000,PCODE=1000

b) Override Defaults via PARM
If your desire, you can code the limit overrides via the EXEC PARM. This is demonstrated by the
BASIC370 proc.

c) Override Defaults via OPTIONS file
If your desire, you can code the limit overrides via an options file. Note – if a EXEC PARM is supplied, the
options file is NOT used. To use the options file, make sure the PARM is null and the OPTION DD is
added to the JCL. Example:

//step EXEC BASIC370,PARM.BASIC=
//BASIC.OPTIONS DD …...

The option file is a single “card” 80 bytes long. The options are coded as “keyword=value”. Example:

//BASIC.OPTIONS DD *
 MAX_EXECS=10000 MAX_PCODE=1000 LIB=”some PDS DSN”

d) Permanent Override Changes

 To permanently change the default limits, edit the userid.BASIC370.SOURCE(BASIC370). Near the
bottom of the program, the defaults are set. Recompile the userid.BASIC370.SOURCE($COMPILE).

Page 32 of 44

BASIC/370 V1.0.0 User Reference

7. Changing Default Library
The default library mits can be overriden for a BASIC program. There are three ways to do it.t indexes
are defined as half words so you should not make any of the defaults greater that 32767.

a) Override Default library via the PROC
This is the simplest way to override the default limits. Example:inition of the proc and the keywords.

//step EXEC BASIC370,LIB=’some PDS DSN’

b) Override Default Library via program options.
The default library can be set using int *LIB option in the program. It is included for backward
compatibility with BASIC360 but using it is not recommended.

c) Override Default Library via PARM
If your desire, you can code the limit overrides via the EXEC PARM. This is demonstrated by the
BASIC370 proc. Another option is to update the default in the BASIC370 proc.

d) Override Default Library via OPTIONS file
If your desire, you can code the library via an options file. Note – if a EXEC PARM is supplied, the options
file is NOT used. To use the options file, make sure the PARM is null and the OPTION DD is added to the
JCL. Example:

//step EXEC BASIC370,PARM.BASIC=
//BASIC.OPTIONS DD …...

The option file is a single “card” 80 bytes long. The options are coded as “keyword=value”. Example:

//BASIC.OPTIONS DD *
 MAX_EXECS=10000 MAX_PCODE=1000 LIB=”some PDS DSN”

e) Permanent Override Changes

To permanently change the default limits, edit the userid.BASIC370.SOURCE(BASIC370). Near the
bottom of the program, the defaults are set. Recompile the userid.BASIC370.SOURCE($COMPILE).

X. Sample Programs

A dataset containing sample programs (including the ones in the Figures section) can be found in
‘userid.BASIC370.DATA’. To run them, submit the member ‘userid.BASIC370.DATA($EXECUTE)’.

Page 33 of 44

BASIC/370 V1.0.0 User Reference

XI. Figures

1. Random Number Example
OFFSET
000001 10 REM
000002 11 REM DEMO FOR RND FUNCTION
000003 12 REM
000004 20 PRINT "RND FUNCTION TEST"
000007 30 FOR I=1 TO 20
000012 40 PRINT RND(0)
000018 50 NEXT I
000020 60 END

**** END OF COMPILATION **** NO ERRORS FOUND

RND FUNCTION TEST
 0.404849
 0.428079
 0.924833
 0.696285
 0.854206
 0.858671
 0.464167
 0.05696
 0.16426
 0.472914
 0.359143
 0.898627
 0.159475
 0.869204
 0.779945
 0.856835
 0.1215
 0.017485
 0.011411
 0.911096

**** PROGRAM EXECUTION COMPLETE - 173 INSTRUCTIONS EXECUTED ****

Figure 1 - Random Number Program

Page 34 of 44

BASIC/370 V1.0.0 User Reference

2. Sample Looping, Printing and INT/INR
OFFSET

000001 10 REM
000002 20 REM DEMO PROGRAM FOR BASIC/360
000003 21 REM DEMOS FOR..NEXT, PRINT, AND FUNCTIONS
000004 30 REM
000005 31 PRINT "I","I*I","SQR(I)","ABS(I)"
000014 32 FOR I=1 TO 4
000019 34 PRINT "=====",
000022 35 NEXT I
000024 36 PRINT
000026 40 FOR I=1 TO 10
000031 50 PRINT I,I*I,SQR(I),ABS(I)
000049 60 NEXT I
000051 70 PRINT
000053 100 REM
000054 101 PRINT
000056 102 PRINT "J","K","INT(K)","INR(K)"
000065 110 LET J=1
000068 115 LET K=SQR(J)
000074 120 PRINT J,K,INT(K),INR(K)
000089 130 LET J=J+1
000095 140 IF J<=10 THEN 115
000099 150 REM
000100 9000 END

