
GC28-0673-6
File No. S370-37

Systems

OS/VS System Modification
Program (SMP) System
Programmer's Guide

Seventh Edition (September, 1980)

This is a major revision of GC28-0673-5 and Technical Newsletter GN28-2992. See the Summary
of Amendments for a list of changes that have been made to this manual. A vertical line to the
left of the text or illustration indicates a technical change made in this edition.

This edition applies to the System Modification Program (SMP) for Release 6.7 of OS/VS1
and Release 3.8 of OS/VS2 MVS and to all subsequent releases of OS/VS unless otherwise
indicated in new editions or Technical Newsletters. Changes are continually made to the
information herein; before using this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 Bibliography, GC20-0001, for the editions that
are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Publications Development,
Department D58, Building 706-2, PO Box 390, Poughkeepsie, N.Y. 12602. IBM may use or
distribute any of the information you supply in any way it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use the information
you supply.

© Copyright International Business Machines Corporation 1974, 1976, 1977, 1978, 1980

PREFACE

The System Modification Program (SMP) is a service aid that is used to install
system modifications (SYSMODs) on an OS/VS1 or OS/VS2 MVS operating system and
associated distribution libraries.

This publication describes how to use SMP to install or remove system modifica-

tions, how to create and initialize SMP data sets, and how to correct and prevent
installation errors. It also includes descriptions of the different types of sys-
tem modifications, descriptions of SMP processing, and examples of system modifi-
cations.

This publication is intended for IBM personnel who create system modifications and
system programmers who install and create system modifications. The reader should
be experienced in using or maintaining VS operating systems.

Each page of SMP output includes an indicator denoting the SMP level being exe-
cuted. The indicator is in the form xx.yy where:

• xx is the release level of SMP, increased by 1 for each subsequent release.

• yy is the PTF level within the release level, increased by 1 for each SMP PTF
released that applies to the xx SMP level.

This publication corresponds to level 04.20.

Note that this publication is a major revision of and obsoletes GC28-0673-5, OS/VS
System Modification Program (SMP) System Programmer's Guide for SMP Release 4
users.

The publication contains nine chapters, five appendices and a glossary as follows:

Chapter 1: "Introduction" - provides an overview of SMP.

Chapter 2: "SMP Processing" - provides a detailed explanation of the processing
that takes place during RECEIVE, REJECT, APPLY, RESTORE, ACCEPT, JCLIN and UCLIN
processing.

Chapter 3: "Installation and Use" - provides the information necessary to
install and execute SMP. Examples of commonly used SMP procedures are included.

Chapter 4: "Reports" - explains the reports that might be produced during SMP
processing.

Chapter 5: "Control Statements" - provides detailed descriptions of the SMP con-
trol statements, in alphabetic order by control statement.

Chapter 6: "Modification Control Statements" - provides detailed descriptions of
the modification control statements, in alphabetic order by modification control
statement.

Chapter 7: "Data Sets" - describes the data sets used by SMP.

Preface iii

Chapter 8: "Control Dataset Entries" - For user reference in reading processing
descriptions and SMP listings.

Chapter 9: "SYSMOD Construction" - Contains construction rules and techniques for
building SYSMODs.

Appendix A: "Rules for Coding SMP Statements" - provides syntax rules for SMP
Control and Modification Control statements.

Appendix B: "Syntax Notation Conventions" - provides the syntax notation con-
ventions used to define SMP Control and Modification Control statements.

Appendix C: "PTF Compatibility Feature" - describes a feature that enables SMP to
process PTFs that are defined using syntax and rules on the modification control

statements supported by previous versions of SMP.

Appendix D: "SMP3/SMP4 Amendments" - describes the differences between SMP
Release 3 and SMP Release 4. This information was formally the "Summary of Amend-
ments" section of the SMP System Programmer's Guide (GC28-0673-5).

Appendix E: "UCL Operand/Dataset Cross Reference" - provides charts which illus-
trate the allowable UCLIN operations to the entries in each SMP data set.

Glossary: provides definitions of SMP terms and abbreviations.

Associated Publications

• OS/VS System Modification Program (SMP) Messages and Codes, GC38-1047

• OS/VS System Modification Program (SMP) Logic, SY28-0685

The following publications might be required when you use SMP:

• OS/VS Linkage Editor and Loader, 0C26-3813

• OS/VS and DOS/VS Assembler Language, GC33-4010

• OS/VS MVS Utilities, GC26-3902

• OS/VS1 Utilities, GC26-3901

• OS/VS1 JCL Reference, GC24-5099

• OS/VS2 MVS JCL, GC28-0692

• OS/VS1 Service Aids, GC28-0665

• OS/VS2 System Programming Library: Service Aids, GC28-0674

• OS/VS1 Data Management Services Guide, GC26-3874

iv OS/VS SMP System Programmer's Guide

• OS/VS2 System Programming Library: Data Management, GC26-3830

• OS/VS2 DADSM Logic, SY26-3858

• OS/VS1 DADSM Logic, 5Y26-3837

• OS/VS2 MVS Data Management Services Guide, GC26-3875

During the installation of SMP, the following publications can provide needed
data:

• OS/VS1 System Generation, GC26-3791

• OS/VS2 System Programming Library: System Generation Reference, GC26-3792

• OS/VS2 System Programming Library: Initialization and Tuning Guide, GC28-0681

• OS/VS2 MVS Release 3.8 Guide, GC28-0707

Preface v

vi OS/VS SMP System Programmer's Guide

SUMMARY OF AMENDMENTS

This publication represents a major re-organization of the SMP System Programmer's
Guide GC28-0673-5. The material from the former publication has been re-arranged
to distinguish between two different types of SMP "users": (1) the "user" who cre-
ates system modifications and (2) the "user" who manages the installation of sys-
tem software and uses SMP to install these modifications.

For the first "user", a new chapter has been added, "SYSMOD Construction", which
consolidates much of the construction information which was formerly spread
throughout the former Programmer's Guide.

For the second "user", the "Installation and Use" chapter has been expanded to
include considerations for and examples of SMP use in the management of system
software.

For both sorts of "users", the "SMP Processing" chapter has been rewritten to
clarify the processing descriptions in response to APARs and Reader's Comments.

• The APPLY Processing section has been completely revised with emphasis on ele-
ment selection and element processing (assemblies, link edits, etc.)

• The JCLIN Processing section has been completely revised to more clearly
define the affects of JCLIN and the conventions which SMP requires.

This publication is accompanied by a new publication, SMP Messages and Codes
(GC38-1047), which contains SMP Return Codes, Diagnostic Techniques and Messages
from the former publication. This new publication is meant to be a reference for
the user who installs system software and must deal with such items.

Chapter 5, "Control Statements", and chapter 6, "Modification Control
Statements", are meant to be used for syntax reference and remain essentially
unchanged.

• The UCL Statement section has been re-structured such that each statement is
described for the particular data set and entry to which it is applicable. A
set of charts has been included (Appendix E) to illustrate the possible UCL
updates allowed for each data set and entry.

• The LIST Statement section has been re-organized in a manner similar to the
UCL Statement section to clarify the list options for each SMP data set.

A new chapter, "SMP Data Set Entries", is included for reference in the use of
UCLIN and the analysis of SMP listings. This chapter describes the structure of
the SMP data sets and describes the data contained in each of the entries.

The material formerly included in the "Summary of Amendments" describing the dif-
ferences between SMP Release 3 and SMP Release 4 has been included as Appendix D in
this publication.

Summary Of Amendments vii

viii OS/VS SMP System Programmer's Guide

CONTENTS

Introduction 1

Functional Hierarchy of the Operating System 2

SYSMOD Definition 4

MODIFICATION CONTROL STATEMENTS (MCS) 4

Defining the Environment to which a SYSMOD Applies 5

SMP Processing 6

Stages in SMP Processing 6

CHAPTER 2: SMP PROCESSING

SMP Processing Introduction 11

RECEIVE Processing 13

The RECEIVE Control Statement 13

The PTS Data Set 13
The PTS SYSTEM Entry 13

SYSMOD APPLICABILITY 14

RECEIVE Output 14

SMPOUT 14
SMP REPORTS 14
PTS SYSTEM Entry 14
PTS MCS Entry 15

PTS SYSMOD Entry 15
SMPLOG 15

Processing of Relative Files 15
Library Loading 15
Termination of SYSMODs with Relative Files 16

Reprocessing Received SYSMODs 16
User Exit 1 17

REJECT Processing 19

THE REJECT CONTROL STATEMENT 19

REJECT OUTPUT 20

Temporary Library Deletion 20

Updating the PTS SYSTEM Entry 20

REJECT Messages 21

APPLY Processing 22

APPLY CONTROL STATEMENT 22
SYSMOD Applicability 22

REQUISITE CHECKING 23
Unconditional Requisites 23
Conditional Requisites 24

SYSMOD PROCESSING ORDER 24

DELETED SYSMODS 24
Processing Inline JCLIN 26
Element Selection 26

Element FMID/RMID/UMID Attributes 26

Contents ix

FMID of a SYSMOD 27
FMIDs DIFFER 28
FMIDs MATCH - MODID VERIFICATION 28
Element Selection for Function Re-Install 29

ELEMENT PROCESSING 30
Processing Modules 30

Load Module Attributes and Link Edit Parameters 30

PROCESSING SOURCE AND MACRO MODIFICATIONS 31
Library Updating 31
Assembly of Source Text 32
Assemblies for MACROS . 32
REUSE of Previous Assemblies 33
Usage of DISTSRC, ASSEM and DISTMOD Operands 33

ALIAS Processing 34
DISTLIB Operand Checking 35

COMPRESS Processing 35

APPLY CHECK Facility 36

APPLY OUTPUT 36
CDS SYSMOD Entries 36

Processed SYSMODs 36
Superseded SYSMODs 36
Regressed Element Subentries 37

CDS Element Entries . 37
Entry Update Indicator: . 37
ALIAS Sub-Entries: . 37
LMOD Sub Entries: 37
MODID Sub Entries: 37

SMPCRQ 38
PTS SYSMOD Entries 39
SMPSCDS 39

Reports and Messages 39
SYSMOD Processing Termination 39

Avoiding Termination of a SYSMOD 40

BYPASS 40
Utility Return Code Thresholds 41

APPLY Processing Termination . 41

Automatic Reapplication of SYSMODs . 41

RESTORE Processing 43
SYSMOD Selection 43
SYSMOD Ineligibility 44
Inline JCLIN 45
Element Restoration 46
Avoiding Termination of SYSMOD Processing 46
Updating the MODID Subentries of Element Entries 47
Supersede Processing 47
Deleting Data from the CRQ 47
Updating the PTS 47

Deleting Entries from the CDS 48

Deleting Members from the MTS and STS 48

RESTORE Reports and Messages 48

ACCEPT Processing 49
ACCEPT CONTROL STATEMENT 49
SYSMOD Applicability 49

x OS/VS SMP System Programmer's Guide

Inline JCLIN and DISTLIB Checks 50

ELEMENT PROCESSING 50

Load Module Attributes and Link Edit Parameters 51

ACCEPT Output 51

SMPSCDS Backup Entries 51

SMPACDS Element Entries 51

SMPPTS SYSMOD Entries 52

Deletion of Temporary Libraries and SMPPTS Entries 52

SMPMTS and SMPSTS 52

UCLIN Processing 53

Functions Provided by UCLIN 54

UCL Statement Processing Flow 55

Entry Update Indication in ACDS and CDS Entries 56

UCLIN Messages 56

JCLIN Processing 57
JCLIN Function 57

JCLIN Processing Overview 57

Entries Affected by JCLIN 58

SCDS Backup Entries 58

Entry Update Indication in CDS Entries 58
SMPCDS ASSEM entry 58

SMPCDS DLIB entry 59

SMPCDS MACRO entry 59

SMPCDS MOD entry 59

SMPCDS LMOD entry 60
JCLIN JOB-STEP Coding Conventions 61

Assembler Job Step Coding Conventions 62
Copy Job Step Coding Conventions 64
Link Edit Job Step Coding Conventions 65

Update Job Step Coding Conventions 68

Other Job Step JCL 68
JCLIN Example 69

CHAPTER 3: INSTALLATION AND USE

SMP Installation and Use 73
IBM Operating Systems and Distribution Libraries 73
Executing SMP 74

SMP Control Statements 74

SMP Modification Control Statements 74

SMP Output 74
SMP Messages and Return Codes 75

SMP JCL and EXEC Statement Parameters 76

SMP Cataloged Procedure 76

Including the Required System Programs 79
SMP Primary Data Sets 80

Primary Data Set Requirements - RECEIVE 80
Primary Data Set Requirements - APPLY 80
Primary Data Set Requirements - ACCEPT 80

Primary Data Set Requirements - RESTORE 81

Contents xi

SMP Primary Data Set Initialization 81
Null PTS 81

Null ACDS 82

Creating the CDS and CRQ 82
SMP Processing Parameters and Options 83

PEMAX Values 83

PEMAX Determination - RECEIVE 83
PEMAX Determination - APPLY/ACCEPT/RESTORE 83

System Programs and Parameters 84
Establishing System Program Return Code Threshold Values 84

Specifying the RC Keyword on Control Statements 84

Reseting the Return Codes 84
User Exit Routines 85

Directories in Storage 85
RETRY Processing 86

RELFILE Tape TLIB Data Set Allocation (DSSPACE) 87

Assembly REUSE Facility 87
Special Processing Considerations 88

SYS1.NUCLEUS Storage Requirements - MVS/VS1 Control Program 88

IEHIOSUP for VS1 88

Applying SYSMODs to Stage I SYSGEN Macros 89

Applying SYSMODs After Partial SYSGEN (VS/1 only) 89

Backup of SMP Datasets 90

IEHDASDR Dump . 91

IEBCOPY Unloads of Individual SMP Datasets 91

SMP Use Examples 92

Writing Messages to SMPLOG 92
RECEIVE 92

RECEIVE All SYSMODs from SMPPTFIN 92

RECEIVE Selected SYSMODs 92
RECEIVE SYSMODs which have already been Received 93

RECEIVE PTFs Prior to Function Installation 93

RECEIVE PTFs For Various Systems 93

APPLY 93

Modification of CDS Identifier (CDSID) 94

MASS APPLY 94

GROUP APPLY 94
ACCEPT 94
Deletion of SYSMODS from the PTS at ACCEPT 94

ACCEPT ALL SYSMODS which have been Successfully Applied 95
ACCEPT SYSMODs in Preparation for a SYSGEN 95
PTS Listings for SYSMOD Status 96
CDS/ACDS Listings for SYSMOD Status 96
Listing Only SYSMOD Entries 97
Listing Specific SYSMODs 97
Listing Specific SYSMOD Types 97
Listing Specific SYSMOD Status 97
Listings for ELEMENT Information 97
Listing Only ELEMENT Entries 98
Element Modification History Listings 98
Mac ro Processing Information . 98
Source Processing Information 98
Module Link Edit Processing Information 99
REJECT Facilities 99

User-Written Exit Routines 100

xii OS/VS SMP System Programmer's Guide

Module HMASMUXD (User Exit Determinator) 100

User Exits 102

User Exit 1 (RECEIVE) 103

User Exit 2 (RETRY) 105

SMP Data Set Allocation Guidelines 106

Storage Estimates 109

SMP Program Requirements 109

CHAPTER 4: REPORTS

Chapter 4: SMP Reports 111
RECEIVE Summary Report 111

APPLY, RESTORE and ACCEPT REPORTS 113

The SYSMOD STATUS Report 114

The ELEMENT SUMMARY Report 115

The SYSMOD REGRESSION Report 117

The DELETED FUNCTION Report 119

CHAPTER 5: CONTROL STATEMENTS

Chapter 5: SMP Control Statements 121

ACCEPT Control Statement 123
ACCEPT Syntax 123

ACCEPT Operands 123
ACCEPT DDnames 126
ACCEPT Programming Considerations 127

Return Codes 128

APPLY Control Statement 129
APPLY Syntax 129
APPLY Operands 129
APPLY DDnames 132
APPLY Programming Considerations 132

Return Codes 134

ENDUCL Control Statement 135
ENDUCL Syntax 135
ENDUCL Operands 135
ENDUCL DDnames 135
ENDUCL Programming Considerations 135
ENDUCL Return Codes 135

DEBUG Control Statement 137
DEBUG Syntax 137
DEBUG Operands 137
DEBUG DDnames 137
DEBUG Programming Considerations 137
DEBUG Return Codes 138

Contents xiii

JCLIN Control Statement 140
JCLIN Syntax 140
JCLIN Operands 140
JCLIN DDnames 141
JCLIN Programming Considerations 141

Return Codes 142

LIST Control Statement 143
LIST Syntax (General) 143

LIST Operands (General) 143
LIST Output (General) 144
LIST DDnames (General) 144
LIST Programming Considerations (General) 145

Return Codes 145
LIST ACDS/CDS Syntax 146

LIST ACDS/CDS Operands 146
LIST ACDS/CDS Output 148
LIST ACDS/CDS XREF Fields 149
LIST ACDS/CDS Exception Reports 155

LIST ACRQ/CRQ Syntax 157
LIST ACRQ/CRQ Operands 157
List ACRQ/CRQ Output 157

LIST LOG Syntax 160
LIST LOG Operands 160

LIST PTS Syntax 161
LIST PTS Operands 161
LIST PTS Output 162
LIST PTS Exception Reports 165

LIST SCDS Syntax 166
LIST SCDS Operands 166
LIST SCDS Output 166

LOG Control Statement 169
LOG Syntax 169
LOG Operands 169
LOG DDnames 170
LOG Programming Considerations 170

Return Codes 170

RECEIVE Control Statement 171
RECEIVE Syntax 171
RECEIVE Operands 171
RECEIVE DDnames 172
RECEIVE Programming Considerations 172

Return Codes 173

REJECT Control Statement 175
REJECT Syntax 175
REJECT Operands 175
REJECT DDnames 176
REJECT Programming Considerations 176

Return Codes 177

RESETRC Control Statement 179
RESETRC Syntax 179

xiv OS/VS SMP System Programmer's Guide

RESETRC Operands 179

RESETRC DDnames 179

RESETRC Programming Considerations 179

RESTORE Control Statement 181

RESTORE Syntax 181

RESTORE Operands 181

RESTORE DDnames 183

RESTORE Programming Considerations 183

Return Codes 184

UCLIN Control Statement 185
UCLIN Syntax 186

UCLIN Operands 186

UCLIN DDnames 187
UCLIN Programming Considerations 187

UCL Statements 189
UCL Syntax 189
UCL Operands 189
UCL ADD Considerations: 191
UCL DEL Considerations: 191
UCL REP Considerations: 192
Common Errors 193

UCL - SMPCDS ASSEM Entries 195

UCL - SMPCDS DLIB Entries 197

UCL - SMPCDS LMOD Entries 199

UCL - SMPCDS/SMPACDS MAC Entries 203

UCL - SMPCDS/SMPACDS MOD Entries 205

UCL - SMPCDS/SMPACDS SRC Entries 209

UCL - SMPCDS/SMPACDS SYSTEM Entry 211

UCL - SMPCDS/SMPACDS SYSMOD Entries 213

UCL - SMPCRQ/SMPACRQ FMID Entries 223

UCL - SMPCRQ/SMPACRQ SYSMOD Entries 225

UCL - SMPPTS SYSMOD Entries 227

UCL - SMPPTS SYSTEM ENTRY 229

UCL - SMPSCDS SYSMOD Entries 239

UCL - SMPSTS SRC Entries 241

UCL - SMPMTS MAC Entries 243

Contents xv

UNLOAD Control Statement 245
UNLOAD SYNTAX 245
UNLOAD Operands 245
UNLOAD Entry Types and Options 246
UNLOAD DDNAMES 247
Programming Considerations 247

UNLOAD ADDIN Control Statements 249
ADDIN Syntax and Operands 249

ADDIN - MACRO Entries 249
ADDIN - MODULE Entries 249
ADDIN - SOURCE Entries 249
ADDIN - SYSTEM Entries 249
ADDIN - SYSMOD Entries 250

ADDIN DDNAMES 250
UNLOAD/ADDIN Example 250

CHAPTER 6: MODIFICATION CONTROL STATEMENTS

Chapter 6: SMP Modification Control Statements 251

++APAR Modification Control Statement 253
The APAR (++APAR) Modification Control Statement 253

APAR Syntax 253
APAR Operands 253
APAR Programming Considerations 253
APAR Example 254

++FUNCTION Modification Control Statement 255
The FUNCTION (++FUNCTION) Modification Control Statement 255

FUNCTION Syntax 255
FUNCTION Operands 255
FUNCTION Programming Considerations 255
FUNCTION Example 256

++IF Modification Control Statement 257
The Conditional Action (++IF) Modification Control Statement 257

IF Syntax 257
IF Operands 257
IF Programming Considerations 258
IF Example 258

++JCLIN Modification Control Statement 259
The Job Control Language (++JCLIN) Modification Control Statement 259

JCLIN Syntax 259
JCLIN Operands 259
JCLIN Programming Considerations 260
JCLIN Example 260

++MAC Modification Control Statement 263
The MACRO (++MAC) Modification Control Statement 263
MAC Syntax 263

xvi OS/VS SMP System Programmer's Guide

MAC Operands 263
MAC Programming Considerations 266
MAC Example 266

++MACUPD/++UPDTE Modification Control Statement 267
The Macro Update (++MACUPD/++UPDTE) Modification Control Statement 267

MACUPD Syntax 267
MACUPD Operands 267
MACUPD Programming Considerations 269
MACUPD Example 269

++MOD Modification Control Statement 271
The Module (++MOD) Modification Control Statement 271

MOD Syntax 271
MOD Operands 271
MOD Programming Considerations 273
MOD Example 274

++PTF Modification Control Statement 275
The Program Temporary Fix (++PTF) Modification Control Statement 275

PTF Syntax 275
PTF Operands 275
PTF Programming Considerations 275
PTF Example 276

++SRC Modification Control Statement 277
The Source (++SRC) Modification Control Statement 277

SRC Syntax 277
SRC Operands 277
SRC Programming Considerations 279
SRC Example 279

++SRCUPD Modification Control Statement 281
The Source Update (++SRCUPD) Modification Control Statement 281

SRCUPD Syntax 281
SRCUPD Operands 281
SRCUPD Programming Considerations 282
SRCUPD Example 282

++USERMOD Modification Control Statement 283
The User Modification (++USERMOD) Modification Control Statement 283

USERMOD Syntax 283
USERMOD Operands 283
USERMOD Programming Considerations 283
USERMOD Example 284

++VER Modification Control Statement 285
The Verify (++VER) Modification Control Statement 285

VER Syntax 285
VER Operands 285
VER Programming Considerations 287
VER Examples 287

++ZAP Modification Control Statement 289
The IMASPZAP (++ZAP) Modification Control Statement 289

Contents xvii

ZAP Syntax 289
ZAP Operands 289
ZAP Programming Considerations 289
ZAP Example 291

CHAPTER 7: DATASETS

Chapter 7: SMP Datasets 293
Data Sets Required 294
Data Set Definitions 298

Link and Text Library Data Sets 298
SMPACDS Data Set 298
SMPACRQ Data Set 299
SMPADDIN Data Set 300
SMPCDS Data Set 300
SMPCNTL Data Set 301
SMPCRQ Data Set 301
SMPJCLIN Data Set 302
SMPLIST Data Set 302
SMPLOG Data Set 303
SMPMTS Data Set 303
SMPOUT Data Set 304
SMPPTFIN Data Set 304
SMPPTS Data Set 304
SMPPUNCH Data Set 305
SMPRPT Data Set 305
SMPSCDS Data Set 306
SMPSTS Data Set 306
SMPTLIB Data Set 306
SMPWRK1 Data Set 307
SMPWRK2 Data Set 307
SMPWRK3 Data Set 308
SMPWRK4 Data Set 308
SMPWRK5 Data Set . 309
SYSLIB Data Set 309
SYSPRINT Data Set 310
SYSUT1, SYSUT2 and SYSUT3 Data Sets 310
SYSUT4 Data Set 311
Target and Distribution Library Data Sets 311

CHAPTER 8: CONTROL DATASET ENTRIES

Control Data Set Entries 313
Dataset Organization 313
Definition of Terms: 313

SMPACDS/SMPCDS Entries 315
SMPCDS ASSEMBLER Entries 315
SMPCDS DLIB Entries 315

xviii OS/VS SMP System Programmer's Guide

SMPCDS LMOD Entries 315

SMPACDS/SMPCDS MACRO Entries 316

SMPACDS/SMPCDS MOD Entries 317

SMPACDS/SMPCDS SRC Entries 318

SMPACDS/SMPCDS SYSMOD Entries 319
SMPACDS/SMPCDS SYSTEM Entries 321

SMPACRQ/SMPCRQ Entries 323
SMPACRQ/SMPCRQ FMID Entries 323

SMPACRQ/SMPCRQ SYSMOD Entries 323

SMPPTS Entries 325

SMPPTS SYSTEM Entries 325
SMPPTS SYSMOD Entries 328

SMPSCDS Entries 331

SMPMTS and SMPSTS Entries 333

SMPMTS 333
SMPSTS 333

CHAPTER 9: SYSMOD CONSTRUCTION

SYSMOD Construction Considerations 335
Miscellaneous Construction Rules: 339

Packaging Techniques for SYSMODs 341
Inline Packaging Technique 341
Indirect Library Technique 341
Relative File Technique 342

RELFILE Packaging Notes: 343
SYSMOD Construction Techniques 344

Combined Packaging For Compatibility 346
User Modifications 348

USERMOD Considerations 348
Superzap Modifications 349
Adding New Load Modules 351

Service Updated Function SYSMODs 354
Rules for Integrating Service SYSMODs 354
Sample Service Updated Function SYSMOD 355

APPENDICES, GLOSSARY AND INDEX

Appendix A: Rules For Coding SMP Statements 357

Appendix B: Syntax Notation Conventions 359

Appendix C: PTF Compatibility Feature 361
Eligible PTFs 361
SMP Environment 361

Contents xix

The FMID Execution Parameter 361
SMP Function Variations 362

Appendix D: SMP Release 3/SMP Release 4 Ammendments 363
Incompatibilities 363
Support of Function Installation 363
User Processes 363
Service Installation 364
Miscellaneous 364
Reliability, Availability and Serviceability (RAS) 365
Data Sets 365
SMP Control Statements 366
SMP Control Statement Keywords 366
SMP Modification Control Statements 370
SMP Modification Control Statement Keywords 370
EXEC Card Parameters 370

Appendix E: UCL Operand/Data Set Reference 373

Glossary 383

Index 399

Figures 415

xx OS/VS SMP System Programmer's Guide

FIGURES

Figure 1 - Hierarchy of Function and Service 3

Figure 2 - Processing Overview 8
Figure 3 - Simplified View of SYSMOD Processing 9
Figure 4 - DELETE Hierarchy For DELETE(GDE1203) 25
Figure 5 - Sample SMP4 Cataloged Procedure 77
Figure 6 - HMASMUXP - Parameter list to HMASMUXD 101
Figure 7 - Values Passed by HMASMUXP - User Exit 1 103
Figure 8 - Buffer Passed by UXPPRMAD - User Exit 1 103
Figure 9 - Values Passed by HMASMUXP - User Exit 2 105
Figure 10 - Parameter List Passed by UXPPRMAD Exit 2 105
Figure 11 - SMP Primary Data Set Requirements in

Tracks 107
Figure 12 - SMP Primary Data Set Organization and

Directory Block Allocation on a 3330
Device 108

Figure 13 - RECEIVE SUMMARY REPORT 113
Figure 14 - THE SYSMOD STATUS REPORT 115
Figure 15 - The ELEMENT SUMMARY Report 117
Figure 16 - The SYSMOD REGRESSION Report 118
Figure 17 - The DELETED FUNCTION Report 120
Figure 18 - LIST CDS ASSEM XREF 150
Figure 19 - LIST CDS DLIB 150
Figure 20 - LIST CDS LMOD XREF 151
Figure 21 - LIST CDS MAC XREF 151
Figure 22 - LIST CDS MOD XREF 152
Figure 23 - LIST CDS SRC XREF 153
Figure 24 - LIST CDS SYSMOD XREF 154
Figure 25 - LIST CDS SYS 155
Figure 26 - LIST CRQ 159
Figure 27 - LIST CRQ SYSMOD 159
Figure 28 - LIST CRQ FMID 159
Figure 29 - LIST PTS MCS 163
Figure 30 - LIST PTS SYSMOD 164
Figure 31 - LIST PTS SYS 163
Figure 32 - LIST MASS SUMMARY REPORT FOR SMPPTS 164
Figure 33 - LIST SCDS SYSMOD(HXY1010) 167
Figure 34 - Data Set Requirements 296
Figure 35 - Data Set Requirements - Continued 297
Figure 36 - Valid Modifications to the Same Element 339
Figure 37 - Physical Organization of Relative File

Tape 343
Figure 38 - Function and Module Relationships 345
Figure 39 - Load Module Structure for Zap Example 349
Figure 40 - JCLIN For "Adding New Load Modules" 352

Figures xxi

xxii OS/VS SMP System Programmer's Guide

INTRODUCTION

The System Modification Program (SMP) is a service aid used (1) to define system
modification and (2) to install the modifications on an OS/VS1 or OS/VS2 operating
system.

Development system programmers use SMP to define modifications that add to or
replace functions in the system and that correct problems in the software.

Installation system programmers use SMP to install IBM-provided and
user-developed modifications. SMP provides facilities to manage an installation's
software inventory by providing extensive records of additions and modifications
in the SMP control data sets.

The selective system tailoring offered by program products and the individual tai-
loring possible by user modifications mean that each installation's operating sys-
tem is potentially unique. As a result, SMP was designed to meet the following
objectives.

• To ensure that only modifications that are applicable to a system are applied
to that system -- for example, to ensure that prerequisites for a program pro-
duct have been installed on the system.

• To prevent an unintentional replacement of a modified module with another mod-
ule that does not contain the earlier modifications (referred to as
"down-leveling")-- for example, to warn the installation when a PTF updates a
module that includes a user modification.

The responsibility for meeting these objectives, however, is shared by SMP and the
developer of a modification (whether an IBM developer or, in the case of a user
modification, a user developer).

• The developer of a modification defines the relationship of the modification
to the system and to other modifications.

• The installer creates and initializes SMP control data sets on which SMP main-
tains records of the modules and macros that comprise the system, the modifi-
cations that have been made to the system, and the relationship of
modifications to each other and to the modules and macros in the system.

This introduction describes, at a conceptual level, how SMP meets its objectives,
including a description of the information the developer of a SYSMOD must provide
and the data sets the installer of a SYSMOD must create. Although the tasks of the
developer and installer are distinct, they should both understand the information
in this introduction to use SMP effectively.

Introduction 1

FUNCTIONAL HIERARCHY OF THE OPERATING SYSTEM

To enable developers to identify dependencies between system modifications, IBM
has defined a functional hierarchy in the operating system that consists of
base-level functions upon which dependent-level functions are built. Non-function
modifications can provide service or user updates for each function (base or
dependent-level) within the hierarchy. Figure 1 illustrates a possible hierarchy
within a base-level function.

IBM defines the base-level functions by logically grouping the elements, of the
system (object modules, source modules, and macros) into functions such as ISO or
VTAM. An element of one base-level function should not exist in (that is, inter-
sect) another base-level function. A base-level function has no prerequisites for
SMP to install it. For example, a base-level function might be a program product
that introduces a new group of elements to the system; or a new version of a pro-
gram product that does not require the installation of an earlier version. Program

products that modify a component in the base control program are not base-level
functions unless they include all the function in the base component and, there-
fore, do not require the prior installation of the base component.

Dependent-level functions replace or add to the elements in a base-level function.
An element can exist in more then one dependent-level function within a base-level

function. Note that in Figure 1 both dependent level functions FXY1020 and FXY1030
include module B. A dependent-level function. requires the prior installation of
the base-level function that it modifies.

Non-function modifications like APARs, PTFs, and USERMODs update elements in a
base or dependent-level function. A single non-function modification must update
only one function. SMP will not allow construction of a PTF that modifies both
dependent-level functions FXY1020 and FXY1030 in Figure 1. If a change requires
modifications to modules A and B, the set of three PTFs illustrated must be
defined since the base-level and two dependent-level functions are involved.

The developer of a modification is responsible for identifying the modifications
placement within the hierarchy. He must define:

• Whether a function modification is a new base-level or dependent-level func-
tion; and, for dependent-level functions, to which base-level function it
belongs.

• To which function an APAR, PTF or USERMOD applies.

• The relationship to other SYSMODs on the same level.

The hierarchy, as illustrated, implies no relationship between SYSMODs on the same
level, for example, between function SYSMODs FXY1020 and FXY1030 in Figure 1. The
hierarchy shows all the dependent-level functions available for a base-level func-
tion, not necessarily all the modification that can be applied to a single system.
Dependent-level functions might be mutually exclusive or one might be a prerequi-

site of another. If the developer indicates that a SYSMOD can coexist on one sys-
tem with other SYSMODs on the same level and those SYSMODs contain common
(intersecting) elements, he must also indicate the relationship between the common
elements. For example, in Figure 1 both dependent-level functions FXY1020 and
FXY1030 can be applied concurrently to a system; the developer must indicate which
version of module B is superior (this topic is further discussed in "Defining the

 2 Chapter 1 - OS/VS SMP System Programmer's Guide

Environment to which a SYSMOD Applies" later in this chapter).

Figure 1 - Hierarchy of Function and Service

Introduction 3

SYSMOD DEFINITION

A SYSMOD is defined to SMP by Modification Control statements. Modification Con-
trol statements are identified as those prefaced by the characters "++" in columns
1 and 2.

MODIFICATION CONTROL STATEMENTS (MCS)

The modification control statements can be grouped into four categories, reflect-
ing the four types of information the developer of a SYSMOD provides.

1. Header modification control statements, by which the developer identifies the
type of modification.

• ++FUNCTION to define a base-level or dependent-level function.

• ++PTF for PTFs that service elements of IBM software.

• ++APAR for tempory corrections to elements of IBM software.

• ++USERMOD for user modifications that change, replace, or interface with
elements of IBM software.

The developer also assigns the modification a unique seven character identifi-
er, called a SYSMOD-ID, on the header modification control statement. SMP uses
the SYSMOD-ID to track changes to elements introduced by this SYSMOD, and to
record this SYSMOD's dependencies on other SYSMODs.

2. Environment definition statements, the ++VER and ++IF statements on which the
developer identifies the system(s) and release(s) to which the modification
applies and this modification's relationship to other modifications.

3. Element definition statements defining the elements affected by this modifi-
cation:

• For macros, ++MAC for a macro replacement; ++MACUPD (or for compatibility
with prior versions of SMP, ++UPDTE) for a macro update.

• For object module replacements, ++MOD. For object module updates, ++ZAP.

• For source modules, ++SRC for a source module replacement; ++SRCUPD for a
source module update.

The developer must code an element definition statement for each element (each
object module, source module and macro) in the SYSMOD.

4. Installation data provided by the developer as jobstream of linkedit, copy and
assembly jobsteps (++JCLIN) to describe the structure of the elements in the
operating system libraries. The JCL input data is similar to the JCL that
stage I of system generation (SYSGEN) produces and that stage II uses to
structure the elements from the DLIBs (distribution libraries) onto the system
libraries. The ++JCLIN statement and JCL input data are necessary only if the

 4 Chapter 1 - OS/VS SMP System Programmer's Guide

SYSMOD affects the structure of the elements on a system library.

DEFINING THE ENVIRONMENT TO WHICH A SYSMOD APPLIES

The ++VER and ++IF statements define the environment to which a SYSMOD applies.

The ++VER (verify) statement identifies absolute requirements that must be met

before SMP installs a SYSMOD; the ++IF statement identifies additional require-

ments conditional on the presence of other function SYSMODs in the system. Every

SYSMOD must contain the ++VER statement to identify, at least, the system and
release level to which a SYSMOD applies; other requirements specified on ++VER and
the presence of the ++IF statement depend on the content of the SYSMOD and the pos-

sible existence of related SYSMODs in the system.

Referring again to Figure 1, the ++VER statements define the environment to which

each SYSMOD applies:

• Function GXY1000 is a base-level function and specifies only the system

release environment, "Z038".

• Functions FXY1020 and FXY1030 are dependent-level functions which specify
their dependence upon the base-level function, GXY1000, using the ++VER FMID

keyword.

• Module "B" exists in both dependent-level functions. Function FXY1030, which
we will assume is supplying a functionally superior version of the module,
expresses this "superiority" relationship with FXY1020 using the VERSION

keyword on its verify statement.

• The set of service SYSMODs (PTFs) illustrate the construction required for a
"fix" which involves elements belonging to more than one FMID.

- The first PTF, UZ00001, applies to the base-level function and supplies

only module "A".

The ++IF conditional requisite statements supply SMP with the data
required to determine other required PTFs if either of the dependent func-

tions are installed.

The second PTF, U200002, supplies module "B" applicable to a system which
has function FXY1020 installed (the ++VER FMID keyword indicates this).

This PTF specifies the base function's PTF, UZ00001, as a REQ to ensure
UZ00001's installation.

If the environment in which this PTF is being installed has function
FXY1030 installed, the version of module "B" supplied in this PTF is not
appropriate (recall that the installation of FXY1030 indicated that its
module "B" was functionally superior to the module "B" in FXY1020).
Although SMP will install this PTF, module "B" will be excluded (that is,

not applied or accepted). The ++IF conditional requisite data supplied by
this PTF supplies SMP the data specifying the required PTF (with the
appropriate module "B") for the environment in which function FXY1030 is

Introduction 5

-

installed.

The third PTF, UZ00003, supplies module "B" applicable to a system which
has function FXY1030 installed.

This PTF specifies the base function's PTF, UZ00001, as a REQ to ensure
UZ00001's installation.

Further, the ++IF conditional requisite statement ensures the installa-
tion of PTF UZ00002 if FXY1020 is installed. Because of the relationship
between FXY1030 and FXY1020 in terms of the versions of the module "B"
involved in this illustration, UZ00002's module "B" will not be processed;
the ++IF statement i s necessary to ensure that the UZ00002 service is
recorded for the FXY1020 environment since subsequent FXY1020 service may
need to specify it as a requisite.

SMP PROCESSING

SMP processing is invoked by SMP Control statements.

STAGES IN SMP PROCESSING

SMP processing is divided into several stages to allow the installation to do the
following:

1. The first logical process, RECEIVE, introduces SYSMODs to SMP. SMP receive
processing stores the modifications that the installation selects on the
SMPPTS data set (referred to as the PTS) for subsequent processing. An instal-
lation can receive all modifications that it intends to install, regardless of
the schedule on which it plans to install them. For example, the installation
can receive PTF SYSMODs for functions that it has not yet installed.

An installation can remove modifications from the PTS by using the REJECT,
process.

3. An installation can install modifications to its set of operating system
libraries using the APPLY process. APPLY processing involves four primary SMP
data sets:

The SMPCDS contains information concerning the functions and modifica-
tions that comprise the operating system. SMP uses the information in the
CDS to determine if a SYSMOD is applicable to the system. When a SYSMOD is
applied, SMP updates the CDS with information about the applied SYSMOD.

• The SMPCRQ dataset contains data saved from ++IF modification control
statements included in previously applied SYSMODs. If the SYSMOD being
applied is a function SYSMOD, SMP checks the CRQ to determine if a SYSMOD
applied earlier had requirements conditional on the presence of the func-
tion being applied; if so, SMP ensures the presence of the SYSMOD(s) named
i n the earlier SYSMOD's ++IF statements.

 6 Chapter 1 - OS/VS SMP System Programmer's Guide

-

•

If the SYSMOD being applied contains ++IF modification control state-
ments, SMP will save the data from the statements in the SMPCRQ dataset.
SMP will use this information if a future SYSMOD satisfies the condition

specified on the ++IF modification control statement.

• The SMPSTS (source temporary dataset) and SMPMTS (macro temporary data-
set) contain modifications prescribed by SYSMODs which supplied ++SRC,
++SRCUPD, ++MAC and ++MACUPD modification control statements for source
and macro elements which are not reflected in the target system libraries.
(For example, SYSGEN macros which do not exist on the system libraries.)
The user may require these modified source and macro elements for assem-

blies requiring DLIB macro libraries (such as a SYSGEN).

• The SMPSCDS (save control dataset) contains data that describes the struc-
ture of the system libraries before modifications made by SYSMODs which
have been applied (for example, the SCDS contains backups for CDS entries
changed as a result of a SYSMOD which supplied in-line JCLIN). SMP
requires this data to restore the system to its prior level (step 4) if
the installation later wants to remove a modification from the system.

4. An installation can remove modifications which have been applied to its oper-

ating system using the RESTORE process. SMP updates the SMPCDS dataset after
removing the SYSMODs; if those SYSMODs affected the structure of the system
libraries, it uses the information stored in the SMPSCDS dataset to restore

the libraries to their former structure.

5. Finally, after testing a modification, an installation can install it into the

DLIBs (distribution libraries) using the ACCEPT process. Future SYSGENs using

these DLIBs will produce the modification-tailored system.

The SMPACDS (alternate control) and the SMPACRQ (alternate conditional requi-
site) datasets serve the same purpose for ACCEPT processing as the SMPCDS and
SMPCRQ serve for APPLY processing. The SMPACDS dataset reflects the functions
and modifications already on the DLIBs; SMP uses this information to ensure

the applicability of a SYSMOD being accepted and updates the SMPACDS dataset
with information about a SYSMOD when it is accepted. SMP checks the SMPACRQ
dataset for conditional requisites relative to other accepted SYSMODs and
updates the SMPACRQ dataset with conditional requirements (++IFs) supplied by

SYSMODs which are accepted.

A conceptual overview of SYSGEN processing, CDS creation, and SMP processing is
shown in Figure 2.

Introduction 7

Figure 2 - Processing Overview

 8 Chapter 1 - OS/VS SMP System Programmer's Guide

To install a system modification, SMP performs a number of functions, depending

upon the type of update and the options requested on the control statements and
the modification control statements. The processing that takes place in SMP is
described in detail on chapter Chapter 2.

A simplification of the flow of system modification processing is shown in Figure

3.

Figure 3 - Simplified View of SYSMOD Processing

Introduction 9

 10 Chapter 2 - OS/VS SMP System Programmer's Guide

SMP PROCESSING INTRODUCTION

Processing of system modifications (SYSMODs) is controlled by the SMP control
statements that you specify. The purpose of this chapter is to explain the proc-
essing that takes place for each of the major control statements and to describe
the options and restrictions that pertain to each one. The information provided in
this chapter describes in detail what SMP does internally with the various oper-
ands that you might specify on each of the control statements.

The major SMP functions are:

• RECEIVE - places SYSMODs into the SMP PTF Temporary Store Data Set (PTS) for
subsequent processing by REJECT, APPLY, RESTORE and ACCEPT.

• REJECT - deletes SYSMODs from the PTS data set.

• APPLY - places SYSMODs into the operating system libraries.

• RESTORE - removes SYSMODs processed by APPLY from operating system libraries
and restores the elements involved to the level of those elements on the dis-
tribution libraries.

• ACCEPT - places SYSMODs into the distribution libraries (DLIBs) or permanent
user libraries. Once ACCEPT processing completes, SMP cannot remove the
SYSMOD.

• JCLIN - reads in Stage I output from system generation (SYSGEN) or similar job
step JCL to create or update the SMP Control Data Set (CDS).

• UCLIN - updates, adds, or deletes entries on the ACDS, ACRQ, CDS, CRQ, MTS,
PTS, SCDS, or STS data sets.

SMP Processing Introduction 11

 12 Chapter 2 - OS/VS SMP System Programmer's Guide

RECEIVE PROCESSING

RECEIVE processing places SYSMODs in the PTS data set for subsequent processing by
the REJECT, APPLY, RESTORE and ACCEPT functions. Thus RECEIVE processing must be
invoked before any other SMP processing can be performed for a SYSMOD.

You can control the SYSMODs that are received by using either the SELECT or
EXCLUDE keywords on the RECEIVE control statement. RECEIVE processing can be
invoked any number of times in the same SMP job step, which could be the case if

you wished to select or exclude different SYSMODs in each invocation.

If the SYSMODs that you wish to receive are packaged using relative files (de-
scribed in "Relative File Technique", on page 342 of Chapter 9), RECEIVE process-
ing allocates data sets on direct access storage devices described by the SMPTLIB
DD statement and loads the members from the relative files to those data sets.

Function and service SYSMODs can be received regardless of the state of the CDS.

For installations with more than one version of an operating system, this allows
one RECEIVE operation to be valid for several system versions.

THE RECEIVE CONTROL STATEMENT

The RECEIVE control statement invokes the RECEIVE process. Options available on
this statement allow you to SELECT or EXCLUDE specific SYSMODs and allow you to
BYPASS the FMID checking indicated below.

THE PTS DATA SET

The PTS serves as a staging data set for SYSMODs and is used to control which
SYSMODs are received. The PTS contains a SYSTEM entry which is used to determine
the applicability of the SYSMODs presented to the RECEIVE function in terms of the
FUNCTIONs on your system. Further, SMP's use of the PTS enables you to receive
service SYSMODs that apply to functions that have not been received.

The PTS SYSTEM Entry

The SYSTEM entry in the PTS is required for RECEIVE processing. This entry must be

initialized with a system release (SREL) value and a dataset space (DSSPACE) val-
ue. The SYSTEM entry also contains FMID values (sub-entries) which indicate the
functions which have been received; these FMID values are updated when a function
SYSMOD is received and may also be updated using UCLIN.

RECEIVE Processing 13

SYSMOD APPLICABILITY

• A function SYSMOD is received if the SREL value on at least one of the SYSMOD's
++VER statements matches an SREL in the PTS SYSTEM entry.

• A service SYSMOD (PTF, APAR and USERMOD) is received if the SREL and FMID val-
ues on at least one of the SYSMOD's ++VER statements matches an SREL and FMID
value in the PTS SYSTEM entry.

Note - If a SYSMOD is recorded in the PTS as having been RECEIVED, it cannot be
received again. The REJECT function must be used to remove the SYSMOD from the PTS
in order to re-receive it.

RECEIVE OUTPUT

SMPOUT

SMP messages and the modification control statements for SYSMODs processed are
written to the SMPOUT data set.

When running in SELECT or EXCLUDE mode, the modification control statements for
SYSMODs that were either not selected or excluded are generally not written to
SMPOUT nor are they checked for syntax. Header modification control statements
whose sysmodid operand does not appear on the first record of the header statement
are, however, written to SMPOUT even though the SYSMOD may be not-selected or

excluded.

SMP REPORTS

A RECEIVE SUMMARY REPORT, summarizing the processing of SYSMODs encountered during
RECEIVE processing, is produced on SMPRPT (or SMPOUT if the SMPRPT DD card is not
present.) This report lists every SYSMOD that was processed by RECEIVE with an

indication of its type and status and, if it terminated, the reason why it was not
received. A sample of this report appears on page 113 in Chapter 4.

PTS SYSTEM Entry

For each function SYSMOD received, the PTS SYSTEM entry is updated to include its
SYSMOD-ID as an FMID subentry. This initializes the PTS such that non-function
SYSMODs applicable to the function will be subsequently received.

 14 Chapter 2 - OS/VS SMP System Programmer's Guide

PTS MCS Entry

For each SYSMOD received, the complete SYSMOD, including any in-line modification
text for modules, macros and source, is stored without change as an MCS entry.
Because the SYSMODs are stored as separate, distinct members, you can receive mul-

tiple modifications for the same element. You can use IEBPTPCH or any comparable
utility program to print or punch the PTS MCS entries.

Element text packaged in relative files, TXLIBs or LKLIBs is not moved into the

MCS entry. Element text in TXLIBs or LKLIBs remains in these datasets. The proc-
essing of elements in relative files is described below.

PTS SYSMOD Entry

For each SYSMOD received, a SYSMOD entry is created containing information
required for subsequent SMP processing. The SYSMOD entries do not include the text
of the modification or the information from the ++IF modification control state-
ments.

The entries on the PTS are described in Chapter 8.

SMPLOG

A time and date-stamped record of the RECEIVE processing activity is written to
the history log data set, SMPLOG.

PROCESSING OF RELATIVE FILES

Library Loading

If the SYSMODs that you are receiving were constructed using the relative file
packaging technique described in "Relative File Technique" (on page 342 of Chapter

9), you must use the SMPTLIB DD statement to specify at least one direct access
storage device volume to hold the loaded partitioned data sets. Up to five vol-
umes can be used.

RECEIVE processing dynamically allocates storage on a volume for each partitioned
data set being loaded. This allocation is accomplished using the DADSM SVC (SVC
32). Using the UCL SYS statement, you define the space allocation parameters to
be used by SMP in the DSSPACE subentry of the PTS SYSTEM entry.

RECEIVE Processing 15

You may specify high level data set name qualifiers for these loaded partitioned
data sets by creating a DSPREFIX subentry in the PTS SYSTEM entry. If DSPREFIX is
not specified in the SYSTEM entry, no high level data set name qualifiers are
used. If the DSPREFIX subentry is present in the SYSTEM entry, the value is placed
in the SYSMOD entry so that the REJECT, APPLY, RESTORE, and ACCEPT functions can
construct the appropriate data set names (DSNAME) for the libraries. The DSNAME is
in the format "dsprefix.sysmodid.Ffile#".

If the same data set already exists on one of the SMPTLIB volumes, it is used rath-
er than deleting and reallocating. This permits you to preallocate and,
optionally, catalog these data sets.

The ERROR indicator is set on in the SYSMOD entry before the files are loaded, and
set off after the SYSMOD and MCS entries are created. Members from the relative
files are loaded during RECEIVE processing onto direct access storage if the
SYSMODs are being received. This process is done using IEBCOPY. Each element
modification control statement included in the SYSMOD for a specific file is
selectively copied. Every alias specified in the DALIAS, MALIAS, and TALIAS oper-
ands is also selectively copied. This selective copying ensures that the contents
of the unloaded partitioned data sets are correct. If IEBCOPY returns a return
code higher than the SMP default value or the COPYRC value in the PTS SYSTEM entry,
if present, the SYSMOD is terminated as described in this chapter under "Termi-
nation of SYSMODs with Relative Files." If the loading of the libraries is suc-
cessful, the ERROR indicator in the SYSMOD entry is reset and any space unused in
the libraries is released.

Termination of SYSMODs with Relative Files

If, during the allocation or loading of any libraries for a SYSMOD, an invoked
utility function encounters an error condition that causes termination of the
SYSMOD, any libraries already loaded or allocated for that SYSMOD are deleted.
This occurs even if you have preallocated the libraries. The SYSMOD and MCS
entries for the SYSMOD are also deleted.

If you are processing SYSMODs that were constructed using relative files and an
abend occurs during the load of the partitioned data sets onto direct access stor-
age, SMP does not set off the ERROR indicator in the SYSMOD entry. If you try to
receive the SYSMOD again, SMP recognizes that the ERROR indicator is set and
deletes the MCS and SYSMOD entries before it creates new entries for the SYSMOD.

REPROCESSING RECEIVED SYSMODS

If a SYSMOD was received successfully, it exists in the PTS without the ERROR
indicator set in the SYSMOD entry. It cannot be received again. If you want to
make changes to a SYSMOD, you must reject it using the REJECT control statement,
modify the contents, and receive the modified SYSMOD. You must not attempt to
modify the SYSMOD or MCS entries on the PTS using any dataset utility. The SYSMOD
entry has been formated by the RECEIVE process and contains information in the
user-data portion of its PDS directory entry; any changes made to the MCS informa-
tion (outside of SMP) will not be reflected in the SYSMOD entry.

 16 Chapter 2 - OS/VS SMP System Programmer's Guide

USER EXIT 1

You may supply a user exit that is invoked after every record is read from the
PTFIN data set. The details are described under the topic 'User Exit 1' in Chapter
3.

The purpose of this user exit is to enable you to examine every modification con-
trol statement, including comments, and text record in the PTFIN data set input
stream, delete records that are not desired, and add records at any place in the
input stream. After every record is read, your exit routine is invoked. If you
determine that a record should be added following a record, you do so by returning
the appropriate return code. If you determine that a record should be deleted, you
do so by returning the appropriate return code. You may also determine that the
current SYSMOD being read should be terminated, the RECEIVE function should be
terminated, or SMP should be terminated; by setting the appropriate return code,
the requested action will be taken.

This user exit is activated after the first record is read from PTFIN and is deac-
tivated when the RECEIVE function is terminated.

RECEIVE Processing 17

 18 Chapter 2 - OS/VS SMP System Programmer's Guide

REJECT PROCESSING

REJECT processing deletes SYSMODs from the PTS and temporary libraries loaded dur-
ing RECEIVE processing for those SYSMODs. The COMPRESS option is available on the
REJECT control statement and should be used to regain unused space on the PTS
after SYSMODs are rejected.

THE REJECT CONTROL STATEMENT

The REJECT control statement invokes the REJECT function. "Mass rejection" is the
default if you do not specify the SELECT or EXCLUDE keywords on the REJECT control
statement.

Mass Resection without PURGE

SYSMODs which have neither been applied nor accepted are rejected from the PTS.
For this processing, the APPID and ACCID subentries in the PTS SYSMOD entries are
used to determine whether a SYSMOD has been applied or accepted. An APPID subentry
in a PTS SYSMOD entry identifies a CDS to which a SYSMOD has been applied, and an
ACCID subentry in a PTS SYSMOD entry identifies an ACDS to which a SYSMOD has been
accepted. If a SYSMOD has no APPID and no ACCID subentries in its PTS SYSMOD entry,
it will be rejected.

To exclude SYSMODs from rejection, you may specify the SYSMODs you want to exclude
as values of the EXCLUDE keyword on the REJECT control statement.

Mass Resection with PURGE

When the PURGE keyword is specified, the SYSMODs rejected are those found as suc-
cessfully ACCEPTED in the ACDS. Successfully ACCEPTED SYSMODs are those on the
ACDS with the ERROR indicator off. The APPID and ACCID subentries in the PTS
SYSMOD entries are nee used.

To exclude SYSMODs from rejection, you may specify the SYSMODs you want to exclude
as values of the EXCLUDE keyword on the REJECT control statement.

SELECT without PURGE

To selectively reject SYSMODs, you must specify the SYSMODs you want to reject as
values of the SELECT keyword on the REJECT control statement. Every SYSMOD speci-
fied for REJECT is selected regardless of whether any APPID or ACCID subentries
are present in the SYSMOD PTS SYSMOD entry. You must specify any SYSMODs that are
requisites of the SYSMODs that you have selected, if you want them rejected at the
same time, because SMP does not automatically reject them.

REJECT Processing 19

It is possible for you to selectively reject a SYSMOD that has been just applied or
just accepted. However, because a SYSMOD should usually be both applied and
accepted, a message is issued to warn you that you have rejected an incompletely
processed SYSMOD.

SELECT with PURGE

The SYSMODs selected will be rejected if they are found as successfully ACCEPTED
on the ACDS.

Note the distinction in processing when PURGE is coded: the ACDS is used (to find
accepted SYSMODs) and no check is made to see if the SYSMODs have been applied.

REJECT OUTPUT

The SYSMOD and MCS entries for rejected SYSMODs are deleted from the PTS. Elements
in TXLIB and LKLIB datasets are not affected.

Temporary Library Deletion

When a SYSMOD that had temporary libraries loaded during RECEIVE processing is
rejected, the temporary libraries on the SMPTLIB volume are deleted. If the
SMPTLIB DD statement is not present, the SYSMOD will not be rejected. If the
SMPTLIB DD statement is present but the library to be deleted is not found, a warn-
ing message is issued and the associated SYSMOD is rejected. If more files are
specified in the FILES operand on a header modification control statement than are
referenced in the RELFILE operand, messages are issued for those files not found
when the data sets are deleted from the SMPTLIB volumes.

Updating the PTS SYSTEM Entry

When a function SYSMOD is rejected, the FMID subentry (in the PTS SYSTEM entry)
for that function may be removed. As a result of this, non-function SYSMODs depen-
dent upon this function will no longer be received.

The FMID subentry will be removed under the following conditions:

• PURGE is not specified.

• The function SYSMOD has neither been applied nor accepted (using PTS SYSMOD
APPID and ACCID subentries to determine whether the SYSMOD has been applied or
accepted).

 20 Chapter 2 - OS/VS SMP System Programmer's Guide

REJECT Messages

REJECT processing produces messages on SMPOUT. No reports are generated during
REJECT processing.

REJECT Processing 21

APPLY PROCESSING

APPLY processing is invoked by the APPLY control statement to install the elements
supplied by a SYSMOD on the operating system. The APPLY process installs the ele-

ments and updates the SMP data sets to reflect this processing. APPLY processing
is controlled by information in the SMP data sets which reflect the status of the
target system, information on the SYSMODs which indicates their applicability, and
information from the user's APPLY control statement.

APPLY CONTROL STATEMENT

The selection of SYSMODs to be applied is controlled by the keywords specified on
the APPLY control statement. These keywords, in conjunction with the applicability
criteria listed below, determine which SYSMODs will be applied:

• When the SELECT keyword is used, only those SYSMODs specifically named are
considered for application. SELECT may be used to re-apply a SYSMOD.