**** END OF COMPILATION **** NO ERRORS FOUND

I I*I SQR(I) ABS(I)
===== ===== ===== =====
 1 1 1 1
 2 4 1.414213 2
 3 9 1.73205 3
 4 16 2 4
 5 25 2.236067 5
 6 36 2.449489 6
 7 49 2.64575 7
 8 64 2.828427 8
 9 81 3 9
 10 100 3.162277 10

J K INT(K) INR(K)
 1 1 1 1
 2 1.414213 1 1
 3 1.73205 1 2
 4 2 2 2
 5 2.236067 2 2
 6 2.449489 2 2
 7 2.64575 2 3
 8 2.828427 2 3
 9 3 3 3
 10 3.162277 3 3

**** PROGRAM EXECUTION COMPLETE - 575 INSTRUCTIONS EXECUTED ****

Figure 2 Sample Looping, Printing and INT/INR use

Page 35 of 44

BASIC/370 V1.0.0 User Reference

3. Advanced Printing
OFFSET

000001 10 REM
000002 20 REM VALUDATION PROGRAM FOR BASIC/360
000003 21 REM ADVANCED PRINTING
000004 30 REM
000005 34 PRINT
000007 35 PRINT "I","I*I","SQR(I)","ABS(I)"
000016 36 FOR I=1 TO 4
000021 37 PRINT "======",
000024 38 NEXT I
000026 39 PRINT
000028 40 FOR I=1 TO 10
000033 50 PRINT I,I*I,SQR(I),ABS(I)
000051 60 NEXT I
000053 70 PRINT
000055 100 REM
000056 104 PRINT
000058 105 PRINT "J","J*J","SQR(J)"
000065 106 FOR I=1 TO 3
000070 107 PRINT "======",
000073 108 NEXT I
000075 109 PRINT
000077 110 LET J=1
000080 120 PRINT TAB(J),J,J*J,SQR(J)
000098 130 LET J=J+1
000104 140 IF J<=10 THEN 120
000108 9000 END

**** END OF COMPILATION **** NO ERRORS FOUND

I I*I SQR(I) ABS(I)
====== ====== ====== ======
 1 1 1 1
 2 4 1.414213 2
 3 9 1.73205 3
 4 16 2 4
 5 25 2.236067 5
 6 36 2.449489 6
 7 49 2.64575 7
 8 64 2.828427 8
 9 81 3 9
 10 100 3.162277 10

J J*J SQR(J)
====== ====== ======
 1 1 1
 2 4 1.414213
 3 9 1.73205
 4 16 2
 5 25 2.236067
 6 36 2.449489
 7 49 2.64575
 8 64 2.828427
 9 81 3
 10 100 3.162277

**** PROGRAM EXECUTION COMPLETE - 566 INSTRUCTIONS EXECUTED ****

Figure 3 Advanced Printing Example

Page 36 of 44

BASIC/370 V1.0.0 User Reference

4. Print Using Sample 1
OFFSET

000001 10 REM
000002 20 REM DEMO PRINT USING #1
000003 30 REM
000004 40 REM A LOT OF POSSIBLE COMBINATIONS OF PRINT AND PRINT USING
000005 50 REM ARE SHOWN IN THIS PROGRAM. THE OUTPUT IS A JUMBLE OF
000006 60 REM STUFF TO DEMONSTRATE THE INTERACTIONS OF PRINT AND PRINT
000007 70 REM USING.
000008 80 REM
000009 90 LET T$=" EMPLOYEE HOURS RATE NET PAY"
000012 100 LET U$=" -------- ---- ----- ---------"
000015 110 LET P$= "&&&&&&&&&&&& ##.# ##.## $ ##,###.##"
000018 120 PRINT T$
000021 130 PRINT U$
000024 140 READ NAME$,HOURS,RATE
000028 150 IF HOURS>0 THEN 190
000032 160 PRINT
000034 170 PRINT "END OF JOB"
000037 180 END
000039 190 LET NET=HOURS*RATE
000045 200 PRINT "->";
000048 210 PRINT USING P$,NAME$,HOURS,RATE,NET,
000061 220 PRINT USING P$,NAME$,HOURS,RATE,NET,
000074 230 IF HOURS <= 40 THEN 260
000078 240 PRINT "OVERTIME"
000081 250 GO TO 140
000083 260 PRINT
000085 270 GOTO 140
000087 280 DATA "MOE HOWARD",41,7.25
000088 290 DATA "LARRY FINE",32,7.25
000089 300 DATA "CURLEY HOWARD",40,.02
000090 310 DATA "THE BIG BOSS MAN",40,14
000091 320 DATA "END",0,0

**** END OF COMPILATION **** NO ERRORS FOUND

 EMPLOYEE HOURS RATE NET PAY
 -------- ---- ----- ---------
->MOE HOWARD 41.0 7.25 $ 297.25 MOE HOWARD 41.0 7.25 $ 297.25 OVERTIME
->LARRY FINE 32.0 7.25 $ 232.00 LARRY FINE 32.0 7.25 $ 232.00
->CURLEY HOWAR 40.0 0.01 $ 0.79 CURLEY HOWAR 40.0 0.01 $ 0.79
->THE BIG BOSS 40.0 14.00 $ 560.00 THE BIG BOSS 40.0 14.00 $ 560.00

END OF JOB

**** PROGRAM EXECUTION COMPLETE - 235 INSTRUCTIONS EXECUTED ****

Figure 4 Print Using Sample 1

Page 37 of 44

BASIC/370 V1.0.0 User Reference

5. Print Using Sample 2
OFFSET

000001 10 REM
000002 20 REM DEMO PRINT USING #2
000003 30 REM
000004 40 REM A LOT OF POSSIBLE COMBINATIONS OF PRINT AND PRINT USING
000005 50 REM ARE SHOWN IN THIS PROGRAM. THE OUTPUT IS A JUMBLE OF
000006 60 REM STUFF TO DEMONSTRATE THE INTERACTIONS OF PRINT AND PRINT
000007 70 REM USING.
000008 80 REM
000009 90 LET T$=" EMPLOYEE HOURS RATE NET PAY"
000012 100 LET U$=" -------- ---- ----- ---------"
000015 110 LET P$= "&&&&&&&&&&&& ##.# ##.## $ ##,###.##"
000018 120 PRINT T$
000021 130 PRINT U$
000024 140 READ NAME$,HOURS,RATE
000028 150 IF HOURS>0 THEN 190
000032 160 PRINT
000034 170 PRINT "END OF JOB"
000037 180 END
000039 190 LET NET=HOURS*RATE
000045 200 PRINT "->";
000048 210 PRINT USING P$,NAME$,HOURS,RATE,NET;
000061 220 PRINT USING P$,NAME$,HOURS,RATE,NET;
000074 230 IF HOURS <= 40 THEN 260
000078 240 PRINT "OVERTIME"
000081 250 GO TO 140
000083 260 PRINT
000085 270 GOTO 140
000087 280 DATA "MOE HOWARD",41,7.25
000088 290 DATA "LARRY FINE",32,7.25
000089 300 DATA "CURLEY HOWARD",40,.02
000090 310 DATA "THE BIG BOSS MAN",40,14
000091 320 DATA "END",0,0

**** END OF COMPILATION **** NO ERRORS FOUND

 EMPLOYEE HOURS RATE NET PAY
 -------- ---- ----- ---------
->MOE HOWARD 41.0 7.25 $ 297.25MOE HOWARD 41.0 7.25 $ 297.25OVERTIME
->LARRY FINE 32.0 7.25 $ 232.00LARRY FINE 32.0 7.25 $ 232.00
->CURLEY HOWAR 40.0 0.01 $ 0.79CURLEY HOWAR 40.0 0.01 $ 0.79
->THE BIG BOSS 40.0 14.00 $ 560.00THE BIG BOSS 40.0 14.00 $ 560.00