• When the EXCLUDE keyword is used, all SYSMODs found on the PTS are considered
except those specifically named.

• When the GROUP keyword is used, those SYSMODs specifically named and their
requisites are considered. (FMID is not a REQ)

In order to properly determine the ++VER control information to use for SYSMOD
installation, group processing will not consider requisites at a higher level
in the functional hierarchy. For example, a dependent-level function's REQ for
a base-level function will not be satisifed unless the base-level function is
already installed or specified in the GROUP list; similarly, a PTF's REQ for a
function will not be satisfied unless the function is already installed or
specified in the GROUP list.

In order to prevent the inadvertent installation of functions which delete
other functions, group processing will terminate if a requisite SYSMOD (not
itself specified in the GROUP list) is found to DELETE a function which is
already installed.

• When none of the above keywords are specified, all SYSMODs which meet the
applicability criteria will be applied.

SYSMOD APPLICABILITY

In order for a SYSMOD to be considered applicable to the target system, the SYSMOD

must have a ++VER whose system release (SREL) matches the SREL of the target sys-
tem's CDS and whose FMID (if present) names a function which has been (or is being)
applied. Function SYSMODs which have no FMID dependency expressed on their ++VER
are considered applicable if their SREL matches the SREL of the target system.

 22 Chapter 2 - OS/VS SMP System Programmer's Guide

• SYSMODs which have already been successfully applied are not considered for
re-application unless specifically named in the APPLY SELECT or GROUP keyword.

• SYSMODs which have been partially applied during a previous SMP run are con-
sidered applicable and need not be specifically named in the APPLY SELECT or
GROUP keyword. Partially applied SYSMODs are identified by the apply ERROR
indicator in their SMPCDS SYSMOD entry.

• A SYSMOD which has been partially RESTOREd during a previous SMP run cannot be
applied. Partially restored SYSMODs are identified by the ERROR and RESTORE
indicators in their SMPCDS SYSMOD entries.

• SYSMODs which are superseded by another SYSMOD are not applied. If a SYSMOD
which has not been applied is found to be superseded by another SYSMOD during
an APPLY run, no elements from the superseded SYSMOD are processed.

• SYSMODs which have been explicitly deleted cannot be applied.

• A SYSMOD which has more than one ++VER whose SREL and FMID appear to be appli-
cable cannot be processed; SMP is unable to determine which VER statement to
use.

• SYSMODs with DELETE on ++VER modification control statements must be selected.

REQUISITE CHECKING

APPLY processing ensures that the proper set of SYSMODs is installed by using req-
uisite data supplied on the SYSMODs' ++VER and ++IF statements.

Unless BYPASS is specified for a particular requisite condition, SMP will not
apply a SYSMOD whose requisites are missing.

Requisite conditions are met by any one of the following:

• The requisite SYSMODs are already applied.

• The requisite SYSMODs are superseded by a SYSMOD which is already applied.

• The requisite SYSMODs are being applied.

• The requisite SYSMODs are superseded by a SYSMOD which is being applied

UNCONDITIONAL REQUISITES

Unconditional requisites are those SYSMODs required in any functional environ-
ment. These requisites are expressed as operands of the PRE, REQ and NPRE keywords
on the ++VER statement of each SYSMOD.

APPLY Processing 23

Negatives prerequisites (NPREs) specify that SMP should not APPLY a SYSMOD if the
NPRE condition is met. NPREs are valid only on FUNCTION SYSMODS and imply a situ-
ation in which two or more function are mutually exclusive.

CONDITIONAL REQUISITES

Conditional requisites are those SYSMODs required only in a particular functional
environment.

The ++IF statements immediately following the applicable ++VER modification con-
trol statement express the conditional requisite conditions. These statements
specify the required SYSMODs (REQ keyword) given the presence of a particular
function (FMID keyword).

If the particular function is already applied (or being concurrently applied), SMP
will ensure that the ++IF's requisite conditions are met.

To ensure that these requisites are satisfied if the particular function SYSMODs
are applied at a later time, SMP saves the information from the ++IF statements on
the SMPCRQ dataset. When a function SYSMOD is being applied, SMP accesses the CRQ
dataset to determine requisites supplied by previously applied SYSMODs and ensures
that these requisites are met.

SYSMOD PROCESSING ORDER

SMP orders the processing of the set of SYSMODs being applied to ensure proper
processing of JCLIN, element selection, and source/macro update merges.

The processing order of the SYSMODs being applied is determined from the prerequi-
site (PRE) data supplied on the SYSMODs' ++VER statements. Those SYSMODs named as
prerequisites are processed before the SYSMODs which name them.

If no prerequisite order can be determined between SYSMODs, FUNCTIONs will be
processed first followed, in order, by PTFs, APARs, and USERMODs.

DELETED SYSMODS

A function SYSMOD may delete another function by naming the function to be deleted
as an operand of the ++VER DELETE keyword. SMP will delete the function and all
FUNCTIONs, PTFs, APARs and USERMODs dependent upon the deleted function. The func-
tions specifically named in the DELETE keyword list are considered to be "explic-
itly" deleted SYSMODs; all SYSMODs deleted because of their dependency upon the
explicitly deleted SYSMODs are termed "implicitly" deleted SYSMODs.

SMP delete processing will scratch all macro and source elements from the target
system libraries which belong to the deleted SYSMODs. Load modules will be

scratched from the target system libraries if all of the modules which make up the

24 Chapter 2 - OS/VS SMP System Programmer's Guide

load module are deleted.

SMPCDS MOD, MAC and SRC entries representing the deleted elements are removed.
SMPCDS LMOD entries are removed if all the modules which make up the load module
are deleted.

The SMPCDS SYSMOD entries for all implicitly deleted SYSMODs are removed. An
SMPCDS SYSMOD entry is created for each explicitly deleted SYSMOD; this entry will
have a DELBY subentry naming the function which caused the deletion. The SYSMOD
entries for the explicitly deleted SYSMODs prevent the deleted function SYSMODs
from being reprocessed by APPLY.

The result of this process is the deletion of all SYSMODs within the hierarchy of
the specified function SYSMOD.

In the following example, function SYSMODs GDE1203, GDE1303, and GDE1403, and
service SYSMODs UZ00009, UZ00010 and UZ00004 are deleted as a result of specifying
'DELETE(GDE1203)' on the ++VER modification control statement.

Figure 4 - DELETE Hierarchy For DELETE(GDE1203)

The conditional requisites (++IF statements) supplied by the deleted SYSMODs
remain in the CRQ data set if the environment specified by the ++IF's FMID is still
valid. Conditional requisites specifying the functions which are explicitly
deleted are removed from the CRQ.

Referring to the above example, when function GDE2000 is applied, any conditional
requisites specifying GDE1203 will be removed from the CRQ; conditional requisites
specifying functions GDE1303 and GDE1403 will not be removed since these functions
are not explicitly deleted (these environments are still valid). Further, condi-
tional requisites supplied by the deleted SYSMODs will not be removed unless they
reference the explicitly deleted function, GDE1203.

APPLY Processing 25

PROCESSING INLINE JCLIN

Inline JCLIN data for a SYSMOD is supplied following the ++JCLIN modification con-
trol statement. JCLIN processing is done prior to element processing in order to
initialize the CDS.

Each entry in the CDS that is affected by the JCLIN update is saved before the
update is performed in a BACKUP entry on the SMP Save Control Data Set (SCDS).
Each BACKUP entry in the SCDS records the SYSMOD-ID of the SYSMOD that contained
the inline JCLIN and the type of update performed.

Inline JCLIN is not processed for superseded or deleted SYSMODs.

The NOJCLIN option on the APPLY control statement is used to prevent the process-
ing of inline JCLIN. NOJCLIN can be used if the JCLIN contains data that would
overlay user modified entries in the CDS.

If you specify NOJCLIN without an operand list, inline JCLIN is not processed for
any SYSMOD that was selected and contained ++JCLIN modification control state-
ments. If you specify NOJCLIN with an operand list, inline JCLIN is not processed
for the specified SYSMODs.

The JCLIN function is further described in the "JCLIN Processing" section later in

this chapter.

ELEMENT SELECTION

The selection of elements from a SYSMOD is based upon relationships between a
SYSMOD being installed and the FMID, RMID and UMID attributes of the corresponding

elements installed on the target system.

ELEMENT FMID/RMID/UMID ATTRIBUTES

The FMID, RMID and UMID attributes of an element on the target system are found in
the SMPCDS element entries.

The FMID of an element is the FUNCTION-type SYSMOD which "owns" the element.
Generally, an element's FMID is established and can be changed only by the instal-
lation of a FUNCTION-type SYSMOD; in this case, the element's FMID is the
FUNCTION-type SYSMOD which installed the element on the target system.

The RMID of an element is the last SYSMOD which replaced the element (or caused the
element's FMID to change). An element's RMID is established by the SYSMOD which
first introduces the element to the target system. The RMID of an element is
changed by the installation of a SYSMOD which supplies a replacement for the ele-
ment. Element replacements are ++MODs, ++MACs, ++SRCs, and modules resulting from
assemblies.

 26 Chapter 2 - OS/VS SMP System Programmer's Guide

The UMIDs of an element are the set of SYSMODs which have applied updates to the
target system element. A UMID is added to the set of the element's UMIDs for each
SYSMOD which applies an update to the element (unless the update changes the ele-
ment's FMID.) Whenever a new replacement for the element is applied, the set of
updates (UMIDs) is cleared to start anew with subsequent updates applied to the
new replacement. Element updates are ++ZAPs, ++MACUPDs, and ++SRCUPDs.

FMID OF A SYSMOD

The FMID of a SYSMOD is the function to which all the elements in the SYSMOD
belong. The FMID of a SYSMOD being installed is determined as follows:

• The FMID of a FUNCTION-type SYSMOD (++FUNCTION) is the function itself (that
is, the sysmod-id enclosed in the parentheses following the ++FUNCTION state-
ment).

• The FMID of a non-FUNCTION-type SYSMOD (++PTF, ++APAR and ++USERMOD) is the
FMID from the SYSMOD's ++VER (that is, the sysmod-id which is the operand of
the FMID keyword).

The example below illustrates how the. FMID is determined for function and
non-function SYSMODs:

++FUNCTION(GXY1000) /* SYSMOD's FMID is GXY1000 */ .
++VER(Z038) .
++MOD ...

The FMID of all elements in this SYSMOD
is GXY1000

++FUNCTION(FXY1020) /* SYSMOD's FMID is FXY1020 */ .
++VER(Z038) FMID(GXY1000) /* DEPENDENT FUNCTION */ .
++MOD ...

The FMID of all elements in this SYSMOD
is FXY1020

++PTF(P000000) /* SYSMOD's FMID is GXY1000 */ .
++VER(Z038) FMID(GXY1000) /* PTF FOR 1ST FUNCTION */ .
++MOD ...

The FMID of all elements in this SYSMOD
is GXY1000

Element selection in SMP is divided into two cases:

1. FMID of the SYSMOD being installed differs from the FMID of the element on the
target system.

2. FMID of the SYSMOD being installed matches the FMID of the element on the tar-
get system.

APPLY Processing 27

FMIDS DIFFER

In this case, SMP is dealing with elements belonging to different FUNCTIONS, and
element selection is based upon functional relationships expressed via FMID and
VERSION. Elements may be excluded (i.e., not selected) and processing of the
SYSMOD continues under the assumption that a functionally higher version of the
element is already installed on the target system.

An element will be excluded from the SYSMOD being installed unless one of the fol-
lowing conditions is met.

1. The function SYSMOD being installed names the FMID of the target system ele-
ment in the ++VER FMID keyword. In this case, the function being installed is
functionally superior to the function which owns the target system element;
therefore, the element is selected.

2. The modification control statement associated with the element from the SYSMOD
being installed has a VERSION keyword and the target-system element's FMID is
named in the VERSION list. In this case, the element from the SYSMOD being
installed is considered to be functionally superior to the target-system ele-
ment, and it is selected.

If there is no VERSION keyword associated with the element, the sysmod-ids
named in the VERSION keyword on the ++VER are used as described above.

In this situation, SMP may be dealing with either a function SYSMOD or a
non-function SYSMOD which is changing the functional ownership (FMID) of the
elements.

When an element is selected, its FMID becomes that of the SYSMOD from which it is
selected.

FMIDS MATCH - MODID VERIFICATION

In this case, SMP is dealing with elements belonging to the same FUNCTION, and
element processing is based upon service relationships expressed via PRE and SUP.

The following checks are made for the elements in a SYSMOD to ensure that a proper
relationship exists between the SYSMOD being installed and previously installed
SYSMODs which supplied the same elements.

• All elements: The SYSMOD being installed must PRE or SUP the RMID of the asso-
ciated target-system element. (Note that if the target-system element's RMID
is the same as its FMID, the element has not been replaced by any SYSMOD since
the installation of a function; in this case, the SYSMOD being installed need
not PRE the RMID.)

If the element being installed is a ++SRC/++SRCUPD or a ++MAC/++MACUPD which
results in an assembly which will replace a target-system module (element),
the SYSMOD being installed must PRE or SUP the RMID of the corresponding

28 Chapter 2 - OS/VS SMP System Programmer's Guide

target-system module which would be replaced by the assembly; an exception is
made to this requirement if the target-system module is itself the result of
an assembly (RMIDASM indicator set in the MOD entry). This exception is
allowed since the re-assembly will pick up any changes caused by the SYSMOD
which last replaced the module via an assembly.

• Replacement elements: The SYSMOD being installed must PRE or SUP all UMIDs
associated with the target-system element.

As above, assemblies resulting from ++SRC/++SRCUPD and ++MAC/++MACUPD ele-
ments are considered to be replacement modules; the SYSMOD being installed
must PRE or SUP all UMIDs of the corresponding target-system modules which
would be replaced by the assembly. There is no exception made for a SYSMOD
which does not PRE or SUP all UMIDs associated with modules which were assem-
bled. No exception is allowed here since any UMIDs associated with the module
are ZAPs which would be overlaid by a new assembly.

If either of the above MODID CHECKS is not satisfied, the MODID CHECK ERROR condi-
tion is raised and the SYSMOD supplying the offending element(s) is terminated.
The user may, however, bypass the termination of the SYSMOD by the specification
of BYPASS(ID) on the APPLY or ACCEPT SMP Control statements; in this situation,
the MODID CHECK condition is reported to the user (as a warning) and the offending
element(s) are installed on the target system.

• Update elements: The SYSMOD being installed need not PRE or SUP the UMIDs
associated with the corresponding target-system element. If any target-system
element UMIDs are not PREd or SUPd, a MODID CHECK WARNING condition is raised
and is reported to the user.

The MODID CHECK WARNING does not result in the termination of the SYSMOD being
installed and the update is installed on the target system.

ELEMENT SELECTION FOR FUNCTION RE-INSTALL

Element selection gets more complicated only for function SYSMODs which are being
re-installed and have elements which intersect with corresponding elements having
the same FMID as themselves (i.e., "FMIDs MATCH" above.)

The processing for this situation proceeds as in "FMIDs MATCH" above; however,
when a MODID CHECK ERROR condition is detected further checks are made to deter-
mine whether the service level of the target-system element is higher than that of
the element from the SYSMOD being re-installed. If SMP can determine that the
service level of the target-system element is higher than that of the SYSMOD ele-
ment, the element from the SYSMOD being re-installed is excluded, and processing
of the SYSMOD is not terminated. If SMP cannot determine that the target-system
element's service level is higher than that of the element from the SYSMOD being
re-installed, the SYSMOD is terminated with a MODID CHECK ERROR.

APPLY Processing 29

ELEMENT PROCESSING

PROCESSING MODULES

The modules (++MODs and assemblies) selected from a SYSMOD are generally link
edited to a load module library on the target system. SMP determines the load mod-
ule with which a module belongs by accessing the CDS MOD entry for the module. The
CDS MOD entry contains load module (LMOD) sub-entries which indicate the proper
load modules. The link edit characteristics and control statements for the link
edit are found in the CDS LMOD entry for the appropriate load module.

If the CDS MOD entry has no LMOD sub-entries, a check is made to determine whether
the distribution library (DLIB) for the module was totally copied to a target sys-
tem library. (SMP determines that a DLIB was totally copied by looking for a CDS
DLIB entry describing the module's DLIB.) If this is the case, SMP will create a
load module on the target library having the same name as the module's name.

When SMP links a module into a load module which was defined by "link edit" JCL, a
linkage editor INCLUDE statement is generated to include the current version of
tha load module from the target library. This is done to obtain the other modules
which make up the load module. Link edit control statements saved in the CDS LMOD
entry are passed to the linkage editor as SYSLIB input.

When SMP links a module into a load module which was defined by "copy" JCL (or was
in a totally copied DLIB), no INCLUDE for the current version of the load module is
generated.

If the module is supplied on a LKLIB or relative file and the load module was
defined by "copy" JCL, SMP will copy the module to the target system. If aliases
are specified for such a module, the aliases must exist in the LKLIB or relative
file in order for them to be copied.

If SMP cannot determine the load module for a module, it is presumed that the con-
figuration of the target system does not require the module, and no link edit or
copy will be done.

Load Module Attributes and Link Edit Parameters

The parameters passed to the linkage editor include load module attributes (RENT,
REUS, REFR, DC, ALIGN, SCTR, OVLY, AC=1 and NE) and linkage editor parameters
(LET, LIST, XREF and NCAL). SMP determines the attributes and parameters to be
passed as follows:

• If LEPARMs are specified on the ++MOD statement, the attributes supplied are
used and the corresponding CDS LMOD entry is updated (or created) with these
attributes.

• If LEPARMs are not specified and a CDS LMOD entry exists, the attributes from
the LMOD entry are used.

 30 Chapter 2 - OS/VS SMP System Programmer's Guide

• If LEPARMS are not specified and a CDS LMOD entry does not exist (or exists
without link edit attribute indicators), the target library is accessed to
determine the link edit attributes for the load module. If the load module is
not found on the target library, no load module attributes are passed to the
linkage editor (unless the user has set some in the PTS SYSTEM entry) .

The parameters passed to the linkage editor are those attributes determined above
plus the LKEDPARMs found in the PTS SYSTEM entry.

PROCESSING SOURCE AND MACRO MODIFICATIONS

SMP allows you to receive and apply multiple modifications to the same macro or
source elements. These modifications can exist in different types of SYSMODs
(++USERMODs, ++PTFs, or ++APARs) and can be processed concurrently by the APPLY
function.

When two or more updates to the same source module or macro are being processed
concurrently, the text from each is merged based on the sequence numbers in col-
umns 73 to 80. The order of the merge is based on the processing order expressed
by the PRE keywords on the ++VER statements. If SMP finds a processing order
relationship between all of the SYSMODs being processed, the merge occurs accord-
ing to that order. When no processing order is found, the SYSMODs are merged
according to the type of SYSMOD, in which case updates from PTFs are merged first,
followed by updates from APARs. Finally, updates from USERMODs are merged.

If any of the SYSMODs being processed do not have a processing order relationship

with other SYSMODS that do have a processing order, the updates from the unrelated
SYSMODs are merged after the updates from SYSMODs that have a processing order
relationship.

Library Updating

Macro and source replacements are generally copied to the operating system
libraries using IEBCOPY. However, IEBUPDTE is used to process macros which have
aliases and source or macro elements having SSI data.

Macro and source updates are performed using IEBUPDTE.

The operating system library for macros and source is found as a SYSLIB sub-entry
in the CDS MAC or SRC entries for the respective element types. If no SYSLIB
sub-entry is present (and no SYSLIB is specified on the element's modification
control statement), a check is made to determine whether the element's distrib-

ution library was totally copied to an operating system library. If the distrib-
ution library was totally copied to an operating system library (determined by the
presence of a CDS DLIB entry for the distribution library), the operating system
library to which the DLIB was copied is determined to be the operating system
library for the macro or source element. Finally, if no operating system library
can be determined, the SMPMTS and SMPSTS libraries are used to store macros and
source respectively.

APPLY Processing 31

Macro and source elements stored on the MTS or STS remain there until they are
replaced by elements from subsequent APPLY processing or until the SYSMODs which
modified them are accepted. In this way, the MTS and STS serve as a "macro"
libraries for assemblies during APPLY processing and must be in the concatenation
of the SYSLIB DD statement for APPLY ("SMP Cataloged Procedure" in Chapter 3
further discusses the concatenation of SYSLIB libraries).

Assembly of Source Text

A SYSMOD may supply both the source (++SRC/++SRCUPD) for an element and an object
deck (++MOD) for the same element. SMP will determine whether the object deck may
simply be link-edited into the target system or whether the source must be assem-
bled. This determination is made by considering the following questions:

• Has the user specified ASSEM on the APPLY/ACCEPT control statement?

• Are there any UPDATES to the SOURCE which the SYSMOD supplying the OBJECT does
not know about? (UMIDs in the CDS Source entry)

• Has another SYSMOD assembled the module which this SYSMOD does not know about?

(RMID of the CDS MOD entry for the module to be assembled)

• Is the ASSEMBLE indicator set for the corresponding MOD?

If the answer to any of the above questions is "yes", the assembly of the module
will be done if SMP can determine where the resultant assembled object should go.
SMP "knows" where to put the assembled object if there is a CDS MOD entry for the
resultant object and a load module into which the module should be link edited
(see the discussion of "Processing Modules" above).

Assemblies for MACROs

A SYSMOD may supply macros which require the assemblies of modules. The required
assemblies are found as GENASM sub-entries in the CDS MAC entry and in the ASSEM
and PREFIX keywords on the ++MAC/++MACUPD modification control statement. The
source for these assemblies is found by looking for a CDS ASSEMBLY entry matching
the name of the module; if an ASSEMBLY entry is not found, the SOURCE entry match-
ing the name of the module is used as the source for the assembly. If neither an
ASSEMBLY nor a SOURCE entry can be found, no assembly will be done.

The SYSMOD may also supply an object deck for the modules to be assembled. SMP will
determine whether the assembly should be done rather than using the object decks
supplied in the SYSMOD. This determination is made by considering the following
questions:

• Has the user specified ASSEM on the APPLY/ACCEPT control statement?

 32 Chapter 2 - OS/VS SMP System Programmer's Guide

Are there any UPDATES to the MACRO which the SYSMOD supplying the OBJECT does
not know about? (UMIDs in the CDS Macro entry)

Has another SYSMOD assembled the module which this SYSMOD does not know about?
(RMID of the CDS MOD entry for the module to be assembled)

Is the ASSEMBLE indicator set for the corresponding MOD?

If the answer to any of the above questions is "yes", the assembly of the module
will be done if SMP can determine where the resultant assembled object should go.
SMP "knows" where to put the assembled object if there is a CDS MOD entry for the
resultant object and a load module into which the module should be link edited
(see the discussion of "Processing Modules" above).

Whenever a macro modification in a APAR or USERMOD type SYSMOD causes the assembly
of a module, the ASSEMBLE indicator in the modules CDS MOD entry is set on. Subse-
quent PTF, APAR, or USERMOD type SYSMODs containing modifications to macro or
source elements affecting a module whose ASSEMBLE indicator has been set will
cause the re-assembly of the module in spite of the presence of an object module in
the SYSMOD. The re-assembly will prevent regression of the assembled module during
the installation of subsequent SYSMODs which might replace the affected module but
not contain the macro modification introduced by the earlier SYSMOD.

If the user wishes to prevent future re-assemblies of modules which have had their
ASSEMBLE indicator set, the UCLIN function must be used to set it off (DEL).

REUSE of Previous Assemblies

If SMP is run after a previous failure, assemblies are re-done to ensure that the
proper source and macros are used. If the same set of SYSMODs is being processed
after a failure, the assemblies done before the failure need not be re-done. The
previously assembled objects for the failed SYSMOD will be used if the REUSE
keyword is specified in the APPLY control statement.

Assembled object decks are stored on the SMPWRK3 dataset and remain there until
the SYSMODs causing the assemblies are successfully processed; in order to be able
to reuse assemblies, SMPWRK3 must not be scratched after an apply step.

SMP does not make any checks to ensure that the same set of SYSMODs are being
re-done after a failure; a certain amount of user care must be exercises in order
to take advantage of the REUSE facility.

Usage of DISTSRC, ASSEM and DISTMOD Operands

Because SMP cannot determine from the data processed by JCLIN what source modules
era contained in a totally copied library, the DISTSRC, ASSEM, and DISTMOD oper-
ands are provided to pass this information to SMP when a macro is replaced or
updated that results in the reassembling of source modules. The DISTSRC keyword

APPLY Processing 33

•

•

•

value specifies the name of the distribution library containing the source mod-
ules. The ASSEM and PREFIX keyword values specifies a list of source modules
and/or CDS ASSEMBLY entries that should be assembled during APPLY processing. The
DISTMOD keyword value specifies the name of the distribution library containing
the load modules. These three keywords are specified on ++MAC, ++MACUPD and
++UPDTE modification control statements.

The ASSEM keyword values are placed in the associated SYSMOD entry on the CDS as
ASSEM subentries. If any of the modules specified in the ASSEM keyword values are
found on the CDS as SRC or ASSEM entries, then the DISTLIB and SYSLIB subentry val-
ues are used in lieu of the DISTSRC keyword value.

If neither a SRC nor an ASSEM entry exists for a module in the ASSEM keyword val-
ues, then a SRC entry is created. The DISTSRC keyword value is placed in the SRC
entry as the DISTLIB subentry. If there is a DLIB entry on the CDS for the DISTSRC
keyword value, then the SYSLIB subentry(s) from the DLIB entry are placed in the
SRC entry as SYSLIB subentry(s). If no DLIB entry exists, the SYSLIB subentry in
the SRC entry is left as null and the STS is used in place of a target library.

If there is no MOD entry on the CDS for a module in the ASSEM operand list, one is
created. The DISTMOD keyword value is placed in the MOD entry as the DISTLIB sub-
entry.

If no LMOD entry exists for a module, one is created, provided there is a DLIB
entry on the CDS for the DISTMOD keyword value. The SYSLIB subentry(s) from the
DLIB entry are placed in the LMOD entry as SYSLIB subentry(s) and the LMOD sub-
entry is placed in the MOD entry. If no DLIB entry exists, then no LMOD subentry
exists in the MOD entry and, therefore, no executable load module can be updated
in the target system for that module.

After the macro update or replacement is accomplished, the assemblies of all mod-
ules specified in the ASSEM and PREFIX operand lists are performed. If no member
is found in either the source target system library or STS, or in the distribution
library for a source module specified in the ASSEM operand list, a warning message

is issued and processing of the SYSMOD continues without assembling or link edit-
ing the module. If an assembly completes with a return code greater than the one
that you specified in the ASMRC subentry of the PTS SYSTEM entry (or the SMP
default of 4, if the ASMRC subentry is null), the processing of the SYSMOD is
terminated. If the resulting object text from a successful assembly can be link
edited into a load module, then the link edit is performed.

ALIAS PROCESSING

When an element with aliases is processed, both the element and its aliases will
be updated. SMP does not check the aliases against elements maintained in the CDS.
The user must ensure that an element's alias does not match the name of an element
maintained by SMP in the CDS.

Aliases for an element are determined as follows:

• REPLACEMENT Elements (MODs and MACs):

 34 Chapter 2 - OS/VS SMP System Programmer's Guide

1. If a list of aliases is specified on the SMP Modification control state-
ment, these aliases will be used. Aliases (on the target system) which
existed before this new list of aliases was presented to SMP will 'not be
replaced. Further, this new list of aliases will replace any alias
sub-entries in the CDS element entry.

2. If no list of aliases is specified on the SMP Modification control state-
ment, the aliases found as alias sub-entries in the CDS element entry will
be used.

• UPDATE Elements (ZAPS and MACUPDs):

1. If a list of aliases is specified on the SMP Modification control state-
ment, these aliases will be used. Any alias sub-entries in the CDS element
entry are ignored for update processing of the element. Macro aliases (on
the target system) which existed before this list of aliases was presented
to SMP will not be updated. Alias sub-entries in the CDS element entry are
not updated or replaced by the aliases in this list.

2. If no list of aliases is specified on the SMP Modification control state-
ment, the aliases found as alias sub-entries in the CDS element entry will
be used.

DISTLIB OPERAND CHECKING

When an element is selected for application and a CDS entry for that element
already exists, the value of the DISTLIB operand on the element modification con-
trol statement is compared with the DISTLIB subentry in the CDS element entry. If
they are not equal, SMP issues a message to inform you of an error condition and
terminates the SYSMOD containing the element.

If service and function SYSMODs are being processed and contain the same element,
and an element entry does not exist on the CDS, the service SYSMODs must specify
the same DISTLIB as the function SYSMODs on the element modification control
statements. If they do not, SMP issues an error message and the APPLY function is
terminated.

If two service SYSMODs update or replace the same element, have different DISTLIB
operand values, and are both eligible for processing, but an entry for the element
does not exist on the CDS, than the first SYSMOD processed causes a CDS element
entry to be created containing the DISTLIB from its modification control state-
ment. SMP terminates the second SYSMOD.

COMPRESS PROCESSING

If COMPRESS is specified on the APPLY control statement, the libraries to be
affected by the APPLY are compressed by calling IEBCOPY. Before IEBCOPY is called,
all load modules and source elements to be replaced are deleted from their target
system libraries. Macros are not deleted since termination of the SYSMOD supplying

APPLY Processing 35

the macros might affect assemblies in other SYSMODs.

APPLY CHECK FACILITY

The intent of the CHECK option is to perform a 'dry run' to inform you of possible
error conditions and to provide reports of SYSMOD status, libraries that will be
updated, regression conditions and SYSMODs that will be deleted. Permanent updat-
ing of target system libraries does not occur.

During CHECK processing, the CDS directories are maintained in storage; data is
written to the CDS as a temporary storage media. CHECK processing does not
re-write the in-storage directories; consequently, no permanent updates are made
to the CDS.

APPLY OUTPUT

CDS SYSMOD ENTRIES

Processed SYSMODs

For each SYSMOD processed, an SMPCDS entry is created. If a SYSMOD entry existed
previously (as in the case of reapplication of the SYSMOD), the previous entry is
replaced. The entry includes data from the applicable ++VER modification control
statement, subentries for each of the elements included in the SYSMOD package and
indicators that are set when ++IF and ++JCLIN modification control statements are
present.

A SYSMOD is considered "successfully" processed when all of its elements have been
applied to the appropriate system libraries and all of its requisites have, them-
selves, been successfully processed. Since SMP will process any number of SYSMODs
with elements in common, it is possible that some SYSMODs have elements which need
not be applied to a system library; when this is the case, such SYSMODs are not

considered "successfully" processed until the SYSMODs supplying the higher level
versions of the corresponding elements are successful.

If the SYSMOD is not successfully processed, an ERROR status indicator is set in
the entry.

Superseded SYSMODs

When a SYSMOD is superseded by another SYSMOD, a record of this is made by adding
the name of the superseding SYSMOD to the SUPBY subentries of the superseded
SYSMOD. If the superseded SYSMOD had not been previously applied, the SMPCDS

 36 Chapter 2 - OS/VS SMP System Programmer's Guide

SYSMOD entry for the superseded SYSMOD will contain only the SUPBY information.

Regressed Element Subentries

A potential regression of modifications in an element exists in the situations
described in the MODID VERIFICATION checks described above. When potential
regressions of elements are detected, a record is kept for the SYSMOD which had
previously modified the element; this record is kept by marking the element sub-
entries in the SYSMOD entry as "regressed".

CDS ELEMENT ENTRIES

Apply processing creates, modifies and may delete CDS element entries.

Entry Update Indicator:

When an entry is added by a SYSMOD being processed or modified by in-line JCLIN,
the SYSMOD's sysmodid is placed in the LASTUPD subentry of the CDS element entry.

ALIAS Sub-Entries:

The updates to an element's ALIAS sub-entries are discussed under the "Alias Proc-
essing" topic on page 34 in this chapter.

LMOD Sub Entries:

When the LMOD operand is specified on a ++MOD modification control statement, the
values in the operand list are added to the CDS MOD entry as LMOD sub-entries.

MODID Sub Entries:

• The FMID subentry is replaced with the FMID of the SYSMOD from which the mod-
ification to the element was selected. If this is a function SYSMOD, then it
is the SYSMOD-ID of the function itself.

APPLY Processing 37

• The RMID subentry is changed when a replacement element (++MOD, ++MAC, ++SRC
or assembly) is applied. The RMID becomes the SYSMOD-ID of the SYSMOD supply-
ing the element.

If a MOD entry is being updated as the result of an assembly for a macro or
source the RMID is replaced with the SYSMOD-ID of the SYSMOD supplying the MAC
or SRC, and the RMIDASM indicator is set to reflect this occurrence The
RMIDASM indicator will be set for the module even if the actual assembly was
suppressed because the SYSMOD supplied an assembled version of the module (see
"Assembly of Source Text" and "Assemblies for MACROs" above).

If the replacement element's modification control statement specified an RMID
for the element (the RMID keyword), the specified value is used.

• All UMID subentries are deleted when a replacement element is applied.

If the replacement element's modification control statement specified a list
of UMIDs for the element (the UMID keyword), these UMIDs replace any existing
UMIDs for the element.

• UMID subentries are added when updates (++ZAP, ++MACUPD, ++SRCUPD) are applied
to the element. The UMIDs are the SYSMOD-IDs of the SYSMODs supplying the
updates.

If a SYSMOD with an update modification to an element supersedes another
SYSMOD with an update modification to the same element, then the UMID subentry
for the superseded SYSMOD is deleted from the element entry.

SMPCRQ

SMP processing adds data to the CRQ dataset for every SYSMOD applied which con-
tains ++IF conditional requisite statements. Two types of entries are maintained
on the CRQ:

• FMID Entries

These entries are organized by function name and contain the names of other
SYSMODs which have supplied IF statements which refer to the function.

• SYSMOD Entries

These entries are organized by SYSMOD and contain the IF statement data sup-

plied by the SYSMOD.

Generally, this data must be kept indefinitely since SMP cannot predict when a
function SYSMOD will be installed for which CRQ data has been provided. The only
situation in which SMP "knows" that a function SYSMOD will never be subsequently
installed is when that SYSMOD is explicitly DELETED by another SYSMOD. Therefore,
the management and cleanup of CRQ data is driven by the explicit deletion of
function-type SYSMODs.

 38 Chapter 2 - OS/VS SMP System Programmer's Guide

When a function-type SYSMOD is DELETED by another function-type SYSMOD, the CRQ
data will be examined in order to determine what data is still applicable.

• The CRQ FMID entry for each explicitly deleted SYSMOD is scratched.

The CRQ SYSMOD entries are scratched when all the FMIDs referred to by the IF
data in these entries are explicitly deleted.

The description of the CRQ entries on page 323 contains an example of the CRQ
entries created by a SYSMOD supplying ++IF statements.

PTS SYSMOD ENTRIES

The CDSID (from the CDS SYSTEM entry) is added as an APPID subentry to the PTS
SYSMOD entry of each successfully processed SYSMOD. The APPID sub-entries in the
PTS thus reflect the target systems to which each SYSMOD has been applied.

SMPSCDS

Entries are created on the SCDS so that SMP RESTORE processing can restore modifi-
cations made to CDS entries if a SYSMOD is restored.

REPORTS AND MESSAGES

Four reports can be produced as a result of APPLY processing and are explained in
Chapter 4. In addition, messages are issued to inform you of error and warning
conditions that are detected before the reports are produced. The reports are
produced on the SMPOUT data set unless you have provided an SMPRPT DD statement.
In this case, the reports are produced on the SMPRPT data set.

Reports are not produced if a function SYSMOD terminates.

SYSMOD PROCESSING TERMINATION

Termination of a SYSMOD causes a return code of 8; termination occurs in response
to any of the following conditions:

• Missing Requisites:

The requisite SYSMOD is not available on the PTS (it has not been
received).

APPLY Processing 39

- The requisite SYSMOD has been EXCLUDED.

- The requisite SYSMOD was terminated (possibly due to other missing requi-
sites).

- The requisite SYSMOD did not meet the applicability criteria.

- The requisite SYSMOD was not included in the SELECT list.

• Inline JCLIN processing failure. The entries that are affected are restored to
the state that existed before JCLIN processing.

• MODID Error Conditions

• DISTLIB operand checking failure.

• A DD statement is missing for a target system library.

• Utility Return Codes

Return codes from the utilities invoked to update, assemble, copy and link
edit elements to the target system are examined to determine the success or
failure of an operation. If these return codes exceed a pre-defined value, the
SYSMODs whose elements are involved in the operation are terminated.

• Related SYSMOD Failure

When SMP excludes an element from a SYSMOD because another SYSMOD being proc-
essed supplies a higher level of the element, SMP does not consider the first
SYSMOD "successfully" processed until the SYSMOD supplying the highest (se-
lected) level element completes successfully. If the SYSMOD supplying the
highest level element fails, all SYSMODs from which elements have been
excluded will be terminated because of a "related SYSMOD failure".

AVOIDING TERMINATION OF A SYSMOD

BYPASS

Certain error conditions that cause the termination of a SYSMOD can be avoided by
specifying the BYPASS operand on the APPLY control statement. In BYPASS mode,
some error conditions are treated as warning conditions. The following operand
values can be specified with the BYPASS operand to avoid termination:

• ID - specifies that SYSMODs should be processed even though their MODID ver-
ification checks have failed.

• PRE - specifies that SYSMODs should be processed even though their PRE requi-
site conditions are not met.

 40 Chapter 2 - OS/VS SMP System Programmer's Guide

• REQ - specifies that SYSMODs should be processed even though their REQ requi-
site conditions are not met.

• IFREQ - specifies that SYSMODs should be processed even though their condi-
tional requisite conditions (IFREQs) are not met.

Utility Return Code Thresholds

The values SMP uses to determine the success or failure of an invoked utility pro-

gram are kept in the SMPPTS SYSTEM entry and may be changed by UCLIN. The default
values are shown in the "SMP Data Set Entries" chapter.

APPLY PROCESSING TERMINATION

APPLY processing termination causes a return code of 12. For each of the following
conditions, SMP issues an error message. APPLY reports are not produced when a

function SYSMOD is terminated before selection processing completes. Termination
can be caused by any of the following conditions:

• Termination of processing of any function SYSMOD.

• Two function SYSMODs are specified in the SELECT or GROUP list and one speci-
fies the other in the DELETE operand of its ++VER modification control state-
ment.

• Two function SYSMODs are specified in the SELECT or GROUP list, or are
selected in mass mode, and one specifies the other in the NPRE operand of its
++VER modification control statement.

• A function SYSMOD that specifies a previously-applied SYSMOD in the NPRE oper-
and of its ++VER modification control statement is specified in the SELECT or
GROUP list.

• A function SYSMOD that has been deleted by a previously-applied SYSMOD (that
is, a SYSMOD entry on the CDS indicates that the SYSMOD has been deleted) is
specified in the SELECT or GROUP list.

• A function SYSMOD that has been superseded by a previously-applied SYSMOD
(that is, a SYSMOD entry on the CDS indicates that the SYSMOD is superseded)
is specified in the SELECT or GROUP list. A service SYSMOD in the same situ-
ation is not processed but the APPLY function is not terminated.

AUTOMATIC REAPPLICATION OF SYSMODS

It is possible that an applied SYSMOD might be selected for reapplication as a
result of selection of a function SYSMOD being applied for the first time. This

APPLY Processing 41

can occur if the modification• is applicable to more than one function. For exam-
ple, consider the following SYSMOD:

++PTF(UZ00001).
++VER(Z038) FMID(GVT3100).
++IF FMID(GVT3101) THEN REQ(UZ00001).
++VER(Z038) FMID(GVT3101).
++MOD(IFTABCD) DISTLIB(A0S99).

If PTF UZ00001 is already applied as service for function GVT3100, then SMP
selects the first ++VER modification control statement and creates a CRQ entry for
the ++IF modification control statement that follows the ++VER modification con-
trol statement. As a result, when function GVT3101 is selected for application,
PTF U200001 is also selected because its version of module IFTABCD is at a higher
service level than that of function GVT3101. This would be true even if function
GVT3101 specified DELETE(GVT3100), which would result in the deletion of PTF
UZ00001, because the deletion is logical until the deleting SYSMOD GVT3101 is suc-
cessfully processed. The ++VER modification control statement that SMP selects
for PTF UZ00001 is the one with the FMID(GVT3101) operand.

 42 Chapter 2 - OS/VS SMP System Programmer's Guide

RESTORE PROCESSING

RESTORE processing removes SYSMODs that have been processed by APPLY from the
target system libraries. SYSMODs that have been accepted into the distribution
libraries cannot be restored.

RESTORE processing takes the version of the module, source module or macro that
was last accepted from the distribution library and places it back into the target

system library. In addition, required modules are reassembled and placed back into
the target system libraries, and the CDS, SCDS, and CRQ are returned to the state
they were in before the SYSMODs were applied.

SYSMOD SELECTION

When you specify SYSMODs to be restored, you should be aware that SYSMODs can be
interrelated by the PRE, REQ, FMID, and SUP keywords on ++VER modification control
statements and by the REQ keyword on ++IF modification control statements. Inter-
related SYSMODs that have been applied but not accepted are considered members of
a restore group.

A restore group for a SYSMOD consists of all the SYSMODs that have specified that
SYSMOD in a PRE, FMID, REQ, or SUP operand in their ++VER modification control
statements or in a REQ operand in their ++IF modification control statements and
any SYSMODs that reference those SYSMODs in FMID, PRE, REQ, or SUP operands. In

other words, all SYSMODs that have a direct or indirect dependency with a SYSMOD

specified for RESTORE processing are considered part of the restore group.

RESTORE processing can be performed for SYSMODs that are not members of a restore
group as well as all the SYSMODs in a restore group.

You can selectively restore SYSMODs, or you can restore SYSMODs in restore groups.
These options are specified by the SELECT and GROUP keywords, respectively, on the
RESTORE control statement. The following explains these options:

SELECT

In SELECT mode, you must specify the SYSMOD to be RESTORED and all of the req-
uisite SYSMODS that are interrelated which have been APPLIED and not ACCEPTED.
When restoring a SYSMOD that superseded a previously APPLIED SYSMOD and that
SYSMOD is not ACCEPTED then the superseded SYSMOD is required in the RESTORE
list.

Only the SYSMODs that you specify are selected for RESTORE and an incomplete
list will result in a RESTORE failure. Therefore a RESTORE CHECK run is recom-

mended prior to the actual RESTORE. In order to synchronize the target system
to the level of the distribution libraries, SYSMODs other then those specified
in the RESTORE list may be required.

GROUP

RESTORE Processing 43

Each SYSMOD specified in the GROUP operand and all of their dependent SYSMODs
are considered as a restore group and are selected for RESTORE processing.

SYSMOD INELIGIBILITY

Certain conditions exist that can cause SYSMODs to be considered ineligible for
RESTORE processing. These conditions cause SMP to terminate processing of the
ineligible SYSMODs and issue messages to inform you of the error conditions.

The following conditions cause SMP to consider a SYSMOD as ineligible for RESTORE
processing:

• An element being restored has a MODID in the element entry on the ACDS that
does not have a corresponding SYSMOD entry on the CDS. This can occur if a
SYSMOD has been accepted without being applied and, as a result, the distrib-
ution library is at a higher function or service level than the target system
library.

• The version of an element being restored is the same in the target system
library as it is in the distribution library. This can occur if a SYSMOD is
both applied and accepted.

• A SYSMOD that should have been selected for RESTORE processing was not speci-

fied in the SELECT operand list. This condition can occur if one of the
SYSMODs specified in the list is part of a restore group that is not fully
specified.

• The service level of an element in the distribution library is not the correct
one. This can occur if several modifications to the same element are applied
at different points in time, none of which were accepted, and the later mod-
ifications are the ones that are selected for RESTORE processing.

Consider the following example. The ACDS shows that an element was last
replaced on the distribution libraries by PTF UZ00001, but the CDS indicates
that the last replacement to the element on the system was by PTF UZ00004. In
addition, the element was also modified on the system by PTFs UZ00002 and
UZ00003. The following figure shows the SYSMODs on the CDS and ACDS in serv-
ice order:

 44 Chapter 2 - OS/VS SMP System Programmer's Guide

CDS SYSMODs ACDS SYSMODs

If you specified: 'RESTORE GROUP(UZ00004).', PTFs UZ00002 and UZ00003 would
not be considered part of the restore processing group since they are not
dependent on PTF UZ00004. To correct the error, specify: 'RESTORE
GROUP(UZ00002).'.

When this condition is detected, SMP issues messages to inform you of the
SYSMODs that must be restored along with the specified SYSMOD or accepted pri-
or to restoring that SYSMOD.

• Ineligibility of a member of a restore group terminates processing for the
entire group. This can occur both in GROUP and SELECT mode.

• Function SYSMODs that contained the DELETE keyword on the ++VER modification
control statement used for APPLY processing are not eligible for RESTORE proc-
essing.

If a function SYSMOD is terminated for any of the above conditions, the RESTORE
function is also terminated.

INLINE JCLIN

If a SYSMOD that had inline JCLIN is restored, SMP attempts to restore the CDS
entries affected by the JCLIN to their state before the SYSMOD was applied. This
is done by accessing the related SYSMOD entry and associated BACKUP entries in the
SCDS. For each BACKUP entry, SMP checks the corresponding CDS entry to ensure
that the last modification (LASTUPD subentry) to the CDS entry was for the SYSMOD
being restored. If it was, then the entry is replaced from the SCDS BACKUP entry.
If it was not, SMP issues a message to indicate that the entry was not replaced
with the SCDS BACKUP entry and RESTORE processing continues. This condition can
occur if you used UCLIN or JCLIN to update an entry after you applied the SYSMOD
being restored, or if a subsequent SYSMOD was applied that updated the entry but
did not have a dependency relationship with the SYSMOD being restored. The latter
condition should only occur for LMOD entries.

RESTORE Processing 45

As each entry is completed, SMP deletes the BACKUP entry. When all BACKUP entries
have been processed, SMP deletes the related SYSMOD entry from the SCDS. This
processing is done prior to updating target system libraries.

JCLIN processing occurs in the reverse order of application; that is, the latest
update is restored first and the earliest update is restored last. The order is
determined by the dependency relationships of the SYSMODs being restored.

ELEMENT RESTORATION

Each element modified by the SYSMODs being restored is altered by one of the fol-
lowing processes:

• If the modification being removed deleted the element using a DELETE operand
on the element modification control statement, the element entry that was
backed up on the SCDS is restored on the CDS as described earlier in "Inline
JCLIN." The copy of the element is restored from the distribution library
specified by the DISTLIB subentry of the element entry to the target system
library, MTS, or STS.

• If the modification being removed was a complete replacement of the element,
then the copy of the element in the distribution library is used to replace
the element in the target system library. If the element has no copy in the
distribution library, the element is deleted from the target system library

and the element entry is deleted from the CDS. If the module is also a com-
plete load module, then the load module is deleted and the LMOD entry in the
CDS is deleted.

• If the modification being removed contained a ++MOD modification control
statement with an LMOD Operand, the MOD entry is restored with the copy from
the SCDS as described earlier in "Inline JCLIN."

• If the modification being removed is an IMASPZAP, the target system library
load modules are link edited as described above provided that other IMASPZAP
modifications to the module are also being restored or have been accepted into
the distribution library copy. If not, the associated SYSMOD and all related
SYSMODs are terminated.

• If the modification being removed is a macro or source module update, the ele-
ment is replaced with the copy of the element in the distribution library pro-
vided that any other updates to the element are also being restored or have
been accepted into the distribution library copy. If not, SMP terminates the
associated SYSMOD and all of its related SYSMODs. All assemblies are accom-
plished after this restoration completes.

AVOIDING TERMINATION OF SYSMOD PROCESSING

You can avoid certain error conditions that would terminate a SYSMOD by specifying
the BYPASS(ID) operand on the RESTORE control statement. In this way, error con-
ditions in the ID validation checking do not cause SYSMOD termination but are

 46 Chapter 2 - OS/VS SMP System Programmer's Guide

treated as warnings.

The first two conditions described earlier in "SYSMOD Ineligibility" can be
bypassed using this option. However, in the first case, the target system library
contains a version of the element that is probably functionally superior to that
version being removed. This can cause the executable code in the target system
library to be inoperable. In addition, SMP updates the element entry on the CDS to
reflect the UMID and RMID subentry contents from the element entry on the ACDS. In
this case, the SYSMOD entry might not exist on the CDS because the NOAPPLY keyword
was probably used on the ACCEPT control statement; thus, the SYSMOD was never
applied to the target system. You should avoid using the BYPASS(ID) option unless
it is absolutely necessary.

UPDATING THE MODID SUBENTRIES OF ELEMENT ENTRIES

The MODID fields of element entries are replaced with those from the ACDS element
entry.

SUPERSEDE PROCESSING

All SYSMOD entries that are superseded by SYSMODs being restored have the SUPBY
subentries for those SYSMODs deleted. If all SUPBY subentries are deleted for a
superseded SYSMOD entry, and the entry is APPLIED and not ACCEPTED, then the entry
itself is deleted. As a result of restoring a SYSMOD that superseded a previously
applied SYSMOD, CRQ entries that might have been ignored during APPLY processing
may now be applicable. This condition is not acted upon by RESTORE processing.
Therefore, subsequent APPLY processing may request requisite SYSMODs that are now
applicable because of previously applied function SYSMODs.

DELETING DATA FROM THE CRQ

When a SYSMOD is successfully restored, any associated SYSMOD entry is deleted,
and the related FMID entries are updated to remove the reference on the CRQ to the
restored SYSMOD.

UPDATING THE PTS

When a SYSMOD is successfully restored and the REJECT indicator is on in the PTS
SYSTEM entry, the SYSMOD is also rejected from the PTS as described earlier in
"REJECT Processing." Any temporary libraries associated with the SYSMOD are also
deleted.

RESTORE Processing 47

When a SYSMOD is successfully restored and the REJECT indicator in the PTS SYSTEM
entry is off, the APPID subentry matching the CDSID i n the CDS SYSTEM entry is
deleted from the PTS SYSMOD entry to indicate that the element is no longer
applied to the target system library represented by that CDS.

DELETING ENTRIES FROM THE CDS

When a SYSMOD is successfully restored, any associated CDS element entries are
replaced with those from the ACDS. If an ACDS entry is not present, the CDS entry
is deleted.

DELETING MEMBERS FROM THE MTS AND STS

When a successfully restored SYSMOD contains modifications to macros or source
modules that were placed in the MTS or STS during APPLY processing, those members
are deleted from the appropriate data set.

RESTORE REPORTS AND MESSAGES

RESTORE processing produces two reports. They are described in Chapter 4. If a
function SYSMOD is selected but terminates, no reports are produced.

In addition, SMP may issue messages to inform you of error and warning conditions

detected prior to producing the reports.

 48 Chapter 2 - OS/VS SMP System Programmer's Guide

ACCEPT PROCESSING

The ACCEPT process updates the distribution libraries or permanent user libraries
and the ACDS.

In general, ACCEPT processing is very similar to APPLY processing, except that the
SYSMODs are placed into permanent libraries, and the ACDS and ACRQ data sets are
used rather than the CDS and CRQ data sets. Eligibility, selection, termination,
and exception processing are handled in much the same way as they are during APPLY
processing. Therefore, review "APPLY Processing" earlier in this chapter because
the following text describes only the differences between the two.

ACCEPT CONTROL STATEMENT

The selection of SYSMODs to be accepted is controlled by the keywords specified on
the ACCEPT control statement. These keywords, in conjunction with the applicabil-
ity criteria listed below, determine which SYSMODs will be accepted:

• When the SELECT keyword is used, only those SYSMODs specifically named are
considered for processing. SELECT may be used to re-accept a SYSMOD. SELECT
also allows you to accept a SYSMOD which has not been applied.

• When the EXCLUDE keyword is used, all SYSMODs found on the PTS are considered
except those specifically named.

• When the GROUP keyword is used, those SYSMODs specifically named and their
requisites are considered.

• When none of the above keywords are specified, all SYSMODs which meet the
applicability criteria will be accepted.

SYSMOD APPLICABILITY

In order for a SYSMOD to be considered applicable to the target system, the SYSMOD
must have a ++VER whose system release (SREL) matches the SREL of the target sys-
tem's ACDS and whose FMID (if present) names a function which has been (or is
being) accepted. Function SYSMODs which have no FMID dependency expressed on their
++VER are considered applicable if their SREL matches the SREL of the target sys-
tem.

• SYSMODS which are not applied will not be processed unless NOAPPLY is coded or
they are specifically called for in the SELECT or GROUP lists. NOAPPLY is
required when SYSMODs are initially accepted into the distribution libraries
in preparation for a SYSGEN; the SMPCDS dataset is not required when NOAPPLY
is coded.

ACCEPT Processing 49

• SYSMODs which have already been successfully accepted are not considered for
processing unless specifically named in the ACCEPT SELECT or GROUP keyword.

• SYSMODs have been partially accepted during a previous SMP run are considered
applicable and need not be specifically named in the ACCEPT SELECT or GROUP
keyword. Partially accepted SYSMODs are identified by the apply ERROR indica-
tor in their SMPACDS SYSMOD entry.

• SYSMODs which are superseded by another SYSMOD are not accepted. If a SYSMOD
which has not been accepted is found to be superseded by another SYSMOD during
an ACCEPT run, no elements from the superseded SYSMOD are processed.

• SYSMODs which have been explicitly deleted cannot be accepted.

• A SYSMOD which has more than one ++VER whose SREL and FMID appear to be appli-
cable cannot be processed; SMP is unable to determine which VER statement to
use.

INLINE JCLIN AND DISTLIB CHECKS

Inline JCLIN processing is not done against the ACDS. If the SYSMOD being proc-
essed changes the DISTLIB for any elements, the CDS element entries must reflect
those changes, or you must make the necessary changes to the ACDS using UCLIN
processing before ACCEPT processing.

JCLIN processing against the ACDS entries is not necessary because the affected
entry types do not require any data, except DISTLIB changes, to be carried across
from the associated CDS entries during ACCEPT processing (see "DISTLIB Subentry"
under "ACCEPT OUTPUT", below).

ELEMENT PROCESSING

Load modules in temporary libraries are always copied to the appropriate distrib-
ution libraries using IEBCOPY.

Because there are no ASSEM entries on the ACDS, SMP only checks the SRC entries to
see if there is an entry for the modules in the ASSEM operand list.

DLIB and LMOD entries do not exist on the ACDS; therefore, the SYSLIB subentries
of the SRC and MOD entries have no meaning.

The copy of the source module is obtained from the distribution library referenced
by the DISTSRC operand.

Assemblies of the source modules are not done if a distribution library for the
resulting modules does not exist.

The object text is link edited into the distribution library referenced by the
DISTMOD operand, if specified, or the distribution library referenced by the
DISTLIB subentry of the associated MOD entry.

 50 Chapter 2 - OS/VS SMP System Programmer's Guide

Load Module Attributes and Link Edit Parameters

The determination of the parameters passed to the linkage editor at ACCEPT differs
slightly from that at APPLY.

At ACCEPT, SMP determines the attributes and parameters to be passed as follows:

• If LEPARMs are specified on the ++MOD statement, the attributes supplied are
used and the corresponding ACDS MOD entry is updated (or created) with these
attributes.

• If LEPARMs are not specified and a ACDS MOD entry exists, the attributes from
the MOD entry are used.

• If LEPARMS are not specified and a ACDS MOD entry does not exist (or exists
without link edit attribute indicators), the distribution library is accessed
to determine the link edit attributes for the module. If the module is not
found on the distribution library, "RENT, REUS, REFR, DC" attributes are used.

The parameters passed to the linkage editor are those attributes determined above

p

plus the LKEDPARMs found in the PTS SYSTEM entry.

ACCEPT OUTPUT

SMPSCDS BACKUP ENTRIES

When a SYSMOD with associated JCLIN is accepted, the related SYSMOD and BACKUP
entries on the SCDS are deleted. This processing occurs only when the SYSMOD is
successfully processed by ACCEPT and the NOAPPLY keyword was not specified on the
ACCEPT control statement.

SMPACDS ELEMENT ENTRIES

DISTLIB Subentry:

The ACDS element entry is updated with the DISTLIB subentry from the CDS when the
following conditions are met:

• The NOAPPLY keyword is not specified on the ACCEPT control statement

• The SYSMOD that changed the DISTLIB has been processed by APPLY processing

• The DISTLIB subentry in the ACDS element entry is not the same as the corre-
sponding DISTLIB subentry in the CDS

ACCEPT Processing 51

• The SYSMOD-ID of the SYSMOD being processed appears in any of the FMID, RMID,
or UMID subentries in the CDS element entry

• The DISTLIB value in the CDS element entry is the same as the DISTLIB value in
the element modification control statement

SMPPTS SYSMOD ENTRIES

If the PTS SYSMOD entry is not to be deleted (see below), the CDSID (from the ACDS
SYSTEM entry) is added as an ACCID to the PTS SYSMOD entry when processing is suc-
cessful. The ACCID subentries in the PTS thus reflect the target systems to which
the SYSMOD has been accepted.

DELETION OF TEMPORARY LIBRARIES AND SMPPTS ENTRIES

When a SYSMOD which has been successfully applied (indicated by an APPID in the
PTS SYSMOD entry) is accepted, the temporary libraries loaded at RECEIVE and the
PTS SYSMOD and MCS entries will be deleted if the following conditions are met:

The PURGE indicator is set in the PTS SYSTEM entry and NOAPPLY was not specified.

SMPMTS AND SMPSTS

Members stored in the MTS or STS will be deleted if the following conditions are
met:

• All of the updates which have been APPLIED have also been ACCEPTED. When this
i s true, the distribution library version of the element may be used for sub-
sequent assemblies. This situation is detected when the MODID subentries in
the CDS element entry match the MODID subentries in the ACDS element entry.

• The NOAPPLY operand was omitted on the ACCEPT control statement.

• The SAVEMTS and/or SAVESTS indicators in the CDS SYSTEM entry are reset.

 52 Chapter 2 - OS/VS SMP System Programmer's Guide

UCLIN PROCESSING

UCLIN is the SMP function designed to allow the user to make manual modifications
to entries on the SMP datasets. Its function, in relation to the SMP datasets, is
analogous to the function of IMASPZAP for library load modules.

UCLIN does contain some error checking code. This checking will ensure that the
data in each modified entry is consistent with the data that would result from
normal SMP processing. Note that the checking done is done only for the one entry
changed by each UCL statement. Its affect on other entries is not verified. Before
attempting to use UCLIN the user should fully understand SMP processing and the
relationships between the various types of entries to ensure that the specified
changes are complete.

For example, you may delete an IMOD entry from the SMPCDS via UCLIN but that will
not result in the load module being deleted from the target system library. In
addition, it will not delete the references to that LMOD from the various other
SMPCDS entries. This will result in an error condition later when a SYSMOD is
being processed that affects an entry that refers to the deleted LMOD. The SYSMOD
can not be installed.

UCLIN is applicable to the following SMP datasets:

• SMPCDS and SMPACDS

• SMPSCDS

• SMPCRQ and SMPACRQ

• SMPPTS

• SMPMTS and SMPSTS

The following terms are referred to in this discussion of UCLIN processing:

SMP dataset This refers to one of the datasets defined above that are applicable
to UCLIN processing.

entry The term entry refers to a member of an SMP dataset. With the exception
of the MCS entry in the SMPPTS dataset, these member names are encoded
and cannot be easily accessed by utilities other than SMP. SYSMOD and
MACRO entries are examples of the types of entries maintained in the
SMPCDS dataset.

sub-entry A sub-entry is a field within an entry. Each sub-entry has associated
with it a type and a value. Multiple occurrences of the same sub-entry
type may exist in an entry each with a different value. For example, the
modules supplied by a PTF are saved as "MOD" type sub-entries within the
PTF's SYSMOD entry. Some sub-entries may occur only once within an
entry; for example, the CDSID sub-entry in a CDS SYSTEM entry.

UCLIN Processing 53

indicator An indicator is a field in an SMP dataset entry that does not have a data
value associated with it. An example of an indicator is the APP indica-
tor in the SMPCDS SYSMOD entry. An indicator is either "on" or "off".

UCL statement A UCL statement is the command to SMP that results in a change to one
of the SMP dataset entries. UCL statements come between the UCLIN and
ENDUCL commands. The UCL statement specifies the action to be taken
(ADD, REP or DEL), the entry to be modified and possibly the indicators
and sub-entries to be affected.

FUNCTIONS PROVIDED BY UCLIN

The functions that UCLIN can perform are;

• ADD - add

• REP - replace

• DEL - delete

Not all functions are supported for all datasets, nor are all functions supported
for all sub-entries and keywords within an entry in a dataset.

The ADD function of SMP is designed to allow the user to either add an entry that
did not exist previously or to add a new tub-entry or indicator to an existing
entry that did not previously contain that sub-entry or indicator.

• If the ADD function is requested for an entry that already exists then SMP
assumes that the request is actually to ADD the sub-entry or indicator speci-
fied.

• SMP will check to ensure that each sub-entry value specified does not already
exist in the entry. If the sub-entry value specified is found, SMP will issue
a message identifying the sub-entry value found and indicating that ADD was
requested for an existing sub-entry value.

• For each indicator specified, SMP will check to see if the indicator is "on".
If not "on" then it will be set "on". If the indicator is already "on" than an
error message will be issued.

The REP function of SMP is designed to allow the user to either replace or add
sub-entries or indicators to either an existing or new entry. In the strict sense
REP should be used only to replace sub-entries or indicators in existing entries.
However, UCLIN REP allows the following;

• If the entry specified is not found then SMP will issue one warning message
for that UCL statement indicating that the specified entry was not found and
that ADD is assumed.

• If the specified entry is found but no sub-entries of the specified type are
found than SMP will issue one warning message for each sub-entry list speci-
fied (not for each value specified in the sub-entry list) indicating that no
sub-entries of that type were found and that ADD is assumed. For sub-entry

 54 Chapter 2 - OS/VS SMP System Programmer's Guide

list the REP function will replace all sub-entry items of the specified type
with the list of items specified in the UCL statement.

• For indicators, the indicator is set "on" regardless of the current status of
that indicator.

The DEL function of SMP is designed to allow the user to.either delete an entry or
delete a sub-entry or indicator from an existing entry.

• If DEL is specified for an entry that does not exist then SMP will issue an
error message indicating that the entry could not be found.

If DEL is specified for a sub-entry in an existing entry SMP will issue an

error message for each sub-entry value specifed that was not found.

• If DEL is specified for an indicator in an existing entry but the indicator is
not "on" then an error message will be issued. If the indicator was "on" then
the indicator will be reset to "off".

• Note that in the general case in order to delete sub-entries in an existing
entry that the user must know and specify the existing values for the
sub-entry. There is a special provision for sub-entry lists to delete all
values in the list without being aware of the current contents of the list.

This can be done by specifying the sub-entry operand followed by a left and
right parenthesis.

For example to delete all MOD sub-entries, restore date, time, status and
error indicator from SYSMOD UR11111 you could specify:

UCLIN CDS.

DEL SYSMOD(UR11111) MOD() RESDATE() RESTIME() RES ERR.
ENDUCL.

UCL STATEMENT PROCESSING FLOW

When SMP°s processing a UCL statement the following actions take place:

• SMP scans the UCL statement and processes the sub-entries and indicators as
they are encountered.

• First to be encountered is the type and name of the entry to be processed. At
this point the entry is located on the specified dataset and checking is done
to determine if the request type (ADD, REP, or DEL) is valid based on whether
the entry is found or not.

• Then, as each sub-entry or indicator is encountered SMP checks the in-storage
copy of the entry and attempts to make the specified change. At this time
error messages may be issued.

• After all requested operands have been processed the resulting in-storage copy

of the entry is checked for validity. This checking is done based on the data-

set and entry type. The basic intent of this checking is to verify consistency

UCLIN Processing 55

within the entry being updated. Complete checking is not provided with respect
to consistency between entries; as a result, improper UCL updates can adverse-
ly affect SMP processing.

For example, a SMPCDS SYSMOD entry may not be left with the APP indicator off
as that is not a condition that could have resulted via SMP processing and it
is inconsistent with the function of the SMPCDS.

During this checking phase SMP will attempt to create a valid entry for the
specified dataset by either setting or resetting specified operands. These
changes may then result in requirements for other operands which will then
generate an error message.

For example, the statement:

UCLIN CDS.

DEL SYSMOD(UR11111) APPDATE() APPTIME() APP.
ENDUCL.

will result in an entry without the APPLY date or time data. During the check-
ing phase SMP will reset the APP indicator because APP must be on in a CDS
entry, and than will i ssue an error message indicating that APPDATE and
APPTIME are required fields that are missing from the resulting entry.

• If after the checking phase no error messages have been issued for this UCL
statement then the resulting in-storage copy of the entry is written out to
the specified dataset.

• If any error messages are produced during processing of a UCL statement no
changes for the specified entry are made.

ENTRY UPDATE INDICATION IN ACDS AND CDS ENTRIES

When an entry is updated by UCLIN, the character string 'UCLIN ' is placed in the
LASTUPD subentry.

UCLIN MESSAGES

UCLIN processing produces messages on SMPOUT.

 56 Chapter 2 - OS/VS SMP System Programmer's Guide

JCLIN PROCESSING

JCLIN FUNCTION

The JCLIN function initializes the CDS dataset with the data required to install
elements on the target system. This data is derived by scanning a jobstream con-
taining assembly, copy and link-edit job steps.

The purpose of this section is to describe JCLIN processing and the requirements
that SMP has on the input to enable the user to better understand how to construct
JCLIN for his own use.

The JCLIN function is invoked either by the SMP JCLIN function control statement
or as part of a SYSMOD containing in-line JCLIN statements. When the JCLIN func-
tion is invoked, SMP will only update the SMPCDS dataset. It does not invoke the
utilities specified in the jobstream . It does not update, modify or look at any of
the system libraries.

The following terms are used in this section of the document:

JCLIN input is a jobstream of assembly, link edit and copy jobsteps. When the
JCLIN function is invoked by the JCLIN function control statement, this
input is pointed to by the SMPJCLIN data definition (DD) statement.

Inline JCLIN refers to JCLIN input within the body of a SYSMOD. Inline JCLIN is
identified by the ++JCLIN modification control statement.

The description of the JCLIN function here applies to both the processing for the
JCLIN function control statement and the processing of inline JCLIN during SMP
APPLY processing. All parameters which may be specified on the JCLIN control
statement are also valid as operands on the ++JCLIN modification control state-
ment.

JCLIN PROCESSING OVERVIEW

When the JCLIN function of SMP is invoked SMP begins to read the JCLIN input. It
scans the JCL looking for those job steps (i.e. EXEC PGM=xxx or EXEC procname)
that contain information that SMP may need. Updating of the SMPCDS is done in the
order that the job steps are found in the SMPJCLIN input.

SMP looks for certain program names and proc names that it recognizes as valid
assembler, copy, link-edit, and update steps. All other program names and proc
names are ignored. If the JCLIN input contains program or procedure names not
recognized by SMP, these names can be passed to SMP using operands on the JCLIN
control statement or ++JCLIN modification control statement as follows:

• ASM(PGM=asmpgm) or ASM(asmproc)

JCLIN Processing 57

• COPY(PGM=copypgm) or COPY(copyproc)

• LKED(PGM=lkedpgm) or LKED(lkedproc)

• UPDATE(PGM=updpgm) or UPDATE(updproc)

Note that only one additional program name or procedure name may be specified for
each utility. These names are in addition to the names standard names built into
SMP and are lower in the search order than the built in names. Thus, if you specify
"JCLIN UPDATE(PGM=ASMBLR)", SMP will still treat a job step specifying PGM=ASMBLR
as an assembly.

ENTRIES AFFECTED BY JCLIN

SCDS BACKUP ENTRIES

When a CDS entry is updated by in-line JCLIN, a copy of the CDS entry (before any

updates) is saved on the SCDS dataset.

ENTRY UPDATE INDICATION IN CDS ENTRIES

When a CDS entry is updated with JCLIN invoked with the JCLIN control statement,
the character string 'JCLIN ' is placed in the LASTUPD subentry of each entry

updated.

When a CDS entry is updated with in-line JCLIN, the SYSMOD-Id is placed in the
LASTUPD subentry of each entry updated.

The LASTUPD sub-entry is used by RESTORE processing to ensure that CDS entries
modified by SYSMOD's which are not being restored are not inadvertently overlaid
by SCDS backup information.

SMPCDS ASSEM ENTRY

ASSEM entries are created or replaced by JCLIN processing of assembly steps and
contain the assembly steps' assembler input statements.

The operation fields (OP codes) of the assembler input are scanned for macro ref-
erences. SMP will detect a macro reference as an OP code of 6 to 8 characters.
These macro references will cause the creation of an SMPCDS MACRO entry as
described below.

If an ASSEM entry already exists for a particular assembly, the assembler state-
ments previously saved will be totally replaced by the new set of statements.
MACRO entries created or modified by the previous assembly will not be affected.

 58 Chapter 2 - OS/VS SMP System Programmer's Guide

SMPCDS DLIB ENTRY

DLIB entries are created or updated when SMP processes copy steps for a libraries
which are either totally copied or copied with the EXCLUDE option.

The DLIB entry name matches the distribution library that was copied; the entry ,
contains up to two system libraries to which the DLIB was copied.

If a DLIB entry already exists when such a copy step is encountered and the exist-
ing DLIB entry has only one SYSLIB, SMP will add a new system library (SYSLIB) to
the existing DLIB entry. If an existing DLIB entry has two SYSLIBs, SMP will over-
lay the second of the two with the new system library determined from the copy
step.

SMPCDS MACRO ENTRY

MACRO entries are created or updated for each macro found in the OP code fields of
the assembler statements processed in the assembler steps of JCLIN input. Note
that MACRO entries are not created from copy steps; SMP assumes that elements
found in copy steps are copied modules.

The MACRO entry created contains GENASM sub-entries which reference each assembly
that used the macro. After JCLIN processing which creates a new MACRO entry, the
only data present in the MACRO entry is the set of GENASM sub-entries. Additional
data, such as the distribution library, will be added to the MACRO entry during
the installation of the SYSMOD which supplies the actual macro.

If a MACRO entry already exists for a particular macro, a new GENASM sub-entry
will be added to the existing MACRO entry referencing the new assembly that used
the macro.

SMPCDS MOD ENTRY

MOD entries are created or updated from the processing of copy and link-edit
steps.

Each MOD entry contains the module's distribution library (DISTLIB sub-entry) and
load modules (LMOD sub-entries) that that module gets link-editted or copied into.

If the module is defined by a copy step, a LMOD entry having the same name as the
module will be created (see below).

If a MOD entry already exists for a particular module, link-edit and copy steps
will add new LMOD sub-entries for load modules which the module is link edited
with or copied to.

JCLIN Processing 59

SMPCDS LMOD ENTRY

LMOD entries are created during processing of either copy or link-edit steps of
JCLIN input.

The LMOD entry name is the load module name; the entry contains the names of the
load module's system libraries (SYSLIB sub-entries), link edit attributes and link
edit control cards. The LMOD entry can contain up to two system libraries.

If a LMOD entry already exists when a copy or linkedit step is encountered and the
existing entry has only one SYSLIB, SMP will add a new system library to the exist-
ing LMOD entry. If an existing LMOD entry has two SYSLIBs, SMP will overlay the
second of the two with the new system library determined from the copy or linkedit
step. Further, any control statements in an existing LMOD entry (except CHANGE and
REPLACE) are replaced by the control statements from the new linkedit step (or are
deleted altogether if the load module is being redefined by a copy step).

 60 Chapter 2 - OS/VS SMP System Programmer's Guide

JCLIN JOB-STEP CODING CONVENTIONS

It is not the intent of SMP to be able to support the wide variety of options and
facilities supported in job control language (JCL); thus, SMP has some rules as to
how the JCL must be coded in order for SMP to process it correctly. If these con-
ventions are not followed the results are unpredictable; JCLIN processing may or
may not complete successfully, and follow-on processing may be affected. The con-
ventions that must be followed are:

• DD names pointing to distribution libraries or target libraries must be equal
to the lowest level dataset name. This is required because, in the SMP data-

sets, all references to libraries are by the DD name that points to the
library to be updated. If the DD name and the lowest level DSN are kept the
same then it will be easier for you to determine what datasets SMP requires.
This is also the convention used by IBM when it distributes functions or PTFs,
thus if user JCLIN is run that modifies SMP dataset entries, the DDname of the
SYSMODs may not match the DDnames in the SMP dataset entries, which will make
those SYSMODS unprocessable.

For example, to point to "SYS1.LINKLIB" the DD statement must be specifies as:

//LINKLIB DD DSN=SYS1.LINKLIB,DISP=SHR

• Concatenated datasets must not be used for input. For example a link-edit step
has an INCLUDE card in its input that says

INCLUDE DD1(MODA,MODB,MODC)

and has the following DD statements:

//DD1 DD DSN=SYS1.USRDLIB1,DISP=SHR
// DD DSN=SYS1.USRDLIB2,DISP=SHR
// DD DSN=SYS1.USRDLIB3,DISP=SHR

In this case SMP will be able to process the JCL but the updates to the SMPCDS
will not be sufficient to enable service to be applied. There are two problems
with this example. First, the DD names are not equal to lowest level DSN, and
second, datasets are concatenated. The correct format for the INCLUDE state-
ment and DD statements are:

INCLUDE USRDLIB1(MODA)
INCLUDE USRDLIB2(MODB)
INCLUDE USRDLIB3(MODC)

//USRDLIB1 DD DSN=SYS1.USRDLIB1,DISP=SHR
//USRDLIB2 DD DSN=SYS1.USRDLIB2,DISP=SHR

//USRDLIB3 DD DSN=SYS1.USRDLIB3,DISP=SHR

• Where possible continued utility control statement should not be used.
Although SMP attempts to support all existing formats of the utility control
statements, it is not able to completely duplicate the syntax checking of the
utility. Thus the safest method is to use the simplest format of the utility
control statement.

JCLIN Processing 61

For example, rather than code:

INCLUDE AOS12(HMASMDRV,HMASMDRI,HMASMDR2, X
HMASMDC1,HMASMDC2)

a better (i.e. safer) method would be to code:

INCLUDE AOS12(HMASMDRV,HMASMDR1,HMSAMDR2)
INCLUDE AOS12(HMASMDC1,HMASMDC2)

Although the linkage editor may accept both formats, the safer format for SMP
would be the simplest.

• The DD statement identifying the input control statements for a utility must
be the last DD statement in that job step.

For example:

//STEP1 EXEC PGM=IEWL
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12.DISP=SHR
//SYSLIN DD
INCLUDE AOS12(HMASMDRV,HMASMDRI,HMASMDR2,...)
ENTRY HMASMDRV
SETCODE AC(1)
NAME HMASMP(R)

/*

would be valid but

//STEP1 EXEC PGM=IEWL
//SYSLIN DD *
INCLUDE AOS12(HMASMDRV,HMASMDR1,HMASMDR2)
ENTRY HMASMDRV
SETCODE AC(1)
NAME HMASMP(R)

/*
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12.DISP=SHR

would not be. This is because, for each step encountered, SMP saves all the
JCLIN records in a work area until the first non-JCL (i.e. first statement not
starting with "//") is found. The saved records are than searched for any
information that must be obtained from the JCL. If a JCL statement follows the
utility input DD statement, that JCL statement will then not be in the work
area and may cause problems to SMP.

ASSEMBLER JOB STEP CODING CONVENTIONS

Assembler steps are identified by one of the following:

• EXEC PGM=IFOX00

 62 Chapter 2 - OS/VS SMP System Programmer's Guide

• EXEC PGM=IEUASM

• EXEC PGM=ASMBLR

• EXEC ASMS

• EXEC PGM=asmpgm ... from ASM(PGM=asmpgm)

• EXEC asmproc ... from ASM(asmproc)

As the assembler step is processed all the assembler control statements (i.e. all
cards after the "//SYSIN DD *" statement until the end of input ("/*" or "//")) are
written out as an SMPCDS ASSEM entry. Note that this requires that the assembler
input must be inline , not pointing to another dataset or member of a dataset.

The name of the ASSEM entry is determined by looking at the assembly step JCL. If
the step is of the "EXEC PGM=name" type then SMP looks for the

//SYSPUNCH DD DSN=...
or
//SYSGO DD DSN=...
or
//SYSLIN DD DSN=...

statements and looks for the member name of DSN or DSNAME library.

For example

//SYSPUNCH DD DSN=high.next.low(member)
or
//SYSPUNCH DD DSNAME=high.next.low(member)

The SYSPUNCH, SYSGO, or SYSLIN DD statement must point to a PDS and the member must
be specified.

If the step is of the "EXEC procname" type, SMP looks for the "MOD=name" operand of
the PROC. If the "MOD=name" operand is found, that name is used as the SMPCDS ASSEM
entry name. If the "MOD=name" operand is not found, either the "//SYSPUNCH"" or
"//SYSGO" or "//SYSLIN" DD statement must be present and the SMPCDS ASSEM entry
name will be obtained from it.

While writing the cards out SMP scans each card looking for macro invocations. The
following will be recognized by SMP as macros:

• An OP code of 6 to a characters in length.

• The operand of the assembler COPY operation.

For each macro found in the assembly input SMP does the following:

• Locates MACRO entry on SMPCDS. If entry is found then it will be modified. If
entry is not found a new entry will be created.

JCLIN Processing 63

• Update MACRO entry by adding the name of the assembly module(as described
above) as a GENASM subentry. This now means that each macro used during the
assembly will have a reference back to the SMPCDS ASSEM entry. Thus, when a
SYSMOD is processed that modifies that macro, SMP will know what SMPCDS ASSEM
entries should be re-assembled in order to include the new macro.

COPY JOB STEP CODING CONVENTIONS

Copy steps are identified by one of the following:

• EXEC PGM=IEBCOPY

• EXEC PGM=copypgm ... from COPY(PGM=copypgm)

• EXEC copyproc ... from COPY(copyproc)

When a copy step is encountered SMP searches thru the JCL looking for the "//SYSIN
DD *" statement. All records from that point till end of input ("/*" or "//") are
assumed to be the copy input control statements. Note that this requires that the
copy input must be inline , not pointing to another dataset or member of a dataset.

COPY INDD=ddnamel,OUTDD=ddname2

When scanning the copy input SMP assumes that the ddnames of the statement are
equal to the lowest level dataset name of the dataset referenced. If the COPY
statement is set up without this convention, SMP will generate incorrect DLIB and
SYSLIB names in the SMPCDS MOD and LMOD entries.

If a COPY statement is followed either by another COPY statement or an EXCLUDE
statement, SMP assumes that the INDD library is totally copied to the OUTDD
library. Since SMP does not look at either the DLIB or target library datasets
during JCLIN it has no way of knowing what modules are contained in the INDD
library. Therefore an SMPCDS DLIB entry, with a name equal to the INDD ddname, is
created which indicates that the library was totally copied to the library speci-
fied by the OUTDD ddname. If the INDD ddname DLIB entry already existed then SMP
will add the OUTDD ddname to the DLIB entry. Note that SMP has a restriction that a
DLIB can only be copied to two target libraries. Thus if the SMPCDS DLIB entry
already has two SYSLIB (i.e. target library ddnames) sub-entries SMP will replace
the second entry with the ddname specified by the OUTDD operand.

Now, when a SYSMOD is processed that contains a ++MOD with a DISTLIB equal to the
INDD ddname, SMP can create an SMPCDS MOD and LMOD entry with the correct SYSLIB
and reference information. Also, if a SYSMOD is processed that contains a ++MAC,
++MACUPD, ++SRC or ++SRCUPD, SMP can fill in both the DISTLIB and SYSLIB fields of
the SMPCDS MACRO or SOURCE entry.

If the COPY statement is followed by a SELECT statement, SMP knows exactly which
members of the DLIB are being copied (the IEBCOPY select member statements), which
DLIB they are being copied from (the IEBCOPY INDD ddname), which target libraries
they are going to (the IEBCOPY OUTDD ddname) and the name of the load module in the
target library (the IEBCOPY select member statements.)

For each member in the SELECT list SMP will build:

 64 Chapter 2 - OS/VS SMP System Programmer's Guide

• An SMPCDS MOD entry containing the DLIB module name, DLIB name, and load mod-
ule name.

• An SMPCDS LMOD entry containing the load module name, target library ddname,
and the fact that the load module was copied at SYSGEN. Note that the same
restriction of two target libraries is true for the LMOD entry as for the DLIB
entry. If two SYSLIB sub-entries exist in the LMOD entry then the second value
will be overlaid by the OUTDD ddname.

Note that because SMP only looks at the JCLIN input and has no knowledge about the
DLIBs or target libraries built into it, SMP is not able to determine what type
libraries are being copied. SMP assumes that all libraries that are selectively
copied are load libraries; therefore, MOD and LMOD entries are built for all

selectively copied elements. Thus if a macro or source DLIB is selectively copied
SMP will not build MACRO entries and SOURCE entries, but will build extraneous MOD
and LMOD entries.

LINK EDIT JOB STEP CODING CONVENTIONS

Link-edit steps are identified by one of the following:

• EXEC PGM=IEWL

• EXEC PGM=HEWL

• EXEC PGM=lkedpgm ... from LKED(PGM=lkedpgm)

• EXEC lkedproc ... from LKED(lkedproc)

When a link-edit step is encountered SMP reads thru the JCL control statements
looking for the link-edit control card input. This is done by looking for the
"//SYSLIN DD *" statement. All records from that point till end of input ("/*" or
"//") are assumed to be linkage editor control statements (note, these must be
control statements, not object modules). The "//SYSLIN" input must be inline, it
cannot be pointing to a member of another dataset, as SMP would than be unable to
analyze the data.

When scanning the input SMP looks for and performs special processing for selected
link-edit control statements. The following describes the processing for each
link-edit control statement:

"IDENTIFY" - should not be used.

• "INCLUDE ddname(member,member...)"

The member names are assumed to be distribution library modules that exist in
library 'ddname'. SMP will build SMPCDS MOD entries for each member name spec-
ified and will set the DLIB field within each MOD entry to 'ddname'. Note that
SMP does not refer back to the 'ddname' DD statement to determine the actual
library referred to; the ddname is assumed to match the lowest level dataset
name of the library.

JCLIN Processing 65

•

The "INCLUDE" cards are not saved in the SMPCDS LMOD entry as they are not nec-
essary when SMP linkedits the load module. All link-edits done by SMP are
CSECT replaces so SMP just includes the new version of the updated CSECT and
the existing load module from the library.

The ddname, SYSPUNCH, is reserved for includes of object decks produced by
assembly steps which are not to be link edited to a DLIB at ACCEPT.

• "INSERT" and "OVERLAY"

If a load module is to be linked in overlay structure you must supply an "IN-
SERT" control statement for each CSECT in the load module, including INSERT

statements for those CSECTs within the root segment. It is not sufficient to
properly place the "INCLUDE" and "OVERLAY" control statements.

• "ENTRY"

Each load module that consists of more than one distribution library module
must have an "ENTRY" statement, else the entry point of the load module will
change each time the load module is re-linked by SMP.

"ORDER"

If the order of CSECTs within a load module is necessary then "ORDER" state-
ments are required to define the load module structure. Simply ordering the
"INCLUDE" statements is not sufficient as SMP does CSECT replaces when
re-linking the load module and will thus change the order of the CSECTs.

• "CHANGE"

"CHANGE" cards are saved in the LMOD entry and are associated with the DLIB
module name that contains the name to be changed. These statements are passed
to the link-editor only when the associated DLIB module is to be replaced in
the load module.

"REPLACE"

"REPLACE" cards are saved in the LMOD entry and are associated with the DLIB
module name that contains the name to be replaced. These statements are passed
to the link-editor only when the associated DLIB module is to be replaced in
the load module.

"NAME lmodname(R)" or end of input with no "NAME"

When SMP encounters either the "NAME" control statement or end of input SMP
builds an SMPCDS LMOD entry. The name of the LMOD is determined in different
ways depending on the JCL being scanned.

If the "NAME" statement is found the LMOD name is determined by the
'lmodname' field of the "NAME" statement.

If no "NAME" statement is found and a "//SYSLMOD" DD statement is present
SMP gets the LMOD name from the member name of the dataset specified. If
no member name is specified SMP will issue an error message identifying
the JOBNAME and STEPNAME and reason for the error.

 66 Chapter 2 - OS/VS SMP System Programmer's Guide

•

•

•

-

-

• RENT

• REUS

• SCTR

• OVLY

• REFR

• DC

• NE

• AC=1

• ALIGN2

- If no "NAME" statement is found and no "//SYSLMOD" DD statement is found
SMP searches for the "MOD=name" keyword in the JCL and uses that name as
the LMOD name. If no "MOD=name" keyword is found SMP issues an error mes -

sage.

• All other statements found in link-edit input

All other link-edit control statements found will be saved in the SMPCDS LMOD
entry in the order that they are encountered and will be passed to the linkage
editor whenever SMP needs to re-link this load module.

The link-edit JCL is then scanned looking for the link-edit attributes used to
link this load module. These are the options in the "FARM=" field. The attributes

that SMP recognizes and saves for future processing are:

When none of the above attributes are found, the STD indicator is set in the LMOD
entry to indicate that the load module should be link edited without any partic-
ular attributes.

The target library name for the load module is determined in the following manner:

• If a "//SYSLMOD" DD statement is present the target library DD name is deter-
mined by using the lowest level dataset name specified in the "//SYSLMOD" DD
statement.

• If no "//SYSLMOD" DD statement is present the name is determined by looking at
the "NAME=dsname" option on the pros statement. The DD name used is the lowest
level dataset name specified in the "NAME=" option.

• If no "//SYSLMOD" or "NAME=dataset" is found SMP will issue an error message.

Note that the same restriction on the number of libraries that a LMOD can exit in
is true for link-edit steps as for copy steps and that SMP will overlay the second
library if a third one is presented to it.

The SMPCDS LMOD entry thus constructed contains the load module name, library(s)
that it resides in, link -edit attributes and those link-edit control statements
required to re-link the load module.

JCLIN Processing 67

UPDATE JOB STEP CODING CONVENTIONS

Update steps are identified by one of the following:

• EXEC PGM=IEBUPDTE

• EXEC PGM=updpgm ... from UPDATE(PGM=updpgm)

• EXEC updproc ... from UPDATE(updproc)

When SMP recognizes an UPDATE step it will skip all the JCL until the "//SYSIN" DD
statement is encountered or until the next "// EXEC statement is encountered. If
the "//SYSIN" statement is found SMP skips all further input until either:

"/*" is found if "//SYSIN DD *"
or
"//" is found if "//SYSIN DD DATA"
or
"xx" is found if "//SYSIN DD DATA,DLM=xx" where xx may be any two characters

This is done so that if the UPDATE step is adding JCL to a library that JCL will
not be scanned as part of the JCLIN input.

OTHER JOB STEP JCL

When SMP encounters an EXEC statement that does not execute one of the programs or
catalogued procedures documented than it skips all further JCL statements until
the next EXEC statement is found.

 68 Chapter 2 - OS/VS SMP System Programmer's Guide

JCLIN EXAMPLE

Given the job steps shown below, CDS entries will be created as follows:

//DEFINE JOB
//A1 EXEC PGM=IEUASM
//SYSLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//SYSPUNCH DD DSN=&&PUNCH(TESTMOD1),
// SPACE=(TRK,(1,1,1)),DISP=(,PASS)
//SYSIN DD
TESTMOD1 CSECT

TESTMAC1 --- INVOKE MACRO
END TESTMOD1

/*
//L1 EXEC PGM=IEWL,PARM='LET,LIST,NCAL,RENT'
//SYSLMOD DD DSN=SYS1.LPALIB,DISP=SHR
//SYSPUNCH DD *.Al.SYSPUNCH,DISP=(SHR,PASS)
//SYSLIN DD *
INCLUDE SYSPUNCH(TESTMOD1)
NAME LOADMOD1(R)

/*
//L2 EXEC PGM=IEWL,PARM='LET,LIST,NCAL'
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=(SHR,PASS)
//SYSLIN DD
INCLUDE AOS12(TESTMOD2)
INCLUDE AOS12(TESTMOD3)
NAME LOADMODX(R)

/*
//C1 EXEC PGM=IEBCOPY
//AMACLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//MACLIB DD DSN=SYS1.MACLIB,DISP=SHR
COPY INDD=AMACLIB,OUTDD=MACLIB

/*
//C2 EXEC PGM=IEBCOPY
//AOS14 DD DSN=SYS1.AOS14,DISP=SHR
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=SHR
COPY INDD=AOS14,OUTDD=LINKLIB
SELECT MEMBER=((LOADMODC,,R))

Assembly Step A1

An ASSEM entry named "TESTMOD1" will be created, where the name is derived from
the member name on the SYSPUNCH DD statement. This entry will contain the assem-
bler SYSIN data shown.

A MAC entry named "TESTMAC1" will be created since SMP will detect the invocation
of the macro in the assembler SYSIN. The macro entry created will contain the name
of the assembly as a GENASM sub-entry (which will be used by SMP to determine that

JCLIN Processing 69

this assembly should be performed if and when "TESTMAC1" is updated).

Link Edit Step L1

This step shows the link edit of the previous assembly. From the link edit INCLUDE
statement, SMP derives the data required to create a CDS MOD entry representing
the module, "TESTMOD1". The module name is determined from the member name operand
and the distribution library, "SYSPUNCH", is determined from the INCLUDE state-
ment's DDNAME.

Further, the link edit defines the operating system library for a load module,
"LOADMOD1". A CDS LMOD entry is created from the link edit NAME statement and con-

tains the DDNAME of the operating system library derived from the link edit

SYSLMOD DD statement. In this case, the LMOD entry name is "LOADMOD1" and the
system library (saved as a SYSLIB sub-entry) is determined to be "LPALIB". The
load module attribute, "RENT", is saved in the LMOD entry for use in subsequent
link edits of this load module; the parameters, LET, LIST and NCAL are not saved.

Link Edit Step L2

The second link edit step defines two modules and one load module to SMP.

Modules "TESTMOD2" and "TESTMOD3" are defined by the link edit INCLUDE statements;
the distribution library for each of these is determined to be "AOS12". A CDS MOD
entry will be created for each of these modules with a LMOD sub-entry naming the
load module, "LOADMODX", and a DLIB sub-entry, "AOS12".

The operating system load module, "LOADMODX", is represented by a CDS LMOD entry.
This LMOD entry will be created and entry will contain the operating system
library, "LINKLIB", as a SYSLIB sub-entry. No link edit attributes are specified
in this step; therefore, the STD indicator is set in the LMOD entry.

Coos/ Step C1

This copy step informs SMP that an entire distribution library is copied to an
operating system library. From the INDD operand, SMP determines the DDNAME of the
distribution library and creates a CDS DLIB entry named "AMACLIB". From the OUTDD
operand, SMP determines the DDNAME of the operating system library and adds a
SYSLIB sub-entry, "MACLIB", to the DLIB entry. SMP will use this entry to deter-
mine the operating system library for subsequent modifications which specify an
element's DISTLIB as "AMACLIB".

Copy Step C2

This copy step illustrates a selective copy of elements from a distribution
library to an operating system library.

When a selective copy step is encountered, SMP assumes that the elements involved
are modules . As such, SMP will create a CDS MOD entry for each selectively copied
element. The module name is derived from the SELECT MEMBER statement; the distrib-
ution library for such modules is determined from the operand of the copy INDD

statement; the load module name is simply the module name. In this case, a MOD
entry named "LOADMODC" is created; the distribution library is determined to be
"AOS14", and the LMOD is "LOADMODC".

 70 Chapter 2 - OS/VS SMP System Programmer's Guide

Finally, a CDS LMOD entry will be created to represent the operating system
library to which the module is copied. The load module name (and the CDS LMOD entry
name) is the module name, "LOADMODC". The operating system library (saved as a
SYSLIB sub-entry) is determined from the operand of the copy OUTDD keyword; in
this case, "LINKLIB". LMOD entries created from copy job-steps do not have any
link edit attributes. Rather, an indicator (COPY) is set in the entry to inform
SMP that the link edit attributes must be obtained by examining the operating sys-
tem library when the module must first be link edited.

JCLIN Processing 71

 72 Chapter 3 - OS/VS SMP System Programmer's Guide

SMP INSTALLATION AND USE

This chapter provides information to assist you in the initialization and exe-
cution of SMP. The chapter is organized into the following topics:

• IBM Operating Systems and Distribution Libraries

• Executing SMP

• SMP Primary Data Set Initialization

• SMP Processing Parameters and Options

• Special Processing Considerations

• Examples of Using SMP to Install System Modifications

• User Written Exit Routines

• Primary Data Set Allocation Guidelines (MVS and VS1)

IBM OPERATING SYSTEMS AND DISTRIBUTION LIBRARIES

An IBM operating system consists of a set of function SYSMODS made up of modules,
macros and source elements. Each function is considered to "own" the elements that
comprise it. Ownership of elements and the relationships between elements are
specified using the SMP modification control statements, described in Chapter 2
and Chapter 6.

The system is generated by a system generation process (SYSGEN) using a set of
distribution libraries (DLIBs) containing modules that are assembled or link edit-
ed into system data sets. The system configuration is determined by parameters you
supply the SYSGEN process. A complete SYSGEN is done when you are installing an
SCP for the first time or when you must modify an existing SCP. An I/O device
generation (IOGEN) is done when changes need to be made to the machine configura-
tion only, such as adding I/O devices to an installation.

The distribution libraries required for a SYSGEN are built by SMP from a set of
distribution tapes containing modules, macros and source elements. In order to
build the distribution libraries with SMP,

1. the SMPPTS, SMPACDS and SMPACRQ must be initialized as described in the "Pri-
mary Data Set Initialization" section below, and

2. the SYSMODs on the distribution tape must be ACCEPTED.

The system generation process uses these distribution libraries to create a system
control program tailored to the data processing and machine configuration require-
ments of an installation.

SMP Installation and Use 73

A SYSGEN is processed in two stages. In Stage I, the SYSGEN macro instructions
that you coded are assembled and expanded to form a jobstream. In Stage II, the
jobstream is used to assemble, link edit and copy selected modules from the dis-
tribution libraries and user-supplied components from user data sets to system
data sets to build a new SCP or modify an existing SCP. These system data sets are
referred to by SMP as the operating or target system, and the level of the system
created is referred to as a base level system.

Following the SYSGEN, the SMPCDS and SMPCRQ data sets must be initialized for sub-
sequent installation of modifications to the operating system built by the SYSGEN.

EXECUTING SMP

SMP is executed as a job running under the operating system. You must specify JCL
statements to define the job and the data sets to be used by SMP to perform its
functions.

SMP CONTROL STATEMENTS

SMP Control statements are used to invoke SMP processing and are placed in the
data set described by the SMPCNTL DD statement.

SMP MODIFICATION CONTROL STATEMENTS

Modification Control statements describe the SYSMODs to be processed by RECEIVE,
APPLY and ACCEPT. These statements all begin with '++', such as ++PTF, and are
placed in the data set described by the SMPPTFIN DD statement.

SMP OUTPUT

Output from SMP may go to one of three files, SMPOUT, SMPRPT and SMPLIST.

• SMPOUT - lists the control statements entered in SMPCNTL and displays SMP mes-
sages.

• SMPRTP - contains the REPORTS produced by RECEIVE, APPLY, ACCEPT and RESTORE.

• SMPLIST - contains the listings produced by the SMP LIST function.

SMPOUT is required. SMPRPT and SMPLIST are optional; if either is not present,
the associated output will be diverted to SMPOUT.

 74 Chapter 3 - OS/VS SMP System Programmer's Guide

SMP Messages and Return Codes

The return code set by SMP is determined by the conditions encountered during the
processes invoked by the user. Since many different conditions can be encountered
during an SMP invocation, the final return code presented by SMP is the return
code associated with the most severe condition encountered.

Various situations and unusual conditions are reported by messages to the SMPOUT
file. These messages fall into one of five categories associated with the severity
of the condition detected:

• Informational - Messages in this category generally indicate stages of SMP
processing or accompany other messages to further explain unusual conditions.

• Warning - Messages in this category indicate that SMP has detected a situation
which may be invalid. A return code of 4 is associated with such situations.
The user should examine these messages to determine whether the action taken
by SMP was appropriate.

• Error - Messages in this category indicate that some SMP processing did not
complete properly. A return code of 8 is associated with such situations. For
example, the termination of a SYSMOD during APPLY is always an error condition
and results in a return code of at least 8.

• Severe - Messages in this category indicate that an entire SMP function
failed. A return coda of 12 is associated with such situations. For example,
the termination of the APPLY function due to insufficient storage results in a
return code of at least 12.

• Terminating - Messages in this category indicate that a situation occurred
which forces SMP to terminate. A return code of 16 is associated with such a
situation.

SMP Installation and Use 75

SMP JCL AND EXEC STATEMENT PARAMETERS

The JCL statements required for SMP include the JOB, EXEC and DD statements:

• The JOB statement describes your installation-dependent parameters. You may
also specify the REGION parameter to set the size of the region or partition
in which SMP executes.

• The EXEC statement must specify PGM=HMASMP or the name of your cataloged pro-
cedure. The following parameters can be specified in the PARM operand of the
EXEC statement:

'DATE=date'

where "date" can be:

U or IPL - to use the IPL date of the system.

REPLY - to request the date from the operator. SMP issues message HMA399
as a result.

yyddd - to specify a specific date where "yy" is the year and "ddd" is the
day of the year.

If this parameter is not specified, the IPL date of the system is used.

'FMID=sysmodid'
where "sysmodid" is the identifier of a function-like SYSMOD that is pack-
aged using the techniques supported in earlier versions of SMP. See Appen-
dix C (page 361) for a description of the usage of this parameter.

'NORECOVERY'
specifies that SMP not invoke its STAE/ESTAE recovery environment. This
parameter may be specified only when SMP is executing on a non-VS1 or
non-MVS operating system. SMP functions which use instorage directories
should be invoked specifying DIS(READ) or DIS(NO) since no recovery envi-
ronment is established to re-write updated directories if the SMP function
ABENDS.

• The DD statements specify the data sets that are required by or are optional
for the SMP function. See Chapter 7 for information about the data sets and
the ddnames associated with each.

SMP Cataloged Procedure

Figure 5 is a sample SMP cataloged procedure that can be placed in a cataloged pro-
cedure library and used during the execution of an SMP job.

SMP cannot use the same cataloged procedure for both APPLY and accept (see Note 1
below).

 76 Chapter 3 - OS/VS SMP System Programmer's Guide

//SMPJOB PROC
//SMPSTEP EXEC PGM=HMASMP
//SYSPRINT DD SYSOUT=A
//SMPOUT DD SYSOUT=A
//SMPRPT DD SYSOUT=A
//SMPLIST DD SYSOUT=A
//SMPLOG DD DSN=SYS1.SMPLOG,DISP=MOD
//SMPCDS DD DSN=SYS1.SMPCDS,DISP=OLD
//SMPCRQ DD DSN=SYS1.SMPCRQ,DISP=OLD
//SMPACDS DD DSN=SYS1.SMPACDS,DISP=OLD
//SMPACRQ DD DSN=SYS1.SMPACRQ,DISP=OLD
//SMPSCDS DD DSN=SYS1.SMPSCDS,DISP=OLD
//SMPPTS DD DSN=SYS1.SMPPTS,DISP=OLD
//SMPMTS DD DSN=SYS1.SMPMTS,DISP=OLD
//SMPSTS DD DSN=SYS1.SMPSTS,DISP=OLD
//SMPPUNCH DD SYSOUT=B
//SMPTLIB DD DISP=OLD,UNIT=3330,VOL=SER=(333001,333002)
//SMPWRK1 DD UNIT=SYSDA,SPACE=(CYL,(2,1,5)),DISP=(,DELETE),
// DCB=BLKSIZE=3360
//SMPWRK2 DD UNIT=SYSDA,SPACE=(CYL,(2,1,5)),DISP=(,DELETE),
// DCB=BLKSIZE=3360
//SMPWRK3 DD UNIT=SYSDA,SPACE=(CYL,(2,1,5)),DISP=(,DELETE),
// DCB=BLKSIZE=3200
//SMPWRK4 DD UNIT=SYSDA,SPACE=(CYL,(2,1,5)),DISP=(,DELETE),
// DCB=BLKSIZE=3200
//SMPWRK5 DD UNIT=SYSDA,SPACE=(CYL,(2,1,5)),DISP=(,DELETE),
// DCB=BLKSIZE=7294
//SYSLIB DD SEE NOTE 1 (below) *********
//* ---- Include DD Statements for Distribution Libraries ----
//AOSC5 DD DSN=SYS1.AOSC5, DISP=OLD
//ASAMPLIB DD DSN=SYS1.ASAMPLIB,DISP=OLD
//AMACLIB DD DSN=SYS1.AMACLIB,DISP=OLD
//AMODGEN DD DSN=SYS1.AMODGEN, DISP=OLD
//AGENLIB DD DSN=SYS1.AGENLIB,DISP=OLD

•
•

//* ---- Include DD Statements for Target Libraries
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=OLD

•
•

//* ---- Include DD Statements for Utility Datasets
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DISP=(,DELETE)
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DISP=(,DELETE)
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1)),DISP=(,DELETE)
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(1,1)),DISP=(,DELETE)
// PEND

Figure 5: Sample SMP4 Cataloged Procedure (see notes below)

SMP Installation and Use 77

Notes - SMP4 Cataloged Procedure

1. The proper SYSLIB concatenation is required for assemblies done at APPLY and
ACCEPT.

The SMPMTS dataset contains macros from SYSMODs which are applied; therefore,
the proper SYSLIB concatenation for APPLY includes the SMPMTS dataset as shown
below:

//* Include SMPMTS, Operating System and DLIB Macro
//* Libraries
//SYSLIB DD DSN=SYS1.SMPMTS,DISP=OLD
// DD DSN=SYS1.MACLIB,DISP=OLD
// DD •
// DD •
// DD •
// DD DSN=SYS1.AMACLIB,DISP=OLD
// DD DSN=SYS1.AMODGEN,DISP=OLD
// DD •
// DD •
// DD •

At ACCEPT time, the macros on the SMPMTS dataset must not be used; therefore,
the proper SYSLIB concatenation for ACCEPT does not include the SMPMTS dataset
as shown below:

//* Include All Distribution Library Macro Libraries
//SYSLIB DD DSN=SYS1.AMACLIB,DISP=OLD
// DD DSN=SYS1.AMODGEN,DISP=OLD
// DD •
// DD •
// DD •

2. An SMPCNTL DD statement describing the SMP control statement input is required
for all SMP processing.

3. An SMPPTFIN DD statement describing the input containing SYSMODS is required
for RECEIVE processing.

4. An SMPTLIB DD statement is used by SMP to define a volume, or volumes (up to
five), to be used for the allocation of space needed to load partitioned data
sets during RECEIVE processing of SYSMODs packed in RELFILE format.

5. DD statements describing datasets containing elements in LKLIBs and TXLIBs are
required for APPLY and ACCEPT processing.

6. The SMPACDS DD statement is not required for an APPLY, RECEIVE, or REJECT pro-
cedure.

7. The SMPCDS DD statement is not required for an ACCEPT, RECEIVE, or REJECT pro-
cedure.

8. The SMPMTS DD statement is required for modifications to macros not residing
in a target system library.

 78 Chapter 3 - OS/VS SMP System Programmer's Guide

9. The SMPSTS DD statement is required for modifications to source modules not
residing in a target system library.

10. The SMPPUNCH DD statement is required for the UNLOAD function.

11. The DD statements for target system data sets are not required for a RECEIVE.
REJECT, or ACCEPT procedure.

12. The DD statements for distribution library data sets are not required for a
RECEIVE, REJECT, or APPLY procedure.

13. The SMPWRK3 dataset may be permanently allocated to take advantage of the
assembly REUSE facility. (See "Assembly REUSE Facility" later in this
chapter.)

INCLUDING THE REQUIRED SYSTEM PROGRAMS

The following system programs are required for SMP processing:

• Assembler (See OS/VS and DOS/VS Assembler Language)

• Linkage Editor (See OS/VS Linkage Editor and Loader)

• IEBCOPY (See OS/VS Utilities)

• IEBUPDTE (See OS/VS Utilities)

• IEHIOSUP, for VS1 only (See OS/VS Utilities and "Special Processing Consider-
ations" later in this chapter)

• IMASPZAP (See 0S/VS1 Service Aids or OS/VS2 System Programming Library: Serv-
ice Aids)

These programs must be in an authorized library on the system under which SMP is
executing. They must be accessible to SMP using LOAD (that is, in a STEPLIB,
JOBLIB, LINKLIB or LPALIB). If the required programs are not available, SMP will
terminate. When SMP is executed under VS/1, SMP will lose its authorization if any
of the above utilities are loaded from a non-authorized library. This may result
in SMP termination since SMP uses some authorized functions.

SMP Installation and Use 79

SMP PRIMARY DATA SETS

SMP controls the processing of SYSMODs by examining the contents of the primary,

data sets, specifically the ACDS, ACRQ, CDS, CRQ, PTS and the SCDS.

WARNING

The SMP Primary data sets contain encoded mem-
ber names and data. They must not be modified
by any partitioned data set utility or editor!

Primary Data Set Requirements - RECEIVE

For the RECEIVE function, the only required primary data set is the SMPPTS. The
PTS must have an initialized SYSTEM entry for RECEIVE.

Primary Data Set Requirements - APPLY

The PTS must have a SYSTEM entry.

The CDS must have a SYSTEM entry (initialized by SMP Release 4) with a CDSID
sub-entry and an SREL sub-entry matching one of the SREL sub-entries in the PTS.

The CRQ and SCDS data sets must be present and should correspond to the operating
system defined in the CDS. SMP will ensure their presence; the user must, however,
ensure that they match the CDS.

Primary Data Set Requirements - ACCEPT

The PTS and the CDS (if present) must meet the requirements outlined for APPLY
(above).

The ACDS must have a SYSTEM entry (initialized by SMP Release 4) with a CDSID
sub-entry and an SREL sub-entry matching one of the SREL sub-entries in the PTS.

The ACRQ data set must be present and should correspond to the operating system
defined in the ACDS. SMP will ensure its presence; the user must, however, ensure
that it matches the ACDS.

 80 Chapter 3 - OS/VS SMP System Programmer's Guide

Primary Data Set Requirements - RESTORE

The PTS, CDS, ACDS, CRQ and SCDS must meet the requirements outlined for both
APPLY and ACCEPT (above).

SMP PRIMARY DATA SET INITIALIZATION

The ACRQ, CRQ, MTS, STS and SCDS need only be allocated as empty partitioned data
sets as described in 'SMP Data Set Allocation Requirements' later in this chapter.
You must, however, initialize ACDS, CDS and PTS data sets using SMP as illustrated
below.

NULL PTS

The SMP RECEIVE function places SYSMODs into the SMPPTS data set for subsequent
processing and is thus the first SMP process in the installation of system soft-
ware.

The PTS data set must be allocated as a partitioned data set (see Chapter 8) and
initialized using UCLIN (as illustrated below):

UCLIN PTS .
ADD SYS SREL(Z038) DSSPACE(10,20,30) .
ENDUCL .

• SREL(Z038) sets the system release for MVS 3.8. The program directory supplied
with the distribution tapes will specify the appropriate system release value.

• DSSPACE(10,20,30) sets values for SMPTLIB dataset allocation required for
receive processing of SYSMODs packaged using RELFILES. SMP will attempt to
allocate a data set on the SMPTLIB volume(s) for each relative file on the
RELFILE tape; as illustrated, the allocation request will be 10 primary
tracks, 20 secondary tracks and 30 directory blocks.

The values used for DSSPACE depend upon the sizes of the libraries supplied on
the RELFILE tape; guidance in the determination of the appropriate values
should be found in the program directory accompanying the distribution tapes.

Many other processing options may be set in the PTS SYSTEM entry. The UCL SYS
statement description on page 211 in Chapter 5, provides an explanation of all
subentries and the default indicator settings for this entry.

SMP Installation and Use 81

NULL ACDS

In order to ACCEPT SYSMODs into the distribution libraries in preparation for a
SYSGEN, the SMPACDS data set must be allocated (see Chapter 8) and initialized
using UCLIN as illustrated below:

UCLIN ACDS .
ADD SYS SREL(Z038) NUCID(2) CDSID(SYSTEM1) .
ENDUCL .

• SREL(Z038) sets the system release for MVS 3.8.

• NUCID(2) sets the alternate nucleus identifier.

• CDSID(SYSTEM1) places an identifier in the ACDS system entry which is dis-
played by the SMP list facilities. Further, when a SYSMOD is accepted, this
indicator is placed in the PTS SYSMOD entry for the SYSMOD indicating that the
SYSMOD has been accepted on "SYSTEM".

The UCL SYS statement description on page 211 in Chapter 5, provides an explana-
tion of all subentries and indicators in the ACDS SYSTEM entry.

CREATING THE CDS AND CRQ

After you have created a target system by performing a SYSGEN, you must create the
CDS and CRQ control data sets which maintain the status of the operating system
libraries.

The data in the ACDS and ACRQ was initialized by the SMP ACCEPT of the SYSMODs into
the distribution libraries and thus also reflects the status of the newly built
operating system libraries. The CDS is created by copying all of the entries from
the ACDS to the CDS; The CRQ is created by copying all of the entries from the ACRQ
to the CRQ.

The CDS must also be initialized with data which describes the load module struc-
ture of your particular operating system. This initialization is accomplished by
the SMP JCLIN function using the SYSGEN Stage I output jobstream as input to SMP.
JCLIN is invoked by the JCLIN control statement (see page 140) with the SMPJCLIN
DD statement pointing to the data set containing the SYSGEN Stage I jobstream.
(JCLIN processing is further described in Chapter 2.)

 82 Chapter 3 - OS/VS SMP System Programmer's Guide

SMP PROCESSING PARAMETERS AND OPTIONS

PEMAX VALUES

SMP uses the PEMAX (PTF entry maximum count) to allocate the storage required to
read in a single entry from the ACDS, CDS, PTS, or SCDS. Each entry read consists
of all of its subentries. For example, a SYSMOD entry on the CDS has subentries
for every operand specified on the ++VER modification control statement determined
to be applicable during APPLY processing, and for every element modification con-
trol statement in that SYSMOD. The SYSMOD entry may increase in size during subse-
quent APPLY processing if other SYSMODs specify that SYSMOD in a ++VER
modification control statement.

You can specify a PEMAX value from 50 to 9999 in the ACDS, CDS, or PTS SYSTEM
entries using the UCL SYS statement. The default value for PEMAX, if it is not
specified in the ACDS, CDS, or PTS SYSTEM entries, is 500.

The criteria used by SMP to choose a PEMAX value when each function is invoked is
described below. If, during the processing of entries, SMP determines that an
entry exceeds the largest PEMAX value specified in the SYSTEM entries at the
beginning of processing of that function, SMP issues message HMA219 and terminates
the processing of the SYSMOD, the entry, or the function. You must then modify the
PEMAX subentry in one or more of the SYSTEM entries to increase the size, assuming
that the PEMAX used was not 9999.

PEMAX DETERMINATION - RECEIVE

Since the CDS is not required during RECEIVE processing, a PEMAX value can be
specified for the PTS SYSTEM entry using the UCLIN control statement. If neither
the CDS nor the ACDS has been defined through JCL DD statements at the time that
the RECEIVE function is invoked, the PEMAX value in the PTS SYSTEM entry is used,
if present, or the default value is used. If the CDS and/or the ACDS is available,
the PEMAX value that is the greatest of all the PEMAX values in the available SYS-
TEM entries is used.

PEMAX DETERMINATION - APPLY/ACCEPT/RESTORE

The PEMAX value used is the greatest of all the PEMAX values in the available SYS-
TEM entries on the CDS, PTS, or ACDS, if present. If no PEMAX value is present in
the SYSTEM entries, SMP uses the default value of 500 subentries.

SMP Installation and Use 83

SYSTEM PROGRAMS AND PARAMETERS

The system programs invoked (see "Including the Required System Programs", on page
79) and the parameters passed to these programs may be changed by modifications to

the PTS SYSTEM entry.

The "UCL - SMPPTS SYSTEM Entry" section on page 229 describes the system program
and parameter defaults.

ESTABLISHING SYSTEM PROGRAM RETURN CODE THRESHOLD VALUES

SMP checks the values of the return codes after the invocation of system programs
to determine the success of those programs. If the return code value is higher
than that considered successful, the SYSMOD or SYSMODs being processed, or perhaps
the SMP function itself, is terminated. You may override the default return code
values by changing the appropriate subentries in the PTS SYSTEM entry.

The "UCL - SMPPTS SYSTEM Entry" section on page 229 describes the return code

defaults for the various system programs invoked by SMP.

SPECIFYING THE RC KEYWORD ON CONTROL STATEMENTS

Many of the control statements have an RC keyword that allows you to override
normal SMP return code processing for most functions. The control statements in
Chapter 5 describe the syntax and use of the RC keyword. In general, the following
describes the actions that take place when the RC keyword is specified:

If a specified function returns a code greater than the code specified in the
RC keyword, SMP bypasses processing of the control statement.

If all specified functions have returned codes less than or equal to the codes
specified in the RC keyword, SMP continues processing of the control state-
ment.

• For functions not specified in the RC keyword operand list, their return code
values do not affect processing.

RESETING THE RETURN CODES

The RESETRC control statement allows you to reset the previous highest return code
from an SMP function to zero. This permits you to code other control statements in
the CHTL input stream without specifying the RC keyword. This is useful when the
control statements following the RESETRC control statement are not dependent upon
the successful completion of the control statements that precede the RESETRC con-
trol statement. The RESETRC control statement does not affect the overall highest
return code encountered during SMP processing; that is, the highest return code

 84 Chapter 3 - OS/VS SMP System Programmer's Guide

 •

•

encountered will be the return code of SMP itself and is shown in message HMA205. A
further description is found in 'The RESETRC control statement' in Chapter 5.