END OF JOB

**** PROGRAM EXECUTION COMPLETE - 235 INSTRUCTIONS EXECUTED ****

Figure 5 Print Using Sample 2

Page 38 of 44

BASIC/370 V1.0.0 User Reference

6. Sample of a List
OFFSET

000001 1 REM
000002 2 REM DEMONSTRATE DIM AND SUBSCRIPTED VARIABLES
000003 3 REM
000004 10 DIM I(10)
000005 20 DIM J(10),K(10)
000006 100 FOR X=1 TO 10
000011 110 LET I(X)=X
000017 120 LET J(X)=X*X
000026 130 LET K(X)=SQR(X)
000035 140 NEXT X
000037 150 FOR X=10 TO 1 STEP -1
000045 160 PRINT I(X),J(X),K(X)
000064 170 NEXT X
000066 180 END

**** END OF COMPILATION **** NO ERRORS FOUND

 10 100 3.162277
 9 81 3
 8 64 2.828427
 7 49 2.64575
 6 36 2.449489
 5 25 2.236067
 4 16 2
 3 9 1.73205
 2 4 1.414213
 1 1 1

**** PROGRAM EXECUTION COMPLETE - 490 INSTRUCTIONS EXECUTED ****

Figure 6 Sample of a list

Page 39 of 44

BASIC/370 V1.0.0 User Reference

7. Example using *APPEND
OFFSET

000001 *APPEND=TRIGPLOT
000001 10 REM
000002 20 REM DEMO APPEND - PLOT SIN CURVE
000003 30 REM
000004 40 DEF FNX(X)=SIN(X)
000013 50 LET T$="SIN(X)"
000016 60 GOSUB 10000
000018 70 PRINT "BACK"
000021 180 END
000023 *REM APPENDED CODE
000023 10000 REM ---
000024 10010 REM
000025 10020 REM SUBPROGRAM PLOT A TRIG FUNCTION USING CODE FROM A LIBRARY
000026 10030 REM
000027 10040 REM TO USE, DEF FNX(X) TO THE TRIG FUNCTION
000028 10050 REM AND SET T$ TO THE TITLE OF THE PLOT
000029 10060 REM AND THEN GOSUB TO THE FIRST LINE OF THIS CODE
000030 10070 REM
000031 10080 PRINT "X";TAB(68);T$
000041 10090 REM
000042 10100 FOR X=0 TO 6.28 STEP .1
000047 10110 LET Y=FNX(X)
000053 10120 LET Y2=Y*40+70
000062 10130 PRINT X,Y2;
000067 10140 IF Y2>70 THEN 10180
000071 10150 IF Y2<70 THEN 10200
000075 10160 PRINT TAB(70);"*"
000083 10170 GOTO 10210
000085 10180 PRINT TAB(70);"|";TAB(Y2);"*"
000100 10190 GOTO 10210
000102 10200 PRINT TAB(Y2);"*";TAB(70);"|"
000117 10210 NEXT X
000119 10220 RETURN

**** END OF COMPILATION **** NO ERRORS FOUND

X SIN(X)
 0 70 *
 0.099999 73.993331 | *
 0.199999 77.946762 | *
 0.299999 81.8208 | *
 0.399999 85.576721 | *
 0.499999 89.177001 | *
 0.599999 92.585678 | *
 0.699999 95.768692 | *
 0.799999 98.694229 |
{output truncated}

Figure 7 Example using *APPEND

Page 40 of 44

BASIC/370 V1.0.0 User Reference

8. Using *SAVE
OFFSET

000001 *APPEND=TRIGPLOT
000001 *SAVE=MYPROG
000001 10 REM
000002 20 REM DEMO APPEND - PLOT SIN CURVE
000003 30 REM
000004 40 DEF FNX(X)=SIN(X)
000013 50 LET T$="SIN(X)"
000016 60 GOSUB 10000
000018 70 PRINT "BACK"
000021 180 END
000023 *REM APPENDED CODE
000023 10000 REM ---
000024 10010 REM
000025 10020 REM SUBPROGRAM PLOT A TRIG FUNCTION USING CODE FROM A LIBRARY
000026 10030 REM
000027 10040 REM TO USE, DEF FNX(X) TO THE TRIG FUNCTION
000028 10050 REM AND SET T$ TO THE TITLE OF THE PLOT
000029 10060 REM AND THEN GOSUB TO THE FIRST LINE OF THIS CODE
000030 10070 REM
000031 10080 PRINT "X";TAB(68);T$
000041 10090 REM
000042 10100 FOR X=0 TO 6.28 STEP .1
000047 10110 LET Y=FNX(X)
000053 10120 LET Y2=Y*40+70
000062 10130 PRINT X,Y2;
000067 10140 IF Y2>70 THEN 10180
000071 10150 IF Y2<70 THEN 10200
000075 10160 PRINT TAB(70);"*"
000083 10170 GOTO 10210
000085 10180 PRINT TAB(70);"|";TAB(Y2);"*"
000100 10190 GOTO 10210
000102 10200 PRINT TAB(Y2);"*";TAB(70);"|"
000117 10210 NEXT X
000119 10220 RETURN