USER EXIT ROUTINES

You can control the processing of SMP by providing user-written exit routines.
These are described later in this chapter in 'User-Written Exit Routines.'

DIRECTORIES IN STORAGE

SMP performance can vary significantly, depending on the number of directory
entries in the ACDS and CDS, and the number of new entries being added to those
directories. Therefore, the functions that affect those directories have process-
ing options as follows:

• Processing of the directory in read-only mode in storage - This is accom-
plished by specifying the DIS(READ) operand on the control statement. The
appropriate directory is read into storage at the beginning of the function so
that subsequent I/O operations to locate entries result in an in-storage
search. This decreases the amount of time spent waiting for the entry image
to be returned by the I/O operation from the direct access storage device.
However, any changes to existing directory entries, deletions of existing
entries, and additions of new entries is accomplished as encountered by I/O
operations to the directory.

• Processing of the directory in read/write mode in storage - This is accom-
plished by specifying the DIS(WRITE) operand on the control statement. This
mode provides the in-storage search provided by read-only mode. In addition,
SMP does not update the directory entries on the data set until the SMP func-
tion completes. SMP changes the in-storage copy of the directory as it
encounters mach operation to delete, add, or replace an entry. This further
decreases the wait time for I/O operations that update the directory in the
data set.

• Processing the directory in the data set - This is accomplished by specifying
the DIS(NO) operand on the control statement. In this mode, the directory is
not read into storage for either read or write operations, thus resulting in
wait time for all I/O operations. However, this option should be used in three
cases:

1. When the number of entries being processed is small, the time saved by not
performing I/O operations to read and write directory entries individual-
ly is offset by the time necessary to read in the directory and possibly
write it back out.

2. When the amount of storage necessary to hold the directory is not avail-
able.

SMP Installation and Use 85

3. Non-VS/1, non-VS/2 environment - no STAE/ESTAE (See page 76).

The SMP control statements that allow the DIS operand are ACCEPT, APPLY, JCLIN,
RESTORE, and UCLIN. If the DIS operand is not specified, the default for these
functions is READ, except for JCLIN, which has a default of WRITE. The WRITE
option generally gives the best performance. However, since the directory is not
updated on the data set until the function completes, data set integrity cannot be
ensured if the function does not complete before a system failure. The topic 'Er-
rors Related to Directory-in-Storage Processing' in Chapter 2 of the OS/VS SMP
Messages And Codes describes this problem in detail.

RETRY PROCESSING

RETRY provides a STAE/ESTAE environment for APPLY, ACCEPT, and RESTORE functions
which allow for the compressing of partitioned data sets that are the target
libraries for a UTILITY and which become full during service or function installa-
tion. After a successful compress, the failing UTILITY operation will be
re-executed. The types of ABENDS for which the COMPRESS operation will be
attempted (PROVIDED THAT THE DATA SET IS ELIGIBLE) are a B37-04, D37-04, and a
E37-04. These types of ABENDS are referred to as 'X37' in the remainder of the X37
RETRY description.

The RETRY facility is activated by the RETRY keyword on the APPLY, ACCEPT and
RESTORE control statements.

The utility routines (IEBCOPY, IEWL, IEBUPDTE, ETC) are invoked as attached tasks.
SMP is not terminated if one of these utility routines fails during processing. If

one of the utilities fails with an X37-04 ABEND, SMP will attempt to compress the
failing dataset and continue processing.

The user may specify the name of the program to be used for compress during RETRY
recovery (RETRYNAME in the PTS SYSTEM entry). If no RETRYNAME is specified,
IEBCOPY is used.

An additional SMP DD statement (SYSUT4) is required for use as the SYSIN data set
for the RETRY compress program. If RETRY is requested or defaulted on an APPLY
ACCEPT or RESTORE, SMP will terminate if the SYSUT4 DD statement is not present.
Tha space allocation for this sequential data set need be no more than a single
track since it contains only a single eighty (80) BYTE control statement suitable
for IEBCOPY. The LRECL for the SYSUT4 data set is 80 and the BLKSIZE may be any
multiple of 80.

• The datasets eligible for RETRY processing may be controlled by the RETRYDDN
subentries in the CDS and ACDS SYSTEM entries:

The list of DD names eligible for X37 RETRY processing must be added to the CDS
system entry for the APPLY/RESTORE functions, and to the ACDS system entry
for the ACCEPT function. The value 'ALL' in the list indicates that all UTILI-
TY target DD names are eligible for RETRY.

• The RETRY processing is the default mode of processing for APPLY, ACCEPT, and
RESTORE, provided that a list of eligible DD names is available in the appro-
priate system entry. The user may prevent the RETRY processing by specifying

 86 Chapter 3 - OS/VS SMP System Programmer's Guide

the keyword RETRY(NO) on the APPLY ACCEPT or RESTORE control statement or by
removing all DD names from the appropriate system entry.

You may supply a user exit that is invoked before COMPRESS and RETRY are
attempted. This user exit allows you to stop RETRY processing (see 'User Exit 2'
on page 105 of this chapter) or to reinvoke the failing utility without doing the
COMPRESS operation.

RELFILE TAPE TLIB DATA SET ALLOCATION (DSSPACE)

The DSSPACE sub-entry in the PTS SYSTEM entry defines the primary, secondary and
directory block allocation required for receiving SYSMODs packaged using
RELFILES. DSSPACE specifies the amount of space SMP will attempt to allocate for

each relative file on the RELFILE tape and therefore must be large enough to con-
tain the largest unloaded relfile data set.

ASSEMBLY REUSE FACILITY

When assemblies are done during processing a set of SYSMODs, the assembler output
(object deck) is stored on the SMPWRK3 data set. If SMP fails before the SYSMODs
are successfully processed, these assemblies need not be re-done when the same set

of SYSMODs is re-installed.

The reuse facility provides the option of not re-assembling the previously suc-
cessful assemblies and can be very valuable if certain precautions are heeded:

• The SMPWRK3 data set must be allocated as a "permanent" data set; otherwise,

the objects saved there will be lost after a failure.

It is recommended that the WRK3 data set be scratched and re-allocated before
any "normal" (non-REUSE) SMP run. For the "normal" SMP run, the data sat
should specify a disposition of KEEP.

If this "normal" run fails and you wish to re-use the successful assemblies,
modify the APPLY or ACCEPT control statement for the failing run by including
the REUSE keyword.

• When re-processing the failing SYSMODs, the user must ensure that exactly the
same set of SYSMODs are being processed as was being processed before the
failure. This ensures that no new modifications are introduced which could
affect the previous assemblies. SMP does not check to ensure that this condi-
tion is met!

Re-run the failing set of SYSMODs immediately without RECEIVing or RESTORing
any SYSMODs which could affect the previous assemblies.

SMP Installation and Use 87

SPECIAL PROCESSING CONSIDERATIONS

Some SYSMODs require special processing. When this is the case, the documenta-
tion supplied with the SYSMOD tells you what to do. As a general rule, you should
read the documentation that accompanies SYSMODs even if no special processing is
required.

SYS1.NUCLEUS STORAGE REQUIREMENTS - MVS/VS1 CONTROL PROGRAM

Before modifications are made to IEANUC01 in SYS1.NUCLEUS, SMP renames IEANUC01 to
IEANUCxx, where xx is a number specified in the NUCID sub-entry of the CDS SYSTEM
entry. This facility allows you to IPL your system with the old nucleus if the mod-
ifications made to IEANUC01 prevent an IPL.

The SYS1.NUCLEUS data set should be large enough to contain at lease three copies
of the IEANUC01 member. This will provide space for IEANUC01 and IEANUCxx and
allow space for one additional link edit of the load module.

If the miniumum amount of space is allocated for the nucleus data set, it must be
compressed after each modification to it.

IEHIOSUP FOR VS1

For V51, IEHIOSUP is a system-dependent utility program that is critical to the
processing of SYSMODs. SMP attempts to ensure that the correct level of IEHIOSUP
is used by the following algorithm:

• If you specified a substitute name for IEHIOSUP in the IOSUPNAME subentry of
the PTS SYSTEM entry, SMP executes that program, if it resides in the running
system's LINKLIB, or is present in a library specified in the JOBLIB or
STEPLIB DD statement.

• If the LINKLIB DD statement is present, SMP searches for IEHIOSUP on that
library. This dataset must be authorized on the system that SMP is executing
on

- If the search fails, SMP processing is terminated.

- If the search is successful, that version of IEHIOSUP is used instead of
the version on the running system.

• If the LINKLIB DD statement is not present, SMP searches for IEHIOSUP on the
data set(s) specified in the STEPLIB or JOBLIB DD statements, if either or
both were specified, or the running system's LINKLIB.

- If the search fails, SMP processing is terminated.

- If the search is successful, the appropriate version of IEHIOSUP is used.

8

 88 Chapter 3 - OS/VS SMP System Programmer's Guide

APPLYING SYSMODS TO STAGE I SYSGEN MACROS

Some manual intervention and special packaging is required when you apply SYSMODs
to Stage I SYSGEN macros. The following are hints for processing these SYSMODs:

Process the SYSMOD containing the modification to Stage I SYSGEN macros. You
can invoke the ACCEPT function only at this point in time; that is, specify
'ACCEPT SELECT(sysmodid).', where "sysmodid" is the name of the SYSMOD modify-
ing the Stage I SYSGEN macros.

• Execute a Stage I SYSGEN job to create a new Stage I output tape.

• Execute the jobstream produced by Stage I.

• For VS1, execute the mutually exclusive module PROCs, where applicable, to
resolve possible conflicts. See the topic 'Applying SYSMODs After Partial
SYSGEN' later in this chapter.

• Execute the SMP JCLIN function using the newly created Stage I output tape.

• Process all SYSMODs that specified the SYSMOD that modified the Stage I SYSGEN
macros as a prerequisite. If you have not applied the latter SYSMOD, it must
be processed concurrently with the others.

This special processing ensures that the modules that are assembled during
SYSGEN and the changes to load module structure are reflected in the CDS
before applying the set of SYSMODs that depend on the Stage I SYSGEN macro
modifications.

APPLYING SYSMODS AFTER PARTIAL SYSGEN (VS/1 ONLY)

You may encounter problems in VS1 when applying SYSMODs after you have performed a
partial system generation (an I/O device generation or a nucleus generation.)
Depending on the options specified during the original system generation and those
specified during the partial generation, you may have caused mutually exclusive
pairs of distribution library modules to be created in the target system. To
resolve these conflicts, you may have to do the following before executing the SMP
JCLIN function:

• Delete both module entries for each mutually exclusive pair from the CDS.

• If an I/O device generation was performed, use the SMPIO procedure to delete
the conflicting entries from the CDS.

• If a nucleus generation was performed, use the SMPNUC procedure to delete the
conflicting entries from the CDS.

SMPIO and SMPNUC are SMP procedures that reside in SYS1.PROCLIB.

SMP Installation and Use 89

•

You can use the operator START command or JCL to invoke them, as described below:

S [SMPIO | SMPNUC],id,aaaaa,vvvvvv,,dsn=dddddddd

where

id - specifies the partition number.

aaaaa - specifies the device address or device type of the CDS. The default is
SYSDA.

vvvvvv - specifies the volume serial number of the CDS device. This parameter
is required.

dddddddd - specifies the data set name of the CDS. The default is SMPCDS.

You can use the following JCL to invoke SMPIO or SMPNUC:

// EXEC [SMPIO | SMPNUC]
//IEFPROC.IEFRDER DD VOL=SER=vvvvvv,UNIT=aaaaa,DSN=dddddddd

where

vvvvvv - specifies the volume serial number of the CDS device. This parameter
is required.

aaaaa - specifies the device address or device type of the CDS. The default is
SYSDA.

dddddddd - specifies the data set name of the CDS. The default is SMPCDS.

Note: Although the SMPLOG DD statement specifies SYSOUT=A, you may override it
to specify the LOG data set.

BACKUP OF SMP DATASETS

From the backup point of view, it is important that backups of SMP4 datasets
be maintained in synchronism so that all the datasets reflect the same status.
This may mean restoring several datasets at once in the event of an error in a
single dataset. If the backups are recent, this is generally simpler than
recovering the situation using SMP unless the user is confident that he under-
stands the cause of the error and the steps to perform the recovery.

The following datasets should be backed up and restored together to insure
synchronism:

• SMPCDS, SMPCRQ, SMPSCDS, SMPMTS, SMPSTS and the target system libraries.

• SMPACDS, SMPACRQ and the distribution libraries.

Two satisfactory options for backup are described below.

 90 Chapter 3 - OS/VS SMP System Programmer's Guide

IEHDASDR DUMP

Ideally the SMP4 datasets should be maintained in synchronism with the system
itself (the target and distribution libraries.) IEHDASDR may be used to dump
the volumes which contain the system and SMP datasets. If a problem is
encountered, the entire system may be restored to a point before the problem,
and therefore one is sure that the system and SMP datasets are properly
synchronized.

Although a complete system restore can be rather disruptive, this sort of
backup is desirable when the system must be brought back to the known
backed-up level. It is advisable to create a system restore backup before a
large set of modifications (such as a PUT or function install) is attempted.

IEBCOPY UNLOADS OF INDIVIDUAL SMP DATASETS

IEBCOPY backups can be maintained of all SMP4 datasets on tape. Although back-
up does not provide the synchronism with the target system described above, it
does provide insurance against loss of the SMP datasets due to problems such
as un-recoverable I/O errors.

The SMPLOG dataset should be excluded from the data set restore process so
that it can maintain a correct log of all processing including the error situ-
ation. Use should be made of the 'write-to-log' facility (LOG control state-
ment) so that a comment about the restore of the SMP4 datasets can be recorded
in the log. The restore of the datasets and the 'write-to-log' can easily be
automated via a JCL procedure.

SMP Installation and Use 91

SMP USE EXAMPLES

This section presents some examples to illustrate the use of SMP in the installa-
tion and maintenance of system software.

WRITING MESSAGES TO SMPLOG

The LOG control statement enables you to write user-originated messages to the
SMPLOG data set. You can write to the SMPLOG data set to provide a record of SMP
operations or other records that you determine are appropriate. The messages are
data and time stamped. See the 'LOG Control Statement' in Chapter 5 for further
information.

RECEIVE

The SMP receive function places SYSMODs into the SMPPTS data set for subsequent
processing and is thus the first SMP process in the installation of system soft-
ware.

RECEIVE ALL SYSMODS FROM SMPPTFIN

In order to receive all SYSMODs which are applicable to your SYSTEM, the RECEIVE
control statement is coded with no additional keywords,

RECEIVE .

SYSMODs which have not been received on the PTS and meet the following criteria
will be received:

• All function SYSMODs whose system release (++VER SREL operand) matches an SREL
in the PTS SYSTEM entry.

• All non-function SYSMODs whose system release matches an SREL and an FMID in
the PTS SYSTEM entry.

RECEIVE SELECTED SYSMODS

The following RECEIVE control statement illustrates how only a certain set of
SYSMODs from SMPPTFIN input may be received:

RECEIVE SELECT(UZ00001,UZ00002) .

 92 Chapter 3 - OS/VS SMP System Programmer's Guide

In this case, SYSMODs UZ00001 and UZ00002 will be received if they are in the PTFIN
input and they are not already received in the PTS data set.

RECEIVE SYSMODS WHICH HAVE ALREADY BEEN RECEIVED

SMP will not receive a SYSMOD which is found on the PTS as successfully received.
If you desire to re-receive a SYSMOD, the SYSMOD must be deleted from the PTS using
the reject function:

REJECT S(UZ00000) /* DELETE SYSMOD UZ00000 FROM PTS */ .

RECEIVE PTFS PRIOR TO FUNCTION INSTALLATION

In preparation for the installation of new function, it may be desireable to begin
receiving SYSMODs for the function before the function itself is received. To
accomplish this, the PTS SYSTEM entry must be modified to include the FMID of the
function for which PTFs are to be received:

UCLIN PTS .
ADD SYS FMID(F000002) .
ENDUCL .

FMID(F000002) places an FMID value in the PTS to enable SMP receive processing for
SYSMODs belonging to function F000002.

RECEIVE PTFS FOR VARIOUS SYSTEMS

Additional system release values can be specified such that SYSMODs applicable to
various systems may be stored in one PTS dataset.

UCLIN PTS .
ADD SYS SREL(X070) .
ENDUCL .

SREL(X070) places an SREL value in the PTS to enable SMP receive processing for
SYSMODs applicable to X070 (VS1 Release 7) systems. Checks during APPLY and ACCEPT
will ensure that the SYSMODs are installed on the appropriate system.

APPLY

The SMP apply function installs SYSMODs on the target operating system.

SMP Installation and Use 93

MODIFICATION OF CDS IDENTIFIER (CDSID)

The CDS Identifier (CDSID) may be changed to distinguish between various systems
being maintained in one installation. The CDSID may be changed using UCLIN:

UCLIN CDS .
REP SYS CDSID(TEST1) .
ENDUCL .

When a SYSMOD is applied, the indicator is placed in the PTS SYSMOD entry for the
SYSMOD indicating that the SYSMOD has been applied to "TEST1" .

MASS APPLY

In order to apply all SYSMODs which have been received but not yet applied, the
APPLY control statement is coded as

APPLY .

GROUP APPLY

To apply one particular PTF, P000002, and all its requisites.

APPLY GROUP(P000002) .

Since PTF P000002 is specifically named in the GROUP list, it will be applied even
though it may already have been applied. Any requisite PTFs (PRE or REQ) will be
applied only if they have not already been applied.

ACCEPT

The SMP accept function puts SYSMODs into the system's distribution libraries. The
system distribution libraries are used to generate the operating system using a
system generation (SYSGEN) process outside the scope of SMP. Once the initial
operating SYSTEM has been generated, the accept process is generally performed for
SYSMODs which have been applied and tested on the target operating system.

DELETION OF SYSMODS FROM THE PTS AT ACCEPT

The PTS data set SYSTEM entry PURGE indicator is used to control whether SYSMODs
are deleted from the PTS after they are successfully accepted.

 94 Chapter 3 - OS/VS SMP System Programmer's Guide

When "set", SYSMODs will be deleted from the PTS and temporary libraries loaded
for these SYSMODs will be scratched when the SYSMODs are successfully applied and
accepted.

When this indicator is not "set", the SYSMODs will remain on the PTS. Such SYSMODs
left on the PTS may be applied and accepted to this same or other target and dis-
tribution libraries.

• The PURGE indicator may be "set" as follows,

UCLIN PTS .
ADD SYS PURGE /* DELETE SYSMOD FROM PTS AT ACCEPT */ .
ENDUCL .

• The PURGE indicator may be "reset" as follows,

UCLIN PTS .

DEL SYS PURGE /* DO NOT DELETE SYSMOD FROM PTS AT ACCEPT */ .
ENDUCL .

When the PURGE indicator is "reset" such that SYSMODs are not deleted from the PTS
at ACCEPT, the user controls the deletion of PTS SYSMODs using either UCLIN or
REJECT PURGE.

ACCEPT ALL SYSMODS WHICH HAVE BEEN SUCCESSFULLY APPLIED

ACCEPT .

This variation of ACCEPT is used to accept only those SYSMODs which have been suc-
cessfully applied (found on the CDS). SYSMODs on the PTS which have not been
applied will not be accepted (unless they are found to be superseded by another
SYSMOD which is being accepted.)

ACCEPT SYSMODS IN PREPARATION FOR A SYSGEN

Generally, ACCEPT processes SYSMODs which have applied; however, in the situation
where a system is first being built by a SYSGEN process, the SYSMODs which make up
the system must be moved to the distribution libraries. In order to accept all
SYSMODs, whether they have been applied or not, the NOAPPLY keyword is used as
shown,

ACCEPT NOAPPLY .

All SYSMODs which have not been ACCEPTED will be accepted into the distribution
libraries. The use of the NOAPPLY will cause the SYSMODs to be retained on the PTS
after they have been accepted; The REJECT PURGE function may be used to clean up
the PTS.

SMP Installation and Use 95

In order to accept specific SYSMODs which may or may not have been applied, the
SELECT keyword is used as shown (NOAPPLY is not necessary),

ACCEPT SELECT(F000002) .

In this illustration, the elements from the specified SYSMOD will be put in the
distribution libraries. If NOAPPLY is not coded, an SMPCDS dataset will be
required; if NOAPPLY is coded, no SMPCDS is required and the SYSMOD will be
retained on the PTS after it is accepted; the REJECT PURGE function may be used to
cleanup the PTS.

PTS LISTINGS FOR SYSMOD STATUS

PTS SYSMOD entry listings provide not only the "receive" status of SYSMODs but
also contain information relative to the "apply" and "accept" status of a SYSMOD.

LIST PTS SYSMOD .

will produce a listing of all SYSMODs on the PTS.

Each entry listed will have a "STATUS" field which will show "APP" if the SYSMOD
has been applied to one or more operating systems and will show "ACC" if the SYSMOD
has been accepted on one or more DLIBs.

The "APPLY CDSID" field of each entry will show the CDSID of each CDS to which the
SYSMOD has been applied and the "ACCEPT ACDSID" field will show the CDSID of each
ACDS to which the SYSMOD has been accepted.

These fields can be used to determine which SYSMODs have been applied and accepted
and to which systems they have been so processed.

The NOAPPLY and NOACCEPT PTS listings can be used to determine which SYSMODs have
not been applied or accepted to a particular system or distribution library. The
NOAPPLY and NOACCEPT listings do not use the APP and ACC indicators in the PTS
SYSMOD entries; rather, the listing is produced by comparing the PTS SYSMODs with
the SYSMODs found on the CDS or ACDS when the listing is produced. For example,

LIST PTS PTF NOAPPLY .

will produce a listing of all PTF -type SYSMODs which have not been applied to the
CDS operating system.

CDS/ACDS LISTINGS FOR SYSMOD STATUS

The listings of the CDS and ACDS SYSMOD entries are very valuable in determining
the status of the modifications which have been made to your system.

 96 Chapter 3 - OS/VS SMP System Programmer's Guide

LISTING ONLY SYSMOD ENTRIES

LIST CDS SYSMOD .

will list all CDS SYSMOD entries.

LISTING SPECIFIC SYSMODS

LIST CDS SYSMOD(UZ00001,UZ00002) .

will list the CDS SYSMOD entries for only UZ00001 and UZ00002.

LISTING SPECIFIC SYSMOD TYPES

LIST CDS SYSMOD USERMOD .

will list the CDS SYSMOD entries whose type is USERMOD. The other types which may
be specified are FUNCTION, PTF and APAR.

LISTING SPECIFIC SYSMOD STATUS

• To determine whether any SYSMODs have been partially applied,

LIST CDS SYSMOD ERROR .

• To determine whether any SYSMODs have been partially restored,

LIST CDS SYSMOD RESTORE .

• To list all SYSMODs on the CDS which have not been accepted,

LIST CDS SYSMOD NOACCEPT .

• To list all SYSMODs on the ACDS which have not been applied,

LIST ACDS SYSMOD NOAPPLY .

LISTINGS FOR ELEMENT INFORMATION

The listings of the CDS and ACDS ELEMENT entries provide both processing informa-
tion and status (function-level and maintenance-level) of all elements on your
system.

SMP Installation and Use 97

LISTING ONLY ELEMENT ENTRIES

LIST CDS MOD .

will list all the CDS MOD entries. Other variations of element types may be speci-
fied singularly or together:

LIST CDS MAC SRC .

will list all MACRO and SOURCE entries.

ELEMENT MODIFICATION HISTORY LISTINGS

The cross-reference (XREF) option of LIST will provide a useful historical record
of modifications made to the elements on your system.

LIST CDS MAC(MACR001,MACR002) XREF .

will list the CDS MACRO entries for the two macros specified and provide a list of
all SYSMODs which have modified these macros.

The XREF option is useful for the other CDS element-type entries such as MOD (for
modules) and SRC (for source).

MACRO PROCESSING INFORMATION

The CDS MAC entry provides the data required to process a macro modification. This
entry shows the operating system macro library in which the macro resides
(SYSLIB); when no SYSLIB is present, the macro is presumed to have no operating
system library, and the SMPMTS data set will be used to to maintain the modified
macro until it is accepted into its distribution library (DLIB).

In addition to the SYSLIB data the MAC entry may contain a list of source elements
to be assembled whenever the macro is modified. These source elements are listed
as GENASMs; SMP will access the CDS for this source as an ASSEM entry (or SRC entry
if no ASSEM entry is found). These GENASM sources will be assembled and link edit-
ed when the macro is updated providing an associated CDS MOD entry (one having the
same name as the GENASM) with load module data is available (see "Module Link Edit
Processing" below).

SOURCE PROCESSING INFORMATION

The CDS SRC entry and a corresponding MOD entry provide the data required to proc-
ess a source modification. The SRC entry itself shows the operating system library
in which the source resides (SYSLIB); when no SYSLIB is present, the source is
presumed to have no operating system library, and the SMPSTS data set will be used

 98 Chapter 3 - OS/VS SMP System Programmer's Guide

to to maintain the modified source until it is accepted into its distribution
library (DLIB).

Associated with each SRC entry, there is generally a CDS MOD entry which SMP will
use to determine how to process the assembled source modification (see "Module
Link Edit Processing" below). If there is no corresponding MOD entry (that is, a
MOD entry with the same name as the source element), SMP presumes that the source
need not be assembled or link edited to an operating system library. A JCLIN job
step shcwing the link edit of the source module will properly initialize the CDS
to enable SMP to assemble and link edit the source.

MODULE LINK EDIT PROCESSING INFORMATION

In order to determine how a module will be link edited into your operating system.
both the MOD entry and any associated LMOD entries must be examined.

LIST CDS MOD(module) .

will display the CDS MOD entry. In this entry, the "LMODS" field identifies the
load modules which contain this module. In order to determine how the module will
be link edited, the CDS load module entries found in the MOD entry must be listed.

LIST CDS LMOD(lmodxx) .

REJECT FACILITIES

The SMP Reject function removes SYSMODs from the PTS which are no longer desired
by the user. Generally, SYSMODs are removed when they have been successfully
accepted (see "Deletion of SYSMODs from the PTS at ACCEPT" on page 94). This meth-
od of operation is not always satisfactory, especially when multiple systems are
being maintained from the same PTS data set.

Two forms of "mass" REJECT are available:

1. The first form removes SYSMODs which have been neither applied nor accepted:

REJECT .

This form of REJECT determines whether a SYSMOD has been applied or accepted
from the APPID and ACCID sub-entries in the PTS SYSMOD entry.

2. The second form removes SYSMODs which been accepted into the ACDS present when
reject is invoked:

REJECT PURGE .

In contrast with the first form of REJECT, this form determines whether a
SYSMOD has been accepted by examining the ACDS SYSMOD entries; the presence of
an ACDS SYSMOD entry (not "in-error") indicates that the SYSMOD has been

SMP Installation and Use 99

accepted.

USER-WRITTEN EXIT ROUTINES

You can write a user exit routine that is invoked by SMP during processing. The
name of the user exit routine is HMASMUXD. It is a separate load module that is
not link edited with HMASMP. A dummy version of HMASMUXD is supplied with the mod-
ules of SMP and i s copied to the target system library LINKLIB. You replace this
module with your user exit routine of the same name. During SMP initialization.
HMASMUXD will be loaded via the LOAD macro and invoked via the CALL macro at the
appropriate places during SMP processing.

If you chose to place your exit routine in a library other than LINKLIB, you must
ensure that it is an authorized library.

The function of HMASMUXD is to define the user exits to be invoked by SMP during
processing. Currently, two user exits can be defined in HMASMUXD. They are
described as "User Exit 1" and "User Exit 2" below.

MODULE HMASMUXD (USER EXIT DETERMINATOR)

Since you must replace module HMASMUXD in LINKLIB, the following information is
provided to help you write HMASMUXD.

The module must be coded using standard linkage conventions. The register values
at invocation must be the same when the module returns to SMP with the exception of
registers 0, 1, and 15. The registers should be saved in an area with backward and
forward save area chains.

Module HMASMUXD is passed the address of a parameter list in general register 1. A
mapping macro HMASMUXP, is provided for this parameter list in SYS1.MACLIB. The
parameter list is mapped as follows:

 100 Chapter 3 - OS/VS SMP System Programmer's Guide

Field
Name

Offset
(DEC)

Len Description

UXPUXNUM +0 2 User exit number (hexadecimal)
+2 2 Unused

UXPUXNAM +4 8 User exit name
UXPUXAD +12 4 Address of user exit
UXPFUNCT +16 8 SMP function name
UXPPRMAD +24 4 Address of user exit parameter list
UXPLOJAD +28 4 Address of work area common to user exits
UXPLOEAD +32 4 Address of work area for this exit
UXPCTBAD +36 4 Reserved
UXPMODAD +40 4 Reserved

Figure 6 - HMASMUXP - Parameter List to HMASMUXD

SMP passes the user exit number in field UXPUXNUM and module HMASMUXD determines
if that user exit is to be activated. You can use one of two methods to activate
the user exit. The entry point address of the exit routine can be placed in field
UXPUXAD or the name of the exit module can be placed in UXPUXNAM. If the address is
passed back, it is used as the entry point for the user exit. If the name is passed
back, the exit module will be loaded if UXPUXAD is zero. If field UXPUXNAM is blank
and field UXPUXAD is binary zeroes, SMP assumes that the user exit does not exist.

When the name of the user exit is passed back to SMP without an entry point in
UXPUXAD, the user exit to be loaded module must exist as a load module in LINKLIB

or in a data set defined by the STEPLIB or JOBLIB DD statements. The user exit must
exist in an authorized library.

SMP issues a LOAD macro for the user exit module, a CALL macro to invoke the user
exit, and a DELETE macro to remove the user exit when no longer required. If the
user exit applies to the total SMP execution, it will be loaded during SMP
initialization and deleted during SMP termination. If the user exit applies to a
specific SMP function, it will be loaded during initialization for the function
and deleted at termination of the function.

When the address of the user exit routine is passed back to SMP, the user exit is
invoked by a CALL macro. With this method, it is the user's responsibility to
issue the LOAD macro for the user exit module unless it is part of module HMASMUXD.

When module HMASMUXD returns to SMP, general register 15 must contain one of the
following values:

• 0 - Exit information supplied or ignored

• 12 - Terminate SMP function

• 16 - Terminate SMP

If any other value is returned, SMP issues an error message and terminates.

The HMASMUXD module supplied with SMP does not modify the parameter list. It
returns a value of 0.

SMP Installation and Use 101

USER EXITS

When a user exit is invoked, general register 1 contains the address of the param-
eter list HMASMUXP as shown above. The UXPLOJAD field is used to pass information
between user exits; however, this field is not currently used because only func-
tion level exits (RECEIVE and APPLY/ACCEPT/RESTORE) are supported and they cannot
be activated at the same time. The UXPLOEAD field is used within an exit to pass
information when the next call is made to the exit. This field is not referenced
by SMP.

When the user exit returns to SMP, general register 15 must contain a valid return
code, which is defined for each exit. If a value is returned that is not valid,
SMP issues an error message and terminates.

 102 Chapter 3 - OS/VS SMP System Programmer's Guide

USER EXIT 1 (RECEIVE)

This exit routine allows you to scan the SYSMOD data in the SMPPTFIN data set.
This exit performs the same function as the HMASMEXT module supported in previous
versions of SMP. This user exit is called "User Exit 1".

See 'RECEIVE Processing' in Chapter 2 for information on when this exit is called.

When the exit is called, the fields in the parameter list have the following val-
ues:

UXPUXNUM - X'0001' - user exit number (hex)

UXPFUNCT - 'RECEIVE ' - the RECEIVE function (character string)

UXPPRMAD - address of 81 byte buffer area (see below)

Figure 7 - Values Passed in HMASMUXP - User Exit 1

FIELD NAME Offset Length DESCRIPTION
(DEC)

none +0 1 X'00' - PTFINBUF contains record
to be processed.

X'04' - End-of-file on SMPPTFIN.

PTFINBUF +1 80 PTFIN input record next to be
processed.

Figure 8 - Buffer Passed by UXPPRMAD - User Exit 1

When the exit returns to SMP, one of the following values must be returned in gen-
eral register 15:

• 0 - Continue normal processing

• 4 - Invalid

• 8 - Stop processing the SYSMOD. RECEIVE processing will not receive this
SYSMOD, but records from the SYSMOD continue to be passed to the user exit.

• 12 - Stop RECEIVE processing

• 16 - Stop SMP processing

SMP Installation and Use 103

• 20 - Insert a record after the current one in the buffer. The exit is rein-
yoked without reading from PTFIN after the contents of the buffer area are
processed. The exit routine returns data that is to be part of the SYSMOD
being read in the buffer area. When no more data is to be placed in the buff-
er, the exit clears the buffer area and returns a 0 in register 15.

• 24 - Delete record in buffer area

 104 Chapter 3 - OS/VS SMP System Programmer's Guide

USER EXIT 2 (RETRY)

This exit routine allows the user to control the X37 RETRY function of SMP Release
4 . The exit is called after SMP has determined that a RETRY can be attempted.
(Generally a RETRY is considered to be a compress of the target dataset followed
by a reinvocation of the failing UTILITY. Note that the dump for the failure has
been cancelled before the user exit is called.)

When the exit is called, the fields in its input parameter list have the following
values:

UXPUXNUM - X'0002' - user exit number (hex)

'APPLY ' SMP function being

UXPFUNCT - 'ACCEPT ' performed (character

'RESTORE ' string)

UXPPRMAD - address of 25 byte parameter list
(see below)

Figure 9 - Values Passed in HMASMUXP - User Exit 2

FIELD NAME Offset
(DEC)

Length DESCRIPTION

UX002DDN +0 8 Target DDNAME on which the
837-04, D37-04 or E37-04 occurred.

UX002PGM +8 8 The program name of the utility
invoked which caused the failure.

UX002ACH +16 3 Abend code encountered (hex)
(same format as SWDA field SDWACMPC)

UX002RCH +19 1 Abend reason (hex)

UX002ACP +20 3 Abend code (printable EBCDIC)

UX002RCP +23 2 Abend reason code (printable EBCDIC)

Figure 10 - Parameter List Passed by UXPPRMAD - User Exit 2

When the exit returns to SMP, one of the following values must be returned in gen-
eral register 15:

SMP Installation and Use 105

• 0 - Continue normal processing

• 12 - Stop the SMP function (APPLY, ACCEPT, or RESTORE) processing; perform no
RETRY.

• 16 - Stop SMP processing; perform no RETRY

• 20 - Perform modified RETRY processing. Re-Invoke the failing UTILITY but do
not compress the failing dataset.

Any other return code is invalid and is converted to a return code of 12.

SMP DATA SET ALLOCATION GUIDELINES

This section provides some guidance for the initial allocation of the SMP data
sets required for MVS and VS1 system installation and maintenance.

SMP has primary data sets that you allocate immediately after system generation,
and secondary data sets that are defined by DO statements when you execute SMP.

See Chapter 7 for detailed descriptions of the use and purpose of each data set.

Primary Data Set Requirements

The primary data sets that you allocate immediately after system generation are:

• SMPACDS • SMPCRQ • SMPPTS
• SMPACRQ • SMPLOG • SMPSCDS
• SMPCDS • SMPMTS • SMPSTS

If the SMPACDS is provided with the distribution libraries, you may have to real-
locate the SMPACDS to satisfy storage requirements.

Figures 11 and 12 provide guidelines for estimating the storage requirements of
the primary SMP data sets. Figure 11 lists the number of tracks of direct access
storage you can initially estimate for the primary data sets. For performance
considerations, the SMPACDS and SMPCDS should be allocated in cylinders. This
figure also shows the number of tracks needed in the LINKLIB data set for the SMP
program. Figure 12 lists the directory block allocation and data set organization
for the primary data sets when a 3330 storage device is used. All the numbers in
both figures are for the base level system only.

 106 Chapter 3 - OS/VS SMP System Programmer's Guide

Track Requirements by Device

DATA
SET 2305 2314/ 3330/ 3340 3350
NAMES 2319 3333

SMPACDS 41 x 409 x 225 x 475 x 155 x
62 y 614 y 338 y 551 y 231 y

SMPACRQ 11 x 109 x 60 x 98 x 41 x
16 y 164 y 90 y 147 y 62 y

SMPCDS 55 x 545 x 300 x 489 x 206 x
82 y 818 y 450 y 734 y 309 y

SMPCRQ 11 x 109 x 60 x 98 x 41 x
16 y 164 y 90 y 147 y 62 y

SMPLOG 70 140 76 126 52

SMPMTS 52 104 57 94 39

SMPPTS 580 x 153 x 634 x 040 x 433 x
870 y 730 y 950 y 560 y 650 y

SMPSCDS 5 x 55 x 30 x 49 x 21 x
8 y 82 y 45 y 73 y 31 y

SMPSTS 52 104 57 94 39

LINKLIB 46 93 51 91 35

x VS1 Systems
y VS2 Systems

Figure 11: - SMP Primary Data Set Requirements
in Tracks

SMP Installation and Use 107

Data Set
Name

3330
Directory

Blocks

Data Set
Organization

SMPACDS 1500 (VS1) PDS
2250 (V52)

SMPACRQ 350 (VS1) PDS
500 (VS2)

SMPCDS 2000 (VS1) PDS

3000 (VS2)

SMPCRQ 350 (VS1) PDS
500 (VS2)

SMPLOG N/A Sequential

SMPMTS 50 PDS

SMPPTS 500 PDS

SMPSCDS 75 (VS1) PDS
100 (VS2)

SMPSTS 50 PDS

Figure 12: - SMP Primary Data Set Organization and

Directory Block Allocation on a 3330
Device

Secondary Data Set Requirements

The remaining, or secondary, SMP data sets are defined by DD statements you pro-
vide when executing an SMP job. They are:

• SMPCNTL • SMPWRK1 • SYSUT1
• SMPJCLIN • SMPWRK2 • SYSUT2
• SMPLIST • SMPWRK3 • SYSUT3
• SMPOUT • SMPWRK4 • SYSUT4
• SMPPTFIN • SMPWRK5 • distribution libs.
• SMPRPT • SYSLIB • LKLIB libraries
• SMPTLIB • SYSPRINT • target libraries
• SMPADDIN • SMPPUNCH • TXLIB libraries

 108 Chapter 3 - OS/VS SMP System Programmer's Guide

STORAGE ESTIMATES

Prior to the execution of SMP, space must be allocated on various storage devices
and reserved in main storage. This section describes recommended minimum SMP pri-
mary data set allocations and an algorithm for determining main storage require-

ments.

SMP Program Requirements

SMP normally resides in SYS1.LINKLIB. The SMP program must be in an authorized

library and must be authorized itself.

SMP requires storage for program execution. The following algorithm will help you
in determining the amount of storage needed by the APPLY, RESTORE, and ACCEPT

functions with directories in storage mode of operation:

530K (Size of SMP program)
+ 8K (SMP fixed-size storage areas)
+ 20K (reserved for system use ... open,close)
+ 2 x largest ACDS/CDS/SCDS blocksize

+ 2 x largest MTS/PTS/STS blocksize

+ 2 x largest ACRQ/CRQ blocksize

+ 2 x largest WRK1/WRK2/WRK3 blocksize

+ 2 x WRK4 blocksize

+ 1 x largest LKLIB/TXLIB blocksize

+ 36 x largest PEMAX value

+ 252 x number of directory blocks in ACDS
+ 252 x number of directory blocks in CDS
+ 1 - x largest size of programs invoked by SMP

+ 1 x calculated storage for processing SYSMODs
(see calculations below)

TOTAL SIZE

To determine the sizes of the programs invoked by SMP, refer to the following pub-

lications:

• OS/VS Linkage Editor and Loader

• OS/VS and DOS/VS Assembler Language

• OS/VS Utilities

• OS/VS1 Service Aids or OS/VS2 System Programming Library: Service Aids

SMP Installation and Use 109

To calculate the amount of storage needed to process a set of SYSMODs, the follow-
ing algorithm can be used:

124
+ 160
+ 160

+ 160

x
x
x

x

number of SYSMODs being processed
number of elements in SYSMODs being processed
number of ASSEM and SRC entries referenced by
macros modified by SYSMODs being processed
number of ASSEM and SRC entries that are to
be assembled

+ 64 x number of unique load modules that are to be
link edited or modified by IMASPZAP

+ 8 x number of DELETE, NPRE, PRE, REQ, SUP, and
VERSION operands in the ++VER modification
control statements in SYSMODs being processed

+ 16 x number of REQ operands in ACRQ/CRQ and ++IF
modification control statements in SYSMODs
being processed that are applicable
to your environment ... APPLY/ACCEPT only.

+ 8 x number of sysmods which are applied (on CDS)
but not accepted (on ACDS) ... RESTORE only.

+ 16 x

x
(number of elements being RESTOREd)

(number of SYSMODs which have supplied each
element) ... RESTORE only.

+ 22 x number of REQ operands in ++IF modification
control statements in SYSMODs being processed

Total storage for processing set of SYSMODs

The algorithm is based on approximate sizes of internal entries used during APPLY.
RESTORE, and ACCEPT processing.

The maximum amount of storage that SMP attempts to obtain for internal entries is
4000k. If your calculations show that the processing of a set of SYSMODs might
exceed this amount, you should process smaller subsets of that set.

If you are executing SMP on a system with insufficient storage for processing the
ACDS or CDS directory in storage, you must use the DIS(NO) option on the SMP con-
trol statements. See 'Directories in Storage' on page &dirst. in this chapter for
additional information.

 110 Chapter 3 - OS/VS SMP System Programmer's Guide

CHAPTER 4: SMP REPORTS

Reports that notify you, in summary format, of the outcome of SMP processing are
produced for the RECEIVE, APPLY, RESTORE, and ACCEPT functions. These reports
will appear in the SMPRPT output data set when the SMPRPT DD card is present in the
JCL statements used to execute SMP. Otherwise, the reports will appear in the
SMPOUT data set.

RECEIVE SUMMARY REPORT

When SYSMODs are processed by RECEIVE, SMP produces a RECEIVE SUMMARY REPPORT on
the SMPRPT dataset.

The "RECEIVE SUMMARY REPORT" lists those SYSMODs processed from the SMPPTFIN data-
set. The SYSMODs included in the report depend upon the user specification of
SELECT, EXCLUDE, or MASS. In SELECT mode, the report contains information for only
those SYSMODs which were explicitly selected. In EXCLUDE mode, the report contains
information for all SYSMODs in SMPPTFIN except those explicitly excluded and those
which were previously RECEIVED. In MASS mode, the report contains information for
all SYSMODs in SMPPTFIN except those which were previously RECEIVED.

Four fields are present on each line of the report for a SYSMOD:

• Field 1 - The SYSMOD ID (7 character identifier)

• Field 2 - STATUS (RECEIVED or NOT RECEIVED)

• Field 3 - SYSMOD Type (FUNCTION, PTF, APAR, or USERMOD)

• Field 4 - Additional information (see below)

Additional information (Field 4 of the report line) may appear as follows:

1. ALREADY RECEIVED - The SYSMOD was not received because the SYSMOD was found on
the SMPPTS dataset as RECEIVED. This information appears only if the SYSMOD
was explicitly selected.

User considerations: You must delete the SYSMOD from the PTS using the REJECT
control statement before receiving the SYSMOD.

2. I/O ERROR - The SYSMOD was not received because of an I/O error on an SMP data-
set.

User considerations: Investigate and correct the cause of the I/O error. If
the I/O error occurred while reading a Relfile data set or writing to an
SMPTLIB data set, the ERROR indicator is set in the PTS SYSMOD entry.

Chapter 4: SMP Reports 111

3. NO APPLICABLE ++VER - The SYSMOD was not received because no ++VER modifica-
tion control statement(s) was found which applied to the system release (SREL)
and/or FMID the SMPPTS System entry.

This information appears only if the SYSMOD was explicitly selected.

User considerations: Ensure that the SYSMOD is required in your environment.

Ensure that the correct PTS data set is used if multiple environments are
maintained by different PTS data sets. A list of all environments controlled
by a PTS can be obtained using the LIST PTS SYS control statement.

If the PTS SYSTEM entry does not contain the SREL subentry required by the
SYSMOD. it can be added using the UCLIN PTS function, with the UCL ADD SYS SREL
statement.

If the PTS SYSTEM entry does not contain the FMID subentry required by the
SYSMOD, it can be added using the the UCLIN PTS function with the UCL ADD SYS
FMID statement, or by receiving the function SYSMOD specified in the FMID
operand.

You can use the BYPASS operand on the RECEIVE control statement to bypass the
FMID verification checks.

4. RELFILE PROCESS ERROR - The SYSMOD was not received because of an error
attempting to allocate a dataset on the SMPTLIB volume or during the IEBCOPY
invocation to load the unloaded relfile to an SMPTLIB dataset.

User considerations: Ensure that the volume(s) referenced by the SMPTLIB DD
statement contain enough direct access space to fulfill the requirement.

Adjust the SMP space requested by changing the DSSPACE parameter in the PTS
SYSTEM entry using the UCLIN PTS function.

Check the results of the IEBCOPY invocation using the SYSPRINT data set or the
IEBCOPY substitute for SYSPRINT output. An error condition is reported if the
return code passed to SMP by IEBCOPY is not 0.

5. RELFILE NOT PROCESSED - The SYSMOD was not received because of a previous
error which terminated RECEIVE processing before the RELFILEs for this SYSMOD
could be loaded.

6. NOT FOUND ON SMPPTFIN - The SYSMOD was not received because it was not found on
the SMPPTFIN dataset. This information appears only if the SYSMOD was explic-
itly selected.

7. SYNTAX/CONSTRUCTION - The SYSMOD was not received due to a syntax or con-
struction error.

8. SMPTLIB DATASETS LOADED - The SYSMOD received had elements supplied in IEBCOPY
unloaded files which were loaded to the SMPTLIB volume.

9. USER EXIT - The SYSMOD was not received due to the return code passed to SMP
from the user exit routine.

 112 Chapter 4 - OS/VS SMP System Programmer's Guide

Check the results of the IEBCOPY invocation using the SYSPRINT data set or the
IEBCOPY substitute for SYSPRINT output. An error condition is reported if the
return code passed to SMP by IEBCOPY is not 0.

User considerations: This SYSMOD cannot be received. The SYSMOD modification
control statements should be corrected by those responsible for construction.

If the SYSMOD specifies the FILES and RELFILE operands incorrectly, subsequent
SYSMODs in the SMPPTFIN data set are not received. The reason is described as
"RELFILE CONSTRUCTION".

RECEIVE SUMMARY REPORT

SYSMOD STATUS TYPE

EXY1101 RECEIVED FUNCTION
UZ00001 RECEIVED PTF
UZ00002 NOT RECEIVED PTF
UZ00003 RECEIVED PTF
UZ00004 NOT RECEIVED PTF

SYNTAX/CONSTRUCTION

USER EXIT

Figure 13 - RECEIVE SUMMARY Report

APPLY, RESTORE AND ACCEPT REPORTS

SMP generates four reports for SYSMODs processed by APPLY and ACCEPT. Two reports
can be generated for RESTORE processing. However, these reports are not produced
when a function SYSMOD is selected for processing but is terminated prior to
updating any target system or distribution libraries. By analyzing these reports
you can:

• Determine those SYSMODS successfully processed and the libraries that were
updated

• Determine those SYSMODS not processed because of error conditions encountered
in related SYSMODs

• Determine which modifications to elements are regressed by SYSMODs processed
by APPLY or ACCEPT

• Determine which SYSMODs were deleted from the CDS or ACDS as a result of
applying or accepting a function SYSMOD with a DELETE operand in its ++VER
modification control statement.

When the CHECK operand is specified on the APPLY or ACCEPT control statement, the
reports indicate what will happen during actual processing of the SYSMODs. This
"dry run" capability can save you valuable time by detecting error conditions that
will occur if actual updates are done. For RESTORE processing, the CHECK mode can
be useful in providing information about the SYSMODs that must be selected for
RESTORE processing along with those specified in the SELECT operand list.

Chapter 4: SMP Reports 113

The SYSMOD STATUS Report

This report summarizes the processing that occurred for every eligible SYSMOD.
The SYSMODs are listed in alphanumeric sequence (see Figure 14).

The fields in the report are as follows:

• SYSMCD - The identifier of the system modification

• STATUS - Describes what has happened to the SYSMOD. The possible values of
this field are as follows:

- APPLIED, ACCEPTED, or RESTORED - The SYSMOD was successfully processed.

SUPD - The SYSMOD is superseded by one or more SYSMODs being processed.
The superseding SYSMODs are shown in the "REQUISITE AND SUPEDBY SYSMODS"
field.

NOGO - The SYSMOD was not processed prior to any updates. The reason for
the NOGO condition can be that a related SYSMOD has an error. The message

output should be checked to determine the cause of the error.

ERROR - The SYSMOD was terminated after some target system or SMP
libraries were updated but before the SYSMOD could be considered complete-
ly processed. A SYSMOD is considered "completely" processed when all of
its elements have been processed and all of the SYSMOD's requisites have

been "completely" processed. The message output should be checked to
determine the cause of the error. This condition does not appear when the
CHECK operand is specified.

DELETED - The SYSMOD was explicitly or implicitly deleted.

INCMPLT - The processing for this SYSMOD is "incomplete" due to some fail-
ure. The SYSMOD has not updated any target system libraries (as distin-
guished from the ERROR status described above).

• TYPE - The system modification type (APAR, FUNCTION, PTF, or USERMOD).

• FMID - The SYSMOD's FMID. This field is not filled in for superseded SYSMODs.

• REQUISITE AND SUPEDBY SYSMODS - shows the requisite and superseding SYSMODs.
The lists are preceded by the type of requisite as follows:

IFREQ - The SYSMODs are conditional requisites of the SYSMOD, defined by
its associated ++IF modification control statements or, if the SYSMOD is a
function, defined by previously processed SYSMODs.

PRE - The SYSMODs are prerequisites of the SYSMOD.

REQ - The SYSMODs are requisites of the SYSMOD.

SUPBY - The SYSMODs that supersede the SYSMOD.

 114 Chapter 4 - OS/VS SMP System Programmer's Guide

-

-

-

-

-

-

-

-

-

If a dash (-) appears next to a listed SYSMOD, that SYSMOD has NOGO
status. This may mean that the SYSMOD is not available for processing.

If an asterisk (*) appears next to a listed SYSMOD, that SYSMOD has NOGO
status, but the appropriate option was specified in the BYPASS operand
list on the APPLY or ACCEPT control statement. This means that if the
SYSMOD is not available for processing, the SYSMOD that has specified it
as a requisite can be processed.

DATE 80.092 TIME 09=25 47/HMASMP LVL 04.18 SMPRPT OUTPUT

SYSMOD STATUS REPORT FOR APPLY PROCESSING

NOTE:

SYSMOD

'-' INDICATES THE REQUISITE SYSMOD CONDITION IS NOT SATISFIED
'*' INDICATES THE NON SATISFIED REQUISITE SYSMOD CONDITION IS

BYPASSED

STATUS TYPE FMID REQUISITE AND SUPBY SYSMODS

AZ00124 APPLIED APAR GXY1000 PRE UZ00010
GXY1000 APPLIED FUNCTION GXY1000
HXY1010 APPLIED FUNCTION GXY1000 PRE UZ00010
UZ00010 APPLIED PTF GXY1000
UZ00001 SUPD SUPBY UZ00015
0200012 APPLIED PTF GXY1000 PRE UZ00010
U200014 APPLIED PTF GXY1000 IFREQ UZ00015

PRE UZ00010
UZ00015 APPLIED PTF HXY1010 REQ UZ00014
XY10001 APPLIED USERMOD GXY1000 IFREQ XY10101
XY10101 APPLIED USERMOD HXY1010

Figure 14 - The SYSMOD STATUS Report

The ELEMENT SUMMARY Report

This report describes the status of the libraries that were updated for each mod-
ule, macro, or source module (see Figure 15). The report is not generated when all
SYSMODs selected for processing are terminated prior to any element selection.

The fields in the report are as follows:

• ELEM TYPE - The element type: MAC, MOD, SRC, or S/ZAP.

• ELEMENT NAME - The element name.

Chapter 4: SMP Reports 115

• ELEM STATUS - Describes what has happened to the element. The possible con-
tents of this field are as follows:

1. APPLIED, ACCEPTED, or RESTORED - The element was successfully processed.

2. BYPASS - An error was detected while performing MODID checks, but the ID
option was specified in the BYPASS operand. The element was processed.

3. DELETED - The element was selected and deleted. The DELETE operand was
specified on the element modification control statement.

4. DLIB ERR - The value in the DISTLIB operand on the element modification
control statement does not match the DISTLIB subentry value in the element
entry on the ACDS/CDS. The element is not processed and the SYSMOD will
have NOGO status.

5. ID ERR - An error was detected while performing MODID checks. Check mes-
sages on SMPOUT to determine error. The element was not processed.

6. NOGO - The element was not processed. The SYSMOD STATUS field will
contain either NOGO or ERROR. If ERROR status is indicated, the element
may have been processed. Check the messages in SMPOUT for status of the
library in which the element resides.

7. NOT SEL - This version of the element was not selected. If multiple ver-
sions of the same element are being processed concurrently, a superior
version may have been chosen from another SYSMOD. If none of the versions
of an element are selected, a superior version existed previously on the
target system.

Often, an element is not selected because its FMID did not match the FMID
of the element on the target system. The selection and exclusion of ele-
ments is discussed in the APPLY Processing section of Chapter 2.

8. SRC SEL - The object module (++MOD) was not processed. This situation
occurs when the object is created by assembling the source for the module
as a result of a source or macro modification.

• CURRENT FMID - The FMID that appears in the CDS element entry for APPLY or
RESTORE, or the ACDS element entry for ACCEPT, when processing completes.
This will only appear if the element is successfully processed.

• CURRENT RMID - The RMID that appears in the CDS element entry for APPLY or
RESTORE, or the ACDS element entry for ACCEPT, when processing completes.
This will only appear if the element is successfully processed.

• MAC/SRC SYSLIB - The name of the target system library when TYPE is MAC or SRC.
This field contains SMPMTS for macros that do not have a target system
library, and SMPSTS for source modules that do not have a target system
library. This field is not present for ACCEPT processing.

• MAC/SRC DISTLIB - The name of the distribution library when TYPE is MAC or
SRC. This field is not present for APPLY or RESTORE processing.

 116 Chapter 4 - OS/VS SMP System Programmer's Guide

• DISTSRC LIBRARY - The distribution library of the source module to be assem-
bled when the element type is MAC and ASSEM NAMES are specified.

• ASSEM NAMES - A list of SRC and/or ASSEM modules assembled as a result of a
macro modification. ASSEM modules do not exist for ACCEPT processing.

• LOAD MOD - A list of load modules that were link edited and/or copied using the
module named in the ELEMENT NAME field. This field is not present for ACCEPT
processing.

• LMOD SYSLIB - The name(s) of target system libraries that contained the load
module named in the LOAD MOD field and that were updated during APPLY or
RESTORE processing. This field is not present for ACCEPT processing.

• MOD DISTLIB - The name of the distribution library. This field is not present
for APPLY processing.

• SYSMOD NAME - The identifier of the SYSMOD(s) that modify the element speci-
fied in the ELEMENT NAME field.

• SYSMOD STATUS - The status of the SYSMOD specified in the SYSMOD NAME field.
The possible values are the same as in the SYSMOD STATUS report.

Figure 15 - The ELEMENT SUMMARY Report

The SYSMOD REGRESSION Report

The SYSMOD regression report summarizes the MODID CHECK conditions described under
"FMIDs Match - MODID Verification" on page 28 with respect to elements in the tar-
get system. A regression situation occurs when SMP APPLY or ACCEPT processes an
element from a SYSMOD which did not express a proper PRE/SUP relationship with the
RMID and/or UMID attributes of the corresponding element in the target system.
This situation can only occur when the MODID CHECK ERROR termination is bypassed

Chapter 4: SMP Reports 117

using BYPASS(ID). This situation will not occur when a new function is being
installed since elements from a FUNCTION are selected based upon functional "supe-
riority" (see "FMIDs Differ on page 28); SMP assumes that service (PTFs and
USERMODs) installed on the functionally inferior elements has provided ++IF condi-
tional requisite data to bring the functionally superior SYSMOD up to the proper
service level.

If no regressions are detected, this report is generally not produced. There are
certain circumstances, however, in which the MODID verification detects a
regression situation which is resolved by other SYSMODs being processed during the
same APPLY or ACCEPT; in this case, the regression report will be produced and
consist of the single message, "NO SYSMODS REGRESSED".

The following describes the fields within the report:

• REGRESSING SYSMOD - The identifier of the SYSMOD that caused regression of the
element(s) listed in the COMMON ELEMENTS fields.

• REGRESSED SYSMOD - A list of SYSMODs that had previously modified the
element(s) listed in the COMMON ELEMENTS fields. These are the SYSMODs whose
modifications were potentially overlaid.

• COMMON ELEMENTS TYPE and NAME - A list of elements modified by the regressing
SYSMOD.

• OTHER POTENTIALLY REGRESSED SYSMODS - A list of SYSMODs superseded by the
regressed SYSMOD that were not superseded by the regressing SYSMOD. This list
may include the SYSMOD-IDs of APARs that were fixed (superseded) by the
regressed SYSMOD that were not included in the regressing SYSMOD.

DATE 80.092 TIME 09:25:47/HMASMP LVL 04.18 SMPRPT OUTPUT
SYSMOD REGRESSION REPORT FOR APPLY CHECK PROCESSING

REGRESSING REGRESSED COMMON ELEMENTS OTHER POTENTIALLY
SYSMOD SYSMOD TYPE NAME REGRESSED SYSMODS

UZ00099 UZ00001 MODULE HMAB0123 AZ00050 AZ00051 AZ00052

UZ00002 MACRO HMAMAC01 AZ00055
MODULE HMAB0456

UZ00003 MODULE HMAB0789 AZ00056 AZ00057
MODULE HMAB0012
MODULE HMAB0345

UZ00111 UZ00004 MODULE HMAB0678 AZ00058 AZ00059 AZ00060
MODULE HMAB0987
MODULE HMAB0124
MODULE HMAB0135

Figure 16 - The SYSMOD REGRESSION Report

 118 Chapter 4 - OS/VS SMP System Programmer's Guide

The DELETED FUNCTION Report

This report describes the SYSMODs that are deleted when SYSMODs containing the
DELETE operand in their ++VER modification control statements are processed (see
Figure 17). It is not produced for RESTORE processing or when no DELETE processing
has occurred.

The fields in the report are as follows:

• DELETING SYSMOD - The identifier of the SYSMOD containing the DELETE operand
in its ++VER modification control statement.

• DELETING TYPE and SYSMOD - The type of SYSMOD and SYSMOD-ID of each SYSMOD
that was deleted. The SYSMOD-IDs for each type of SYSMOD (FUNCTION, PTF,
APAR, USERMOD) are listed from left to right following the TYPE column value.
All PTFs, APARs, and USERMODs that are listed in the TYPE column belong to the
function SYSMOD listed immediately above them. When TYPE is specified as
"FUNCTION", the SYSMOD field value can be one of the following:

A SYSMOD-ID only - The SYSMOD was installed on your system or distribution
libraries and was specified in the DELETE operand list of the ++VER mod-
ification control statement for the deleting SYSMOD.

A SYSMOD-ID followed by "FMID(sysmod-id)" - The SYSMOD was implicitly
deleted. The FMID operand specifies the SYSMOD-ID of a function SYSMOD
that appears earlier in the report that is also deleted. This SYSMOD is
considered a dependent or feature level function.

A SYSMOD-ID followed by "NOT PREVIOUSLY INSTALLED" - The SYSMOD was speci-
fied in the DELETE operand list of the ++VER modification control state-
ment for the deleting SYSMOD, but was not installed on your system or
distribution libraries.

A SYSMOD-ID followed by "PREVIOUSLY DELETED" - The SYSMOD was specified in
the DELETE operand list of the ++VER modification control statement for
the deleting SYSMOD, but was previously deleted by another function
SYSMOD.

SYSMODs that appear as deleted may remain as entries on the CDS or ACDS
because they are specified in the SUP operand list of the deleting func-
tion SYSMOD or another SYSMOD processed concurrently.

Chapter 4: SMP Reports 119

-

-

-

-

DATE 80.092 TIME 09:25:47/HMASMP LVL 04.18 SMPRPT OUTPUT
DELETED FUNCTION REPORT FOR APPLY CHECK PROCESSING

DELETING
SYSMOD

FYZ3000

DELETED
TYPE

FUNCTION
PTF
USERMOD

SYSMODS

FYZ1000
UZ00111 UZ00123 UZ00135
MY11111

FUNCTION
PTF
USERMOD

FUNCTION
PTF
APAR

FUNCTION

GYZ1010 FMID (FYZ1000)
UZ00112 UZ00124 UZ00136
MY11112

GYZ1020 FMID (GYZ1010)
UZ00142 UZ00164
AZ12345

FYZ2000 NOT PREVIOUSLY INSTALLED

Figure 17 - The DELETED FUNCTION Report

 120 Chapter 4 - OS/VS SMP System Programmer's Guide

CHAPTER 5: SMP CONTROL STATEMENTS

To carry out its functions, SMP has five major control statements (RECEIVE,
REJECT, APPLY, RESTORE, and ACCEPT) as well as supporting control statements. Any
number of each type of control statement can be coded in an SMP job step.

This chapter describes the SMP control statements in the following alphabetical
order:

• ACCEPT - modifies distribution libraries

• APPLY - modifies target system libraries

• ENDUCL - identifies the end of update control language (UCL) statements

• DEBUG - enables SMP debug facilities

• JCLIN - creates or updates CDS entries

• LIST - lists the contents of SMP data sets

• LOG - writes messages to LOG data set

RECEIVE - places SYSMODs in the PTS data set for subsequent processing by
APPLY and ACCEPT

• REJECT - deletes SYSMODs from the PTS data set

• RESETRC - resets return codes from SMP functions

• RESTORE - removes modifications from target system libraries

• UCLIN - used in conjunction with the UCL and ENDUCL statements to update SMP
data sets.

• UCL - update control language statements used to describe update processing to
be done by the UCLIN function.

• UNLOAD - used to punch CDS or ACDS data in UCLIN format.

A detailed explanation of the processing that takes place for the ACCEPT, APPLY,
JCLIN, RECEIVE, REJECT, RESTORE and UCLIN control statements is found in Chapter 2
of this manual.

Chapter 5: SMP Control Statements 121

•

The control statement syntax is arranged in this chapter as follows:

CONTROL STATEMENT Page

ACCEPT 123

ADDIN 249

APPLY 129

ENDUCL 135

DEBUG 137

JCLIN 140

LIST 143

LOG 169

RECEIVE 171

REJECT 175

RESETRC 179

RESTORE 181

UCLIN 185

UNLOAD 245

 122 Chapter 5 - OS/VS SMP System Programmer's Guide

ACCEPT CONTROL STATEMENT

The SMP ACCEPT control statement invokes ACCEPT processing which installs SYSMODs
into the distribution libraries (DLIBs) or permanent user libraries. Any number

of ACCEPT statements can be included in an SMP job step. Once ACCEPT processing
completes, SMP cannot remove the SYSMOD.

ACCEPT SYNTAX

ACCEPT [(SELECT | GROUP | EXCLUDE} (sysmodid[,sysmodid]...)]
[APARS]
[ASSEM]
[BYPASS(option[,option]...)]
[CHECK]
[COMPRESS({ ALL | ddname[,ddname]...})]
[DIS(READ | NO | WRITE)]
[NOAPPLY]
[USERMODS]
[RC(function=code[,function=code]...)]
[RETRY(YES | NO)]

[REUSE]
•

ACCEPT OPERANDS

SELECT(sysmodid[,sysmodid]...)

specifies one or more SYSMODs to be placed into the DLIBs or permanent user
libraries. A SYSMOD which is specifically selected will be ACCEPTED even though
it may not be APPLIED. A SYSMOD which is already ACCEPTED will be reprocessed
if it is specifically selected. This operand can also be specified as 'S'.

GROUP(sysmodid[,sysmodid]...)

specifies one or more SYSMODs to be placed into the DLIBs or permanent user
libraries. A SYSMOD which is specifically selected will be ACCEPTED even though
it may not be APPLIED. A SYSMOD which is already ACCEPTED will be re-processed
if it is specifically selected. Requisite and prerequisite SYSMODs (which are
not already ACCEPTED) are automatically included in the processing (including
any requisites and prerequisites of the requisite and prerequisite SYSMODs).
This operand can also be specified as 'G'.

Note: When neither SELECT, GROUP nor NOAPPLY keywords are coded, only those
SYSMODs that have been APPLIED will be considered for ACCEPT processing.

EXCLUDE(sysmodid[,sysmodid]...)
specifies one or more SYSMODs not to be placed into the DLIBs or permanent user
libraries. This operand can also be specified as 'E'.

ACCEPT Control Statement 123

APARS
specifies that APAR SYSMODs are to be included where applicable. If this oper-
and is not specified, no APAR SYSMODs are selected for ACCEPT processing.

ASSEM
specifies that SYSMODs that contain both source text and object text for the
same modules are to have the source text assembled to replace the object text.

BYPASS(option[,option]...)
specifies conditions that might normally result in the termination of SYSMODs
are to be ignored. The options are as follows:

• ID - specifies that error conditions detected during ID checking of the
RMID and UMID fields in the element entries on the ACDS should not cause
termination of the SYSMODs.

• PRE - specifies that missing prerequisite SYSMODs should not cause termi-
nation of the SYSMODs for which they are needed.

• REQ - specifies that missing requisite SYSMODs should not cause termination
of the SYSMODs for which they are needed.

• IFREQ - specifies that missing conditional requisite SYSMODs should not
cause termination of the SYSMODs for which they are needed.

CHECK
specifies that ACCEPT processing of SYSMODs should not actually update
libraries and SMP data sets. Instead, only the following processing is per-
formed:

• Testing for error conditions, with the exception of those that might occur
during the updating of the libraries, before accepting the SYSMODs.

• Reporting on libraries that could be updated during ACCEPT processing.

• Reporting on SYSMODs that are or will be regressed during ACCEPT process-
ing.

Note: If CHECK and COMPRESS operands are both specified, the COMPRESS oper-
and is ignored; no compression is performed.

COMPRESS({ALL | ddname[,ddname]...})
specifies one or more partitioned data sets to be compressed. This operand can
be specified as 'C'. Only the partitioned data sets affected by ACCEPT proc-
essing are compressed by specifying 'ALL'.

• If the CHECK and COMPRESS operands are both specified, the COMPRESS operand
is ignored and no compression is performed.

• The SMPACDS and SMPCDS data sets cannot be compressed. If specified, they
are ignored.

 124 Chapter 5 - OS/VS SMP System Programmer's Guide

DIS(READ | NO | WRITE)
specifies if the SMPACDS directory is to be in storage during processing.

READ is the default; it causes the directory to be in storage in read only mode.
Updates to the directory entries are stowed as they occur.

NO specifies that the directory is not to be in storage during processing. All
reading of directory entries is done from the data set itself, and updates to
the directory entries are stowed as they occur.

WRITE specifies that the directory is to be in storage for both reading and
updating. Updates to the directory entries are performed on the in storage
copy as they occur; the entire directory is written to the data set when ACCEPT
processing completes.

Note: If DIS(NO) is specified with the CHECK operand, it is ignored and
DISCREAD), the default value, is used. The directory entries are not updated in
CHECK mode.

NOAPPLY
specifies that all SYSMODs found on the PTS should be considered even though
they have not been APPLIED.

Note: If the NOAPPLY operand is specified, then the CDS data set is not
required during ACCEPT processing. However, if the SMPCDS DD is present, it
must be a valid CDS.

USERMODS
specifies that USERMOD SYSMODs are to be included where applicable. If this
operand is not specified, USERMOD SYSMODs are not selected for ACCEPT process-
ing.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the ACCEPT statement, or a syn-
tax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
ACCEPT processing is bypassed and ACCEPT terminates with a return code of
12. The default codes are 8 or greater from UCLIN and JCLIN, and 12 or
greater from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, ACCEPT is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current ACCEPT processing.

ACCEPT Control Statement 125

RETRY(YES | N0)
where 'YES' indicates that SMP is to attempt a RETRY for each X37 failure dur-
ing the function. 'NO' indicates that no RETRY is to be attempted. 'YES' is the
default mode of operation if the RETRY keyword is not specified and a DDname
list is available.

REUSE
specifies that when an object module is found on SMPWRK3 from a previous suc-
cessful SMP generated assembly for that module, the new assembly will be sup-
pressed and the existing object from SMPWRK3 will be used instead of the one
which would have been produced by the new assembly.

ACCEPT DDNAMES

distlib (one for each different distribution library to be updated)
lklib (one for each different LKLIB operand value on ++MOD modification con-

trol statements, if any)
SMPACDS (required)
SMPACRQ (required)
SMPCDS (required unless the NOAPPLY operand is specified on the ACCEPT con-

trol statement)
SMPCNTL (required)
SMPLOG (required)
SMPMTS (required unless the NOAPPLY operand is specified on the ACCEPT con-

trol statement, or the SAVESTS or SAVEMTS indicators are set on in
the CDS)

SMPOUT (required)
SMPPTS (required) SMPRPT

 (optional)
SMPSCDS (required unless the NOAPPLY operand is specified on the ACCEPT con-

trol statement)
SMPSTS (required unless the NOAPPLY operand is specified on the ACCEPT con-

trol statement, or the SAVESTS or SAVEMTS indicators are set on in
the CDS)

SMPTLIB (required if the modifications were loaded to temporary libraries dur-
ing RECEIVE)

SMPWRK1 (required)
SMPWRK2 (required)
SMPWRK3 (required)
SMPWRK4 (required)
SYSLIB (required)
SYSPRINT (required)
SYSUT1 (required)
SYSUT2 (required)
SYSUT3 (required)
SYSUT4 (required for RETRY only)
txlib (one for each different TXLIB operand value on element modification

control statements, if any)

 126 Chapter 5 - OS/VS SMP System Programmer's Guide

SMPRPT

ACCEPT PROGRAMMING CONSIDERATIONS

• CAUTION: SMP cannot remove a SYSMOD from the target system after ACCEPT
processing.

• To prevent direct access space problems during ACCEPT processing, COMPRESS
should be specified. Note, however, that use of the COMPRESS option might
increase processing time significantly.

• A data set can be specified in the COMPRESS operand list even if is not
affected by any modification in the same ACCEPT pass.

COMPRESS does not process keyed or unmovable data sets.

The COMPRESS function should not be performed on a running operating system;
an alternate system should be used to apply the service or function.

• When COMPRESS is specified, all elements that are being replaced in DLIBs
being compressed are deleted before the compression. Macro elements are not
deleted during compression processing before they are replaced, since termi-
nation of the SYSMOD containing the macro would cause termination of the
SYSMOD's that require the macro for assemblies.

• SYSMODs have the ACCEPT and ERROR status indicators set in their entries on
the ACDS before any updating of elements in the distribution libraries. If
processing is unsuccessful, the ERROR indicator remains on with the ACCEPT

indicator. The ERROR indicator means that the SYSMOD is not completely
accepted, although all the updates might have been done. This condition occurs
when a SYSMOD has a requisite relationship with another SYSMOD that did not
process successfully. Review the SMPOUT and SYSPRINT output from the ACCEPT
processing that failed to determine the cause of error. Use the LIST control
statement with the ERROR operand to list SYSMOD entries in the ACDS to deter-

mine if the ERROR indicator is set.

• When modules are link edited into the distribution libraries, external refer-
ences might be unresolved; therefore, ignore message IEW0461.

• The ddnames required by ACCEPT for DLIBs can be found in the output of the
ACCEPT CHECK function. DD statements must be included in the job step that
uses these ddnames to point to the appropriate libraries. Typically, the
ddnames used for distribution libraries are usually the lowest level qualifi-
ers of the data set names (that is, AOS12 for SYS1.AOS12).

• When SYSMODs that had contained TXLIB or LKLIB operands are to be accepted, DD
statements must be supplied for each of the ddnames specified in these operand
lists.

• The GROUP and SELECT operands cause ACCEPT processing to try to process the
selected SYSMODs, even though they have been previously accepted successful-
ly. If GROUP is specified, only those requisite SYSMODs that have not been
successfully processed by ACCEPT are selected for processing.

ACCEPT Control Statement 127

• Use the DIS(NO) option only when the number of SYSMODs and their elements is
small or when the trade off between storage utilization and performance has to
be made in favor of storage.

• The DIS(NO) option should not be used if the previous SMP control statement
was ACCEPT or UCLIN specified without the DIS(NO) option and the same directo-
ry is to be used.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

 128 Chapter 5 - OS/VS SMP System Programmer's Guide

APPLY CONTROL STATEMENT

The SMP APPLY control statement invokes APPLY processing which installs SYSMODs
into the operating system libraries. Any number of APPLY statements can be
included in an SMP job step. APPLY processing does not change the distribution
libraries (DLIBS) or permanent user libraries; the SYSMODs can be removed by
restoring to the current level of these libraries using the RESTORE control state-
ment.

APPLY SYNTAX

APPLY [(SELECT | GROUP | EXCLUDE) (sysmodid[,sysmodid]...)]
[ASSEM]
[BYPASS(option[,option]...)]
[CHECK]
[COMPRESS({ALL | ddname[,ddname]...})]
[DIS(READ | NO | WRITE)]
[NOJCLIN[(sysmodid[,sysmodid]...)]]
[NUCID(n)]
[RC(function=code[,function=code]...)]
[RETRY(YES | NO)]
[REUSE]
•

APPLY OPERANDS

SELECT(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be placed into the target system libraries. If
a SYSMOD which is already APPLIED is specifically selected, it will be reproc-
essed. This operand can also be specified as 'S'.

GROUP(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be placed into the target system libraries.
Any requisite and prerequisite SYSMODs (which are not already APPLIED) are
automatically included in the processing (including any requisites and prereq-
uisites of the requisite and prerequisite SYSMODs). This operand can also be
specified as 'G'.

Note:, If neither SELECT nor GROUP is coded, all SYSMODs that have not been suc-
cessfully APPLIED are considered for processing.

EXCLUDE(sysmodid[,sysmodid]...)
specifies one or more SYSMODs not to be placed into the target system
libraries. This operand can also be specified as 'E'.

APPLY Control Statement 129

ASSEM
specifies that SYSMODs that contain both source text and object text for the
same modules are to have the source text assembled to replace the object text.

BYPASS(option[,option]...)
specifies that conditions that might normally result in the termination of
SYSMODs are to be ignored. The options are as follows:

• ID - specifies that error conditions detected during ID checking of the
RMID and UMID fields in the element entries on the CDS should not cause
termination of the SYSMODs.

• PRE - specifies that missing prerequisite SYSMODs should not cause termi-
nation of the SYSMODs for which they are needed.

• REQ - specifies that missing requisite SYSMODs should not cause termination
of the SYSMODs for which they are needed.

• IFREQ - specifies that missing conditional requisite SYSMODs should not
cause termination of the SYSMODs for which they are needed.

CHECK
specifies that APPLY processing of SYSMODs should not actually cause libraries
and SMP data sets to be updated. Instead, only the following processing is per-
formed:

• Testing for error conditions, with the exception of those that can occur
during the updating of the libraries, before applying the SYSMODs.

• Reporting on libraries that would be updated during APPLY processing.

• Reporting on SYSMODs that will be regressed during APPLY processing.

Note: If the CHECK and COMPRESS operands are both specified, the COMPRESS oper-
and is ignored and no compression is performed.

COMPRESS({ALL | ddname[,ddname]...})
specifies one or more ddnames of partitioned data sets to be compressed. This
operand can be specified as 'C'. Only the partitioned data sets affected by
APPLY processing are compressed by specifying 'ALL'.

Note: 1. If the CHECK and COMPRESS operands are both specified, the COMPRESS
operand is ignored and no compression is performed.

Note: 2. The SMPACDS and SMPCDS data sets cannot be compressed. If either or
both of these ddnames is specified, they are ignored.

DIS(READ | NO | WRITE)
specifies if the SMPCDS directory is to be in storage during processing.

READ is the default. It causes the directory to be in storage in read only mode.
Updates to the directory entries are stowed as they occur.

NO specifies that the directory is not to be in storage during processing. All
reading of directory entries is done from the data set itself and updates to
the directory entries are stowed as they occur.

 130 Chapter 5 - OS/VS SMP System Programmer's Guide

WRITE specifies that the directory is to be in storage for both reading and
updating. Updates to the directory entries are performed on the in-storage
copy as they occur, and the entire directory is written to the data set when
APPLY processing completes.

Note: If DIS(NO) is specified with the CHECK operand, it is ignored and
DIS(READ), the default value, is used. The directory entries are not updated in
CHECK mode.

NOJCLIN[(sysmodid[,sysmodid]...)]
specifies that inline JCLIN processing for all or specified SYSMODs is to be
omitted.

NUCID(n)
Specifies the digit at the end of the IEANUCOn module under which the current
nucleus is to be saved during APPLY processing. This operand overrides the
NUCID operand specified when the CDS SYSTEM entry was created. The overriding
is done only for the APPLY statement that contains this parameter.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the APPLY statement, or a syn-
tax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code.
APPLY processing is bypassed and APPLY terminates with a return code of 12.
The default codes are 8 or greater from UCLIN and JCLIN, and 12 or greater
from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, APPLY is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current APPLY processing.

RETRY(YES | NO)
where 'YES' indicates that SMP is to attempt a RETRY for each X37 failure dur-
ing the function. 'NO' indicates that no RETRY is to be attempted. 'YES' is the
default mode of operation if the RETRY keyword is net specified and a RETRYDDN
is available.

REUSE
specifies that when an object module is found on SMPWRK3 from a previous suc-
cessful SMP generated assembly for that module, the new assembly will be sup-
pressed and the existing object from SMPWRK3 will be used instead of the one
which would have been produced by the new assembly.

APPLY Control Statement 131

APPLY DDNAMES

distlib (for macro and source libraries if there are no corresponding macro or
source target libraries and the modification being applied is an
update)

lklib (one for each different LKLIB operand value on ++MOD modification con-
trol statements, if any)

SMPCDS (required)
SMPCNTL (required)
SMPCRQ (required)

SMPLOG (required)
SMPMTS (required)
SMPOUT (required)
SMPPTS (required)
SMPRPT (optional)
SMPSCDS (required)
SMPSTS (required)
SMPTLIB (required if the modifications were loaded to temporary libraries dur-

ing RECEIVE)
SMPWRK1 (required)
SMPWRK2 (required)
SMPWRK3 (required)
SMPWRK4 (required)
SMPWRK5 (required)
SYSLIB (required)
SYSPRINT (required)
SYSUT1 (required)
SYSUT2 (required)
SYSUT3 (required)
SYSUT4 (required for RETRY only)
txlib (one for each different TXLIB operand value on element modification

control statements, if any)
tgtlib (one for each target system library being updated)

APPLY PROGRAMMING CONSIDERATIONS

1. To prevent direct access space problems during APPLY processing, COMPRESS
should be specified. Note, however, that use of the COMPRESS option might
increase processing time significantly.

2. A data set can be specified in the COMPRESS operand list even if it is not
affected by any modification in the same APPLY pass.

3. COMPRESS will not process keyed or unmovable data sets.

4. The COMPRESS function should not be performed on a running operating system;
an alternate system should be used to apply the service or function.

5. If SYSMODs selected for APPLY processing replace modules or source modules
that were copied to target system data sets at SYSGEN, and the COMPRESS oper-
and is specified on the APPLY control statement for those data sets, the mod-
ules or source modules are deleted during APPLY compression processing before

 132 Chapter 5 - OS/VS SMP System Programmer's Guide

they are replaced by the elements in the SYSMODs selected for APPLY. Macro
elements are not deleted during compression processing before they are
replaced, since termination of the SYSMOD containing the macro would cause the
termination of other SYSMOD's that require the macro for assemblies.

6. SYSMODs have the APPLY and ERROR status indicators set in their entries on the
CDS before any updating of elements in the target system libraries. If proc-
essing is unsuccessful, the ERROR indicator remains on with the APPLY indica-
tor. The ERROR indicator means that the SYSMOD is not completely applied,
although all the updates may have been done. This condition occurs when a
SYSMOD has a requisite relationship with another SYSMOD that did not process
successfully. Review the SMPOUT and SYSPRINT output from the APPLY processing
that failed to determine the cause of error. Use the LIST control statement
with the ERROR keyword to list SYSMOD entries in the CDS to determine if the
ERROR indicator is set.

7. The ddnames required by APPLY for target libraries can be found in the output
from the APPLY CHECK function. DD statements must be included in the job step
that uses these ddnames to point to the appropriate libraries. Typically, the
ddnames used for target libraries are usually the lowest level qualifiers of
the data set names (that is, TCAMLIB for SYS1.TCAMLIB).

8. When SYSMODs that contain TXLIB or LKLIB operands are to be applied, DD state-
ments must be supplied for each of the ddnames specified as values of these
operands.

9. Nucleus backup capability is lost if the same NUCID is specified in two or
more APPLY statements that affect the nucleus.

10. The saved nucleus is not used to replace the current nucleus restored during
RESTORE processing. The saved nucleus is only used to provide you with an
alternate nucleus for IPL in case an applied SYSMOD damaged the current nucle-
us. To provide room for link edits required when applying service, enough
space should be allocated for the nucleus data set (SYS1.NUCLEUS) to hold at
least three copies of the nucleus.

11. The GROUP and SELECT operands cause APPLY processing to try to process the
selected SYSMOD(s) even though they have been previously applied successful-
ly. If GROUP is specified, only those requisite SYSMODs that have not been
successfully processed by APPLY are selected for processing.

12. The NOJCLIN operand can be used to circumvent processing of inline JCLIN when
reapplying SYSMODs if JCLIN data would change the content of CDS entries that
should not be changed. You should check the inline JCLIN carefully for a
SYSMOD that is being reapplied. This checking is to ensure that processing
of data will not change updates to CDS entries made after the SYSMOD was ori-
ginally applied.

13. The DIS(NO) option should be used only when the number of SYSMODs and their
elements is small or if the trade off between storage utilization and perform-
ance has to be made in favor of storage.

14. Specification of DIS(NO) when processing SYSMODs that have inline JCLIN might
cause the processing time to increase significantly.

APPLY Control Statement 133

15. The DIS(NO) option should not be used when the previous SMP control statement
was APPLY, RESTORE, JCLIN, or UCLIN specified without the DIS(NO) option and
the same directory is to be used.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

 134 Chapter 5 - OS/VS SMP System Programmer's Guide

ENDUCL CONTROL STATEMENT

The SMP ENDUCL control statement identifies the end of the update control language
(UCL) statements and signifies the and of UCLIN processing. ENDUCL must imme-
diately follow the last UCL statement.

ENDUCL SYNTAX

ENDUCL •

ENDUCL OPERANDS

The ENDUCL control statement has no operands.

ENDUCL DDNAMES

See "UCLIN DDnames" under "The UCLIN Control Statement" later in this chapter.

ENDUCL PROGRAMMING CONSIDERATIONS

The ENDUCL control statement must terminate the UCL statements.

ENDUCL RETURN CODES

See "UCLIN Return Codes" in Chapter 1 of the OS/VS SMP Messages And Codes,
(GC38-1047-0) manual.

ENDUCL Control Statement 135

 136 Chapter 5 - OS/VS SMP System Programmer's Guide

DEBUG CONTROL STATEMENT

The SMP DEBUG control statement enables SMP debug facilities to assist in the
debugging of SMP problems.

DEBUG SYNTAX

DEBUG MSGMODID(ON | OFF) •

DEBUG OPERANDS

MSGMODID(ON)
enables the message debug facility.

MSGMODID(OFF)
disables the message debug facility.

DEBUG DDNAMES

None

DEBUG PROGRAMMING CONSIDERATIONS

When the MSGMODID debug facility is enabled, SMP messages are prefixed by the
character string

@yyy+X'zzzzzz'

where

yyy is the last three characters of the SMP module name which issued the mes-
sage

zzzzzz is the offset (in hexadecimal) into the module where the message was
issued.

DEBUG Control Statement 137

DEBUG RETURN CODES

None

 138 Chapter 5 - OS/VS SMP System Programmer's Guide

DEBUG Control Statement 139

JCLIN CONTROL STATEMENT

The SMP JCLIN Control statement invokes JCLIN processing for the JCLIN data sup-
plied in the data set described by the SMPJCLIN DD statement. JCLIN processing
initializes entries in the CDS for subsequent APPLY processing. Any number of
JCLIN statements can be included in an SMP job step.

JCLIN SYNTAX

JCLIN [ASM({PGM=asmpgm | asmproc})]
[COPY({PGM=copypgm | copyproc})]
[DIS(NO | READ | WRITE)
[LKED({PGM=lkedpgm | lkedproc})]
[UPDATE({PGM=updpgm | updproc})]
[RC(function=code[,function=code]...}]

JCLIN OPERANDS

ASM({PGM=asmpgm | asmproc}}
specifies an assembler program, asmpgm, or procedure, asmproc, in addition to
those recognized by SMP. SMP recognizes programs ASMBLR, IFOX00, IEUASM and
procedure ASMS.

COPY({PGM=copypgm | copyproc})
specifies a copy program, copypgm. or procedure, copyproc, in addition to those
recognized by SMP. SMP recognizes only program, IEBCOPY.

DIS(NO | READ | WRITE)
specifies if the SMPCDS directory is to be in storage during processing.

NO specifies that the directory is not to be in storage during processing. All
reading of directory entries is done from the data set itself and updates to
the directory entries are stowed as they occur.

READ specifies that the directory is to be in storage for read only mode.
Updates to the directory are stowed as they occur.

WRITE specifies that the directory is to be in storage for both reading and
updating. Updates to the directory entries are performed on the in-storage
copy as they occur; the entire directory is written to the data set when JCLIN
processing completes. This is the default mode.

LKED({PGM=lkedpgm | lkedproc})
specifies a linkage editor program, lkedpgm, or procedure, lkedproc, in addi-
tion to those recognized by SMP. SMP recognizes programs IEWL and HEWL and
procedure LINKS.

 140 Chapter 5 - OS/VS SMP System Programmer's Guide

•

UPDATE({PGM=updpgm | updproc})
specifies an update program, updpgm, or procedure, updproc, in addition to
those recognized by SMP. SMP recognizes only program IEBUPDTE.

Note: Although JCLIN does not actually derive any CDS initialization data from
update job steps, update job steps are recognized so that the update-step SYSIN
data (which may itself contain JCL) is not processed.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the JCLIN statement, or a syn-
tax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
JCLIN processing is bypassed and JCLIN terminates with a return code of 12.
The default codes are 8 or greater from UCLIN and JCLIN, and 12 or greater
from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, JCLIN is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current JCLIN processing.

JCLIN DDNAMES

SMPCDS (required)
SMPCNTL (required)
SMPJCLIN (required)
SMPLOG (required)
SMPOUT (required)

JCLIN PROGRAMMING CONSIDERATIONS

• The input for JCLIN must be free of JCL errors or other syntax errors and must
be a job stream similar to that used for system generation. The job step cod-
ing conventions are described in "JCLIN Processing" section of Chapter 2.

• Any step using a PGM or Procname other than those recognized is ignored and
not considered as an error. The return code it not affected.

JCLIN Control Statement 141

• After a complete system generation, the ACDS must be copied, using IEBCOPY, to
the new CDS before JCLIN processing. This ensures that the initial CDS entries
match those of the ACDS and contain entries that are not created by JCLIN
processing.

• After a partial system generation (that is, a device generation), the output
of Stage I must be input to JCLIN processing to ensure that:

Module, macro, and load module entries in the CDS are updated.

New assembler entries are stored with the new assembler input in the CDS.

Linkage editor control statements for load module entries are replaced
except for linkage editor CHANGE and REPLACE control statements that were
carried over to the updated version.

• Specification of DIS(NO) or DIS(READ) when processing JCLIN might cause the
processing time to increase significantly.

• The DIS(NO) option should not be used when the previous SMP control statement
was APPLY, ACCEPT, RESTORE, JCLIN, or UCLIN specified without the DIS(NO)
option and the same directory is to be used.

• JCLIN from a superseded SYSMOD is not processed when both the superseded
SYSMOD and the superseding SYSMOD are being processed in the same APPLY step.

• The linkage editor control statement IDENTIFY should not be used as input for
JCLIN.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

 142 Chapter 5 - OS/VS SMP System Programmer's Guide

-

-

-

LIST CONTROL STATEMENT

The LIST control statement invokes SMP LIST processes which provide listings of:

• All data or selected data from the ACDS, ACRQ, CDS, CRQ, PTS and SCDS data
sets.

• The contents of the LOG data set.

These listings can be used to determine the status of your system and the success
of the processing performed. Any number of LIST statements can be included in an
SMP job step.

LIST SYNTAX (GENERAL)

The syntax shown below includes the operands that cause each type of data set to be
listed. Because the options differ for each type, the syntax and operands for
each specific type of data set are shown in the sections that follow.

LIST dataset [entry[,entry]...] [option[,option]...] •

LIST Operands (General)

data set
specifies the SMP data set to be listed. The allowable datasets are ACDS, CDS,
ACRQ, CRQ, LOG, PTS and SCDS.

There is no default data set.

entry
specifies the entry or entry types to be listed. The valid entry types are
described below for each SMP data set.

option
specifies options which control the data listed. The syntax and explanations of
the options are described below for each SMP data set.

If no entries or options are specified, a complete listing of all entries in the
data set is produced with the exception of XREF information. ACDS and CDS XREF
information must be explicitly requested.

LIST Control Statement 143

The LIST syntax descriptions in this chapter are arranged by data set as fol-

lows:

DATA SET Page

ACDS 146

ACRQ 157

CDS 146

CRQ 157

LOG 160

PTS 161

SCDS 167

LIST Output (General)

The listing output goes to the file defined by the SMPLIST DD statement (or to
SMPOUT if SMPLIST is not present).

The fields that appear in these listings (with the exception of the ACDS/CDS XREF
fields) are described in Chapter 8, "Control Data Set Entries".

Indicators in SYSTEM entries are shown as "YES" if the indicator is set and "NO" if
it is not set.

Indicators in the SYSMOD entries that are defined as status indicators appear in
the listing with their associated abbreviation.

LIST DDnames (General)

SMPACDS (required if the ACDS operand is specified)
SMPACRQ (required if the ACRQ operand is specified)
SMPCDS (required if the CDS operand is specified)
SMPCNTL (required)
SMPCRQ (required if the CRQ operand is specified)
SMPLIST (required if the LIST output is to be separate from SMPOUT)
SMPLOG (required)
SMPOUT (required)
SMPPTS (required if the PTS operand is specified)
SMPSCDS (required if the SCDS operand is specified)

 144 Chapter 5 - OS/VS SMP System Programmer's Guide

LIST Programming Considerations (General)

• When you specify a set of entries to be listed for a data set and specify a
list for any entry type, then all other entry types specified must also have a
list.

For example, a syntax error occurs if you code:

- LIST CDS MAC(MAC001,MAC002) MOD.

because a list of modules is not specified with the MOD operand.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

LIST Control Statement 145

LIST ACDS/CDS SYNTAX

LIST { ACDS | CDS }

[ASSEM[(asmname[,asmname]...)]]

[DLIB[(dlibname[,dlibname]...)]]

[FORFMID(sysmodid)]

[LMOD[(modname[,modname]...)]]

[MAC[(macname[,macname]...)]]

[MOD[(modname[,modname]...)]]

[SRC[(srcname[,srcname]...)]]

[SYSMOD[(sysmodid[,sysmodid]...)]
[APAR] [DELETE] [ERROR] [FUNCTION]
[NOACCEPT|NOAPPLY] [NOSUP] [PTF] [SUP]
[RESTORE] [USERMOD]]

[SYS]

[XREF]

•

LIST ACDS/CDS Operands

ASSEM[(asmname[,asmname]...)]
specifies that information for all ASSEM entries or the specified ASSEM entries
is to be listed.

ASSEM entries exist only on the CDS.

DLIB[(dlibname[,dlibname]...)]
specifies that information for all DLIB entries or the specified DLIB entries
are to be listed.

DLIB entries exist only on the CDS.

FORFMID(sysmodid)
specifies only those entries who's FMID subentry field match the value speci-
fied, will be listed.

LMOD[(modname[,modname]...)]
specifies that information for all LMOD entries or the specified LMOD entries
are to be listed.

 146 Chapter 5 - OS/VS SMP System Programmer's Guide

LMOD entries exist only on the CDS.

MAC[(macname[,macname]...)]
specifies that information for all MAC entries or the specified MAC entries are
to be listed.

MOD[(modname[,modname]...)]
specifies that information for all MOD entries or the specified MOD entries are
to be listed.

SRC[(srcname[,srcname]...)]
specifies that information for all SRC entries or the specified SRC entries are
to be listed.

SYSMOD[(sysmodid[,sysmodid]...)]
[APAR] [DELETE] [ERROR] [FUNCTION]
[NOACCEPT | NOAPPLY] [NOSUP] [PTF] [SUP]
[RESTORE] [USERMOD]

specifies that information for all SYSMOD entries or the specified SYSMOD
entries is to be listed.

You can restrict the selection of SYSMOD entries to be printed by coding
SYSMOD, followed by one or more of the following operands. For example, if you
specify 'LIST CDS SYSMOD ERROR.', SMP lists all of the SYSMOD entries in the
CDS that have the ERROR indicator set on.

If you specify more than one operand, SMP combines the operands into one log-
ical request. For example, if you specify 'LIST CDS SYSMOD APAR PTF ERROR
SUP.', SMP lists all of the APAR and PTF entries that have the ERROR indicator
set on and that are superseded. Specifying both SUP and NOSUP at the same time

causes a syntax error.

APAR
specifies that APAR SYSMODs are to be listed.

DELETE
specifies that function SYSMOD entries that have been deleted from the CDS
or ACDS by other function SYSMODs are to be listed. This operand can be
abbreviated as 'DEL'.

ERROR
specifies that SYSMODs that have the ERROR indicator set are to be listed.
This operand can be abbreviated as 'ERR'.

FUNCTION
specifies that all function SYSMODs are to be listed. This operand can be
abbreviated as 'FUNC'.

NOACCEPT
specifies that SYSMODs that have been applied but not accepted are to be
listed. This option compares SYSMODs found on the CDS with the SYSMODs on
the ACDS; both the CDS and the ACDS must be available. This operand can be
abbreviated as 'NOACC'.

NOACCEPT can be specified for CDS listings only.

LIST Control Statement 147

NOAPPLY

specifies that SYSMODs that have been accepted but not applied are to be
listed. This option compares SYSMODs found on the ACDS with the SYSMODs on
the CDS; both the CDS and the ACDS must be available. This operand can be
abbreviated as 'NOACC'.

NOAPPLY can be specified for ACDS listings only.

NOSUP
specifies that only SYSMODs that have not been superseded are to be listed.

Note: This operand is mutually exclusive with the SUP operand. Specification
of both causes a syntax error.

PTF

specifies that all PTF SYSMODs are to be listed.

RESTORE

specifies that SYSMODs that have the RESTORE indicator set are to be listed.
The ERROR indicator must also be on for this condition to be valid. This
operand can be abbreviated as 'RES'.

RESTORE can be specified for CDS listings only.

SUP
specifies that only superseded SYSMODs are to be listed.

Note; This operand is mutually exclusive with the NOSUP operand. Specifica-
tion of both is causes a syntax error.

USERMOD

specifies that all USERMOD SYSMODs are to be listed. This operand can be
abbreviated as 'USER'.

XREF
generates cross reference information as part of the listing for each MAC, MOD,
SRC, and SYSMOD entry (see "List ACDS/CDS XREF Fields" below).

You should be aware that SMP uses extra time and more storage to generate the
additional data requested by the XREF keyword.

SYS

specifies that system entry is to be listed.

LIST ACDS/CDS Output

The figures on the following pages illustrate the output produced for various CDS
listings. The fields that appear (with the exception of the XREF fields) are
described in Chapter 8, "Control Data Set Entries".

Note: The date field in the CDS SYSMOD entries reflects the date the SYSMOD was
applied. If the CDS was created by copying the ACDS to the CDS, the apply data will

 148 Chapter 5 - OS/VS SMP System Programmer's Guide

appear as zero and the SYSMOD status will be RGN.

LIST ACDS/CDS XREF Fields

The following fields appear for ACDS and CDS XREF listings:

• "MACROS USED" - appears for CDS ASSEM entries and indicates the CDS MAC
entries with a GENASM sub-entry for the ASSEMbly.

• "MODULES" - appears for CDS LMOD entries and i ndicates the CDS MOD entries
with a LMOD sub-entry for the MODule.

• "SYSMOD HISTORY" - appears for ACDS and CDS MAC, MOD and SRC entries. The
"SYSMOD HISTORY" lists all other SYSMODs in the control data set which have
modified the respective element and indicates the SYSMOD type and status.

• "NPREBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which specify the particular SYSMOD as an NPRE
(negative prerequisite).

• "PREBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which specify the particular SYSMOD as an PRE
(prerequisite).

• "REQBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which specify the particular SYSMOD as an REQ
(requisite).

• "VERSIONBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all
other SYSMODs in the control data set which specify the particular SYSMOD in
the VERSION keyword of their ++VER.

• "DELBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which specify the particular SYSMOD in the
DELETE keyword of their ++VER.

• "IFREQBY (XREF)" - appears foes ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which specify the particular SYSMOD as an
IFREQ (conditional requisite).

• "SUPBY (XREF)" - appears for ACDS/CDS SYSMOD entries and indicates all other
SYSMODs in the control data set which SUP (supersede) the particular SYSMOD.

LIST Control Statement 149

Figure 18 - LIST CDS ASSEM XREF

Figure 19 - LIST CDS DLIB

 150 Chapter 5 - OS/VS SMP System Programmer's Guide

Figure 20 - LIST CDS LMOD XREF

Figure 21 - LIST CDS MAC XREF

LIST Control Statement 151

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPCDS MODULE ENTRIES
NAME

MOD001 LAST UPDATE
LIBRARIES
ASSEMBLE
FMID
RMID
LMODS
SYSMOD HISTORY

MOD002 LAST UPDATE
LIBRARIES
FMID
RMID
LMODS
SYSMOD HISTORY

= UZ00010 TYPE=ADD
= DISTLIB=DLIB01

= HXY1010
= XY10101 RMIDASM
= LMOD1
= SYSMOD TYPE DATE
GXY1000 FUNCTION 77.301

AZ00124 APAR 77.318
XY10101 USERMOD 77.318

= UCLIN TYPE=ADD
= DISTLIB=DLIB01
= GXY1000
= UZ00010
= LMOD1

= SYSMOD TYPE DATE
GXY1000 FUNCTION 77.301
UZ00010 PTF 77.312

MCS ---STATUS---
MOD APP ACC
SRCUPD APP
SRCUPD APP

MCS ---STATUS---
MOD APP ACC
MOD APP

Figure 22 - LIST CDS MOD XREF

 152 Chapter 5 - OS/VS SMP System Programmer's Guide

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

MOD002 LAST UPDATE
LIBRARIES
FMID
RMID
UMID
MACRO USED
SYSMOD HISTORY

= HXY1010 TYPE=REP
= DISTLIB=DLIBSRC2
= HXY1010
= HXY1010
= UZ00015 XY10101
= MACRO1
= SYSMOD TYPE DATE
HXY1010 FUNCTION 77.345
UZ00014 PTF 77.357
UZ00015 PTF 77.357
XY10101 USERMOD 77.357

= GXY1000 TYPE=ADD
= DISTLIB=DLIBSRC1
= GXY1000
= GXY1000
= UZ00010
= MACRO1 MACRO2
= SYSMOD TYPE DATE
GXY1000 FUNCTION 77.301
UZ00010 PTF 77.312

SMPCDS
NAME

MOD001

SOURCE ENTRIES

LAST UPDATE
LIBRARIES
FMID
RMID
UMID
MACROS USED
SYSMOD HISTORY MCS ---STATUS---

SRC APP
SRCUPD APP
SRCUPD APP
SRCUPD APP

MCS ---STATUS---
SRC APP ACC
SRCUPD APP

Figure 23 - LIST CDS SRC XREF

LIST Control Statement 153

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPCDS SYSMOD ENTRIES
NAME

AZ00123 TYPE = SUPERCEDED
SUPBY = HXY1010 UZ00010

AZ00124 TYPE = APAR
STATUS = REC APP
FMID = GXY1000
DATE/TIME REC = 77.318 14:28:54

APP = 77.318 14:30:54
SREL VER(001) = Z038
PRE VER(001) = UZ00010
SRCUPD = MOD001
SUPBY(IN SYSMOD)= HXY1010 UZ00012

GXY1000 TYPE
STATUS
FMID
DATE/TIME REC

APP
ACC

JCLIN
SREL VER(001)
MAC
MOD
SRC

= FUNCTION
= REC APP ACC
= GXY1000
= 77.301 12:18:35
= 77.301 12:20:43
= 77.314 12:22:45
= YES
= Z038
= MACRO1 MACRO2
= MOD001 MOD002
= MOD001 MOD002

UZ00010 TYPE
STATUS

= PTF
= REC APP

FMID = GXY1000
DATE/TIME REC = 77.312 09:43:12

APP = 77.312 09:46:15
SREL VER(001) = Z038
SUP VER(001) = AZ00123
MOD = MOD001 MOD002
SRCUPD = MOD001 MOD002
PREBY (XREF) = MOD001 MOD002

XY10001 TYPE = USERMOD
STATUS = REC APP
FMID = GXY1000
DATE/TIME REC = 77.345 10:13:51

APP = 77.345 10:15:37
SREL VER(001) = Z038
SRCUPD = MOD001
IFREQBY (XREF) = XY10101

Figure 24 - LIST CDS SYSMOD XREF

 154 Chapter 5 - OS/VS SMP System Programmer's Guide

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPCDS SYSTEM ENTRY
NAME

SYSTEM OPTIONS = CDSID=CDS1 SREL=2038 NUCID=8 PEMAX=9999 SAVEMTS=YES

Figure 25 - LIST CDS SYS

LIST ACDS/CDS Exception Reports

There are two possible exception reports from ACDS/CDS list processing; the "LIST
MASS SUMMARY REPORT" and the "LIST SELECT SUMMARY REPORT". The reports are
produced at the end of your LIST output for the following exceptions:

• For listings of the entire CDS or ACDS:

Those entry types expected to be in the data set but not found are reported.
For example, if there are no MOD entries are found in the CDS, this situation
will be reported as "MOD ENTRIES NOT FOUND" in the "LIST MASS SUMMARY REPORT
FOR SMPCDS".

• For listings qualified by a particular entry type:

If no entries of the particular type are found, the situation will be reported
in the "LIST MASS SUMMARY REPORT". For example, if there are no MOD entri es
are found in the CDS when "LIST CDS MOD" is specified, "MOD ENTRIES NOT FOUND"
will be reported in the "LIST MASS SUMMARY REPORT FOR SMPCDS".

• For listings of a specific entry type an• entry name:

If the specified entry type and name are not found, the situation will be
reported in the "LIST SELECT SUMMARY REPORT". For example, if there is not MOD
entry for "MOD0001" and "LIST CDS MOD(MOD0001)" is specified, "MOD MOD0001" is
reported in the "LIST SELECT SUMMARY REPORT" as not found.

• For SYSMOD listings qualified by SYSMOD status:

SYSMOD entry listings may be qualified by one of the following status qualifi-
ers: APAR, DELETE, ERROR, FUNCTION, NOACCEPT, NOAPPLY, NOSUP, PTF, SUP,
RESTORE and USERMOD.

If no SYSMOD entries are found for the specified status, this situation will
be reported as "SYSMOD ENTRIES NOT FOUND" in the "LIST MASS SUMMARY REPORT".

LIST Control Statement 155

• For specific SYSMOD listings qualified by SYSMOD status or type:

If you attempt to list specific CDS SYSMOD entries qualified by APAR, DELETE,
ERROR, FUNCTION, NOACCEPT, NOSUP, PTF, SUP, RESTORE or USERMOD, those entries
not found as qualified, will be reported as "not found".

For example, if SYSMOD AR00001 is an APAR-type SYSMOD, "LIST CDS
SYSMOD(AR00001) PTF" will fail.

 156 Chapter 5 - OS/VS SMP System Programmer's Guide

LIST ACRQ/CRQ SYNTAX

LIST { ACRQ | CRQ }

[SYSMOD[(sysmodid[,sysmodid]...)]]

[FMIDC(fmid[,fmid]...)]]

•

LIST ACRQ/CRQ Operands

SYSMOD[(sysmodid[,sysmodid]...)]
specifies that all, or selected, SYSMOD entries are to be listed. SYSMOD
entries contain the conditional requisite data supplied by the SYSMOD,
sysmodid.

FMID[(fmid[,fmid]...)]
specifies that all, or selected, FMID entries are to be listed. FMID entries
contain the names of the SYSMODs which have provided ++IF statements which ref-
erence the FMID, fmid.

List ACRQ/CRQ Output

Complete ACRQ/CRQ listing ... neither SYSMOD nor FMID specified ,

This listing shows the names of all functions ("NAME" field) in the ACRQ/CRQ for
which conditional requisites are present. For each of these functions, the list
indicates the SYSMODs which have supplied conditional requisites ("CAUSER" field)
and the requisites these "causers" have established ("IFREQ" field).

SYSMOD listing:

This listing shows conditional requisite data supplied by the SYSMOD. The "NAME"
field is the SYSMOD's sysmod-id, the "Environment" field is the functional envi-
ronment specified on the ++IF statement supplied and the "IFREQ" field is the req-
uisite established for the associated functional environment.

FMID listing: ,

This listing shown the names of the SYSMODs ("CAUSER" field) which have provided
conditional requisites for each FMID ("NAME").

LIST Control Statement 157

The figures which follow illustrate the CRQ entries which would be created by the
following PTFs:

++PTF(UZ00014) .
++VER(Z038) FMID(HXY0000) .
++IF FMID(HXY1010) THEN REQ(UZ00024) .
++IF FMID(HXY1011) THEN REQ(UZ00054) .

++PTF(UZ00015) .
++VER(Z038) FMID(HXY0000) .
++IF FMID(HXY1010) THEN REQ(UZ00025) .

++PTF(UZ00045) .
++VER(Z038) FMID(HXY0000) .
++IF FMID(HXY1011) THEN REQ(UZ00055) .

 158 Chapter 5 - OS/VS SMP System Programmer's Guide

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT-

SMPCRQ FMID/SYSMOD ENTRIES

NAME CAUSER

HXY1010 UZ00014 IFREQ = UZ00024
UZ00015 IFREQ = UZ00025

HXY1011 UZ00014 IFREQ = UZ00054
UZ00045 IFREQ = UZ00055

Figure 26 - LIST CRQ

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPCRQ SYSMOD ENTRIES

NAME ENV

UZ00014 HXY1010 IFREQ = UZ00024
HXY1011 IFREQ = UZ00054

U200015 HXY1010 IFREQ = UZ00025

UZ00045 HXY1011 IFREQ = UZ00055

Figure 27 - LIST CRQ SYSMOD

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPCRQ FMID ENTRIES

NAME

HXY1010 SYSMOD CAUSERS = UZ00014 UZ00015

HXY1011 SYSMOD CAUSERS = UZ00014 U200045

Figure 28 - LIST CRQ FMID

LIST Control Statement 159

LIST LOG SYNTAX

LIST LOG [(from-date, to-date)]

•

LIST LOG Operands

LOG
specifies that the contents of the LOG data set are to be listed.

(from-date, to-date)
specifies a range of dates (inclusive) within the data set to be listed.

The dates are specified as mm dd yy , where mm is the month (01-12), dd is the
day (01-31), yy is the year (00-99) and blanks delimit the month, day and year
as illustrated.

If no date range is specified, the contents of the entire LOG data set are
listed.

Example

LIST LOG(08 08'80,08 11 80) .

will list the data in the log for August 8 through August 11, 1980.

LIST LOG(08 09 80,08 09 80) .

will list the data in the log for August 9, 1980 only.

 160 Chapter 5 - OS/VS SMP System Programmer's Guide

LIST PTS SYNTAX

LIST PTS

[MCS[(sysmodid[.sysmodid]...)]

[SYSMOD[(sysmodid[,sysmodid]...)]
[APAR] [FUNCTION] [NOACCEPT] [NOAPPLY] [PTF] [USERMOD]]

[SYS]

•

LIST PTS Operands

MCS[(sysmodid[,sysmodid]...)]
specifies that the modification control statements for all MCS entries or the
specified MCS entries are to be listed, including all comments.

Figure 30 on page 163 is an example of output from LIST PTS MCS.

SYSMOD[(sysmodid[,sysmodid]...)]
specifies that information for all or the specified SYSMOD entries are to be
listed.

Figure 31 on page 164 is an example of output from LIST PTS SYSMOD.

You can restrict the selection of SYSMOD entries to be listed by specifying the
SYSMOD keyword followed by one or more of the following operands. If you speci-
fy 'LIST PTS SYSMOD NOAPPLY.', SMP lists all of the SYSMODs that have been
received but not applied.

However, if you specify more than one operand, SMP combines the operands into
one logical request. For example, if you specify 'LIST PTS SYSMOD APAR PTF
NOAPPLY NOACCEPT.', SMP lists all APARs and PTFs that have been received but
not applied or accepted.

APAR
specifies that APAR SYSMODs are to be listed.

FUNCTION | FUNC
specifies that function SYSMODs are to be listed.

NOACCEPT | NOACC

specifies that SYSMODs that appear in the PTS but do not appear in the ACDS
are to be listed. These are SYSMODs which have not been successfully
accepted. The ACDS dataset is required for this function.

LIST Control Statement 161

NOAPPLY | NOAPP
specifies that SYSMODs that appear in the PTS but do not appear in the CDS
are to be listed. These are SYSMODs which have not been successfully
applied. The CDS dataset is required for this function.

PTF
specifies that PTF SYSMODs are to be listed.

USERMOD | USER
specifies that USERMOD SYSMODs are to be listed.

Note: If both the MCS and SYSMOD entries for a selected set of SYSMODs are to be
listed, the same SYSMOD-IDs must be specified in both the MCS and SYSMOD operands.

SYS
specifies that system information, such as the system releases and function
modification IDs that pertain to the target system, space parameters for allo-
cation of storage by SMP, data set prefix and SMP processing options, such as
the PURGE and REJECT indicators, and assembler, linkage editor, compress, copy,
update, IOSUP, and IMASPZAP programs, parameters and defaults, is to be listed.

If a subentry of the SYSTEM entry was never created using UCLIN, the subentry
appears in the LIST output as the characters 'NULL'.

Figure 29 on page 163 is an example of output from LIST PTS SYS.

LIST PTS Output

The following figures illustrate the output produced for three variations of PTS
listing commands.

 162 Chapter 5 - OS/VS SMP System Programmer's Guide

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPPTS SYSTEM ENTRY
NAME

SYSTEM OPTIONS = PAGELEN=60 PEMAX=9999 PURGE=YES REJECT=NO
DSSPACE = (1,20,10)
DSPREFIX = ZZ10
ASM NAME = ASMBLRQ

SYSPRINT = ASMPRINT
RC = 4

LKED NAME = IEWLG
SYSPRINT = LKDPRING
PARM = 'DECK,XREF,LET'

UPDAT SYSPRINT = UPDPRINT
SREL = Z038
FMID = GXY1000 HXY1010

Figure 29 - LIST PTS SYS

DATE 80.092

SMPPTS M.C.S.
NAME

TIME 01

ENTRIES

: 23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

AZ00124 M.C.S. ENTRIES = ++ APAR(AZ00124) .
++ VER(Z038) FMID(GXY1000) PRE(UZ00010).
++ SRCUPD(MOD001) DISTLIB(DLIBSRC1).

GXY1000 M.C.S. ENTRIES = ++ FUNCTION(GXY1000) .
++ VER(Z038) .
++ JCLIN RELFILE(1) .
++ SRC(MOD001) RELFILE(3) DISTLIB(AOS00).
++ MOD(MOD001) RELFILE(2) DISTLIB(AOSXX).
++ MOD(MOD002) RELFILE(2) DISTLIB(AOSXX).

UZ00010 M.C.S. ENTRIES = ++ PTF(UZ00010) .
++ VER(X070) FMID(GXY2000)
++ VER(Z038) FMID(GXY1000) .
++ SRCUPD(MOD001) DISTLIB(AOS00).
++ MOD(MOD001) DISTLIB(AOSXX).

Figure 30 - LIST PTS MCS

LIST Control Statement 163

DATE 80.092 TIME 01:23:46 HMASMP LVL 04.18 SMPLIST OUTPUT

SMPPTS SYSMOD ENTRIES
NAME

AZ00124 TYPE = APAR
STATUS = APP
DATE/TIME REC = 77.318 14:28:54
APPLY CDSID = CDS1
FMID VER(001) = GXY1000
SREL VER(001) = Z038
PRE VER(001) = UZ00010
SRCUPD = MOD001

GXY1000 TYPE = FUNCTION
STATUS = APP ACC
DATE/TIME REC = 77.301 12:18:35
APPLY CDSID = CDS1
ACCEPT ACDSID = ACDS1
JCLIN = YES
DSPREFIX = ZZ10
SREL VER(001) = Z038
MAC = MACRO1 MACRO2
MOD = MOD001 MOD002
SRC = MOD001 MOD002

UZ00010 TYPE = PTF
STATUS = APP
DATE/TIME REC = 77.312 09:43:12
APPLY CDSID = CDS1
SREL VER(001) = X070
FMID VER(001) = GXY2000
SREL VER(002) = Z038
FMID VER(002) = GXY1000
MOD = MOD001
SRCUPD = MOD001

Figure 31 - LIST PTS SYSMOD

LIST MASS SUMMARY REPORT FOR SMPPTS

SYSMOD ENTRIES NOT FOUND
MCS ENTRIES NOT FOUND

Figure 32 - LIST MASS SUMMARY REPORT FOR SMPPTS

 164 Chapter 5 - OS/VS SMP System Programmer's Guide

LIST PTS Exception Reports

There are two possible exception reports from LIST PTS processing; the "LIST MASS
SUMMARY REPORT FOR SMPPTS" and the "LIST SELECT SUMMARY REPORT FOR SMPPTS". The
reports are produced at the end of your LIST output if any of the following
exceptions are found:

• For listinas of the entire PTS:

The "LIST MASS SUMMARY REPORT FOR SMPPTS" will show "MCS ENTRIES NOT FOUND" or
"SYSMOD ENTRIES NOT FOUND" if there are either no MCS or SYSMOD entries
respectively. Figure 32 on page 164 shows an example of the "LIST MASS SUMMARY
REPORT FOR SMPPTS".