**** END OF COMPILATION **** NO ERRORS FOUND

X SIN(X)
 0 70 *
 0.099999 73.993331 | *
 0.199999 77.946762 | *
 0.299999 81.8208 | *
 0.399999 85.576721 | *
 0.499999 89.177001 | *
 0.599999 92.585678 | *
 0.699999 95.768692 | *
 0.799999 98.694229 |
{output truncated}

Figure 8 Example using *SAVE

Page 41 of 44

BASIC/370 V1.0.0 User Reference

9. Using INPUT Statement
OFFSET

000001 10 REM TEST INPUT STATEMENT
000002 20 PRINT "CHANGE MAKER FOR USA"
000005 21 DIM COIN$(5),CENTS(5)
000006 22 FOR I=1 TO 5
000011 23 READ COIN$(I),CENTS(I)
000020 24 NEXT I
000022 30 PRINT
000024 40 PRINT "HOW MUCH IS THE PURCHASE?"
000027 50 INPUT PUR
000029 60 PRINT "HOW MUCH WAS TENDERED?"
000032 70 INPUT TEN
000034 80 LET CHG=TEN-PUR
000040 90 LET PU$="PURCHASE #,###.## TENDERED #,###.## CHANGE #,###.##"
000043 100 PRINT USING PU$,PUR,TEN,CHG
000054 110 IF CHG < 0 THEN 1000
000058 120 IF CHG = 0 THEN 900
000062 130 REM CONVERT CHG TO ALL CENTS DUE TO FLOATING POINT INACCURACIES
000063 140 LET CHG=INT(CHG*100)
000072 150 FOR I=1 TO 5
000077 160 LET NC=INT(CHG/CENTS(I))
000091 170 PRINT USING "### &",NC,COIN$(I)
000105 171 IF NC=0 THEN 190
000109 180 LET CHG=CHG-(NC*CENTS(I))
000123 190 NEXT I
000125 200 GOTO 2000
000127 900 PRINT "NO CHANGE DUE"
000130 910 GOTO 2000
000132 1000 PRINT USING "SHORT #,###.##",CHG
000139 2000 PRINT "MAKE MORE CHANGE (Y/N)?"
000142 2010 INPUT R$
000144 2020 IF R$="Y" THEN 30
000148 2030 IF R$="N" THEN 9999
000152 2040 PRINT "PLEASE ENTER Y OR N"\GOTO 2000
000156 8000 DATA "DOLLAR(S)",100
000157 8010 DATA "QUARTER(S)",25
000158 8020 DATA "DIME(S)",10
000159 8030 DATA "NICKLE(S)",5
000160 8040 DATA "PENNIES",1
000161 9999 END

**** END OF COMPILATION **** NO ERRORS FOUND
**** 162 INSTRUCTIONS GENERATED, 53 SYMBOLS DEFINED 10 DATA ITEMS DEFINED ****

CHANGE MAKER FOR USA

HOW MUCH IS THE PURCHASE?
1.68 ENTERED VIA INPUT
HOW MUCH WAS TENDERED?
10 ENTERED VIA INPUT
PURCHASE 1.67 TENDERED 10.00 CHANGE 8.32
 8 DOLLAR(S)
 1 QUARTER(S)
 0 DIME(S)
 1 NICKLE(S)
 2 PENNIES
MAKE MORE CHANGE (Y/N)?
Y ENTERED VIA INPUT

HOW MUCH IS THE PURCHASE?
9.99 ENTERED VIA INPUT
HOW MUCH WAS TENDERED?
20 ENTERED VIA INPUT
PURCHASE 9.98 TENDERED 20.00 CHANGE 10.01
 10 DOLLAR(S)
 0 QUARTER(S)