• For listings qualified by MCS or SYSMOD entry type:

The "LIST MASS SUMMARY REPORT FOR SMPPTS" will show "MCS ENTRIES NOT FOUND" or
"SYSMOD ENTRIES NOT FOUND" if there are either no MCS or no SYSMOD entries respectively

.

• For listings of a specific MCS or SYSMOD entry:

The "LIST SELECT SUMMARY REPORT FOR SMPPTS" will indicate those specific
entries which are not found.

• For SYSMOD listings qualified only by SYSMOD type:

The "LIST MASS SUMMARY REPORT FOR SMPPTS" will indicate those types which are
not found.

• For specific SYSMOD listings qualified by SYSMOD status or type:

If you attempt to list specific PTS SYSMOD entries qualified by APAR, FUNC-
TION, NOACCEPT, NOAPPLY, PTF or USERMOD, those entries not found as qualified,
will be reported as "not found".

For example, if SYSMOD AR00001 has been applied, "LIST PTS SYSMOD(AR00001)
NOAPPLY" will fail.

LIST Control Statement 165

LIST SCDS SYNTAX

LIST SCDS
[SYSMOD[(sysmodid[,sysmodid]...)]]
•

specifies that all entries or selected entries on the SCDS for SYSMODs that
caused BACKUP entries to be created are to be listed. The information listed
for each SYSMOD entry consists of the back up versions of the ASSEM, DLIB,
LMOD, MAC, MOD, or SRC entries that were changed by JCLIN, the MAC, MOD/LMOD,
and SRC entries that were deleted by the DELETE keyword on the associated mod-
ification control statement, and the MOD entries that were modified by the LMOD
operand on the ++MOD modification control statement.

LIST SCDS Operands

SYSMOD[(sysmodid[,sysmodid]...)]
specifies one or more SYSMODs whose BACKUP entries are to be listed. If this
operand is not specified, all BACKUP entries on the SCDS are listed. If' a
SYSMOD is specified for which there is no BACKUP entry on the SCDS, it is listed
in the LIST SELECT SUMMARY, REPORT FOR SMPSCDS.

LIST SCDS Output

For each SYSMOD with backup entries, the following information is included when
appropriate:

DATE/TIME APP:

the date and time stamps indicating when APPLY processing was performed for the
SYSMOD.

Entries ADDed by the SYSMOD:

ASSEM (ADD) - a list of any ASSEM entries created by inline JCLIN.

LMOD (ADD) - a list of any LMOD entries created by inline JCLIN.

MAC (ADD) - a list of any MAC entries created by inline JCLIN.

MOD (ADD) - a list of any MOD entries created by inline JCLIN.

SRC (ADD) - a list of any SRC entries created by inline JCLIN.

DLIB (ADD) - a list of any DLIB entries created by inline JCLIN.

Entries updated by the SYSMOD:

 166 Chapter 5 - OS/VS SMP System Programmer's Guide

ASSEM (UPDATE) - a list of any ASSEM entries updated by inline JCLIN.

LMOD (UPDATE) - a list of any LMOD entries updated by inline JCLIN.

MAC (UPDATE) - a list of any MAC entries updated by inline JCLIN.

MOD (UPDATE) - a list of any MOD entries updated by inline JCLIN or the LMOD
operand on ++MOD modification control statements.

SRC (UPDATE) - a list of any SRC entries updated by inline JCLIN.

DLIB (UPDATE) - a list of any DLIB entries updated by inline JCLIN.

Entries deleted by the SYSMOD:

LMOD (DEL) - a list of any LMOD entries deleted by the DELETE operand on a
++MOD modification control statement.

MAC (DEL) - a list of any MAC entries deleted by the DELETE operand on a ++MAC
modification control statement.

MOD (DEL) - a list of any MOD entries deleted by the DELETE operand on a ++MOD
modification control statement.

SRC (DEL) - a list of any SRC entries deleted by the DELETE operand on a ++SRC
modification control statement.

Backed-Up Entry:

The BACKUP entry for each updated or deleted entry is listed and formatted as it
would appear in a CDS listing.

DATE 80.092 TIME 01:23:46

HMASMP LVL 04.18 SMPLIST OUTPUT

SMPSCDS BACKUP ENTRIES FOR HXY1010
NAME

HXY1010 DATE/TIME APP

= 77.345 10:15:27
LMOD (ADD)

= MOD003
DLIB (ADD)

= DLIB02 DLIBMAC2
ASSEM (UPDATE) = ASSEM2

ASSEM2 TYPE = ASSEM
LAST UPDATE = GXY1000 TYPE=ADD
ASSEMBLER INPUT = ... assembler input on CDS prior

... to input supplied by HXY1010

Figure 33 - LIST SCDS SYSMOD(HXY1010)

LIST Control Statement 167

 168 Chapter 5 - OS/VS SMP System Programmer's Guide

LOG CONTROL STATEMENT

The SMP LOG control statement is used to write user specified messages to the LOG
data set. Messages written to the LOG data set cannot exceed 250 characters. Any
number of LOG statements can be included in an SMP job step.

LOG SYNTAX

LOG (message)
[RC (function=code[,function=code]...)]

•

LOG OPERANDS

(message)
specifies the text of the message. The entire message text must be enclosed in
parentheses, and the length of the message cannot exceed 250 characters. If
your message is longer than 250 characters, issue multiple LOG control state-
ments.

Any character can be specified in the message text. If parentheses are to be
specified as part of the message text, make sure that they are not nested; that
is, make sure that each left parenthesis specified as part of the message text
is followed by a right parenthesis before another left parenthesis is speci-
fied.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the LOG statement, or a syntax
error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
LOG processing is bypassed and LOG terminates with a return code of 12. The
default codes are 8 or greater from UCLIN and JCLIN, and 12 or greater from
all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, LOG is executed.

LOG Control Statement 169

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current LOG processing.

LOG DDNAMES

SMPCNTL (required)
SMPLOG (required)
SMPOUT (required)

LOG PROGRAMING CONSIDERATIONS

The LOG data set must be a sequential dataset. The dataset should be defined in the
DD statement as a dataset that can be modified; for example:

//SMPLOG DD DSN=SYS1.SMPLOG,DISP=MOD

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

 170 Chapter 5 - OS/VS SMP System Programmer's Guide

RECEIVE CONTROL STATEMENT

The RECEIVE control statement initiates SMP processing of a system modification
(SYSMOD). Any number of RECEIVE statements can be coded in an SMP job step.

RECEIVE SYNTAX

RECEIVE [{SELECT | EXCLUDE} [sysmodid[,sysmodid]...)]
[BYPASS(FMID)]
[RC(function=code[,function=code]...)]
•

RECEIVE OPERANDS

SELECT(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be processed from the SMPPTFIN data set. A
SYSMOD which has already been successfully received cannot be re-received by
specifically selecting it; a SYSMOD which is successfully received must be
removed from the PTS using the REJECT function. This operand can also be speci -

fied as 'S'.

EXCLUDE(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be excluded from the processing of the
SMPPTFIN data set. This operand can also be specified as 'E'.

Note: If neither of the above operands is specified, all SYSMODs in the SMPPTFIN
data set (which have not already been received) and are eligible, will be proc-
essed.

BYPASS(FMID)
specifies that the function modification identifier (FMID) check is to be
bypassed during the processing of the SYSMODs.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the RECEIVE statement, or a
syntax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
RECEIVE processing is bypassed and RECEIVE terminates with a return code of
12. The default codes are 8 or greater from UCLIN and JCLIN, and 12 or

RECEIVE Control Statement 171

greater from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, RECEIVE is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current RECEIVE processing.

RECEIVE DDNAMES

SMPCNTL (required)
SMPLOG (required)
SMPOUT (required)
SMPPTFIN (required)
SMPPTS (required)
SMPRPT (optional)
SMPTLIB (required if the SMPPTFIN tape has relative files)
SYSPRINT (required if the SMPPTFIN tape has relative files)
SYSUT1 (required)
SYSUT2 (required)
SYSUT3 (required)

RECEIVE PROGRAMMING CONSIDERATIONS

• RECEIVE processing causes space to be used on the SMPPTS; therefore, the
SMPPTS data set should have a secondary allocation and be blocked for maximum
efficiency. There is no restriction as to the maximum block size.

• Use the messages issued by the RECEIVE function on the SMPOUT data set for the
processing status of each SYSMOD. Use the LIST PTS function to report the com-
plete set of SYSMODs received in the SMPPTS data set.

• The messages "RECEIVE PROCESSING TERMINATED" and "RECEIVE PROCESSING
COMPLETED" do not imply that every SYSMOD in the SMPPTFIN data set has been
processed by RECEIVE.

• When RECEIVE processing detects a syntax error on a modification control
statement, processing of the SYSMOD terminates; however, syntax checking con-
tinues and all subsequent modification control statements are listed.

• SYSMODs are received regardless of the status of any requisite, negative pre-
requisite or prerequisite SYSMODs.

• A SYSTEM entry is required in the SMPPTS data set to determine if any SYSMODs
are eligible to be received. The SYSTEM entry must have at least one system
release (SREL). The SREL and FMID subentries of the SYSTEM entry are used for
comparison with the SREL and FMID operands of the ++VER modification control
statement to determine if a SYSMOD should be received. If no FMID operand is
present on a ++VER modification control statement in the SYSMOD, the SYSMOD is
received if the SREL check is positive and the header modification control

 172 Chapter 5 - OS/VS SMP System Programmer's Guide

statement is ++FUNCTION. The BYPASS operand can be specified to bypass the
FMID check. Every SYSMOD must have at least one ++VER modification control
statement.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

RECEIVE Control Statement 173

 174 Chapter 5 - OS/VS SMP System Programmer's Guide

REJECT CONTROL STATEMENT .

The SMP REJECT control statement invokes REJECT processing to remove SYSMODs from
the SMPPTS and delete temporary libraries loaded during RECEIVE. Any number of
REJECT statements can be included in an SMP job step.

REJECT SYNTAX

REJECT [{SELECT | EXCLUDE} (sysmodid[,sysmodid]...)]
[COMPRESS({ALL | ddname[,ddname]...})]
[PURGE]
[RC(function=code[,function=code]...)]
•

REJECT OPERANDS

SELECT(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be removed from the PTS data set. This operand
can also be specified as 'S'.

Note: If SELECT is not specified, then only those SYSMODs that have never been
processed by APPLY or ACCEPT are selected for processing.

EXCLUDE(sysmodid[,sysmodid]...)
specifies one or more SYSMODs that are not to be removed from the PTS data set.
This operand can also be specified as ' E' .

COMPRESS({ALL | ddname[,ddname]...})
specifies one or more partitioned data sets to be compressed. This operand can
be specified as 'C'. When 'ALL' is specified, only data sets affected by
REJECT processing are compressed.

Note: The CDS and ACDS data sets cannot be compressed. If specified, they are
ignored.

PURGE

When PURGE is coded on the REJECT statement. all SYSMOD's found on the ACDS
(NOT 'IN ERROR') are removed from the PTS.

Note: If SELECT or EXCLUDE are to be used with the PURGE option, the rules as
stated for PURGE apply to the SELECTED or EXCLUDED SYSMODS.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or

REJECT Control Statement 175

equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the REJECT statement, or a syn-
tax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
REJECT processing is bypassed and REJECT terminates with a return code of
12. The default codes are 8 or greater from UCLIN and JCLIN, and 12 or
greater from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, REJECT is executed.

• Previous processing by any SMP function not specified on the RC operand has
no affect on the current REJECT processing.

REJECT DDNAMES

SMPACDS (required for REJECT PURGE)
SMPCNTL (required)
SMPLOG (required)
SMPOUT (required)
SMPPTS (required)
SMPTLIB (required if modifications were loaded to temporary libraries during

RECEIVE)
SYSPRINT (required if COMPRESS is specified)
SYSUT1 (required)
SYSUT2 (required)
SYSUT3 (required)

REJECT PROGRAMMING CONSIDERATIONS

• A data set can be specified as a COMPRESS operand value even if it is not
affected by the REJECT process.

• The compress function does not process keyed or unmovable data sets.

• The compress operand should not select or make eligible for compress any tar-
get system libraries of a running operating system.

• Processing time can increase significantly when the COMPRESS operand is speci-
fied.

• If a function SYSMOD that has been neither applied nor accepted (as determined
from PTS SYSMOD APPID and ACCID subentries) is rejected, the FMID subentry for
its SYSMOD-ID is deleted from the PTS SYSTEM entry. Note: when PURGE is speci-
fied, the FMID subentries for rejected SYSMODs are not affected.

 176 Chapter 5 - OS/VS SMP System Programmer's Guide

• The RETRY facility (RETRYDDN in CDS) can be preferred to the COMPRESS for per-
formance. In this case only datasets that need to be, are compressed.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

REJECT Control Statement 177

 178 Chapter 5 - OS/VS SMP System Programmer's Guide

RESETRC CONTROL STATEMENT

The RESETRC control statement resets the return coda values previously returned by
other functions invoked by SMP control statements. Any number of RESETRC state-
ments can be included in an SMP job step.

RESETRC SYNTAX

RESETRC •

RESETRC OPERANDS

• There are no operands for this statement.

RESETRC DDNAMES

SMPCNTL (required)
SMPLOG (required)
SMPOUT (required)

RESETRC PROGRAMMING CONSIDERATIONS

• Use of this control statement should be carefully analyzed. The statement
should not be placed in the SMPCNTL input stream in front of statements that
have a dependency on the processing results of the preceding statements.

• When you are executing SMP in an interactive environment, you can use this
statement after the completion of other statements when the function invoked
by the previous statements did not complete successfully, but other functions
need to be i nvoked. An alternative method is to specify the RC operand on any
subsequent control statements, which can be cumbersome.

• The RESETRC function does not affect the maximum return code value returned by
SMP when it terminates execution. This value is always set to the highest
value returned by any of the functions invoked during execution.

• The RESETRC control statement does not have any return codes.

RESETRC Control Statement 179

 180 Chapter 5 - OS/VS SMP System Programmer's Guide

RESTORE CONTROL STATEMENT

The SMP RESTORE control statement invokes RESTORE processing which removes SYSMODs
processed by APPLY from the operating system libraries. Any number of RESTORE con-
trol statements can be coded in an SMP job step. SELECT or GROUP must be specified.

RESTORE SYNTAX

RESTORE {SELECT | GROUP}(sysmodid[,sysmodid]...)
[BYPASS(ID)]
[CHECK]
[COMPRESS({ALL | ddname[,ddname]...})]
[DIS(READ | NO | WRITE)]
[RC(function=code[,function=code]...)]
[RETRY(YES | NO)]
•

RESTORE OPERANDS

SELECT(sysmodid[,sysmodid]...)

specifies one or more SYSMODs to be restored on the target system libraries.
This operand can also be specified as 'S'.

GROUP(sysmodid[,sysmodid]...)
specifies one or more SYSMODs to be restored on the target system libraries. If
you specify GROUP, any other SYSMOD that references a specified SYSMODs as a
requisite or prerequisite is also included in RESTORE processing. This operand
can also be specified as 'G'.

Other SYSMODs than those specified on the SELECT or GROUP operands might be
required to synchronize the system with the level of the DLIBs. If you specify
SELECT mode, you must explicitly specify all related SYSMODs.

BYPASS(ID)

specifies that error conditions detected during ID checking of the FMID, RMID
and UMID in the element entries on the CDS and/or the ACDS finding error condi-
tions should not cause termination of any SYSMODs.

CHECK

specifies the RESTORE processing of SYSMODs should not actually update
libraries and SMP data sets. Instead, the following processing is performed:

• testing for error conditions that can occur before restoring the SYSMODs.

• reporting on libraries that would be updated during RESTORE processing.

RESTORE Control Statement 181

Note: If the CHECK and COMPRESS operands are both specified, the COMPRESS
operand is ignored; no compression is performed.

COMPRESS({ALL | ddname[,ddname]...})
specifies one or more ddnames of partitioned data sets to be compressed. This
operand can also be specified as 'C'. Only the partitioned data sets affected
by RESTORE processing are compressed by specifying 'ALL'.

Note: If the CHECK and COMPRESS operands are both specified, the COMPRESS oper-
and is ignored; no compression is performed. The SMPACDS and SMPCDS data sets
cannot be compressed. If specified, they are ignored.

DIS(READ | NO | WRITE)
specifies that the SMPCDS directory is to be in storage during processing.

READ is the default; it causes the directory to be in storage in read only mode.
Updates to the directory entries are stowed as they occur.

NO specifies that the directory is not to be in storage during processing. All
reading of directory entries is done from the data set itself and updates to
the directory entries are stowed as they occur.

WRITE specifies that the directory is to be in storage for both reading and
updating. Updates to the directory entries are performed on the in- storage
copy as they occur; the entire directory is written to the data set when
RESTORE processing completes.

Note: If DIS(NO) is specified with the CHECK operand, it is ignored and
DISCREAD), the default value, is used.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the RESTORE statement, or a
syntax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
RESTORE processing is bypassed and RESTORE terminates with a return code of
12. The default codes are 8 or greater from UCLIN and JCLIN. and 12 or
greater from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, RESTORE is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current RESTORE processing.

RETRY(YES | NO)

where 'YES' indicates that SMP4 is to attempt a RETRY for each utility failure
during the function. 'NO' indicates that no RETRY is to be attempted. 'YES' is

 182 Chapter 5 - OS/VS SMP System Programmer's Guide

the default mode of operation if the RETRY keyword is not specified and a
DDname list is available.

RESTORE DDNAMES

distlib (one for each library containing copies of the elements being
restored)

SMPACDS (required)
SMPCDS (required)
SMPCNTL (required)
SMPCRQ (required)
SMPLOG (required)
SMPMTS (required)
SMPOUT (required)
SMPPTS (required)
SMPRPT (optional)
SMPSCDS (required)
SMPSTS (required)
SMPTLIB (if modifications were loaded to temporary libraries during RECEIVE

and the REJECT indicator in the PTS SYSTEM entry is set on)
SMPWRK1 (required)
SMPWRK2 (required)
SMPWRK3 (required)
SMPWRK4 (required)
SYSLIB (required)
SYSPRINT (required)
SYSUT1 (required)
SYSUT2 (required)
SYSUT3 (required)
SYSUT4 (required)
tgtlib (one for each target system library to be restored)

RESTORE PROGRAMMING CONSIDERATIONS

• If the REJECT indicator is set off in the PTS SYSTEM entry, then a successful-
ly restored SYSMOD is not deleted from the PTS.

• SYSMOD entries on the CDS have the ERROR and RESTORE status indicators set on
before the target system libraries are updated. If processing fails during the
updating, these indicators will remain on and the updating for these entries
is not completed. After you determine the cause of the termination, you can
process these SYSMODs again by specifying them as operand values of the SELECT
operand on the RESTORE control statement.

• The ddnames for target system and distribution libraries can be determined by
specifying the CHECK operand on the RESTORE control statement. The ddnames
are listed in the ELEMENT SUMMARY report on the SMPRPT data set, if supplied
on SMPOUT.

RESTORE Control Statement 183

• If a compress of affected data sets is not performed before or during RESTORE
processing, out of space conditions can occur in the target system libraries.
As a rule, compressing libraries on a running operating system should be
avoided and an alternate system should be used in its place. The COMPRESS
option cannot process keyed or unmovable data sets. The data sets eligible
for compressing are any target system libraries affected by the SMP job step
(that is, the data set defined on any DD statement that specifies a parti-
tioned data set that is not an SMP data set). Processing time might increase
significantly if the COMPRESS operand is specified on the RESTORE control
statement.

During COMPRESS processing for RESTORE, target system elements that were
copied during SYSGEN, reside in data sets specified in the COMPRESS operand,
and are affected by SYSMODs specified for RESTORE are deleted before the com-
pression.

• RESTORE processing does not replace the nucleus with the saved copy, but
re-links it using the last version of modules accepted on the DLIB's. The
saved nucleus is available only to provide an alternate nucleus for IPL should
an applied SYSMOD damage IEANUC01.

• When a selected SYSMOD contains an element that was added to the system by
that SYSMOD, RESTORE processing deletes that element from all target system
libraries in which it is found and deletes the corresponding element entry
(that is, the MAC, MOD, or SRC entry) from the CDS.

• When a selected SYSMOD contains an element that was deleted from the system by
that SYSMOD, RESTORE processing reintroduces that element to the target system
with the corresponding element entry copied from the SCDS data set.

• Use the DIS(NO) option only when the number of SYSMODs and their elements is
small or if when the tradeoff between storage utilization and performance has
to be made in favor of storage.

• The DIS(NO) option should not be used if the previous SMP control statement
was APPLY, ACCEPT, RESTORE, JCLIN, or UCLIN specified without the DIS(NO)
option and the same directory is to be used.

• If you do not use SMP to recover after a failure, and choose the option of
restoring your system and the distribution libraries via system and DLIB
restore tapes, you must ensure that the CDS, MTS, ACDS, PTS, and STS are also
restored to their previous levels.

RETURN CODES

See Chapter 1 of the OS/VS SMP Messages And Codes, (GC38-1047) manual for informa-
tion about Return codes and Error recovery procedures.

 184 Chapter 5 - OS/VS SMP System Programmer's Guide

UCLIN CONTROL STATEMENT

The UCLIN control statement invokes UCLIN processing to update entries on the SMP
data sets.

The UCLIN facility is provided as a means to correct data present in entries on SMP
data sets and to define parameters used in processing. For most entries, the data
that is present is due to the processing of modification control statements in
SYSMODs by the RECEIVE, APPLY, RESTORE, ACCEPT, and JCLIN functions. If these
SYSMODs are processed correctly, there should seldom be a need to invoke UCL proc-
essing.

The UCLIN statement itself specifies the data set whose entries are to be updated;
the UCLIN statement is followed by a set of UCL statements which specify the
updates to be made to the entries. UCLIN processing is terminated by the ENDUCL
statement.

The operation of a UCLIN request is as follows:

• All requested changes are made to an in-storage copy of the entry as keywords
are encountered.

• When end of statement '.' (period) is found, SMP will check the remaining data
in the entry to insure that it is valid. Any changes that result in an incor-
rect entry will either be fixed by SMP at this time or an error message will be
generated. For example:

- Deleting the APP indicator without deleting the APPDATE will result in SMP
turning on the APP indicator again.

Deleting the ERR indicator in a SYSMOD marked RESTORE will result in the
ERR indicator being turned on as RESTORE without ERR is an invalid status.

Adding ACCDATE will also add the ACC indicator.

Adding a module without a DISTLIB will result in an error message.

• If any "error" message is generated no requested changes are made to the actu-
al entry on the specified dataset.

UCLIN Control Statement 185

-

-

-

UCLIN SYNTAX

UCLIN dataset
[DIS(READ | NO | WRITE)]
[RC(function=code[,function=code]...)]
•

UCLIN OPERANDS

dataset - Specifies the SMP dataset to be updated.
The allowable values are: ACDS, ACRQ, CDS. CRQ, MTS, PTS, SCDS and STS.
Note, If FMID= is coded on the EXEC statement, the default data set will be the
CDS.

DIS(READ | NO | WRITE)
specifies a directory in storage option. The directory used is dependent on
the data set being updated and only has meaning if ACDS, ACRQ, CDS, or CRQ is
specified.

READ is the default and it causes the directory to be in storage in read only
mode. Updates to the directory entries are stowed as they occur.

NO specifies that the directory is not to be in storage during processing. All
reading of directory entries is done from the data set itself and updates to
the directory entries are stowed as they occur.

WRITE specifies that the directory is to be in storage for both reading and
updating. Updates to the directory entries are performed on the copy in stor-
age as they occur and the entire directory is written to the data sat when UCLIN
processing completes.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT. APPLY. JCLIN, LIST, LOG, RECEIVE. REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the UCLIN statement, or a syn-
tax error results.

Specifying the RC operand causes the following 'return code processing to occur:

• If any specified function returns a code greater than its specified code,
UCLIN processing is bypassed and UCLIN terminates with a return code of 12.
The default codes are 8 or greater from UCLIN and JCLIN, and 12 or greater
from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, UCLIN is executed.

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current UCLIN processing.

 186 Chapter 5 - OS/VS SMP System Programmer's Guide

UCLIN DDNAMES

SMPACDS (required if ACDS specified as operand)
SMPACRQ (required if ACRQ specified as operand)
SMPCDS (required if CDS specified as operand)
SMPCNTL (required)
SMPCRQ (required if CRQ specified as operand)
SMPMTS (required if MIS specified as operand)
SMPLOG (required)
SMPOUT (required)
SMPPTS (required if PTS specified as operand)
SMPSCDS (required if SCDS specified as operand)
SMPSTS (required if STS specified as operand)

UCLIN PROGRAMMING CONSIDERATIONS

• Each UCLIN control statement must be followed by at least one UCL statement.

• The ENDUCL control statement must terminate the UCL statements.

• Use the DIS(NO) option only when the number of updates to entries is small or
when the trade off between storage utilization and performance has to be made
in favor of storage.

• For performance reasons, the DIS(NO) option should not be specified if the
previous SMP control statement was APPLY, ACCEPT, RESTORE, JCLIN, or UCLIN
specified without the DIS(NO) option and the same directory is to be used.

• If you change the MOD, MAC, or SRC entry and the entry that results has an FMID
and no RMID, the FMID value becomes the RMID value.

UCLIN Control Statement 187

 188 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL STATEMENTS

UCL statements are used to add, delete, and modify entries in the ACDS, ACRQ, CDS,
CRQ, MIS, PTS, SCDS, and STS data sets. A UCL statement must be preceded, in the
SMPCNTL data set, by another UCL statement or by a UCLIN control statement that
defines the SMP data set against which the succeeding UCL statements are to oper-
ate. A UCL statement must be followed by another UCL statement or an ENDUCL con-
trol statement.

UCL SYNTAX

{ ADD | DEL | REP } entry_type(entry_name) [sub_entry[,sub_entry]...] •

UCL OPERANDS

ADD

specifies that new data is to be added to an existing entry or that a new entry
is to be created.

DEL
specifies that an entry is to be deleted or, within an entry, subentries are to
be deleted and indicators placed in reset state.

REP

specifies that subentries are to be replaced and indicators placed in set state
in an existing entry. If the entry does not exist, it will be created using the
criteria for ADD operations.

entry_type

specifies the entry type of the entry to be updated. The allowable entry types
are: ASSEM, DLIB, FMID, LMOD, MAC, MOD, PTF, SRC, SYS and SYSMOD. The following
pages describe the allowable updates for each of these entry types.

entry_name
specifies the name of the entry to be updated.

subentry

specifies the sub-entries and indicators that are to be updated. The syntax and
explanation of these options are described on the following pages.

UCL Statements 189

The UCL syntax descriptions in this chapter are arranged by data set and entry
type as follows:

DATA SET Entry Type Page

CDS

ASSEM 195
DLIB 197
LMOD 199

CDS & ACDS MAC 203
MOD 205
SRC 209
SYSTEM 211
SYSMOD 213

CRQ & ACRQ FMID 223
SYSMOD 225

PTS SYSMOD
SYSTEM

SCDS SYSMOD 239

STS SRC 241

MTS MAC 243

Appendix E contains a set of charts which cross reference the UCL operations to
their appropriate SMP data sets and entries therein.

 190 Chapter 5 - OS/VS SMP System Programmer's Guide

 227
 229

UCL ADD CONSIDERATIONS:

The ADD function is valid for entries on the ACDS, ACRQ, CDS, CRQ and PTS.

For ADD operations, either the entry specified must not exist or, if it does,
the subentries specified within the entry must not be present and the indica-
tors specified within the entry must be in reset state. If any of these condi-
tions is false, a message is issued indicating the invalid condition and the
update to the entry, subentry, or indicator is not done.

If the above verification succeeds, the following updating is done:

If the entry is being created, all subentries are set to the specified
values and indicators placed in set state. For example:

UCLIN CDS .
ADD MOD(XYZ) DISTLIB(AOS99).
ENDUCL .

creates a MOD entry on the CDS for module XYZ.

Subentries are added to the existing entry using the specified values. For
example:

UCLIN CDS .
ADD MOD(XYZ) UMID(UZ12345,UZ13579).
ENDUCL .

adds two UMID subentries to MOD entry XYZ.

Indicators are placed in set state in the existing entry. For example:

UCLIN CDS .
ADD SYSMOD(UZ12345) RESTORE.
ENDUCL .

sets the RESTORE indicator in the CDS SYSMOD entry, UZ12345.

UCL DEL CONSIDERATIONS:

The DEL function is valid for entries on the ACDS, ACRQ, CDS, CRQ, MIS, PTS,
SCDS and STS.

For DEL operations, the specified entry must exist. When subentries are speci-
fied, they must exist and contain the same value as is specified in the operand
or be unconditionally deleted, and indicators must be in set state. If any of
these conditions are false, the invalid condition is corrected by SMP or a mes-
sage is issued indicating the invalid condition and the update is not done.

UCL Statements 191

If the above verification succeeds, the following updating is done:

If the only operand specified is the entry type with name, the entry is
deleted from the data set. For example:

UCLIN ACDS .
DEL SYSMOD(UZ12345).
ENDUCL .

deletes the ACDS SYSMOD entry for UZ12345.

For subentries, either the individual subentry is deleted, the specified
list of subentries is deleted, or all subentries of the same type are
deleted. An unconditional delete of a single subentry or all subentries of
the same type is done if the operand name is followed by a pair of parenthe-
ses with no value. For example:

UCLIN CDS .
DEL MAC(ABC) UMID().
ENDUCL .

deletes all UMID subentries in the CDS MAC entry for macro ABC. The paren-
theses may be contiguous, such as (), or be separated by any number of
blanks, such as ().

Indicators are placed in reset state within the entry. For example:

UCLIN ACDS .
DEL SYSMOD(UZ12345) ERROR.
ENDUCL .

resets the ERROR indicator in the ACDS SYSMOD entry for UZ12345.

UCL REP CONSIDERATIONS:

The REP function is valid for entries on the ACDS, ACRQ, CDS, CRQ and PTS.

For REP operations, if the entry did not exist or a subentry within an existing
entry did not exist, a message indicating that the entry or subentry did not
exist is issued and that an ADD operation is assumed. This message is issued
only once per entry or subentry. All processing from this point on follows the
rules for ADD.

If the subentry exists within an existing entry, all subentries of the same
type are replaced with the values specified in the operand. For example:

UCLIN ACDS .
REP SYSMOD(UZ12345) SUPING(AZ11111,AZ11122).
ENDUCL .

replaces all SUPING subentries in the ACDS SYSMOD entry for U212345.

 192 Chapter 5 - OS/VS SMP System Programmer's Guide

Indicators within an existing entry are placed in set state. For example:

UCLIN ACDS .
REP SYSMOD(UZ12345) ERROR.
ENDUCL .

sets the ERROR indicator in the ACDS SYSMOD entry for UZ12345.

COMMON ERRORS

1. During the checking phase of UCL SMP checks to ensure that the modified entry
contains sufficient and consistent data. If not, SMP issues the following mes-
sage:

HMA2574 SPECIFIED UPDATE RESULTS IN INSUFFICIENT DATA - xxx REQUIRED

where xxx is the operand that is required.

The xxx is not the operand that is required to be present on the UCL statement
(although it could be). It is rather the operand that is required to be pre-
sent in the entry after the modifications have been made.

For example, after the following UCL statement for an existing SMPCDS SYSMOD
entry

UCLIN CDS.
DEL SYSMOD(UR11111) MOD(HMASMDRV) APPDATE(79001) APPTIME(08:00:00) APP.
ENDUCL.

SMP will issue message HMA257 for the APPDATE and APPTIME operand because SMP
will not allow an SMPCDS SYSMOD entry to be modified such that there is not and
APPLY date and time. The message will not be issued for the APP indicator
because SMP resets that indicator on automatically during the checking phase.
SMP cannot do that for the date and time because there is no way of knowing the
correct data value for these option.

2. Insure that all changes you make to one entry are consistent with other exist-
ing entries.

3. The DATE operand on SYSMOD entries in the SMPCDS and SMPACDS is provided to
maintain compatibility with previous releases of SMP that did not support
unique dates for each of the SMP status (REC, APP, ACC, etc). This keyword can
only be used when the compatibility feature of SMP (EXEC FMID operand) is
used. If it is specified SMP will use the date for all the required status date
fields. For example if a SYSMOD entry is marked REC and APP then the date
specifed by the DATE operand will be used for both the RECDATE and APPDATE.

UCL Statements 193

 194 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS ASSEM ENTRIES

Syntax

{ ADD | DEL | REP } ASSEM (name)
[++ASMIN

assembler input CARD1
assembler input CARD2

•
•

++ENDASMIN]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
•

Operands

ASSEM(name)
specifies an ASSEM entry to be deleted from the CDS, where "name" is the one to
eight character ASSEM entry name.

++ASMIN
indicates that assembler input control cards follow. This operand must start in
column 1. If specified then ENDASMIN must also be specified. If DELETE is spec-
ified then no comparison is made between the assembler input entered and that
already in the CDS. No other options may be specified on the same line as ASMIN.

++ENDASMIN
Terminates assembler input. This control word must begin in column 1 and is
only used when ++ASMIN is used.

LASTUPD(JCLIN|UCLIN|sysmodid)
identifies the cause of the last change made to this entry.

LASTUPDTYPE(ADD|UPD)
identifies the last type of update made to this entry.

UCL - SMPCDS ASSEM Entries 195

 196 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS DLIB ENTRIES

Syntax

{ ADD | DEL | REP } DLIB (name)
[SYSLIB(ddname[,ddname])]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
•

Operands

DLIB(name)
specifies a DLIB entry to be created or deleted, or subentries within the DLIB
entry to be added, deleted, or replaced on the CDS, where "name" is the one to
eight character DLIB entry name, which is the ddname of the distribution
library.

SYSLIB(ddname[,ddname])
specifies one or two SYSLIB subentries, where "ddname" is a target system
library ddname that the distribution library members were copied to.

Note: When creating a DLIB entry, this operand must be specified. When delet-
ing a SYSLIB subentry, at least one SYSLIB subentry must remain.

LASTUPD(JCLIN|UCLIN|sysmodid)
Identifies the cause of the last change made to this entry.

LASTUPDTYPE(ADD|UPD)
Identifies the last type of update made to this entry.

UCL - SMPCDS DLIB Entries 197

 198 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS LMOD ENTRIES

Syntax

{ ADD | DEL | REP } LMOD(name)
[AC=1]
[ALIGN2]
[COPY]
[DC]
[NE]
[OVLY]
[REFR]
[RENT]
[REUS]
[SCTR]
[STD]
[SYSLIB(ddname[,ddname])]

[++LMODIN
link edit control statement
link edit control statement

++ENDLMODIN]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
•

Operands

LMOD(name)
specifies a LMOD entry to be deleted, or subentries and indicators within the
LMOD entry to be added, deleted, or replaced on the CDS, where "name" is the one
to eight character LMOD entry name.

AC=1
specifies the AC=1 indicator, which is the authorization code. When this indi-
cator is set, the AC=1 parameter is passed to the linkage editor program when
the load module is link edited.

ALIGN2
specifies the ALIGN2 indicator, which is alignment on a 2K boundary. This oper-
and can also be specified as "ALN2". When this indicator is set, the ALIGN2
parameter is passed to the linkage editor program when the load module is link
edited.

COPY

specifies the COPY indicator, which means the load module was copied at system
generation time.

DC
specifies the DC indicator, which is the downward-compatible load module attri-
bute. When this indicator is set, the DC parameter is passed to the linkage
editor program when the load module is link edited.

UCL - SMPCDS LMOD Entries 199

" "
" "

NE
specifies the NE indicator, which is the non-editable load module attribute.
When this indicator is set, the NE parameter is passed to the linkage editor
program when the load module is link edited.

OVLY
specifies the OVLY indicator, which is the overlay attribute. When this indica-
tor is set, the OVLY parameter is passed to the linkage editor program when the
load module is link edited.

REFR
specifies the REFR indicator, which is the refreshable attribute. When this
indicator is set, the REFR parameter is passed to the linkage editor program
when the load module is link edited.

RENT
specifies the RENT indicator, which is the reenterable attribute. When this
indicator is set, the RENT parameter is passed to the linkage editor program
when the load module is link edited.

REUS
specifies the REUS indicator, which is the reusable attribute. When this indi-
cator is set, the REUS parameter is passed to the linkage editor program when
the load module is link edited.

SCTR
specifies the SCTR indicator, which is the scatter load attribute. When this
indicator is set, the SCTR parameter is passed to the linkage editor program
when the load module is link edited.

STD
specifies the STD indicator for standard linkage editor attributes. The stand-
ard attributes are NCAL, LET, LIST, and XREF, and is the minimum default attri-
bute if the load module is link edited. When this indicator is set, the
standard parameters are passed to the linkage editor program when the load mod-
ule is link edited. The remaining attributes, as defined above, augment the
standard attributes when their associated indicators are set.

SYSLIB(ddname[,ddname])
specifies one or two SYSLIB subentries, where "ddname" is a target system
library ddname that contains the load module.

Note: When creating a LMOD entry, this operand must be specified. When delet-
ing a SYSLIB subentry, at least one SYSLIB subentry must remain.

++LMODIN
Indicates that linkage editor input cards follow. This operand must start in
column 1. If specified then ENDLMODIN must also be specified. If DELETE is
specified then no comparison is made between the linkage editor input entered
and that already in the CDS. The existing linkage editor control cards are
deleted. If REP is specified all existing control cards (including
CHANGE/REPLACE control cards) are replaced by those entered. This is a differ-
ence from JCLIN processing of linkage editor steps where all cards are replaced
except CHANGE/REPLACE which are merged with the existing CHANGE/REPLACE cards.
Changing the LMOD linkage editor control cards does not change or create any
other entries in the CDS. If a MOD is added to the LMOD and LMODIN is specified

 200 Chapter 5 - OS/VS SMP System Programmer's Guide

for the LMOD, then the user must also add or modify the CDS module entry. No
other options may be specified on the same line as LMODIN.

++ENDLMODIN

Terminates Linkage Editor input. This control word must begin in column 1 and
is used only when ++LMODIN is used.

LASTUPD(JCLIN|UCLIN|sysmodid)
Identifies the cause of the last change made to this entry.

LASTUPDTYPE(ADD|UPD)
Identifies the last type of update made to this entry.

UCL - SMPCDS LMOD Entries 201

 202 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS/SMPACDS MAC ENTRIES

Syntax

{ ADD | DEL | REP } MAC(name)
[DISTLIB(ddname)]
[FMID(sysmodid)]
[GENASM(name[,name]...) | ASSEM(name[,name]..)]
[MALIAS(alias[,alias]...)]
[RMID(sysmodid)]
[SYSLIB(ddname)]
[UMID(sysmodid[,sysmodid]...)]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
•

Operands

MAC(name)
specifies a MAC entry or subentries within an entry to be added, deleted, or
replaced on the ACDS, or CDS, where "name" is the one to eight character macro
name.

DISTLIB(ddname)
specifies the DISTLIB subentry, where "ddname" is the one to eight character
distribution library ddname. This operand can also be specified as "DLIB".

Note: When creating a new entry, DISTLIB must be specified and the DISTLIB
subentry cannot be deleted from an entry.

FMID(sysmodid)
specifies the FMID subentry, where "sysmodid" is the SYSMOD-ID of the function
SYSMOD which owns the macro.

GENASM(name[,name]...) | ASSEM(name[,name]...)
specifies one or more GENASM subentries, where "name" is a one to eight charac-
ter ASSEM or SRC entry name.

Note: This operand can be used to add ASSEM and SRC entry names whose source
text includes the macro. This causes the assembly of the source text during
APPLY processing for CDS MAC entries and during ACCEPT processing for ACDS MAC
entries when the macro is modified. Either GENASM or ASSEM can be specified.

MALIAS(alias[,alias]...)
specifies one or more MALIAS subentries, where "alias" is a one to eight char-
acter alias name of the macro in the distribution library and, if present, in
the target system library.

RMID(sysmodid)
specifies the RMID subentry, where "sysmodid" is the SYSMOD-ID of the SYSMOD
that last replaced the macro text.

UCL - SMPCDS/SMPACDS MAC Entries 203

SYSLIB(ddname)
specifies the SYSLIB subentry, where "ddname" is the target system library
ddname.

Note: If the SYSLIB subentry is not present in or is deleted from a CDS MAC
entry, modifications to the macro results in the macro text being placed in the
MTS during APPLY processing.

UMID(sysmodid[,sysmodid]...)
specifies one or more UMID subentries, where "sysmodid" is the SYSMOD-ID of a
SYSMOD that updated the macro since it was last replaced.

LASTUPD(JCLIN|UCLIN|sysmodid)
Identifies the cause of the last change made to this entry.

LASTUPDTYPE(ADD|UPD)
Identifies the last type of update made to this entry.

 204 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS/SMPACDS MOD ENTRIES

Syntax

{ ADD | DEL | REP } MOD(name)
[ASSEMBLE]
[DALIAS(alias[,alias]...)]
[DISTLIB(ddname)]
[FMID(sysmodid)]

[

LMOD(name[,name]...)]

[RMID(sysmodid)]
[RMIDASM]
[TALIAS(alias[,alias]...)]
[UMID(sysmodid[,sysmodid]...)]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
[AC=l]
[ALIGN2]
[DC]
[NE]
[ONLY]
[REFR]
[RENT]
[REUS]
[SCTR]
•

Operands

MOD(name)
specifies a MOD entry or subentries within an entry to be added, deleted, or
replaced on the ACDS or CDS, where "name" is the one to eight character MOD
entry name.

ASSEMBLE
Specifies the 'must assemble' indicator for the module. When sat on (ADD), the
indicator causes object text to be ignored and an assembly performed.

DALIAS(alias[,alias]...)
specifies one or more DALIAS subentries, where "alias" is a one to eight char-
acter alias name of the module in the distribution library and, for a copied
module, in the target system library.

Note: DALIAS subentries are equivalent to TALIAS subentries, therefore, either
operand can be used to add, delete, or replace.

DISTLIB(ddname)

specifies the DISTLIB subentry, where "ddname" is the one to eight character
distribution library ddname. This operand can also be specified as "DLIB".

Note: When creating a new MOD entry, the DISTLIB operand must be specified and
the DISTLIB subentry cannot be deleted.

UCL - SMPCDS/SMPACDS MOD Entries 205

[LMOD(name[,name]...)]

FMID(sysmodid)
specifies the FMID subentry, where "sysmodid" is the SYSMOD-ID of the function
SYSMOD which owns the module.

LMOD(name[,name]...)
specifies one or more LMOD subentries, where "name" is an LMOD entry name.

Note: When creating a MOD entry with the UCL MOD statement, if no LMOD operand
is specified, an LMOD subentry with the same name as the MOD entry is placed in
the MOD entry.

RMID(sysmodid)
specifies the RMID subentry, where "sysmodid" is the SYSMOD-ID of the SYSMOD
that last replaced the module.

RMIDASM
specifies the last replacement (RMID) to the module was done by a SYSMOD which
caused (or could have caused) an assembly of the module as a result of a macro

or source modification.

TALIAS(alias[,alias]...)
specifies one or more TALIAS subentries, where "alias" is a one to eight char-
acter alias name of the module in the distribution library and, for a copied
module, in the target system library.

Note: TALIAS subentries are equivalent to DALIAS subentries, therefore, either
operand can be used to add, delete, or replace.

UMID(sysmodid[,sysmodid]...)
specifies one or more UMID subentries, where "sysmodid" is the SYSMOD-ID of a
SYSMOD that updated, via IMASPZAP control statements, the module since it was

last replaced.

LASTUPD(JCLIN|UCLIN|sysmodid)
Identifies the cause of the last change made to this entry.

LASTUPDTYPE(ADD|UPD)
Identifies the last type of update made to this entry.

AC=1
specifies the AC=1 indicator, which is the authorization code. When this indi-
cator is set, the AC=1 parameter is passed to the linkage editor program when
the load module is link edited.

ALIGN2

specifies the ALIGN2 indicator, which is alignment on a 2K boundary. This oper-
and can also be specified as "ALN2". When this indicator is set, the ALIGN2
parameter is passed to the linkage editor program when the load module is link
edited.

DC

specifies the DC indicator, which is the downward-compatible load module attri-
bute. When this indicator is set, the DC parameter is passed to the linkage
editor program when the load module is link edited.

 206 Chapter 5 - OS/VS SMP System Programmer's Guide

NE

specifies the NE indicator, which is the non-editable load module attribute.
When this indicator is set, the NE parameter is passed to the linkage editor
program when the load module is link edited.

OVLY

specifies the OVLY indicator, which is the overlay attribute. When this indica-
tor it set, the OVLY parameter is passed to the linkage editor program when the
load module is link edited.

REFR
specifies the REFR indicator, which is the refreshable attribute. When this
indicator is set, the REFR parameter is passed to the linkage editor program
when the load module is link edited.

RENT
specifies the RENT indicator, which is the reenterable attribute. When this
indicator is set, the RENT parameter is passed to the linkage editor program
when the load module is link edited.

REUS

specifies the REUS indicator, which is the reusable attribute. When this indi-
cator is set, the REUS parameter is passed to the linkage editor program when
the load module is link edited.

SCTR
specifies the SCTR indicator, which is the scatter load attribute. When this
indicator is sat, the SCTR parameter is passed to the linkage editor program
when the load module is link edited.

UCL - SMPCDS/SMPACDS MOD Entries 207

 208 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS/SMPACDS SRC ENTRIES

Syntax

{ ADD | DEL | REP } SRC(name)
[DISTLIB(ddname)]
[FMID(sysmodid)]
[RMID(sysmodid)]
[SYSLIB(ddname)]
[UMID(sysmodid[,sysmodid]...)]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
•

Operands

SRC(name)
specifies a SRC entry or subentries within an entry to be added, deleted, or
replaced on the ACDS, or CDS, where "name" is the one to eight character source
module name.

DISTLIB(ddname)
specifies the DISTLIB subentry, where "ddname" is the one to eight character
distribution library ddname. This operand can also be specified as "DLIB".

Note: When creating a new entry, DISTLIB must be specified and the DISTLIB
subentry cannot be deleted from an entry.

FMID(sysmodid)
specifies the FMID subentry, where "sysmodid" is the SYSMOD-ID of the function
SYSMOD which owns the source module.

RMID(sysmodid)
specifies the RMID subentry, where "sysmodid" is the SYSMOD-ID of the SYSMOD
that last replaced the source text.

SYSLIB(ddname)
specifies the SYSLIB subentry, where "ddname" is the target system library
ddname.

Note: If the SYSLIB subentry is not present in or is deleted from a CDS SRC
entry, modifications to the source module results in the source text being
placed in the STS during APPLY processing.

UMID(sysmodid[,sysmodid]...)
specifies one or more UMID subentries, where "sysmodid" is the SYSMOD-ID of a
SYSMOD that updated the source module since it was last replaced.

LASTUPD(JCLIN|UCLIN|sysmodid)
Identifies the cause of the last change made to this entry.

UCL - SMPCDS/SMPACDS SRC Entries 209

LASTUPDTYPE(ADD|UPD)
Identifies the last type of update made to this entry.

 210 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCDS/SMPACDS SYSTEM ENTRY

Syntax

{ ADD | DEL | REP } SYS
[CDSID(name)]
[NUCID(n)]
[PEMAX(nnnn)]
[RETRYDDN({ALL | [ddname][,ddname]... })
[SAVEMTS]
[SAVESTS]
[SREL(cnnn)]
•

Operands

SYS
specifies a SYSTEM entry or subentries and indicators within an entry to be
added, deleted, or replaced on the ACDS or CDS.

Note: Changes to a SYSTEM entry are effective immediately after processing of
the UCL SYS statement.

CDSID(name)
specifies the CDSID subentry. "name" is a one to eight character identifier for
the control data set. The CDSID subentry value from the CDS SYSTEM entry is
placed in the SYSMOD entry on the PTS as an APPID subentry when the SYSMOD is
applied. The CDSID subentry value from the ACDS SYSTEM entry is placed in the
SYSMOD entry on the PTS as an ACCID subentry when the SYSMOD is accepted.

Note: This operand is required when creating the SYSTEM entry on the ACDS and
CDS.

NUCID(n)
specifies the NUCID subentry. "n" is a 1-digit number appended to the nucleus
program name IEANUC0 to form the name of the nucleus load module saved during
APPLY processing.

Note: This operand must be specified when adding the sys tem entry to the CDS
and ACDS. It may not be deleted.

Note: This alternate nucleus id may be overridden by the NUCID operand on the
APPLY statement.

PEMAX(nnnn)
specifies the PEMAX subentry. "nnnn" is a number from 1 to 9999 that defines
the maximum number of subentries that can be present in an entry on the respec-
tive data sets. If this subentry is not present in a SYSTEM entry, a default
value of 500 is used for that SYSTEM entry. The value is used to calculate the
buffer size needed in order to process the entries.

UCL - SMPCDS/SMPACDS SYSTEM Entry 211

RETRYDDN({ALL | ddname[,ddname]... })
specifies the RETRYDDN subentry or subentries of the CDS or ACDS system entry,
where 'ALL' causes RETRY to be attempted for utilities failures on any PDS tar-
get data sat and where 'ddname' causes RETRY to be attempted for utility fail-
ures on the named PDS target data set.

Note: If a RETRYDDN subentry is not present in the CDS or ACDS system entry, no
RETRY will be attempted. If a RETRYDDN subentry of 'ALL' and one or more
'ddname' values exists, RETRY will be processed as if only 'ALL' were speci -

fied.

Unlike the normal SMP compress (via COMPRESS keyword), A compress recov-
ery done as the result of coding RETRYDDN(ALL) will attempt to compress any
candidate including SYS1.LINKLIB.

SAVEMTS
specifies the SAVEMTS indicator of the CDS SYSTEM entry When this indicator is
set, the macros in the MTS data set are not deleted by ACCEPT processing.

Note: When the CDS SYSTEM entry is created, if the SAVEMTS operand is not spec-
ified, the indicator is reset.

Note: This operand may be specified for the ACDS SYSTEM entry, but does not
have any meaning and is only for compatibility with the CDS SYSTEM entry.

Note: When the CDS SYSTEM entry is listed, the SAVEMTS indicator is shown as
"YES" if the SAVEMTS indicator is set and as "NO" if the SAVEMTS indicator is
reset.

SAVESTS
specifies the SAVESTS indicator of the CDS SYSTEM entry. When this indicator is
set, the modules in the STS data set are not deleted by ACCEPT processing.

Note: When the CDS SYSTEM entry is created, if the SAVESTS operand is not spec-
ified, the indicator is reset.

Note: This operand may be specified for the ACDS SYSTEM entry, but does not
have any meaning and is only for compatibility with the CDS SYSTEM entry.

Note: When the CDS SYSTEM entry is listed, the SAVESTS indicator is shown as
"YES" if the SAVESTS indicator is sat and as "NO" if the SAVESTS indicator is
reset.

SREL(cnnn)
specifies the SREL subentry. "cnnn" is a system release identifier.

Note: When creating a SYSTEM entry, this operand must be specified. The SREL
subentry cannot be deleted from the ACDS and CDS SYSTEM entries.

 212 Chapter 5 - OS/VS SMP System Programmer's Guide

Note:

UCL - SMPCDS/SMPACDS SYSMOD ENTRIES

Syntax

{ ADD | DEL | REP } SYSMOD(name) [sysmod_type]
[ACCDATE(yyddd)]
[ACCEPT]
[ACCTIME(hh:mm:ss)
[APPDATE(yyddd)]
[APPLY]
[APPTIME(hh:mm:ss)
[ASSEM(name[,name]...)]
[BYPASS]
[DELBY(sysmodid)]
[DELETE(sysmodid[,sysmodid]...)]
[ERROR]
[FESN]
[FMID(sysmodid)]
[JCLIN]
[LASTSUP(sysmodid)]
[LASTUPD({JCLIN | UCLIN | sysmodid})]
[LASTUPDTYPE({ADD | UPD})]
[MAC(name[,name]...)]
[MACUPD(name[,name]...)]
[MOD(name[,nama)...)]
[NPRE(sysmodid[,sysmodid]...)]
[PRE(sysmodid[,sysmodid]...)]
[RECDATE(yyddd)]
[RECTIME(hh:mm:ss)]
[REGEN]
[REQ(sysmodid[,sysmodid]...)]
[RESDATE(yyddd)]
[RESTIME(hh:mm:ss)]
[RESTORE]
[RMAC(name[,name]...)]
[RMACUPD(name[,name]...)]
[RMOD(name[,name]...)]
[RSRC(name[,name]...)]
[RSRCUPD(name[,name]...)]
[RSZAP(name[,name]...)]
[RXZAP(name[,name]...)]
[SRC(name[,name]...)]
[SRCUPD(name[,name]...)]
[SUPBY(sysmodid[,sysmodid]...)]
[SUPING(5ysmodid[,sysmodid]...)]
[SZAP(name[,name]...)]
[UPDTE(name[,name]...)]
[UCLDATE(yyddd)]
[UCLTIME(hh:mm:ss)]
[VERNUM(value)]
[VERSION(sysmodid[,sysmodid]...)]
[XZAP(name[,name]...)]

UCL - SMPCDS/SMPACDS SYSMOD Entries 213

•

Operands

SYSMOD(name)
specifies a SYSMOD entry or subentries and indicators within an entry are to be
added, deleted, or replaced, where "name" is the SYSMOD entry name correspond-
ing to the SYSMOD-ID of a SYSMOD.

sysmod_type
specifies the type of SYSMOD . This operand may be specified as either PTF,
APAR, USERMOD or FUNCTION.

If an attempt is made to ADD a SYSMOD type to an existing entry which already
has a sysmod_type, an error message is issued and the sysmod_type is not
changed. The sysmod_type may be changed using REP. The DEL operation will leave
the entry with no sysmod_type.

Note: The default sysmod_type for ADD operations is PTF.

ACCDATE(yyddd)
specifies the ACCDATE subentry. "yyddd" is the Julian date that the SYSMOD was
accepted. If the ACCDATE subentry is present in a SYSMOD entry, the ACCEPT
indicator is set. If the ACCDATE subentry is deleted, the ACCEPT indicator is
reset.

Note: When creating a new entry on the ACDS, this operand must be specified if
the SYSMOD entry is an ordinary type, that is, not superseded only. The ACCDATE
subentry cannot be deleted from an ordinary SYSMOD entry on the ACDS.

Note: When deleting ACCURATE , the ACC indicator, ACCTIME and if necessary the
ERR indicator must also be deleted.

ACCEPT
specifies the ACCEPT indicator. When this indicator is set, the SYSMOD has been
accepted. This operand can also be specified as "ACC" or "ACPT".

Note: The ACCEPT indicator reflects the presence or absence of the ACCDATE
subentry. The ACCEPT operand need not be specified when the ACCDATE operand is
specified since they are automatically synchronized. The reason for inclusion
of this operand is for compatibility with UCL statements processable by previ-
ous versions of SMP. Deleting the ACCEPT indicator without deleting the APPDATE
will result in SMP turning on the ACCEPT indicator again.

ACCTIME(hh:mm:ss)
specifies the ACCTIME subentry. "hh:mm:ss" is the hour, minute, and second that
the SYSMOD was accepted. A colon must be specified between digits. If the
ACCDATE is changed or added without a corresponding change to ACCTIME in the
same UCL statement the ACCTIME is reset to 00:00:00. If ACCDATE is deleted then
ACCTIME is deleted. If the ACCDATE is added to a SYSMOD but ACCTIME is not spec-
ified then ACCTIME is set to 00:00:00.

APPDATE(yyddd)

specifies the APPDATE subentry. "yyddd" is the Julian date that the SYSMOD was
applied. If the APPDATE subentry is present in a SYSMOD entry, the APPLY indi-
cator is sat. If the APPDATE subentry is deleted, the APPLY indicator is
reset.

 214 Chapter 5 - OS/VS SMP System Programmer's Guide

Note: When creating a new entry on the CDS, this operand must be specified if
the SYSMOD entry is an ordinary type, that is, not superseded only. The APPDATE
subentry cannot be deleted from an ordinary SYSMOD entry on the CDS.

Note: When deleting APPDATE, the APPLY indicator, APPTIME and if necessary the
ERR indicator must also be deleted.

APPLY
specifies the APPLY indicator. When this indicator is sat, the SYSMOD has been
applied. This operand can also be specified as "APP" or "APPL".

Note: The APPLY indicator reflects the presence or absence of the APPDATE
subentry. The APPLY operand need not be specified when the APPDATE operand is
specified since they are automatically synchronized. The reason for inclusion
of this operand is for downward compatibility with UCL statements processable
by previous versions of SMP. Deleting the APPLY indicator without deleting the
APPDATE will result in SMP turning on the APPLY indicator again.

APPTIME(hh:mm:ss)
specifies the APPTIME subentry. "hh:mm:ss" is the hour, minute, and second that
the SYSMOD was applied. A colon must be specified between digits. If the
APPDATE is changed or added without a corresponding change to APPTIME in the
same UCL statement the APPTIME is reset to 00:00:00. If APPDATE is deleted then
APPTIME is deleted. If the APPDATE is added to a SYSMOD but APPTIME is not spec-
ified then APPTIME is set to 00:00:00.

ASSEM(name[,name]...)
specifies one or more ASSEM subentries. "name" is the name of an ASSEM or SRC
entry that was specified in the ASSEM operand list of a ++MAC, ++MACUPD, or
++UPDTE modification control statement of the SYSMOD.

BYPASS
specifies the BYPASS indicator. When this indicator is set, the SYSMOD is con-
sidered to have been processed only because one or more conditions that would
have resulted in termination of processing for the SYSMOD were bypassed.

DELBY(sysmodid)
specifies the DELBY subentry. "sysmodid" is the SYSMOD-ID of a SYSMOD that
deleted this SYSMOD.

Note: This subentry is only valid for SYSMOD entries with the FUNCTION indica-
tor.

DELETE(sysmodid[,sysmodid]...)
specifies one or more DELETE subentries. "sysmodid" is the SYSMOD-ID of a
SYSMOD that is deleted by this SYSMOD. Each DELETE subentry present is consid-
ered to have been in the operand list of the DELETE operand of the processed
++VER modification control statement for the SYSMOD. The only other UCL operand
that you can specify with DELETE is FUNCTION.

Note: DELETE subentries are considered invalid if the SYSMOD entry does not
have the FUNCTION indicator set.

UCL - SMPCURS/SMPACDS SYSMOD Entries 215

ERROR
specifies the ERROR indicator. This operand can also be specified as "ERR".
When this indicator is set, the SYSMOD is considered to have been unsuccessful-
ly processed.

Note: Deleting the ERROR indicator in a SYSMOD marked RESTORE will result in
the ERR indicator being left on if the RESDATE, RESTORE indicator and RESTIME
is not also deleted.

FESN(fe service number)
specifies a seven character FE service number.

FMID(sysmodid)
specifies the FMID subentry. "sysmodid" is the SYSMOD-ID of a function SYSMOD.
A SYSMOD's FMID is the function which "owns" the SYSMOD.

Note: This operand is required when creating a SYSMOD entry that is not a
superseded-only type.

JCLIN
indicates that the SYSMOD contains inline JCLIN.

LASTSUP(sysmodid)
specifies the LASTSUP subentry. "sysmodid" is the SYSMOD-ID of the last SYSMOD
which superseded this SYSMOD.

LASTUPD(UCLIN|sysmodid)
identifies the cause of the last change to this entry.

LASTUPDTYPE(ADD|UPD)
identifies the last type of update made to this entry

MAC(name[,name]...)
specifies one or more MAC subentries. "name" is the name of a macro replaced by
this SYSMOD. Each MAC subentry is considered to be present because of the
inclusion of a ++MAC modification control statement in the SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no RMAC, MACUPD, or RMACUPD subentries are present in the SYSMOD entry
with the same names.

MACUPD(name[,name]...)

specifies one or more MACUPD subentries. "name" is the name of a macro updated
by this SYSMOD. Each MACUPD subentry is considered to be present because of the
inclusion of a ++MACUPD or ++UPDTE modification control statement in the
SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MAC, RMAC, or RMACUPD subentries are present in the SYSMOD entry with
the same names.

MOD(name[,name]...)
specifies one or more MOD subentries. "name" is the name of a module replaced
by this SYSMOD. Each MOD subentry is considered to be present because of the
inclusion of a ++MOD modification control statement in the SYSMOD.

 216 Chapter 5 - OS/VS SMP System Programmer's Guide

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no RMOD, SZAP, RSZAP, XZAP, or RXZAP subentries are present in the SYSMOD
entry with the same names.

NPRE(sysmodid[,sysmodid]...)
specifies one or more NPRE subentries. "sysmodid" is the SYSMOD-ID of a SYSMOD
that is a negative prerequisite of this SYSMOD. Each NPRE subentry present is
considered to have been in the operand list of the NPRE operand of the proc-
essed ++VER modification control statement for the SYSMOD.

Note: NPRE subentries are considered invalid if the SYSMOD entry does not have
the FUNCTION indicator set.

PRE(sysmodid[,sysmodid]...)
specifies one or more PRE subentries. "sysmodid" is the SYSMOD-ID of a SYSMOD
that is a prerequisite of this SYSMOD. Each PRE subentry present is considered
to have been in the operand list of the PRE operand of the processed ++VER mod-
ification control statement for the SYSMOD.

RECDATE(yyddd)
specifies the RECDATE subentry. "yyddd" is the Julian date that the SYSMOD was
received.

Note: When creating a new entry, this operand must be specified if the SYSMOD
entry is an ordinary type, that is, not superseded only. The RECDATE subentry
cannot be deleted from an ordinary SYSMOD entry.

RECTIME(hh:mm:ss)
specifies the RECTIME subentry. "hh:mm:ss" is the hour, minute, and second that
the SYSMOD was received. A colon must be specified between digits. If the
RECDATE is changed or added without a corresponding change to RECTIME in the
same UCL statement the RECTIME is reset to 00:00:00. If RECDATE is deleted then
RECTIME is deleted. If the RECDATE is added to a SYSMOD but RECTIME is not spec-
ified then RECTIME is set to 00:00:00.

REGEN
specifies the REGEN indicator. If this indicator is set, the SYSMOD is consid-
ered to have been in the ACDS prior to system generation and its associated
elements updated in the distribution libraries. SMP does not use this indica-
tor to imply ACCEPT status. This operand can be specified as "RGN".

REQ(sysmodid[,sysmodid]...)
specifies one or more REQ subentries. "sysmodid" is the SYSMOD-ID of a SYSMOD
that is a requisite of this SYSMOD.

Note: For ACDS and CDS SYSMOD entries, each REQ subentry present is considered
to have been in the operand list of the REQ operand of the processed ++VER mod-
ification control statement for the SYSMOD.

RESDATE(yyddd)
specifies the RESDATE subentry of a CDS SYSMOD entry, where "yyddd" is the
Julian date that the SYSMOD was attempted to be restored. If the RESDATE sub-
entry is present in a SYSMOD entry, the RESTORE indicator is set. If the
RESDATE subentry is deleted, the RESTORE indicator is reset. If the RESDATE
subentry is added to a SYSMOD entry, the ERROR indicator is set.

UCL - SMPCDS/SMPACDS SYSMOD Entries 217

Note: When deleting the RESDATE, the RESTORE indicator, RESTIME and ERROR indi-
cator also must be deleted.

Note: This subentry is valid only in a CDS SYSMOD entry.

RESTIME(hh:mm:ss)
specifies the RESTIME subentry. "hh:mm:ss" are the hour, minute, and second
that the SYSMOD was restored. A colon must be specified between digits. If the
RESDATE is changed or added without a corresponding change to RESTIME in the
same UCL statement the RESTIME is reset to 00:00:00. If RESDATE is deleted then
RESTIME is deleted. If the RESDATE is added to a SYSMOD but RESTIME is not spec-
ified then RESTIME is set to 00:00:00.

Note: This subentry is valid only in a CDS SYSMOD entry.

RESTORE
specifies the RESTORE indicator of a CDS SYSMOD entry. If this indicator is
set, the SYSMOD is considered to have had a RESTORE operation attempted. This
operand can also be specified as "RES" or "REST".

Note: The RESTORE indicator reflects the presence or absence of the RESDATE
subentry. The RESTORE operand need not be specified when the RESDATE operand
is specified since they are automatically synchronized. The reason for inclu-
sion of this operand is for compatibility with UCL statements processable by
previous versions of SMP. Deleting the RESTORE indicator without deleting the
RESDATE will result in SMP turning on the RESTORE indicator again.

Note: This indicator is valid only in a CDS SYSMOD entry.

RMAC(name[,name]...)
specifies one or more RMAC subentries. "name" is the name of a macro replaced
by this SYSMOD. Each RMAC subentry is considered to be present because of the
inclusion of a ++MAC modification control statement in the SYSMOD that was
regressed by the subsequent processing of another SYSMOD. The RMID subentry of
the associated MAC entry may contain the SYSMOD-ID of the regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MAC, MACUPD, or RMACUPD subentries are present in the SYSMOD entry with
the same names.

RMACUPD(name[,name]...)
specifies one or more RMACUPD subentries. "name" is the name of a macro updated
by this SYSMOD. Each RMACUPD subentry is considered to be present because of
the inclusion of a ++MACUPD or ++UPDTE modification control statement in the
SYSMOD that was regressed by the subsequent processing of another SYSMOD. The
RMID subentry of the associated MAC entry may contain the SYSMOD-ID of the
regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MAC, MACUPD, or RMAC subentries are present in the SYSMOD entry with
the same names.

Note: You can specify "RMUPD" in place of RMACUPD and get the same results.

 218 Chapter 5 - OS/VS SMP System Programmer's Guide

RMOD(name[,name]...)
specifies one or more RMOD subentries. "name" is the name of a module replaced
by this SYSMOD. Each RMOD subentry is considered to be present because of the
inclusion of a ++MOD modification control statement in the SYSMOD that was
regressed by the subsequent processing of another SYSMOD. The RMID subentry of
the associated MOD entry may contain the SYSMOD-ID of the regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MOD, SZAP, RSZAP, XZAP, or RXZAP subentries are present in the SYSMOD
entry with the same names.

RSRC(name[,name]...)
specifies one or more RSRC subentries. "name" is the name of a source module
replaced by this SYSMOD. Each RSRC subentry is considered to be present because
of the inclusion of a ++SRC modification control statement in the SYSMOD that
was regressed by the subsequent processing of another SYSMOD. The RMID subentry
of the associated SRC entry may contain the SYSMOD-ID of the regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no SRC, SRCUPD, or RSRCUPD subentries are present in the SYSMOD entry with
the same names.

RSRCUPD(name[,name]...)
specifies one or more RSRCUPD subentries. "name" is the name of a source module
updated by this SYSMOD. Each RSRCUPD subentry is considered to be present
because of the inclusion of a ++SRCUPD modification control statement in the
SYSMOD that was regressed by the subsequent processing of another SYSMOD. The
RMID subentry of the associated SRC entry may contain the SYSMOD-ID of the
regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no SRC, SRCUPD, or RSRC subentries are present in the SYSMOD entry with
the same names.

Note: You can specify "RSUPD" in place of RSRCUPD and get the same results.

RSZAP(name[,name]...)
specifies one or more RSZAP subentries. "name" is the name of a module updated
by this SYSMOD. Each RSZAP subentry is considered to be present because of the
inclusion of a ++ZAP modification control statement in the SYSMOD without an
EXPAND statement that was regressed by the subsequent processing of another
SYSMOD. The RMID subentry of the associated MOD entry may contain the SYSMOD-ID
of the regressing SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MOD, RMOD, SZAP, XZAP, or RXZAP subentries are present in the SYSMOD
entry with the same names.

RXZAP(name[,name]...)

specifies one or more RXZAP subentries. "name" is the name of a module updated
by this SYSMOD. Each RXZAP subentry is considered to be present because of the
inclusion of a ++ZAP modification control statement in the SYSMOD with an
EXPAND statement that was regressed by the subsequent processing of another
SYSMOD. The RMID subentry of the associated MOD entry may contain the SYSMOD-ID
of the regressing SYSMOD.

UCL - SMPCDS/SMPACDS SYSMOD Entries 219

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MOD, RMOD, XZAP, SZAP, or RSZAP subentries are present in the SYSMOD
entry with the same names.

SRC(name[,name]...)
specifies one or more SRC subentries. "name" is the name of a source module
replaced by this SYSMOD. Each SRC subentry is considered to be present because
of the inclusion of a ++SRC modification control statement in the SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no RSRC, SRCUPD, or RSRCUPD subentries are present in the SYSMOD entry
with the same names.

SRCUPD(name[,name]...)
specifies one or more SRCUPD subentries. "name" is the name of a source module
updated by this SYSMOD. Each SRCUPD subentry is considered to be present
because of the inclusion of a ++SRCUPD modification control statement in the
SYSMOD.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no SRC, RSRC, or RSRCUPD subentries are present in the SYSMOD entry with
the same names.

SUPBY(sysmodid[,sysmodid]...)
specifies one or more SUPBY subentries. "sysmodid" is the SYSMOD-ID of a SYSMOD
that supersedes this SYSMOD. This operand can also be specified as "SUP".

Note: The SUPBY subentry cannot be deleted from a superseded-only SYSMOD entry.
A superseded-only SYSMOD entry is one created during APPLY or ACCEPT processing
for a superseded SYSMOD that was never applied or accepted. A superseded-only
SYSMOD entry can be created with a UCL SYSMOD statement that contains only the
SYSMOD and SUPBY operands.

SUPING(sysmodid[,sysmodid]...)
specifies one or more SUPING subentries. "sysmodid" is the SYSMOD-ID of a
SYSMOD that is superseded by this SYSMOD. Each SUPING subentry present is con-
sidered to have been in the operand list of the SUP operand of the processed
++VER modification control statement for the SYSMOD.

SZAP(name[,name]...)
specifies one or more SZAP subentries. "name" is the name of a module updated
by this SYSMOD. Each SZAP subentry is considered to be present because of the
inclusion of a ++ZAP modification control statement in the SYSMOD without an
EXPAND statement.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MOD, RMOD, XZAP, RXZAP, or RSZAP subentries are present in the SYSMOD
entry with the same names.

UCLDATE(yyddd)

specifies the UCLDATE subentry. yyddd is the JULIAN date that the SYSMOD was
updated by UCLIN. If no UCLDATE is specified then the SMP data will be used.

UCLTIME(hh:mm:ss)

specifies the UCLTIME subentry. "hh:mm:ss" is the hour, .minute, and second that
the SYSMOD was accepted. A colon must be specified between digits. If the

 220 Chapter 5 - OS/VS SMP System Programmer's Guide

UCLDATE is changed or added without a corresponding change to UCLTIME in the
same UCL statement the UCLTIME is reset to 00:00:00. If UCLDATE is deleted then
UCLTIME is deleted. If the UCLDATE is added to a SYSMOD but UCLTIME is not spec-
ified then UCLTIME is set to 00:00:00.

UPDTE(name[,name]...)
specifies one or more MACUPD subentries.

Note: This operand is equivalent to the MACUPD operand and is included for
compatibility with UCL statements processable by previous versions of SMP.

VERNUM(value)
specifies a 1 to 3 digit number of the ++VER statement which SMP used when proc-
essing the SYSMOD. This number is associated with those subentries that come
from the ++VER statements, such as SUP and PRE. If VERNUM is not specified than
any entries that are added or replaced by the UCL statement that require the
VERNUM will assume a VERNUM of 0. No changes can be made to a SYSMOD that result
in subentries with different VERNUM values. If subentries are added that
require the VERNUM value and VERNUM is specified then VERNUM must be specified
before the other subentries.

VERSION(sysmodid[,sysmodid]...)
specifies one or more VERSION subentries. "sysmodid" is the SYSMOD-ID of a
function SYSMOD that is considered to have inferior versions of identically
named elements with those present in the SYSMOD. Each VERSION subentry present
is considered to have been in the operand list of the VERSION operand of the
processed ++VER modification control statement for the SYSMOD.

XZAP(name[,name]...)
specifies one or more XZAP subentries. "name" is the name of a module updated
by this SYSMOD. Each XZAP subentry is considered to be present because of the
inclusion of a ++ZAP modification control statement in the SYSMOD with an
EXPAND statement.

Note: If this operand is specified with the ADD or REP operand, you must ensure
that no MOD, RMOD, SZAP, RSZAP, or RXZAP subentries are present in the SYSMOD
entry with the same names.

UCL - SMPCDS/SMPACDS SYSMOD Entries 221

222 Chapter 5 - 0S/VS SMP System Programmer's Guide

UCL - SMPCRQ/SMPACRQ FMID ENTRIES

Syntax

{ ADD | DEL | REP } FMID(name)
[SYSMOD(sysmodid(,sysmodid])]
•

Operands

FMID(name)
specifies a FMID entry to be created or deleted, or subentries within the FMID
entry to be added, deleted, or replaced on the ACRQ or CRQ, where "name" is the
one to eight character FMID entry name, which is the SYSMOD-ID of a function
SYSMOD.

SYSMOD(sysmodid[,sysmodid])
specifies one or more SYSMOD subentries, where "sysmodid" is the SYSMOD-ID of a
SYSMOD that is a SYSMOD entry on the ACRQ or CRQ.

Note: When creating a FMID entry, this operand must be specified. When delet-
ing a SYSMOD subentry, at least one SYSMOD subentry must remain.

When adding a SYSMOD to an FMID entry, the corresponding ACRQ/CRQ SYSMOD entry
must generally be updated.

For example, consider that SYSMOD UZ00000 should have supplied an IF conditional
requisite statement indicating requisites for functions F111111 and F222222.

++IF FMID(F111111) THEN REQ(UZ11111) .
++IF FMID(F222222) THEN REQ(UZ22222) .

CRQ/ACRQ FMID entries must be created which indicate that SYSMOD UZ00000 has
requisites for the two functions:

UCLIN CRQ .
ADD FMID(F111111) SYSMOD(UZ00000) .
ADD FMID(F222222) SYSMOD(UZ00000) .
ENDUCL.

A CRQ/ACRQ SYSMOD entry must be created for SYSMOD UZ00000 which indicates
the actual requisites:

UCLIN CRQ .
ADD SYSMOD(UZ00000) FMID(F111111) REQ(UZ11111) .
ADD SYSMOD(UZ00000) FMID(F222222) REQ(UZ22222) .
ENDUCL.

UCL - SMPCRQ/SMPACRQ FMID Entries 223

 224 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPCRQ/SMPACRQ SYSMOD ENTRIES

Syntax

{ ADD | DEL | REP } SYSMOD(name)
[FMID(sysmodid)]
[REQ(sysmodid[,sysmodid]...)]

Operands

SYSMOD(name)
specifies a SYSMOD entry or subentries within an entry are to be added,
deleted, or replaced, where "name" is the SYSMOD entry name corresponding to
the SYSMOD-ID of a SYSMOD.

Note: The associated FMID entry on the ACRQ or CRQ should be updated to reflect
changes made to a SYSMOD entry.

FMID(sysmodid)
specifies the FMID subentry where "sysmodid" is the SYSMOD-ID of a function
SYSMOD. The FMID subentry is considered to be the FMID operand from a ++IF mod-
ification control statement included with the SYSMOD. If the ADD or REP operand
is specified, the REQ operand must also be specified and must physically follow
the FMID operand on UCL statement. If the DEL operand is specified and the REQ
operand is also specified, it is ignored. If the REP operand is specified and
there is a matching FMID subentry in the SYSMOD entry being processed, the
SYSMOD-IDs specified in REQ operand replace the existing REQ subentries in the
SYSMOD entry.

REQ(sysmodid[,sysmodid]...)
specifies one or more REQ subentries of the ACRQ or CRQ SYSMOD entry, where
"sysmodid" is the SYSMOD-ID of a SYSMOD that is a requisite of this SYSMOD.
Each REQ subentry present is considered to have been in the operand list of the
REQ operand of a ++IF modification control statement included in the SYSMOD.
When this operand is specified, the FMID operand must also be specified. For
ADD operations, this operand is required. For DEL operations, this operand is
ignored, if it is specified.

UCL - SMPCRQ/SMPACRQ SYSMOD Entries 225

•

 226 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPPTS SYSMOD ENTRIES

Syntax

{ ADD | DEL | REP } SYSMOD(name)
[ACCID(cdsid[,cdsid]...)]
[APPID(cdsid[,cdsid]...)]

Operands

SYSMOD(name)
specifies a SYSMOD entry or subentries and indicators within an entry are to be
added, deleted, or replaced, where "name" is the SYSMOD entry name correspond-
ing to the SYSMOD-ID of a SYSMOD. For the PTS, the valid operations are ADD,
DEL, or REP of the ACCID and APPID indicators in a SYSMOD entry, and DEL of the
SYSMOD entry. If the PTS SYSMOD entry is deleted, the associated MCS entry is
also deleted.

ACCID(cdsid[,cdsid]...)
specifies one or more ACCID subentries of a PTS SYSMOD entry, where "cdsid" is
the CDS identifier from the CDSID subentry of an ACDS SYSTEM entry. Each ACCID
subentry present in a SYSMOD entry indicates that the SYSMOD is considered
accepted in the corresponding ACDS.

APPID(cdsid[,cdsid]...)
specifies one or more APPID subentries of a PTS SYSMOD entry, where "cdsid" is
the CDS identifier from the CDSID subentry of a CDS SYSTEM entry. Each APPID
subentry present in a SYSMOD entry indicates that the SYSMOD is considered
applied in the corresponding CDS.

UCL - SMPPTS SYSMOD Entries 227

•

 228 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPPTS SYSTEM ENTRY

Syntax

{ ADD | DEL | REP } SYS
[ASMNAME(name)]
[ASMPARM(parm)]
[ASMPRINT(ddname)]
[ASMRC(value)]
[COMPNAME(name)]
[COMPPARM(parm)]
[COMPPRINT(ddname)]
[COMPRC(value)]
[COPYNAME(name)]
[COPYPARM(parm)]
[COPYPRINT(ddname)]
[COPYRC(value)]
[DSPREFIX(prefix)]
[DSSPACE(prim,sec,dirblks)]
[FMID(sysmodid[,sysmodid]...)]
[IOSUPNAME(name)]
[IOSUPPARM(parm)]
[IOSUPPRINT(ddname)]
[IOSUPRC(value)]
[LKEDNAME(name)]
[LKEDPARM(parm)]
[LKEDPRINT(ddname)]
[LKEDRC(value)]
[PAGELEN(nnnn)]
[PEMAX(nnnn)]
[PURGE]
[REJECT]
[RETRYNAME(name)]
[RETRYPARM(parm)]
[RETRYPRINT(ddname)]
[RETRYRC(value)]
[SREL(cnnnt,cnnn]...)]
[UPDATNAME(name)]
[UPDATPARM(parm)]
[UPDATPRINT(ddname)]
[UPDATRC(value)]
[ZAPNAME(name)]
[ZAPPARM(parm)]
[ZAPPRINT(ddname)]
[ZAPRC(value)]
•

Operands

SYS
specifies a SYSTEM entry or subentries and indicators within an entry to be
added, deleted, or replaced on the PTS.

UCL - SMPPTS SYSTEM ENTRY 229

Note: Changes to a SYSTEM entry are effective immediately after processing of
the UCL SYS statement.

ASMNAME(name)
specifies the ASMNAME subentry. "name" is the name of the program to be invoked
by SMP to perform the assembler function.

Note: If the ASMNAME subentry is not present, SMP invokes the program ASMBLR to
perform the assembler function. If you chose to use a different assembler pro-
gram, ensure that it uses the SYSPUNCH DD Statement, which is used as the out-
put data set for the object text.

ASMPARM(parm)
specifies the ASMPARM subentry. "parm" specifies values to be passed as parame-
ters to the program invoked by SMP to perform the assembler function. A maximum
of 100 characters may be specified.

Note: If the ASMPARM subentry is not present, SMP passes the character string
"XREF,NOLOAD,DECK" to the invoked program. If you specify an ASMPARM subentry,
ensure that DECK is included or that your substitute assembler program produces
an object text deck.

ASMPRINT(ddname)
specifies the ASMPRINT subentry. "ddname" is the ddname for the output listing
data set produced by the assembler program.

Note: If the ASMPRINT subentry is not present, the ddname SYSPRINT is used. A
DD statement specifying either SYSPRINT or the ddname in the ASMPRINT subentry,
when present, must be supplied when SMP is invoked to perform functions that
use the assembler program.

ASMRC(value)
specifies the ASMRC subentry. "value" is the return code value to be compared
with the code returned from the assembler program. When the value returned is
higher than the ASMRC subentry value, the result of the assembler function is
considered unsuccessful and the SYSMOD for which the assembler program was
invoked is terminated. The value may be any number from 0 to 16.

See OS/VS and DOS/VS Assembler Language for a description of the assembler
return codes for program ASMBLR.

Note: If the ASMRC subentry is not present, the value of 4 is compared with the
assembler program return code.

COMPNAME(name)
specifies the COMPNAME subentry. "name" is the name of the program to be
invoked by SMP to perform the PDS compress function.

Note: If the COMPNAME subentry is not present, SMP invokes the program IEBCOPY
to perform the PDS compress function.

COMPPARM(parm)
specifies the COMPPARM subentry. "parm" specifies values to be passed as param-
eters to the program invoked by SMP to perform the PDS compress function. A
maximum of 100 characters may be specified.

 230 Chapter 5 - 0S/VS SMP System Programmer's Guide

Note: If the COMPPARM subentry is not present, SMP does not pass any parameters
to the PDS compress program. If you specify a COMPPARM subentry, ensure that
the parameters are valid for your substitute PDS compress program or IEBCOPY.

COMPPRINT(ddname)
specifies the COMPPRINT subentry. "ddname" is the ddname for the output listing
data set produced by the PDS compress program.

Note: If the COMPPRINT subentry is not present, the ddname SYSPRINT is used. A
DD statement specifying either SYSPRINT or the ddname in the COMPPRINT sub-
entry, when present, must be supplied when SMP is invoked to perform functions
that use the PDS compress program.

COMPRC(value)

specifies the COMPRC subentry. "value" is the return code value to be compared
with the code returned from the PDS compress program. When the value returned
is higher than the COMPRC subentry value, the result of the PDS compress func-
tion is considered unsuccessful and the SMP function which invoked the PDS
compress program is terminated. The value may be any number from 0 to 16.

See OS/VS Utilities for a description of the IEBCOPY return codes.

Note: If the COMPRC subentry is not present, the value of 0 is compared with the
PDS compress program return code.

COPYNAME(name)

specifies the COPYNAME subentry. "name" is the name of the program to be
invoked by SMP to perform the PDS copy and load functions.

Note: If the COPYNAME subentry is not present, SMP invokes the program IEBCOPY
to perform the PDS copy and load functions.

COPYPARM(parm)

specifies the COPYPARM subentry. "perm" specifies values to be passed as param-
eters to the program invoked by SMP to perform the PDS copy and load functions.
A maximum of 100 characters may be specified.

Note, If the COPYPARM subentry is not present, SMP does not pass any parameters
to the PDS copy and load program. If you specify a COPYPARM subentry, ensure
that the parameters are valid for your substitute PDS copy and load program or
IEBCOPY.

COPYPRINT(ddname)

specifies the COPYPRINT subentry. "ddname" is the ddname for the output listing
data set produced by the PDS copy and load program.

Note: If the COPYPRINT subentry is not present, the ddname SYSPRINT is used. A
DD statement specifying either SYSPRINT or the ddname in the COPYPRINT sub-
entry, when present, must be supplied when SMP is invoked to perform functions
that use the PDS copy and load program.

COPYRC(value)

specifies the COPYRC subentry. "value" is the return code value to be compared
with the code returned from the PDS copy and load program. When the value
returned is higher than the COPYRC subentry value, the result of the PDS copy

UCL - SMPPTS SYSTEM ENTRY 231

or load function is considered unsuccessful and the SYSMOD for which the PDS
copy and load program was invoked is terminated. The value may be any number
from 0 to 16.

See OS/VS Utilities for a description of the IEBCOPY return codes.

Note: If the COPYRC subentry is not present, the value of 0 is compared with the
PDS copy and load program return code.

Note: IEBCOPY returns a code of 4 when it encounters I/O errors during the
copying of members.

DSPREFIX(prefix)
specifies the DSPREFIX subentry. "prefix" is the high level qualifier data set
name of data sets which are allocated during RECEIVE processing for library
loading. "prefix" may have a maximum length of 26 characters. The value must
conform to Operating System data set naming conventions. For example,
"MYPREFIX.SET1.SYS1" is a valid prefix; "MYPREFIXSET1SYS1" is not. If the
DSPREFIX subentry is not present, no high order qualifier is used during allo-
cation and subsequent accessing.

DSSPACE(prim,sec,dirblks)
specifies the DSSPACE subentry space parameters for data sets that are allo-
cated during RECEIVE processing for library loading. "prim" and "sac" are the
primary and secondary allocation in tracks, and "dirblks" specifies the number
of directory blocks to be allocated.

Note: This operand must be specified when the PTS SYSTEM entry is created.

FMID(sysmodid[,sysmodid]...)
specifies the FMID subentries. "sysmodid" is the SYSMOD-ID of a function
SYSMOD. During RECEIVE processing, the SYSMODs in the PTFIN data set have
their FMID operand values in the ++VER modification control statements compared
with the FMID subentries to determine if the SYSMODs should be received.

IOSUPNAME(name)
specifies the IOSUPNAME subentry. "name" is the name of the program to be
invoked by SMP to perform the IEHIOSUP function.

Note: If the IOSUPNAME subentry is not present, SMP invokes the program
IEHIOSUP to perform the IEHIOSUP function.

IOSUPPARM(parm)

specifies the IOSUPPARM subentry. "perm" specifies values to be passed as
parameters to the program invoked by SMP to perform the IEHIOSUP function. A
maximum of 100 characters may be specified.

Note: If the IOSUPPARM subentry is not present, SMP does not pass any parame-
ters to the IEHIOSUP program. If you specify a IOSUPPARM subentry, ensure that
the parameters are valid for your substitute IEHIOSUP program or IEHIOSUP.

IOSUPPRINT(ddname)
specifies the IOSUPPRINT subentry. "ddname" is the ddname for the output list-
ing data set produced by the IEHIOSUP program.

Note: If the IOSUPPRINT subentry is not present, the ddname SYSPRINT is used.

 232 Chapter 5 - OS/VS SMP System Programmer's Guide

A DD statement specifying either SYSPRINT or the ddname in the IOSUPPRINT sub-
entry, when present, must be supplied when SMP is invoked to perform functions
that use the IEHIOSUP program.

IOSUPRC(value)
specifies the IOSUPRC subentry. "value" is the return code value to be compared
with the code returned from the IEHIOSUP program. When the value returned is
higher than the IOSUPRC subentry value, the result of the IEHIOSUP function is
considered unsuccessful and the SYSMOD for which the IEHIOSUP program was
invoked is terminated. The value may be any number from 0 to 16.

See OS/VS Utilities for a description of the IEHIOSUP return codes.

Note: If the IOSUPRC subentry is not present, the value of 0 is compared with
the IEHIOSUP program return code.

LKEDNAME(name)
specifies the LKEDNAME subentry. "name" is the name of the program to be
invoked by SMP to perform the linkage editor function.

Note: If the LKEDNAME subentry is not present, SMP invokes the program IEWL to
perform the linkage editor function.

LKEDPARM(parm)
specifies the LKEDPARM subentry. "perm" specifies values to be passed as param-
eters to the program invoked by SMP to perform the linkage editor functions. A
maximum of 100 characters may be specified.

If no LKEDPARM subentry is present, the parameters "LET, LIST, XREF and NCAL"
are used.

Note: These parameters are passed in addition to the link edit attributes
determined during APPLY and ACCEPT processing.

Note: The parameters LET and NCAL are normally required for maintenance of IBM
operating systems. If this subentry is updated, be sure to include LET and
NCAL in the parameters chosen.

LKEDPRINT(ddname)

specifies the LKEDPRINT subentry. "ddname" is the ddname for the output list-
ing data set produced by the linkage editor program.

Note: If the LKEDPRINT subentry is not present, the ddname SYSPRINT is used. A
DD statement specifying either SYSPRINT or the ddname in the LKEDPRINT sub-
entry, when present, must be supplied when SMP is invoked to perform functions
that use the linkage editor program.

LKEDRC(value)

specifies the LKEDRC subentry. "value" is the return code value to be compared
with the code returned from the linkage editor program. When the value
returned is higher than the LKEDRC subentry value. the result of the linkage
editor function is considered unsuccessful and the SYSMOD for which the linkage
editor program was invoked is terminated. The value may be any number from 0 to
16.

UCL - SMPPTS SYSTEM ENTRY 233

See OS/VS Linkage Editor and Loader for a description of the linkage editor
return codes.

Note: If the LKEDRC subentry is not present, the value of 8 is compared with the
linkage editor program return code.

PAGELEN(nnnn)
specifies the PAGELEN subentry. "nnnn" is a number from 1 to 9999 that is used
as the number of lines per page for the output listing in the SMPOUT data set.
If this subentry is not present, the number of lines per page is 60.

PEMAX(nnnn)
specifies the PEMAX subentry. "nnnn" is a number from 1 to 9999 that defines
the maximum number of subentries that can be present in an entry on the respec-
tive data sets. If this subentry is not present in a SYSTEM entry, a default
value of 500 is used for that SYSTEM entry. The value is used to calculate the
buffer size needed in order to process the entries.

PURGE
specifies the PURGE indicator of the PTS SYSTEM entry. When this indicator is
set, any SYSMOD that is successfully processed by ACCEPT is deleted from the
PTS provided that the APPLY indicator is set in the SYSMOD entry on the PTS and
NOAPPLY was not specified on the ACCEPT control statement.

Note: When the PTS SYSTEM entry is created, the PURGE indicator is set. To
reset the indicator requires a second UCL statement specified as "DEL SYS
PURGE.".

Note: When the PTS SYSTEM entry is listed, the PURGE indicator is shown as
"YES" if the PURGE indicator is set and as "NO" if the PURGE indicator is reset.

REJECT
specifies the REJECT indicator of the PTS SYSTEM entry. When this indicator is
set, any SYSMOD that is successfully processed by RESTORE is deleted from the
PTS.

Note: When the PTS SYSTEM entry is created, the REJECT indicator is set. To
reset the indicator requires a second UCL statement specified as "DEL SYS
REJECT.".

Note: When the PTS SYSTEM entry is listed, the REJECT indicator is shown as
"YES" if the REJECT indicator is set and as "NO" if the REJECT indicator is
reset.

RETRYNAME(name)

specifies the RETRYNAME subentry of the PTS system entry, where 'name' is the
name of the program to be invoked by SMP4 to perform the recovery COMPRESS
function before attempting a RETRY following a UTILITY failure.

NOTE: If the RETRYNAME subentry is not present in the PTS system entry SMP4
invokes the program IEBCOPY to perform the recovery COMPRESS function.

RETRYPARM(parm)
specifies the RETRYPARM subentry of the PTS system entry, where 'perm' speci-
fies values to be passed as parameters to the program invoked by SMP4 to per-
form the recovery COMPRESS function before attempting a RETRY following a

 234 Chapter 5 - OS/VS SMP System Programmer's Guide

utility failure. A maximum of 100 characters may be specified.

NOTE: If the RETRYNAME subentry is not present in the PTS system entry, SMP4
does not pass any parameters to the recovery COMPRESS program. If a RETRYPARM
subentry is specified, ensure that the parameters are valid for the substitute
recovery COMPRESS program or IEBCOPY.

RETRYPRINT(ddname)

specifies the RETRYPRINT subentry of the PTS system entry, where 'ddname' is
the DDNAME for the output listing data set produced by the recovery COMPRESS
program.

NOTE: If the RETRYPRINT subentry is not present in the PTS system entry, then
the ddname SYSPRINT is used. A dd-statement specifying either SYSPRINT or the
DDNAME in the RETRYPRINT subentry, when present, must be supplied when SMP4 is
invoked to perform functions that may use the recovery COMPRESS program.

RETRYRC(value)

specifies the RETRYRC subentry of the PTS system entry, where 'value' is the
return code value to be compared with the code returned from the recovery COM-
PRESS program. When the value returned is higher than the RETRYRC subentry val-
ue, the result of the recovery COMPRESS function is considered unsuccessful and
the SMP retry is considered to have failed. In this case SMP is terminated. The
'value' may be any number from 0 to 16.

See 'OS/VS UTILITIES' (GC35-0005) for a description of the IEBCOPY return
codes.

NOTE: If the RETRYRC subentry is not present in the PTS system entry, then the
value of 0 is compared with the recovery COMPRESS program return code.

SREL(cnnn[,cnnn]...)
specifies the SREL subentriers. "cnnn" is a system release identifier. Multiple
"cnnn" values may appear in the PIS SYSTEM entry.

Note: At least one SREL subentry must be present.

UPDATNAME(name)

specifies the UPDATNAME subentry. "name" is the name of the program to be
invoked by SMP to perform the text update function.

Note: If the UPDATNAME subentry is not present, SMP invokes the program
IEBUPDTE to perform the text update function.

UPDATPARM(parm)

specifies the UPDATPARM subentry. "perm" specifies values to be passed as
parameters to the program invoked by SMP to perform the text update function. A
maximum of 100 characters may be specified.

Note: If the UPDATPARM subentry is not present, SMP passes the parameter "MOD"
if the member in the output PDS exists and is being updated, or "REP" if the
member does not exist or is being replaced. If the UPDATPARM subentry is pre-
sent, its value is appended to the "MOD" or "REP" parameter and passed to the
text update program. If you specify a UPDATPARM subentry, ensure that the
parameters are valid for your substitute text update program or IEBUPDTE.

UCL - SMPPTS SYSTEM ENTRY 235

UPDATPRINT(ddname)
specifies the UPDATPRINT subentry. "ddname" is the ddname for the output list-
ing data set produced by the text update program.

Note: If the UPDATPRINT subentry is not present, the ddname SYSPRINT is used.
A DD statement specifying either SYSPRINT or the ddname in the UPDATPRINT sub-
entry, when present, must be supplied when SMP is invoked to perform functions
that use the text update program.

UPDATRC(value)
specifies the UPDATRC subentry. "value" is the return code value to be compared
with the code returned from the text update program. When the value returned
is higher than the UPDATRC subentry value, the result of the text update func-
tion is considered unsuccessful and the SYSMOD for which the text update pro-
gram was invoked is terminated. The value may be any number from 0 to 16.

See OS/VS Utilities for a description of the IEBUPDTE return codes.

Note: If the UPDATRC subentry is not present, the value of 0 is compared with
the text update program return code.

ZAPNAME(name)
specifies the ZAPNAME subentry. "name" is the name of the program to be invoked
by SMP to perform the IMASPZAP service aid function.

Note: If the ZAPNAME subentry is not present, SMP invokes the program IMASPZAP
to perform the IMASPZAP function.

ZAPPARM(parm)
specifies the ZAPPARM subentry. "parm" specifies values to be passed as parame-
ters to the program invoked by SMP to perform the IMASPZAP function. A maximum
of 100 characters may be specified.

Note: If the ZAPPARM subentry is not present, SMP does not pass any parameters
to the IMASPZAP program. If you specify a ZAPPARM subentry, ensure that the
parameters are valid for your substitute IMASPZAP program or IMASPZAP.

ZAPPRINT(ddname)
specifies the ZAPPRINT subentry. "ddname" is the ddname for the output listing
data sat produced by the IMASPZAP program.

Note: If the ZAPPRINT subentry is not present, the ddname SYSPRINT is used. A
DD statement specifying either SYSPRINT or the ddname in the ZAPPRINT subentry,
when present, must be supplied when SMP is invoked to perform functions that
use the IMASPZAP program.

ZAPRC(value)
specifies the ZAPRC subentry. "value" is the return code value to be compared
with the code returned from the IMASPZAP program. When the value returned is
higher than the ZAPRC subentry value, the result of the IMASPZAP function is
considered unsuccessful and the SYSMOD for which the IMASPZAP program was
invoked is terminated. The value may be any number from 0 to 16.

See OS/VS1 Service Aids or OS/VS2 System Programming Library: Service Aids for
a description of the IMASPZAP return codes.

 236 Chapter 5 - OS/VS SMP System Programmer's Guide

Note: If the ZAPRC subentry is not present, the value of 4 is compared with the
IMASPZAP program return code.

UCL - SMPPTS SYSTEM ENTRY 237

 238 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPSCDS SYSMOD ENTRIES

Syntax

DEL SYSMOD(name)
•

Operands

SYSMOD(name)
specifies a SYSMOD entry which is to be deleted. For the SCDS, the only valid
operation is DEL.

UCL - SMPSCDS SYSMOD Entries 239

 240 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPSTS SRC ENTRIES

Syntax

DEL SRC(name) •

Operands

SRC(name)
specifies a SRC entry which is to be deleted. For the STS, the only valid oper-
ation is DEL.

UCL - SMPSTS SRC Entries 241

 242 Chapter 5 - OS/VS SMP System Programmer's Guide

UCL - SMPMTS MAC ENTRIES

Syntax

DEL MAC(name) •

Operands

MAC(name)
specifies a MAC entry which is to be deleted. For the MIS, the only valid oper-

ation is DEL.

UCL - SMPMTS MAC Entries 243

 244 Chapter 5 - OS/VS SMP System Programmer's Guide

UNLOAD CONTROL STATEMENT

The UNLOAD control statement will unload entries from the CDS or ACDS to the
SMPPUNCH dataset. The output produced is in the form of UCL statements which, if
processed by UCLIN, will recreate the unloaded ACDS/CDS entries. This function
enables the user to unload all or selected parts of a CDS or ACDS for backup or
initialization of entries on other control datasets.

UNLOAD SYNTAX

UNLOAD dataset [entry[,entry]...] [option[,option]...]
[RC(function=code[,function=code]...)]
•

UNLOAD OPERANDS

dataset
specifies either the ACDS or CDS data set.

entry
specifies the entry or entry types to be unloaded. (See below)

option
specifies the options which control the data unloaded. (See below)

If no entries or options are specified, all of the data in the specified data set
is unloaded.

RC(function=code[,function=code]...)
specifies one or more SMP functions with associated return codes to enable you
to bypass normal SMP return code processing. The function specified must be one
of the following: ACCEPT, APPLY, JCLIN, LIST, LOG, RECEIVE, REJECT, RESTORE or
UCLIN. The code specified must be a decimal number that is greater than or
equal to 0 and less than 16. The code specified cannot equal 16. When speci-
fied, the RC operand must be the last operand on the UNLOAD statement, or a syn-
tax error results.

Specifying the RC operand causes the following return code processing to occur:

• If any specified function returns a code greater than its specified code,
UNLOAD processing is bypassed and UNLOAD terminates with a return code of
12. The default codes are 8 or greater from UCLIN and JCLIN, and 12 or
greater from all other functions.

• If all specified SMP functions return codes less than or equal to their
indicated codes, UNLOAD is executed.

UNLOAD Control Statement 245

• Previous processing by any SMP function not specified on the RC operand has
no effect on the current UNLOAD processing.

UNLOAD ENTRY TYPES AND OPTIONS

ADDINPUT
directs SMP to read the set of ADDIN control statements present in the dataset
specified by the SMPADDIN DD statement. These control statements contain data
that SMP will merge with that present in the dataset being UNLOADED and produce
appropriate UCLIN control statements. The data specified in the ADDIN control
statements override the data present in the dataset being UNLOADED. See ADDIN
statement description on page 249 for further information.

ASSEM[(assemname[,assemname]...)]
specifies that information for all ASSEM entries or the specified ASSEM entries
is to be unloaded. Cannot be specified for the ACDS.

DLIB[(dlibname[,dlibname]...)]
specifies that information for all DLIB entries or the specified DLIB entries
is to be unloaded. Cannot be specified for the ACDS.

FORFMID(fmid)
specifies that only those entries whose FMID subentry field matches the value
specified will be unloaded. Note: Since ASSEM, LMOD, DLIB and SYSTEM entries
have no FMID associated with them, they are unloaded when FORFMID is specified
without MOD, MAC, SRC or SYSMOD entry qualifiers.

MAC[(macname[,macname]...)]
specifies that information for all MAC entries or the specified MAC entries is
to be unloaded.

MOD[(modname[,modname]...)]
specifies that information for all MOD entries or the specified MOD entries is
to be unloaded.

SRC[(srcname[,srcname]...)]

specifies that information for all SRC entries or the specified SRC entries is
to be unloaded.

SYSMOD[(sysmodid[,sysmodid]...)] [sysmod_options]
specifies that information for all SYSMOD entries or the specified SYSMOD
entries is to be unloaded.

The following sysmod_options may be specified to control the types of SYSMODs
unloaded:

APAR - unload APAR-type SYSMODs

DELETE - unload deleted SYSMODs

ERROR - unload SYSMODs whose ERROR indicator is set

FUNCTION - unload FUNCTION-type SYSMODs

 246 Chapter 5 - OS/VS SMP System Programmer's Guide

NOAPPLY - unload SYSMODs that have been received and accepted, but not
applied. Both the CDS and the ACDS data sets must be available when NOAPPLY
is coded. A SYSMOD is considered applied when the SYSMOD entry exists on
the CDS with the ERROR status indicator set off. This operand can be abbre-
viated as 'NOAPP'.

NOAPPLY cannot be specified for the CDS data set.

NOSUP - unload SYSMODs which are not superseded This operand is mutually
exclusive with the SUP operand. Specification of both causes a syntax error.

PTF - unload PTF-type SYSMODs

SUP - unload superseded SYSMODs. This operand is mutually exclusive with the
NOSUP operand. Specification of both causes a syntax error.

USERMOD - unload USERMOD-type SYSMODs.

SYS
specifies that system entry is to be unloaded.

UCLINDIS(READ|WRITE|NO)
controls the DIS option to be generated on the UCLIN statement produced. For
example, if "UNLOAD CDS UCLINDIS(NO)" is used to unload a CDS, the UCLIN
statement produced in SMPPUNCH is "UCLIN CDS DIS(NO)."

UNLOAD DDNAMES

SMPADDIN (required if ADDINPUT is specified)
SMPACDS (required if the ACDS operand is specified)
SMPCDS (required if the CDS operand is specified)
SMPCNTL (required)
SMPLOG (required)
SMPOUT (required)
SMPPUNCH (required)

PROGRAMMING CONSIDERATIONS

Since the volume of output produced by the UNLOAD function will be large the
SMPPUNCH DD statement should be directed to either a direct access dataset or to
tape. In addition the SMPPUNCH DD statement should specify the DCB parameter with
a BLKSIZE that is a multiple of 80. The larger the BLKSIZE the less I/O operations
SMP will have to perform.

UNLOAD Control Statement 247

 248 Chapter 5 - OS/VS SMP System Programmer's Guide

UNLOAD ADDIN CONTROL STATEMENTS

ADDIN control statements allow the user to change the UCLIN statements generated
by UNLOAD. The data provided in the ADDIN statements override the corresponding
data in the CDS or ACDS entry. The format of the ADDINPUT statements is similiar to
that of the UCLIN statements, however, only a limited number of fields are sup-
ported.

The ADDIN facility is included to be compatible with the facility in SMP Release
3. In SMP Release 3 this facility was used for creation of SMP Release 4 UCLIN
statements; in SMP Release 4 there is little use for this facility.

ADDIN control statements are placed in the SMPADDIN dataset.

ADDIN SYNTAX AND OPERANDS

ADDIN - MACRO Entries

REP MAC(macname) FMID(sysmodid) •

Changes the FMID value generated for the specified macro.

ADDIN - MODULE Entries

REP MOD(modname) FMID(sysmodid) •

Changes the FMID value generated for the specified module.

ADDIN - SOURCE Entries

REP SRC(srcname) FMID(sysmodid) •

Changes the FMID value generated for the specified source.

ADDIN - SYSTEM Entries

REP SYS [CDSID(name)] (SREL(cnnn)] •

Changes the CDSID and/or SREL value generated for the SYSTEM entry.

UNLOAD ADDIN Control Statements 249

ADDIN - SYSMOD Entries

REP SYSMOD(sysmodid) [NEWNAME(sysmodid)]

[FMID(sysmodid)] [FUNCTION|PTF|APAR|USERMOD] •

Changes the specified SYSMOD's name and/or FMID and/or type.

ADDIN DDNAMES

(see "UNLOAD Control Statement")

UNLOAD/ADDIN EXAMPLE

The entries in the CDS may be unloaded and the CDSID generated for subsequent
UCLIN processing may be changed using the following set of control and ADDIN
statements:

//SMPCNTL DD
UNLOAD CDS ADDINPUT /* Unload the Entire CDS */ .

/*

//SMPADDIN DD *
REP SYS CDSID(BKUPCDS) /* Change CDSID */ .

/*

The output produced (to SMPPUNCH) will be of the form

UCLIN CDS .
REP SYS SREL(xxxx) NUCID(n)

CDSID(BKUPCDS) /* As specified by ADDIN data */ .
REP ASSEM(....
REP DLIB(....
REP LMOD(....
REP MAC(....
REP MOD(....
REP SRC(....
REP SYSMOD(....

 250 Chapter 5 - OS/VS SMP System Programmer's Guide

CHAPTER 6: MODIFICATION CONTROL STATEMENTS

Modification Control Statements are the input definitions of elements to be added
to, modified in, or deleted from the target system and distribution libraries, and
the information necessary to ensure that the environment of the target system and
distribution libraries meets the required functional and service levels. The
SMPPTFIN data set is used to contain the modification control statements.

This chapter describes the format and use of these statements. The SMP modifica-
tion control statements are described in the following alphabetical order:

• ++APAR (temporary corrective fix)

• ++FUNCTION (new or replacement function)

• ++IF (conditional action)

• ++JCLIN (JCL input data)

• ++MAC (macro replacement)

• ++MACUPD/++UPDTE (macro update)

• ++MOD (module replacement)

• ++PTF (permanent corrective fix)

• ++SRC (source module replacement)

• ++SRCUPD (source update)

• ++USERMOD (user modification of IBM software)

• ++VER (for verification of environment)

• ++ZAP (module update)

Chapter 6: SMP Modification Control Statements 251

 252 Chapter 6 - OS/VS SMP System Programmer's Guide

++APAR MODIFICATION CONTROL STATEMENT

THE APAR (++APAR) MODIFICATION CONTROL STATEMENT

The ++APAR modification control statement identifies a service SYSMOD. This type
of modification is considered a temporary corrective fix to the elements of target
system and distribution libraries. All other modification control statements for
this SYSMOD follow this header modification control statement.

APAR SYNTAX

++APAR(sysmodid)
[FILES(number)]

APAR OPERANDS

++ must be in columns 1 and 2

sysmodid

specifies a unique seven-character system modification identifier which names
the APAR system modification.

FILES(number)
specifies the number of files belonging to the APAR SYSMOD that are unloaded
partitioned data sets on a tape or set of tapes. The maximum number is 9999.
The files must be on standard labelled tapes. Members of these files can be
elements, JCL input data, or non-SMP data. When this operand is specified, the
RELFILE keyword is required on those ++JCLIN, ++MAC, ++MOD, and ++SRC modifica-
tion control statements that have their associated member in an unloaded PDS.
At least one element or ++JCLIN modification control statement must have the
RELFILE operand specified.

APAR PROGRAMMING CONSIDERATIONS

• During APPLY and ACCEPT processing, the sysmodid is placed in the MAC, MOD,
and SRC entries in the CDS and ACDS, respectively, as RMID or UMID subentries.
The Programming Considerations for the element modification control statement
describe the updates of the CDS and ACDS entries.

• An APAR SYSMOD is accepted into the distribution libraries only when the APARS
keyword is specified on the ACCEPT control statement.

++APAR Modification Control Statement 253

• When you specify the FILES operand, the SMPTLIB DD statement is required dur-
ing RECEIVE, REJECT, APPLY, RESTORE, and ACCEPT processing.

APAR EXAMPLE

A temporary fix to module IFBMOD01 is needed to answer APAR 0Z12345 on an MVS sys-
tem. The module must be at the service level provided by PTF U200004 for function
FXY1040.

++APAR(AZ12345).
++VER(Z038) FMID(FXY1040) PRE(UZ00004).
++ZAP(IFBMOD01) DISTLIB(AOSFB).
IMASPZAP Control Statements

 254 Chapter 6 - OS/VS SMP System Programmer's Guide

++FUNCTION MODIFICATION CONTROL STATEMENT

THE FUNCTION (++FUNCTION) MODIFICATION CONTROL STATEMENT

The ++FUNCTION modification control statement identifies a function SYSMOD. This
type of modification introduces new or replacement function into target system and
distribution libraries. All other modification control statements follow this
header modification control statement.

FUNCTION SYNTAX

++FUNCTION(sysmodid)
[FESN(fe service number)]
[FILES(number)]
•

FUNCTION OPERANDS

++ must be in columns 1 and 2

sysmodid
specifies a unique seven character system modification identifier that names
the function system modification.

FESN(fe service number)
specifies a seven character FE service number.

FILES(number)
specifies that the number of files belonging to this function are unloaded par-
titioned data sets on a tape or set of tapes. The maximum number is 9999. The
files must be on standard labelled tapes. Members of these files can be ele-
ments, JCL input data, or non-SMP data. When this operand is specified, the
RELFILE keyword is required on those ++JCLIN, ++MAC, ++MOD, and ++SRC modifica-
tion control statements that have their associated member in an unloaded PDS.
At least one element or ++JCLIN modification control statement must have the
RELFILE operand specified.

FUNCTION PROGRAMMING CONSIDERATIONS

• During APPLY and ACCEPT processing, the SYSMOD-ID is placed in the MAC, MOD,
and/or SRC entries in the CDS and ACDS, respectively, as FMID and RMID sub-
entries. The Programming Considerations for each element modification con-
trol statement describe the updates to the CDS and ACDS entries.

++FUNCTION Modification Control Statement 255

• ++MACUPD, ++UPDTE, ++SRCUPD, and ++ZAP modification control statements are
not allowed in function SYSMOD packages.

When you specify the FILES operand, the SMPTLIB DD statement is required dur-
ing RECEIVE, REJECT, APPLY, RESTORE, and ACCEPT processing.

FUNCTION EXAMPLE

A function SYSMOD is to be created with a SYSMOD-ID of FXY1040 that is dependent on
function GXY1000. The elements and JCL input data are members of three unloaded
partitioned data sets on a tape created using the relative file technique.

++FUNCTION(FXY1040) FILES(3).
++VER(Z038) FMID(GXY1000).
++JCLIN RELFILE(1).
++MOD(IFBMOD01) RELFILE(2) DISTLIB(AOSFB).
++MOD(IFBMOD02) RELFILE(2) DISTLIB(AOSFB).
++MAC(IFBMAC01) RELFILE(3) DISTLIB(IFBMACS).

 256 Chapter 6 - OS/VS SMP System Programmer's Guide

++IF MODIFICATION CONTROL STATEMENT

THE CONDITIONAL ACTION (++IF) MODIFICATION CONTROL STATEMENT

The ++IF modification control statement describes actions to be taken when the
condition described is satisfied during APPLY and ACCEPT processing of the SYSMOD
that includes the ++IF modification control statement. The condition might also be
satisfied during subsequent APPLY and ACCEPT processing, in which case the action
is taken at that time. The purpose of conditional action specifications is to
ensure that, when the functional environment of target system and distribution
libraries changes, the correct function and/or service is also changed for ele-
ments of the system indirectly affected by the environment change.

++IF modification control statements are interpreted, reformatted and placed in
the CRQ data set during APPLY processing and the ACRQ data set during ACCEPT proc-
essing. They are deleted from the CRQ and ACRQ during APPLY and ACCEPT processing
when the associated SYSMOD is deleted or during RESTORE processing when the asso-
ciated SYSMOD is successfully processed.

++IF modification control statements are associated with the ++VER modification
control statement preceding it in the SYSMOD. Multiple ++IF modification control
statements can be specified following each ++VER modification control statement.

IF SYNTAX

++IF FMID(fmid)
[THEN]
REQ(req[,req]...)

IF OPERANDS

++ must be in columns 1 and 2

FMID(fmid)
specifies, as a condition, the SYSMOD-ID of a function SYSMOD, fmid. that must
be either installed or in the process of being installed on the target system
by APPLY processing or on the distribution libraries by ACCEPT processing in
order for the action portion of the ++IF modification control statement to be
processed.

THEN
specifies that the action operand of the ++IF modification control statement
follows.

++IF Modification Control Statement 257

•

REQ(req[,req]...)
specifies, as an action, one or more SYSMODs that are requisites, req, of the
SYSMOD containing the ++IF modification control statement. If the function
SYSMOD specified in the FMID operand is applied to the target system or
accepted into the distribution libraries, then the requisite SYSMODs must be
applied or accepted with this SYSMOD or when the function SYSMOD identified by
the FMID operand is processed.

IF PROGRAMMING CONSIDERATIONS

• The operands must be specified in the order shown in the syntax.

• Neither the SYSMOD-ID in the FMID operand of the associated ++VER modification
control statement nor the SYSMOD-ID in the header modification control state-
ment can be specified as the value for the FMID operand.