Page 42 of 44

BASIC/370 V1.0.0 User Reference

 0 DIME(S)
 0 NICKLE(S)
 1 PENNIES
MAKE MORE CHANGE (Y/N)?
N ENTERED VIA INPUT

**** PROGRAM EXECUTION COMPLETE - 615 INSTRUCTIONS EXECUTED ****

Figure 9 Example Of Input Statements

Page 43 of 44

BASIC/370 V1.0.0 User Reference

10. Get/Put File I/O Example
OFFSET

000001 10 REM GET/PUT TEST
000002 15 LET X$="SOMETHING DIFFERENT."
000005 20 FOR X=1 TO 100
000010 21 LET Y=X*X
000016 22 LET Z=SQR(X)
000021 30 PUT X,Y,Z,X$
000026 35 NEXT X
000028 40 END

**** END OF COMPILATION **** NO ERRORS FOUND
**** 29 INSTRUCTIONS GENERATED, 20 SYMBOLS DEFINED 0 DATA ITEMS DEFINED ****

**** PROGRAM EXECUTION COMPLETE - 1811 INSTRUCTIONS EXECUTED ****

OFFSET

000001 10 REM GET/PUT TEST
000002 20 FOR I=1 TO 100
000007 30 GET X,Y,Z,X$
000012 40 PRINT X$,X,Y,Z
000021 50 NEXT I
000023 60 END

**** END OF COMPILATION **** NO ERRORS FOUND
**** 24 INSTRUCTIONS GENERATED, 19 SYMBOLS DEFINED 0 DATA ITEMS DEFINED ****

SOMETHING DIFFERENT. 1 1 1
SOMETHING DIFFERENT. 2 4 1.414212
SOMETHING DIFFERENT. 3 9 1.732049
SOMETHING DIFFERENT. 4 16 2
SOMETHING DIFFERENT. 5 25 2.236066
SOMETHING DIFFERENT. 6 36 2.449488
SOMETHING DIFFERENT. 7 49 2.645749
SOMETHING DIFFERENT. 8 64 2.828426
SOMETHING DIFFERENT. 9 81 3
SOMETHING DIFFERENT. 10 100 3.162276
SOMETHING DIFFERENT. 11 121 3.316623
SOMETHING DIFFERENT. 12 144 3.4641
SOMETHING DIFFERENT. 13 169 3.60555
SOMETHING DIFFERENT. 14 196 3.741656
SOMETHING DIFFERENT. 15 225 3.872981
SOMETHING DIFFERENT. 16 256 4
SOMETHING DIFFERENT. 17 289 4.123105
SOMETHING DIFFERENT. 18 324 4.242639
SOMETHING DIFFERENT. 19 361 4.358898
SOMETHING DIFFERENT. 20 400 4.472134
SOMETHING DIFFERENT. 21 441 4.582574
SOMETHING DIFFERENT. 22 484 4.690414
SOMETHING DIFFERENT. 23 529 4.79583

(output truncated)

Page 44 of 44

	I. Introduction
	II. What’s New In BASIC370 Version 1.0.0
	III. WHAT IS A PROGRAM?
	IV. A BASIC PRIMER
	1. An Example
	2. Expressions, Numbers, and Variables
	3. Loops
	4. Errors and Debugging
	5. Summary Elementary BASIC Statements
	a) LET
	b) READ, DATA and RESTORE
	c) PRINT
	d) GO TO and IF - THEN
	e) FOR and NEXT
	f) END
	g) STOP
	h) RANDOMIZE
	i) INPUT

	V. MORE ADVANCED BASIC
	a) GET
	b) PUT
	c) More About PRINT
	d) PRINT USING
	e) EJECT Statement
	f) Lists and Tables
	g) Functions and Subroutines
	h) Some Ideas for More Advanced Programmers

	VI. BASIC Option Statements
	VII. Library Access
	VIII. Using BASIC370
	IX. Defaults
	6. Changing Default Limits
	a) Override Default limits via the PROC
	b) Override Defaults via PARM
	c) Override Defaults via OPTIONS file
	d) Permanent Override Changes

	7. Changing Default Library
	a) Override Default library via the PROC
	b) Override Default Library via program options.
	c) Override Default Library via PARM
	d) Override Default Library via OPTIONS file
	e) Permanent Override Changes

	X. Sample Programs
	XI. Figures
	1. Random Number Example
	2. Sample Looping, Printing and INT/INR
	3. Advanced Printing
	4. Print Using Sample 1
	5. Print Using Sample 2
	6. Sample of a List
	7. Example using *APPEND
	8. Using *SAVE
	9. Using INPUT Statement
	10. Get/Put File I/O Example