IF EXAMPLE

PTF UZ00004 contains service to elements that belong to function FXY1040. If func-
tion FXY1050 has been applied or is in the process of being applied, the requisite
PTF UZ00005 must be applied at the same time as PTF UZ00004 or have already been
applied. If function FXY1050 is not presently applied, then PTF UZ00005 is not
required, but the ++IF modification control statement is saved by SMP to be used
if function FXY1050 is processed at a future time. When function FXY1050 is
applied, PTF UZ00005 is considered to be an unsatisfied conditional requisite that
must be applied concurrently, if it has not already been applied.

++PTF(UZ00004).
++VER(Z038) FMID(FXY1040).
++IF FMID(FXY1050) THEN REQ(UZ00005).
++MOD(IFBMOD01) DISTLIB(AOSFB).
++MACUPD(IFBMAC01) DISTLIB(IFBMACS).

 258 Chapter 6 - OS/VS SMP System Programmer's Guide

++JCLIN MODIFICATION CONTROL STATEMENT

THE JOB CONTROL LANGUAGE (++JCLIN) MODIFICATION CONTROL STATEMENT

The ++JCLIN modification control statement describes the job control language
input data for a SYSMOD. Only one ++JCLIN modification control statement is
allowed for a SYSMOD and it must be placed after all ++VER and ++IF modification
control statements.

JCLIN SYNTAX

++JCLIN
[ASM({PGM=name | procname})]
[COPY({PGM=name | procname})]
[LKED({PGM=name | procname}))
[RELFILE(number) | TXLIB(ddname)]
[UPDATE({PGM=name | procname})]
•

JCLIN OPERANDS

++ must be in columns 1 and 2

ASM({PGM=name | procname})
specifies the name of the assembler program or procedure that is used in the
JCL data. This operand must be specified if the name is different from those
recognized by SMP, which are the program names ASMBLR, IEUASM, and IFOX00, and
procedure name ASMS.

COPY({PGM=name | procname})
specifies the name of the copy program or procedure that is used in the JCL
data. This operand must be specified if the name is different from that recog-
nized by SMP, which is the program name IEBCOPY.

LKED({PGM=name | procname})
specifies the name of the link edit program or procedure that is used in the JCL
data. This operand must be specified if the name is different from those
recognized by SMP, which are the program names HEWL and IEWL, and procedure
name LINKS.

RELFILE(number)

specifies the relative position of the file containing the JCL data within the
files associated with this SYSMOD. The file that contains the JCL data as one
of its members must be an unloaded partitioned data set that is physically
located on the same tape or set of tapes as the file containing the SYSMOD to
which this modification control statement belongs.

++JCLIN Modification Control Statement 259

When RELFILE is specified, the FILES keyword must be specified on the header
modification control statement.

The RELFILE tape data set name is formed from the RELFILE operand as
'id#.Fnumber', where 'id#' is the SYSMOD-ID from the SYSMOD header modification
control statement. The operand 'number' is a decimal number greater than or
equal to one (1) with no leading zeroes; the maximum number allowed is 9999.
The member of the data set that contains the JCL input data must match the
SYSMOD's sysmod-id; for example, the JCLIN for "++FUNCTION(ESY1400)"
would be supplied in member, "ESY1400", of the file identified by the ++JCLIN
RELFILE keyword.

Note: This keyword is optional and mutually exclusive with TXLIB.

TXLIB(ddname)
specifies the ddname of a partitioned data set which contains the JCL input
data for the SYSMOD. The member of the TXLIB data set that contains the JCL
input data must match the SYSMOD's sysmod-id; for example, the JCLIN for
"++PTF(UZ11111)" would be supplied in member, "UZ11111", of the data set
identified by the ++JCLIN TXLIB keyword.

Note: This keyword is optional and mutually exclusive with RELFILE.

UPDATE({PGM=name | procname})
specifies the name of the update program or procedure that is used in the JCL
data. This operand must be specified if the name is different from that recog-
nized by SMP, which is the program name IEBUPDTE.

JCLIN PROGRAMMING CONSIDERATIONS

• If the JCL input data is in the SMPPTFIN data set input stream, it must imme-
diately follow the ++JCLIN modification control statement and must not contain
any records that have the characters "++" in positions 1 and 2.

• Processing the JCL data can be avoided by specifying the NOJCLIN operand on
the APPLY control statement.

• See the Programming Considerations of the JCLIN Control Statement in Chapter 5
for examples of JCL input data.

JCLIN EXAMPLE

For function FXY1050, the JCL input data, an object module, IFBMOD01, and a macro,
IFBMAC01, are located in a separate text library named LIB1501. The JCL data con-
tains an assembler program named ALTASM.

 260 Chapter 6 - OS/VS SMP System Programmer's Guide

++FUNCTION (FXY1050).
++VER(Z038) FMID(GXY1000) VERSION(FXY1040) .
++JCLIN ASM(PGM=ALTASM) TXLIB(LIB1501).
++MOD(IFBMOD01) DISTLIB(AOSFB) TXLIB(LIB1501).
++MAC(IFBMAC01) DISTLIB(IFBMACS) TXLIB(LIB1501).

The following DD statement is needed at APPLY/ACCEPT time to define the TXLIB data
set:

//LIB1501 DD DSN=...

++JCLIN Modification Control Statement 261

 262 Chapter 6 - OS/VS SMP System Programmer's Guide

++MAC MODIFICATION CONTROL STATEMENT

THE MACRO (++MAC) MODIFICATION CONTROL STATEMENT

The ++MAC modification control statement describes a single macro replacement
within a SYSMOD. It must immediately precede the macro definition statements when
they are in the SMPPTFIN data set input stream.

MAC SYNTAX

++MAC(name)
[ASSEM(name[,name]...)]
[BASE(FIXED | UPDATE)]
[DELETE]
[DISTLIB(ddname)]
[DISTMOD(ddname) | DISTOBJ(ddname)]
[DISTSRC(ddname) | ASMLIB(ddname)]
[MALIAS(alias[,alias]...)]
[PREFIX(prefix[,prefix]...)]
[RELFILE(number) | TXLIB(ddname)]
[RMID(sysmodid)]
[SSI(code)]
[SYSLIB(ddname)]
[UMID(sysmodid[,sysmodid]...)]
[VERSION(sysmodid[,sysmodid]...)]
•

MAC OPERANDS

++ must be in columns 1 and 2

(name)
specifies the name of the macro member in the distribution library and,
optionally, in the target system library. The name can contain any alphanumeric
characters and '?', '$', '#', and '@'.

ASSEM(name[,name]...)
specifies the names of modules to be assembled in addition to those modules
named as GENASM subentries in the CDS MAC entry. The source for the assemblies
is found as a matching CDS ASSEM entry, (A)CDS SOURCE entry or member in the
DISTSRC/ASMLIB dataset. The first match (in the order indicated above) is used.

Note: APPLY and ACCEPT processing place the specified names into the SYSMOD
entry created on the CDS and ACDS.

++MAC Modification Control Statement 263

BASE(FIXED | UPDATE)
not supported but included for compatibility with SYSMODs that can be processed
by previous versions of SMP.

DELETE
specifies that this macro is to be removed from target libraries, distribution
libraries, and SMP control data sets.

Note: This keyword is mutually exclusive with all other keywords except
DISTLIB, MALIAS and VERSION. If any other keywords are specified, a syntax
error results.

DISTLIB(ddname)
specifies the ddname of the distribution library.

Note: This keyword must be specified if the macro has not been previously
recorded on the CDS or ACDS data sets. If the entry does exist in the data
sets, the value specified is compared with the DISTLIB subentry and, if they
are not the same, the SYSMOD is not processed by APPLY and/or ACCEPT.

DISTMOD(ddname) | DISTOBJ(ddname)
specifies the ddname of the link edit distribution library for those modules
specified in the ASSEM keyword. The object code from the assembler is link
edited, during ACCEPT processing, to the library specified.

DISTSRC(ddname) | ASMLIB(ddname)
specifies the ddname of the library that contains the additional assembly or
source modules to be assembled. The additional assembly or source modules must
be specified in the ASSEM keyword.

MALIAS(alias[alias]...)
specifies the alias names for the macro in both the target system and distrib-
ution libraries.

PREFIX(prefix[,prefix]...)]
specifies the first characters (prefix) of the names of modules to be assembled
in addition to those modules named as GENASM subentries in the CDS MAC entry.
The prefix values must be seven (7) characters or less.

The full module names are determined by comparing the prefix with the (A)CDS
MOD entry names.

The sources for the assemblies are found as a CDS ASSEM entry, (A)CDS SOURCE
entry or member in the DISTSRC/ASMLIB dataset matching the module names deter-
mined above. The first matching source (in the order indicated) is used.

RELFILE(number)

specifies the relative position of the file containing the macro within the
files associated with this SYSMOD. The file that contains the macros as one of
it members must be an unloaded partitioned data set that is physically located
on the same tape or set of tapes as the file containing the SYSMOD to which this
modification control statement belongs.

When RELFILE is specified, the FILES keyword must be specified on the header

 264 Chapter 6 - OS/VS SMP System Programmer's Guide

modification control statement.

The RELFILE tape data set name is formed from the RELFILE operand as
'id#.Fnumber' , where 'id# ' is the SYSMOD-ID from the SYSMOD header modification
control statement, and 'number' is a decimal number greater than or equal to
one with no leading zeroes; the maximum number allowed is 9999.

Note: This keyword is optional and mutually exclusive with TXLIB.

RMID(sysmodid)
specifies the RMID of the macro. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the MACRO (the last PTF to
replace the macro.)

SSI(code)
specifies eight hexadecimal digits of system status information. This informa-
tion is placed i n the directory of the target system library or the MTS during
APPLY processing and the distribution library during ACCEPT processing as four
packed hexadecimal bytes of user data. See the IEBUPDTE program description in
the OS/VS Utilities manual.

Note: This keyword is ignored if text is located in a library, which is the
case when either the RELFILE or TXLIB keyword is specified.

SYSLIB(ddname)
specifies the ddname of the target system library, if the macro exists in one.
APPLY and RESTORE processing update this library.

TXLIB(ddname)
specifies that the macro is not included in the SMPPTFIN input file but
resides in the library pointed to by the specified ddname.

Note: This keyword is mutually exclusive with the RELFILE keyword.

UMID(sysmodid[,sysmodid]...)
specifies the UMID(s) of the macro. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the MACRO (the set of PTFs which
have updated the macro since it was last replaced).

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by this ver-
sion of the macro. This version of the macro is superior to the version(s) of
the macro found in each of the SYSMODs listed in the operand of the VERSION
keyword.

When this parameter is specified it overrides any VERSION operand values that
might be specified on the ++VER modification control statement.

++MAC Modification Control Statement 265

MAC PROGRAMMING CONSIDERATIONS

• When inner macros, that is macros that are referred to by another macro
instruction that resides in the macro library, are replaced, the modules that
require reassembly must be specified in the ASSEM operand list.

• If the macro replacement resides in a TXLIB partitioned data set instead of
the SMPPTFIN data set, the TXLIB data set is required during SMP APPLY or
ACCEPT processing for this macro.

• If the macro resides in a target system library (rather than the SMPMTS), the
target system library should be included in the SYSLIB DD concatenation for
assemblies at APPLY. See "SMP Cataloged Procedure" in Chapter 3 and "SYSLIB
Data Set" in Chapter 7 for a discussion of the SYSLIB concatenation.

• The operating system library for the macro is determined either from the
SYSLIB or DISTLIB keywords (see "Processing Source and Macro Modifications" in
Chapter 2.)

MAC EXAMPLE

The macro replacement for IFBMAC01 does not follow in the input stream. The
replacement resides in the text library SYS1.REPLACE.

++MAC(IFBMAC01) TXLIB(REPLACE).

In this example, the following DD statement is needed at APPLY and ACCEPT time to
define the TXLIB data set=

//REPLACE DD DSN=...

Since the DISTLIB keyword was not specified, the MAC entry must exist on the CDS in
order for APPLY processing to occur and on the ACDS in order for ACCEPT NOAPPLY
processing to occur.

 266 Chapter 6 - OS/VS SMP System Programmer's Guide

++MACUPD/++UPDTE MODIFICATION CONTROL STATEMENT

THE MACRO UPDATE (++MACUPD/++UPDTE) MODIFICATION CONTROL STATEMENT

The ++MACUPD modification control statement describes a single macro update within
a SYSMOD. It must immediately precede the macro update statements in the SMPPTFIN
data set input stream. This statement may not appear in a function SYSMOD. For
compatibility, ++MACUPD can be specified as ++UPDTE, but ++MACUPD is preferred
because it is more descriptive.

MACUPD SYNTAX

++MACUPD(name) | ++UPDTE(name)
[ASSEM(name[,name]...)]
[BASE(FIXED | UPDATE)]
[DISTLIB(ddname)]
[DISTMOD(ddname) | DISTOBJ(ddname)]
[DISTSRC(ddname) | ASMLIB(ddname)]
[MALIAS(alias[,alias]...)]
[PREFIX(prefix[,prefix]...)]
[SYSLIB(ddname)]
[VERSION(sysmodid[,sysmodid]...)]
•

MACUPD OPERANDS

++MACUPD(name) | ++UPDTE(name)

Either ++MACUPD or ++UPDTE can be specified as the name of this modification
control statement.

++ must be in columns 1 and 2

(name)
specifies the name of the macro member in the distribution library and,
optionally, in the target system library. The name can contain any alphanumer-
ic characters and ' ?' , '$', '#' , and '@'.

ASSEM(name[,name]...)

specifies the names of modules to be assembled in addition to those modules
named as GENASM subentries in the CDS MAC entry. The source for the assemblies
is found as a matching CDS ASSEM entry, (A)CDS SOURCE entry or member in the
DISTSRC/ASMLIB dataset. The first match (in the order indicated above) is used.

Note: APPLY and ACCEPT processing place the specified names into the SYSMOD
entry created on the CDS and ACDS.

++MACUPD/++UPDTE Modification Control Statement 267

BASE(FIXED | UPDATE)
not supported but included for compatibility with SYSMODs that can be processed
by previous versions of SMP.

DISTLIB(ddname)
specifies the ddname of the distribution library.

Note: This keyword must be specified if the macro has not been previously
recorded on the CDS or ACDS data sets. If the entry does exist in the data
sets, the value specified is compared with the DISTLIB subentry and if it is
not the same, the SYSMOD is not processed by APPLY and/or ACCEPT.

DISTMOD(ddname) | DISTOBJ(ddname)
specifies the ddname of the link edit distribution library for those modules
specified in the ASSEM keyword. The object code from the assembler is link
edited during ACCEPT processing to the library specified.

Note: Either DISTMOD or DISTOBJ can be specified, but not both. DISTMOD is
preferred because it is more descriptive.

DISTSRC(ddname) | ASMLIB(ddname)
specifies the ddname of the library that contains the additional assembly or
source modules to be assembled. The additional assembly or source modules must
be specified in the ASSEM keyword.

Note: Either DISTSRC or ASMLIB can be specified, but not both. DISTSRC is
preferred because it is more descriptive.

MALIAS(alias[,alias]...)
specifies the alias names for the macro for both the target system and distrib-
ution libraries.

PREFIX(prefix[,prefix]...)
specifies the first characters (prefix) of the names of modules to be assembled
in addition to those modules named as GENASM subentries in the CDS MAC entry.
The prefix values must be seven characters or less.

The full module names are determined by comparing the prefix with (A)CDS MOD
entry names.

The source for the assemblies is found as a CDS ASSEM entry, (A)CDS SOURCE
entry or member in the DISTSRC/ASMLIB dataset matching the above full module
names. The first match (in the order indicated above) is used.

SYSLIB(ddname)
specifies the ddname of the target system library if the macro exists in one.
APPLY and RESTORE processing update this library.

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by this ver-
sion of the macro. The version of the macro in this SYSMOD is superior to the
version(s) of the macro to be found in each of the SYSMODs specified as values
of the VERSION operand.

When this parameter is specified it overrides any VERSION operand values that
might be specified on the ++VER modification control statement.

 268 Chapter 6 - OS/VS SMP System Programmer's Guide

MACUPD PROGRAMMING CONSIDERATIONS

• When inner macros, that is macros that are referred to by another macro
instruction that resides in the macro library, are replaced, the modules that
require reassembly must be specified in the ASSEM operand list.

• The operating system library for the macro is determined either from the
SYSLIB or DISTLIB keywords (see "Processing Source and Macro Modifications" in
Chapter 2.)

• If the macro resides in a operating system library (rather than the SMPMTS),
the operating system library should be included in the SYSLIB DD concatenation
for assemblies at APPLY. See "SMP Cataloged Procedure" in Chapter 3 and
"SYSLIB Data Set" in Chapter 7 for a discussion of the SYSLIB concatenation.

MACUPD EXAMPLE

The macro IFBMAC02 is in the IFBMACS distribution library and is to be updated.
The module IFBSRC01 must be reassembled when IFBMAC02 is modified. IFBSRC01 is a
source module in the distribution library SYS1.IFBSRC and a module in the distrib-
ution library SYS1.AOS23.

++MACUPD(IFBMAC02) DISTLIB(IFBMACS) ASSEM(IFBSRC01)
DISTSRC(IFBSRC) DISTMOD(AOS23).

In this example, DD statements are required at APPLY time to define the operating
system libraries for the macro and the load module to be updated as a result of the
assembly. For example, if the modules in SYS1.AOS23 (the assembled module's
distribution library) were copied to SYS1.LINKLIB and and the source modules in
SYS1.IFBSRC (the source element's distribution library) were copied to
SYS1.CHGLIB, then the following DD cards are needed:

//LINKLIB DD DSN=SYS1.LINKLIB....
//CHGLIB DD DSN=SYS1.CHGLIB....

In this example, the following DD statements are needed at ACCEPT time to define
the distribution library data sets:

//IFBMACS DD DSN=SYS1.IFBMACS.... (macro's DLIB)
//IFBSRC DD DSN=SYS1.IFBSRC.... (source DLIB for assembly)
//AOS23 DD DSN=SYS1.AOS23.... (DLIB for module assembled)

++MACUPD/++UPDTE Modification Control Statement 269

 270 Chapter 6 - OS/VS SMP System Programmer's Guide

++MOD MODIFICATION CONTROL STATEMENT

THE MODULE (++MOD) MODIFICATION CONTROL STATEMENT

The ++MOD modification control statement describes a single module replacement
within a SYSMOD. If the object code is in the SMPPTFIN data set input stream, the
++MOD modification control statement must immediately precede it.

MOD SYNTAX

++MOD(name)
[DALIAS(alias)|TALIAS(alias[,alias]...)]
[DELETE]
[DISTLIB(ddname)]
[LEPARM(leparm[,leparm]...)]
[LKLIB(ddname)|TXLIB(ddname)|RELFILE(number)]
[LMOD(name[,name]...)]
[RMID(sysmodid)]
[UMID(sysmodid[,sysmodid]...)]

[

VERSION(sysmodid[,sysmodid]...)]

•

MOD OPERANDS

++ must be in columns 1 and 2

(name)
specifies the distribution library module name. The name can contain any
alphanumeric characters and '?', '$', '#', and '@'.

DALIAS(alias)
specifies that the module has an alias only on a distribution library. The
module might have been included under its alias name during system generation
(SYSGEN).

DELETE
specifies that this module is to be removed from target libraries, distribution
library, and SMP control data sets. If this is the only module in a load mod-
ule, the LMOD entry is also removed from the CDS.

Note: This keyword is mutually exclusive with all other keywords except DALIAS,
DISTLIB, TALIAS, and VERSION. If any other keywords are specified, a syntax
error will result.

++MOD Modification Control Statement 271

[VERSION(sysmodid[,sysmodid]...)]

DISTLIB(ddname)
specifies the ddname of the distribution library.

Note: This keyword must be specified i f the module has not been previously
recorded on the CDS or ACDS. If an entry does exist in the CDS or ACDS, the
value specified is compared with the DISTLIB subentry in the CDS or ACDS and,
if it is not equal, the SYSMOD is not processed by APPLY or ACCEPT.

LEPARM(leparm[,leparm]..)
specifies linkage editor attributes for the module. Any of the following link-
age editor attributes can be specified:

AC=1 REFR
ALIGN2 RENT
DC REUS
NE SCTR
OVLY STD

See "Load Module Attributes and Link Edit Parameters" in the "APPLY Processing"
and "ACCEPT Processina" sections of Chapter 2 for a discussion of the use of
the LEPARM keyword.

LKLIB(ddname)
specifies that the module is not being included in the SMPPTFIN input file but
is contained in link edited format in the library pointed to by the DD card
indicated by "ddname".

Note: This keyword is mutually exclusive with the RELFILE and TXLIB keywords.

LMOD(name[,name]...)
specifies one or more load module names that contain the module. If any of the
names specified are not already LMOD subentries of the MOD entry on the CDS,
they are added as such during APPLY processing.

Note: , If an LMOD entry does not exist for an LMOD subentry, it will not be
creates and when the MOD is to be link edited during APPLY processing, a warn-
ing message is issued and no link edit is performed for that load module.

RELFILE(number)

specifies the relative position of the file containing the module within the
files associated with this SYSMOD. The file that contains the module as one of
its members must be an unloaded partitioned data set that is physically located
on the same tape or set of tapes as the file containing the SYSMOD to which this
modification control statement belongs.

When RELFILE is specified, the FILES keyword must be specified on the header
modification control statement.

The RELFILE tape data set name is formed from the RELFILE operand as
'id#.Fnumber', where 'id#' is the SYSMOD-ID from the SYSMOD header modification
control statement, and 'number' is a decimal number greater than or equal to
one with no leading zeroes; the maximum number allowed is 9999.

Note: This keyword is mutually exclusive with the LKLIB and TXLIB keywords.

 272 Chapter 6 - OS/VS SMP System Programmer's Guide

RMID(sysmodid)
specifies the RMID of the module. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the MOD (the last PTF to replace
the module.)

UMID(sysmodid[,sysmodid]...)
specifies the UMID(s) of the module. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the MOD (the set of PTFs which
have updated the module since it was last replaced).

TALIAS(alias[,alias]..)
specifies one or more alias names of the module on both the target system and
distribution libraries for modules copied at SYSGEN.

TXLIB(ddname)
specifies that the module is not included in the SMPPTFIN input file but
resides in object form in the library pointed to by the specified ddname.

Note: This keyword is mutually exclusive with the RELFILE and LKLIB keywords.

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by this ver-
sion of the module. This version of the module is superior to the version(s) of
the module to be found in each of the SYSMODs in the operand list of the VERSION
keyword.

N

Note: When this parameter is specified it overrides any VERSION operand values
that might be specified on the ++VER modification control statement.

MOD PROGRAMMING CONSIDERATIONS

• If the module replacement resides in a TXLIB or LKLIB partitioned data set,
the TXLIB or LKLIB data set is required during SMP APPLY or ACCEPT processing
for this module.

• If the RELFILE keyword is specified, then the SMPTLIB DD statement is required
during RECEIVE. REJECT, APPLY, RESTORE, or ACCEPT processing processing of the
SYSMOD.

• If SMP is unable to associate a module with a load module, no target system
libraries are updated at APPLY time and message HMA286 is issued to warn of
this condition. This will not occur if the distribution library specified in
the DISTLIB operand was totally copied at system generation to a target system
library, the module was recognized by JCLIN processing to be part of one or
more load modules, or the LMOD operand is specified on the ++MOD modification
control statement.

++MOD Modification Control Statement 273

MOD EXAMPLE

The module IFBMOD05 is a new module that is to be placed in the distribution
library SYS1.AOSFB and is to be link edited with the existing load module IEEFRQ
in the target system library SYS1.LINKLIB.

++MOD(IFBMOD05) DISTLIB(AOSFB) LMOD(IEEFRQ).

The following DO statement is needed at APPLY time to define the operating system
load module library:

//LINKLIB DD DSN=SYS1.LINKLIB....

The following DD statement is needed at ACCEPT time to define the module's dis-
tribution library:

//AOSFB DD DSN=SYS1.AOSFB....

 274 Chapter 6 - OS/VS SMP System Programmer's Guide

++PTF MODIFICATION CONTROL STATEMENT

THE PROGRAM TEMPORARY FIX (++PTF) MODIFICATION CONTROL STATEMENT

The ++PTF modification control statement identifies a service SYSMOD. This type of
modification replaces and/or updates elements of target system and distribution
libraries. All other modification control statements for this SYSMOD follow this
header modification control statement.

PTF SYNTAX

++PTF(sysmodid)
[FILES(number)]
•

PTF OPERANDS

++ must be in columns 1 and 2

sysmodid
specifies a unique seven character system modification identifier that names
the service system modification.

FILES(number)
specifies the number of files belonging to this ++PTF modification control
statement. These files are unloaded partitioned data sets on a tape or set of
tapes. The maximum number allowed is 9999. The files must be on standard
labelled tapes. Members of these files can be elements, JCL input data, or
non-SMP data. When this operand is specified, the RELFILE keyword is required
on those ++JCLIN, ++MAC, ++MOD, and ++SRC modification control statements that
have their associated member in an unloaded PDS. At least one element or
++JCLIN modification control statement must have the RELFILE operand speci-
fied.

PTF PROGRAMMING CONSIDERATIONS

• During APPLY and ACCEPT processing, the SYSMOD-ID is placed in the MAC, MOD,
and/or SRC entries in the CDS and ACDS, respectively, as RMID or UMID sub-
entries. The element modification control statements Programming Consider-
ations describe the updates to their respective CDS and ACDS entries.

++PTF Modification Control Statement 275

• You should use the ++USERMOD modification control. statement to create modifi-
cations to IBM components rather than the ++PTF modification control state-
ment.

• If the FILES operand is specified, the SMPTLIB DD statement is required during
RECEIVE, REJECT, APPLY, RESTORE, and ACCEPT processing.

PTF EXAMPLE

A PTF is required which replaces module IFBMOD01 for function FXY1040. The pre-
requisite service SYSMOD for the module is PTF U200004. The APAR incident fixed by
this PTF is 0Z12345.

++PTF(UZ00006).
++VER(Z038) FMID(FXY1040) PRE(U200004)

SUP(AZ12345).
++MOD(IFBMOD01) DISTLIB(AOSFB).

 276 Chapter 6 - OS/VS SMP System Programmer's Guide

++SRC MODIFICATION CONTROL STATEMENT

THE SOURCE (++SRC) MODIFICATION CONTROL STATEMENT

The ++SRC modification control statement describes a single source module replace-
ment within a SYSMOD. If the source code is in the SMPPTFIN data set input stream,
the statement must immediately precede the source code.

SRC SYNTAX

++SRC(name)
[BASE(FIXED | UPDATE)]
[DELETE]
[DISTLIB(ddname)]
[DISTMODtddname) | DISTOBJ(ddname)]
[RELFILE(number)]
[RMID(sysmodid)]
[SSI(code)]
[SYSLIB(ddname)]
[TXLIB(ddname)]
[UMID(sysmodid[,sysmodid]...)]
[VERSION(sysmodid[,sysmodid]...)]
•

SRC OPERANDS

++ must be in columns 1 and 2

(name)
specifies the name of the source module replacement in the distribution
library. The name can contain any alphanumeric characters and '?'. '$'. '#',
and '@'.

BASE(FIXED | UPDATE)
not supported but included for compatibility with SYSMODs that can be processed
by previous versions of SMP.

DELETE
specifies that this source module is to be removed from target libraries, dis-
tribution libraries, and SMP control data sets.

Note: This keyword is mutually exclusive with all other keywords except DISTLIB
and VERSION. If any other keywords are specified, a syntax error results.

++SRC Modification Control Statement 277

DISTLIB(ddname)
specifies the ddname of the distribution library for the source module.

Note: This keyword must be specified if the SRC entry has not been previously
recorded on the CDS or ACDS. If the entry does exist in the CDS or ACDS, the
ddname value specified is compared with the DISTLIB subentry of the SRC entry,
and, if it is not equal, the SYSMOD is not processed by APPLY or ACCEPT.

DISTMOD(ddname) | DISTOBJ(ddname)
specifies the ddname of the link edit distribution library for object code
produced from the assembly of the source code. During ACCEPT processing, the
object code from the assembler is link edited to the library specified.

Note: Either DISTMOD or DISTOBJ can be specified, but not both. DISTMOD is
preferred because it is more descriptive.

RELFILE(number)
specifies the relative position of the file containing the source module within
the files associated with this SYSMOD. The file that contains the source mod-
ule as one of its members is an unloaded partitioned data set that is phys-
ically located on the same tape or set of tapes as the file containing the
SYSMOD to which this modification control statement belongs.

When RELFILE is specified, the FILES keyword must be specified on the header
modification control statement.

The RELFILE-tape data set name is formed from the RELFILE operand as
'id#.Fnumber', where 'id#' is the SYSMOD-ID from the SYSMOD header modification
control statement, and 'number' is a decimal number greater than or equal to
one with no leading zeroes; the maximum number allowed is 9999.

Note: This keyword is optional and mutually exclusive with TXLIB.

RMID(sysmodid)
specifies the RMID of the source. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the SRC (the last PTF to replace
the source.)

SSI(code)
specifies eight hexadecimal digits of system status information. This informa-
tion is placed in the directory of the target system library or the STS during
APPLY processing and the distribution library during ACCEPT processing as four
packed hexadecimal bytes of user data. See the IEBUPDTE program description in
the OS/VS Utilities manual.

Note: This keyword is ignored if the text is located in a library; that is, the
RELFILE or TXLIB keyword was specified.

SYSLIB(ddname)

specifies the ddname of the target system library if the source module exists
in one. APPLY and RESTORE processing update this library.

TXLIB(ddname)

specifies that the source is not included in the SMPPTFIN input stream, but
resides in the library pointed to by the specified ddname.

 278 Chapter 6 - OS/VS SMP System Programmer's Guide

Note: This keyword is mutually exclusive with the RELFILE keyword.

UMID(sysmodid[,sysmodid]...)
specifies the UMID(s) of the source. This keyword may be used only in function
SYSMODs and indicates the PTF service level of the SRC (the sat of PTFs which
have updated the source since it was last replaced).

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by this ver-
sion of the source module. This version of the source module is superior to the
version(s) of the source module found in each of the SYSMODs specified in the
operand list of the VERSION keyword.

Note: When this parameter is specified, it overrides any VERSION operand values
that might be specified on the ++VER modification control statement.

SRC PROGRAMMING CONSIDERATIONS

The operating system library for the source is determined either from the SYSLIB
or DISTLIB keywords (see "Processing Source and Macro Modifications" in Chapter
2.)

SRC EXAMPLE

A replacement for the source module IFBSRC01 is in a partitioned data set refer-
enced by the ddname REPLACE. The distribution library for the source module is
SYS1.IFBSRC; SYS1.AOS23 is the distribution library for the module, IFBSRC01,
resulting from the assembly of the source, IFBSRC01.

++SRC(IFBSRC01) TXLIB(REPLACE) DISTLIB(IFBSRC)
DISTMOD(AOS23).

The following DD statement is needed at APPLY and ACCEPT time to define the TXLIB
data set:

//REPLACE DD DSN=...

++SRC Modification Control Statement 279

 280 Chapter 6 - OS/VS SMP System Programmer's Guide

++SRCUPD MODIFICATION CONTROL STATEMENT

THE SOURCE UPDATE (++SRCUPD) MODIFICATION CONTROL, STATEMENT

The ++SRCUPD modification control statement describes a single set of source
update statements within a SYSMOD. It must immediately precede the source update
statements in the SMPPTFIN data set input stream. If it appears in a function
SYSMOD, the SYSMOD is not received.

SRCUPD SYNTAX

++SRCUPD(name)
[BASE(FIXED | UPDATE)]
[DISTLIB(ddname)]
[DISTMOD(ddname) | DISTOBJ(ddname)]
[SYSLIB(ddname)]
[VERSION(sysmodid[,sysmodid]...)]
•

SRCUPD OPERANDS

++ must be in columns 1 and 2

(name)
specifies the name of the source member in the distribution library and,
optionally, in the target system library. The name can contain any alphanumer-
ic characters and ?, $, #, and @.

BASE(FIXED | UPDATE)
not supported but included for compatibility with SYSMODs that can be processed
by previous versions of SMP.

DISTLIB(ddname)
specifies the ddname of the distribution library for the source module.

Note: This keyword must be specified if the SRC entry has not been previously
recorded on the CDS or ACDS. If the SRC entry does exist, the value specified
is compared with the DISTLIB subentry and, if it is not equal, the SYSMOD is not
processed by APPLY or ACCEPT.

DISTMOD(ddname) | DISTOBJ(ddname)
specifies the ddname of the link edit distribution library for object code
produced from the assembly of the source code. During ACCEPT processing, the
object code from the assembler is link edited to the library specified.

Note: Either DISTMOD or DISTOBJ can be specified, but not both. DISTMOD is

++SRCUPD Modification Control Statement 281

preferred because it is more descriptive.

SYSLIB(ddname)
specifies the ddname of the target system library if the source module exists
in one. APPLY and RESTORE processing update this library.

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by this ver-
sion of the source module. The version of the source module with this update is
superior to the version(s) of this source module found in each of the SYSMODs
in the operand list of the VERSION keyword.

Note, When this parameter is specified it overrides any VERSION operand values
that might be specified on the ++VER modification control statement.

SRCUPD PROGRAMMING CONSIDERATIONS

The operating system library for the source is determined either from the SYSLIB
or DISTLIB keywords (see "Processing Source and Macro Modifications" in Chapter
2.)

SRCUPD EXAMPLE

The source module IFBSRC02 to be updated resides on the target system library
SYS1.SRCLIB and distribution library SYS1.IFBSRC.

++SRCUPD(IFBSRC02) SYSLIB(SRCLIB) DISTLIB(IFBSRC).

The following DD statement is needed at APPLY time

//SRCLIB DD DSN=SYS1.SRCLIB

The following DD statement is needed at ACCEPT time:

//IFBSRC DD DSN=SYS1.IFBSRC....

 282 Chapter 6 - OS/VS SMP System Programmer's Guide

++USERMOD MODIFICATION CONTROL STATEMENT

THE USER MODIFICATION (++USERMOD) MODIFICATION CONTROL STATEMENT

The ++USERMOD modification control statement identifies a service SYSMOD. This
type of modification is created by you to update your private libraries and to
replace or update IBM elements in the target system and distribution libraries.
All other modification control statements for this SYSMOD follow this header mod-
ification control statement.

USERMOD SYNTAX

++USERMOD(sysmodid)
[FILES(number)]
•

USERMOD OPERANDS

++ must be in columns 1 and 2

sysmodid
specifies a unique seven character system modification identifier that names
the user supplied system modification.

FILES(number)
specifies the number of files belonging to this USERMOD SYSMOD that are
unloaded partitioned data sets on a tape or set of tapes. The maximum number
allowed is 9999. The files must be on standard labelled tapes. Members of
these files can be elements, JCL input data, or non-SMP data. When this operand
is specified, the RELFILE keyword is required on those ++JCLIN, ++MAC, ++MOD,
and ++SRC modification control statements that have their associated member in
an unloaded PDS. At least one element or ++JCLIN modification control statement
must have the RELFILE operand specified.

USERMOD PROGRAMMING CONSIDERATIONS

• You must define the seven character SYSMOD-ID when you create your own modifi-
cations. By convention, IBM development and service organizations use the
letters 'A' through 'K' and 'U' through 'Z' for their SYSMOD-IDs; letters 'L'
through 'T' and numbers '0' through '9' are available for user modifications.
SMP is insensitive to the content of the system modification name, but an
alphabetic first character might be required by some system utilities invoked
by you.

++USERMOD Modification Control Statement 283

• During APPLY and ACCEPT processing, the SYSMOD-ID is placed in the MAC, MOD,
and/or SRC entries in the CDS and ACDS, respectively, as RMID and/or UMID sub-
entries. The element modification control statements Programming Consider-
ations describe the updates to their respective CDS and ACDS entries.

• Subsequent replacements to elements modified by your modification from
non-function SYSMODs cannot occur unless you explicitly allow them by bypass-
ing MODID checking. Installation of new function-type SYSMODs may overlay your
user modifications; a warning message will be issued when SMP detects that a
user modification is being overlaid by the installation of a function.

• A user modification is only accepted into the distribution libraries if the
USERMODS keyword is specified on the ACCEPT control statement.

• When the FILES operand is specified, the SMPTLIB DD statement is required dur-
ing RECEIVE, REJECT, APPLY, RESTORE, and ACCEPT processing.

USERMOD EXAMPLE

A source module, IFBSRC02, which is owned by function SYSMOD FXY1040, is to be
modified. Your modification requires a service level provided PTF U200007; you are
only updating, rather than replacing, the source module. You have chosen a
SYSMOD-ID of MY00005 for your modification.

++USERMOD(MY00005).
++VER(Z038) FMID(FXY1040) PRE(UZ00007).
++SRCUPD(IFBSRC02) DISTLIB(IFBSRC).

 284 Chapter 6 - OS/VS SMP System Programmer's Guide

++VER MODIFICATION CONTROL STATEMENT

THE VERIFY (++VER) MODIFICATION CONTROL STATEMENT

The ++VER modification control statement describes the environment required
receive, apply and accept a SYSMOD. SYSMODs applicable to more than one system or
environment may have multiple ++VER modification control statements, one for each
system and environment to which the modifications apply. At least one ++VER mod-
ification control statement must be present in a SYSMOD, and a maximum of 255
++VER modification control statements are allowed for each SYSMOD.

VER SYNTAX

++VER(srel-id[,srel-id]...)
[DELETE(sysmodid[,sysmodid]...)]
[FMID(sysmodid)]
[NPRE(sysmodid[,sysmodid]...)]
[PRE(sysmodid[,sysmodid]...)]
[REQ(sysmodid[,sysmodid]...)]
[SUP(sysmodid[,sysmodid3...)]
[VERSION(sysmodid[,sysmodid]...)]
•

VER OPERANDS

++ must be in columns 1 and 2

(srel-id[,srel-id]...)
specifies one or more system code and release levels in character strings of
four bytes. These values are compared with the SREL subentries in the PTS.
CDS, and ACDS during RECEIVE, APPLY, and ACCEPT processing, respectively. When
no match is found for any of the values specified, the ++VER modification con-
trol statement is not applicable and, if it is the only ++VER modification con-
trol statement, the SYSMOD is not applicable.

For ++VER modification control statements that can be processed only by this
version of SMP, the same srel-id cannot be specified in more than one ++VER
modification control statement unless the FMID operand is present and their
contents are different in each ++VER modification control statement.

DELETE(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs that are to be removed when this SYSMOD
is processed by APPLY or ACCEPT. This operand is only valid when included with
function system modification packages. Specifying this operand causes both the
removal of the function system modification referenced and the removal of all
function and service modifications that are related in hierarchies lower than

++VER Modification Control Statement 285

the referenced SYSMOD-ID(s). During APPLY processing, these SYSMODs are
removed from the CDS and their elements are removed from the target system
libraries. During ACCEPT processing, these SYSMODs are removed from the ACDS
and their elements are removed from the distribution libraries. This operand
has no effect on RECEIVE eligibility.

SYSMODs specified in the DELETE operand do not have to be respecified in VER-
SION operands of ++VER, ++MAC, ++SRC, or ++MOD modification control statements.

FMID(sysmodid)
specifies the functional prerequisite for the SYSMOD. FMID must be specified
for dependent-level functions and all non-function SYSMODs.

When specified on the ++VER statement for a ++FUNCTION SYSMOD, FMID defines the
function as a dependent-level function. In this case, FMID indicates that the
elements supplied by the dependent-level function SYSMOD are functionally
superior to the base-level function named.

When specified on the ++VER statement for a non-function SYSMOD, FMID indicates
the functional level of all elements in the SYSMOD.

Non-function SYSMODs are not received unless the PTS SYSTEM entry contains an
FMID subentry which matches the names FMID.

For ++VER modification control statements processable by this version of SMP,
the same FMID value cannot be specified in more than one ++VER modification
control statement unless the SREL values are different for the entire set of
++VER modification control statements. If one ++VER modification control
statement contains an FMID operand, then all others processable by this version
of SMP must also contain an FMID operand.

NPRE(sysmodid[,sysmodid]...)
specifies one or more SYSMODs that cannot exist on the CDS during APPLY proc-
essing or the ACDS during ACCEPT processing for the SYSMOD to be applicable.
If any of the SYSMODs in the list are present, the SYSMOD cannot be applied or
accepted. This operand has no effect on RECEIVE eligibility.

For ++VER modification control statements processable by this version of SMP,
this operand can only be specified if it is in a function SYSMOD.

PRE(sysmodid[,sysmodid]...)
specifies one or more prerequisite SYSMOD-IDs. The indicated SYSMODs must have
been applied without error or be applied in the same APPLY pass to allow the
application of this SYSMOD. The indicated SYSMODs must have been accepted with
out error or be accepted in the same ACCEPT pass to allow acceptance of this
SYSMOD. This operand has no effect on RECEIVE eligibility.

REQ(sysmodid[,sysmodid]...)
specifies one or more SYSMODs that must be applied and accepted along with this
SYSMOD. If any of the requisite SYSMODs are not present or eligible for proc-
essing at APPLY or ACCEPT time, or have not been previously applied or
accepted, the SYSMOD is not processed. This operand has no effect on RECEIVE
eligibility.

 286 Chapter 6 - OS/VS SMP System Programmer's Guide

SUP(sysmodid[,sysmodid]...)
specifies one or more SYSMODs that are superseded by this SYSMOD and/or one or
more APARs fixed in the element modifications supplied with this SYSMOD.

VERSION(sysmodid[,sysmodid]...)
specifies one or more function SYSMODs whose function is supported by the ver-
sions of the elements contained within this SYSMOD.

VER PROGRAMMING CONSIDERATIONS

• The ++VER modification control statement must immediately follow the header
modification control statement (that is, the ++APAR, ++FUNCTION, ++PTF, or
++USERMOD modification control statement). Additional ++VER modification con-
trol statements, if specified, must immediately follow the first ++VER and its
++IF modification control statements, if any.

• SYSMODs can be constructed that can be processed by previous versions as well
as this version of SMP. For service SYSMODs, this construction requires at
least two ++VER modification control statements, one processable by previous
versions of SMP and the other processable by this version of SMP. The srel-ids
in these ++VER modification control statements must be different to enable the
SYSMOD to be processed correctly by the applicable version of SMP.

• With one exception, the same SYSMOD-ID cannot be specified more than once in
the same operand or be present in more than one operand list in a single ++VER
modification control statement. The exception being the SYSMOD-IDs that are
specified in the VERSION operand list, these SYSMOD-IDs may be specified in
any one of the other operand lists with the exception of FMID.

VER EXAMPLES

A PTF is needed to modify module ISSDEF in function UZ88700, which is applicable
to OS/VS2 Releases 3.7 and 3.8. PTF UZ00364 is a prerequisite in both releases.

++PTF(UZ12345).
++VER(Z037) PRE(UZ00364,UZ88700).
++VER(Z038) PRE(UZ00364) FMID(UZ88700).
++MOD(ISSDEF) DISTLIB(AOS88).

++VER Modification Control Statement 287

 288 Chapter 6 - OS/VS SMP System Programmer's Guide

++ZAP MODIFICATION CONTROL STATEMENT

THE IMASPZAP (++ZAP) MODIFICATION CONTROL STATEMENT

The ++ZAP modification control statement describes a module update within a
SYSMOD. It must precede the IMASPZAP statements in the SMPPTFIN data set input
stream. This modification control statement may not appear in a function SYSMOD.

ZAP SYNTAX

++ZAP(name)
[DALIAS(alias) | TALIAS(alias[,alias]...)]
[DISTLIB(ddname)]
•

ZAP OPERANDS

++ must be in columns 1 and 2

(name)
specifies the distribution library module name. The name can contain any
alphanumeric characters and '?', '$', '#', and '@'.

DALIAS(alias)
specifies that the module has an alias only on a distribution library. The
module might have been included under its alias name during system generation.

DISTLIB(ddname)
specifies the ddname of the distribution library.

Note: This keyword must be specified if the MOD entry has not been previously
recorded on the CDS or ACDS. If the MOD entry does exist, the value specified
is compared with the DISTLIB subentry in the MOD entry and, if it is not equal,
the SYSMOD is not processed by APPLY or ACCEPT.

TALIAS(alias[,alias]..)
specifies one or more alias names, both on the target system and distribution
libraries, for modules copied during system generation.

ZAP PROGRAMMING CONSIDERATIONS

• An EXPAND control statement in linkage editor format can be placed within
IMASPZAP input to allow lengthening of control sections. The EXPAND statement

++ZAP Modification Control Statement 289

must follow the NAME statement. Refer to 05/VS Linkage Editor and Loader for
the syntax and description of the EXPAND statement.

• Any SETSSI statements placed in the input stream for expand type IMASPZAP
processing must be in a form acceptable to both IMASPZAP and the linkage edi-
tor; that is, they must begin in column 2 or after. The SSI statements must
follow the EXPAND statements.

• Expand-type IMASPZAP processing cannot be performed against a non-editable
(NE) module.

• The 'name' operand of the ++ZAP modification control statement must be the
same as the distribution library module name. The CSECT name operand of the
IMASPZAP control statement must be the same as the load module's CSECT name.
The module's CSECT name is usually the same as the distribution library name.

"LIST CDS LMOD." produces a CDS listing of linkage editor control statements
that might have changed the CSECT name of the member. A LINKEDIT MAP may be
helpful in other cases where the names differ.

• The NAME statement for ZAP may optionally be coded as follows:

- NAME csect-name or

- NAME lmod-name csect-name

The coding of one operand assumes that operand to be a CSECT name for the mod-
ule referenced in the ZAP statement. In this case, all load modules contain-
ing the module named in the ZAP statement are processed by IMASPZAP.

Two operands can be specified, in which case the second operand is assumed to
be a CSECT name, as specified above. The first operand is assumed to be a val-
id load module containing the module named in the ZAP statement. In this
case, only the indicated load module is processed by IMASPZAP.

• Care must be taken when using IMASPZAP on an assembled module because the mod-
ification identifier is updated, but not the modification of any associated
macros.

It is not recommended that you use IMASPZAP to modify assembled modules. An
assembled module modified by IMASPZAP does not cause updating of the distrib-
ution library during ACCEPT processing, therefore, a subsequently SYSGEN'd
system will not contain the IMASPZAP modification.

A more satisfactory method of updating assembled modules is to update the
macros which generate the modules.

• SMP processing does not save a back-up copy of the nucleus during APPLY proc-
essing when the nucleus is modified by a SYSMOD containing a non-expand-type
IMASPZAP modification.

• Since only one ZAP can be applied to a module in one APPLY pass, multiple ZAPs
to a module require re-execution of APPLY for each ZAP.

 290 Chapter 6 - OS/VS SMP System Programmer's Guide

ZAP EXAMPLE

The module IFBMOD05 is to be changed via IMASPZAP. The module is owned by function
SYSMOD FXY1050 and the last SYSMOD which replaced the module was UZ00008 (found as
the current RMID subentry value in CDS MOD entry). The module is in load module
IEEFRQ. You are creating the modification and assigning a SYSMOD-ID of MY00006.

++USERMOD(MY00006).
++VER(Z038) FMID(FXY1050) PRE(UZ00008).
++ZAP(IFBMOD05) DISTLIB(AOSFB).
NAME IEEFRQ IFBMOD05
VER 13F6 47E0A138
REP 13F6 4770A14C

++ZAP Modification Control Statement 291

 292 Chapter 7 - OS/VS SMP System Programmer's Guide

CHAPTER 7: SMP DATASETS

SMP requires a variety of data sets. The total number of data sets is determined
by the types of functions being executed.

The data sets are described in the following order:

• Link and text library data sets

• SMPACDS (Alternate Control Data Set)

• SMPACRQ (Alternate Conditional Requisite Queue Data Set)

• SMPADDIN (contains ADDIN control statements)

• SMPCDS (Control Data Set)

• SMPCNTL (Control Statement Input Data Set)

• SMPCRQ (Conditional Requisite Queue Data Set)

• SMPJCLIN (JCL Input Data Set)

• SMPLIST (LIST Output Data Set)

• SMPLOG (History Log Data Set)

• SMPMTS (Macro Temporary Store Data Set)

• SMPOUT (Message Output Data Set)

• SMPPTFIN (SYSMOD Input Data Set)

• SMPPTS (SYSMOD Temporary Store Data Set)

• SMPPUNCH (contains output from UNLOAD function)

• SMPRPT (Report Output Data Set)

• SMPSCDS (Saved Control Data Set)

• SMPSTS (Source Temporary Store Data Set)

• SMPTLIB (RELFILE tape libraries)

• SMPWRK1, SMPWRK2, SMPWRK3, SMPWRK4, SMPWRK5 (work data sets)

• SYSLIB (macro library data set for assembler)

• SYSPRINT (output data set)

• SYSUT1, SYSUT2, SYSUT3 (temporary utility storage)

Chapter 7: SMP Datasets 293

• SYSUT4, (retry only)

• Target and distribution library data sets

Each data set is described in the following format:

Ddname: The name required in the DD statement that is written for the data
set.

Acronym: The character string commonly associated with the data set.

Data Set: The common name of the data set.

Device: The types of devices that can be used for the data set.

Information: Information about the data set, such as the contents, special
information, and the type of structure used.

Note: Any dataset restrictions that apply to Utility programs invoked by SMP
must be adhered to.

DATA SETS REQUIRED

Figures 34 and 35 provides a summary of the data sets required by each SMP control
statement. The following list explains the meaning of each number used in Figures
34 and 35:

• 1 - Required

• 2 - One for each different LKLIB operand value on ++MOD modification control
statements, if any.

• 3 - One for each different TXLIB operand value element modification control
statements, if any.

• 4 - Optional, and if not supplied, data is written to SMPOUT.

• 5 - Required unless the NOAPPLY keyword is specified on the ACCEPT control
statement or the SAVEMTS or SAVESTS indicators in the CDS are sat on.

• 6 - Required unless the NOAPPLY keyword is specified on the ACCEPT control
statement.

• 7 - One required for each distribution library being updated.

• 8 - Required when any SYSMODs contain unloaded partitioned data sets that were
loaded to temporary libraries during RECEIVE processing.

• 9 - Required if COMPRESS is specified.

 294 Chapter 7 - OS/VS SMP System Programmer's Guide

• 10 - Required when modifications were loaded to temporary libraries during
RECEIVE processing and the REJECT indicator in the PTS SYSTEM entry is on.

• 11 - One required for each target system library being updated.

• 12 - Corresponding macro or source module target system library, the modifica-
tion being applied is an update, and no copy of the macro or source module
exists in the MIS or STS.

• 13 - One required for each library containing copies of the elements being
restored.

• 14 - Required when this data set is requested on the SMP control statement.

• 15 - Required when this data set is requested on the SMP control statement.

• 16 - Required when ADDINPUT keyword specified on UNLOAD control statement.

• 17 - Required when RETRY is specified on the ACCEPT, APPLY, and RESTORE con-
trol statements.

• 18 - Required for REJECT with the PURGE option.

Chapter 7: SMP Datasets 295

Figure 34 Data Set Requirements

 296 Chapter 7 - OS/VS SMP System Programmer's Guide

Figure 35 Data Set Requirements - Continued

Chapter 7: SMP Datasets 297

DATA SET DEFINITIONS

LINK AND TEXT LIBRARY DATA SETS

Ddname: The ddname required is indicated by the TXLIB or LKLIB keyword on the
element modification control statement. For example, the statement ++MOD(MODA)
TXLIB(LIBX) would require a ddname of LIBX.

Acronym: None

Description: Link and text libraries

Attributes: Partitioned

Device: Direct access only

Information: These libraries contain replacement modules, macros, or source mod-
ules for use with the ++MOD, ++MAC or ++SRC modification control statements, and
JCL input data associated with the ++JCLIN modification control statement.

If the LKLIB or TXLIB keyword is specified on the ++MOD, ++MAC, or ++SRC modifica-
tion control statement statement, it means that the data does not immediately fol-
low the modification control statement in the input stream. The data must
therefore be a member of the library specified by the LKLIB keyword, if the
replacement is in link edited format, or the TXLIB keyword, if the replacement is
in object or source format or is JCL input.

SMPACDS DATA SET

Ddname: SMPACDS

Acronym: ACDS

Description: Alternate Control Data Set

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct access only

Information: This data set contains information about the macros, modules, source
modules and SYSMODs in the distribution libraries. The data in the ACDS is used by
SMP to control the checking, inserting, or removing of modules, source modules and
macro definitions in the distribution libraries.

A SYSTEM entry is required for any processing involving this data set. The SYSTEM
entry is created by UCLIN processing and contains system information, such as the
nucleus backup identifier (NUCID), system release (SREL) and data set identifier
(CDSID).

 298 Chapter 7 - OS/VS SMP System Programmer's Guide

The ACDS directories are maintained in-storage to enhance the performance of
ACCEPT, UCLIN and LIST functions. A DIS(NO) option is provided for each of these
functions to disable the in-storage maintenance of the directory for those systems
which are storage constrained or when the function to be performed is so trivial
that the overhead of bringing the directories into storage exceeds the performance
benefits of in-storage maintenance.

The ACDS should reside on one of the DLIB volumes to ensure it would correspond to
the DLIBs if the system were to be restored.

You should update the ACDS only through the use of the SMP UCLIN control state-
ment. Its contents can be listed by using the LIST control statement.

SMPACRQ DATA SET

Ddname: SMPACRQ

Acronym: ACRQ

Description: Alternate Conditional Requisite Queue Data Set

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct Access only

Information: This data set is used to hold parsed ++IF modification control state-
ments for use by the ACCEPT function. The entries in the first part of the ACRQ are
stored according to the SYSMOD-ID of the SYSMOD that contained the ++IF modifica-
tion control statements, and are referred to as SYSMOD entries. They include the
SYSMOD-IDs specified in the FMID and REQ operand values in the ++IF modification
control statements.

The entries in the second part of the ACRQ are stored according to the SYSMOD-IDs
specified in the FMID operand values in the ++IF modification control statements.
They are referred to as FMID entries because they name the functional environment
that must exist in order for the requisite SYSMODs to be accepted. The entries
reference the SYSMOD entries that contained the ++IF modification control state-
ments in which they were specified as FMID operand values.

ACRQ entries are created when a SYSMOD is successfully accepted. Deletion of ACRQ
entries occurs when the associated SYSMOD is deleted as a result of a DELETE spec-
ification on the ++VER modification control statement of a function SYSMOD which
is successfully processed by ACCEPT.

The ACRQ can be updated using the UCLIN control statement. Its contents can be
listed using the LIST control statement.

Chapter 7: SMP Datasets 299

SMPADDIN DATA SET

Ddname: SMPADDIN

Acronym: None

Description: Contains SMP UNLOAD control statements

Attributes: Sequential; LRECL=80,BLKSIZE=multiple of 80

Device: Card, tape, direct access or terminal device

Information: The SMPADDIN dataset is used to contain control statements that are
used during the UNLOAD processing. If the ADDIN option is specified on the UNLOAD
function control statement, then the SMPADDIN DD statement must be present.

SMPCDS DATA SET

Ddname: SMPCDS

Acronym: CDS

Data Set: Control Data Set

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct access only

Information: This data set contains information regarding the structure of the
operating system in terms of macros, modules, assemblies, load modules, libraries
copied at system generation time, source modules, and SYSMODs. The data in the CDS
is used by SMP to control the checking, inserting, or removing of modules, source
modules and macro definitions in the target system libraries.

A SYSTEM entry is required for any processing involving this data set. The SYSTEM
entry is created by UCLIN processing and contains system information, such as the
nucleus backup identifier (NUCID), system release (SREL) and data set identifier
(CDSID).

The CDS is initialized with the names of the elements making up the operating sys-
tem by copying the ACDS to the CDS.

The CDS is initialized with information regarding the structure of the operating
system by JCLIN processing of the job stream which built the system.

The CDS is updated by SMP during APPLY or RESTORE, or by the user through the use
of the JCLIN or UCLIN control statements or the ++JCLIN modification control
statement. Updating of the CDS should be done only Updating of and examination of
the CDS should be done only through the use of SMP.

 300 Chapter 7 - OS/VS SMP System Programmer's Guide

The CDS directories are maintained in-storage to enhance the performance of APPLY,
RESTORE, UCLIN, JCLIN and LIST functions. A DIS(NO) option is provided for each of
these functions to disable the in-storage maintenance of the directory for those
systems which are storage constrained or when the function to be performed is so
trivial that the overhead of bringing the directories into storage exceeds the
performance benefits of in-storage maintenance.

The contents of the CDS can be listed by using the LIST control statement. The CDS
directories may be brought into storage by SMP during LIST processing if enough
storage is available.

SMPCNTL DATA SET

Ddname: SMPCNTL

Acronym: CNTL

Description: Control statement input

Attributes: Sequential; LRECL=80,BLKSIZE=multiple of 80

Device: Card, tape, direct access, or terminal device

Information: This data set contains the SMP control statements used to direct the
execution of SMP functions.

SMPCRQ DATA SET

Ddname: SMPCRQ

Acronym: CRQ

Description: Conditional Requisite Queue

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct Access only

Information: This data set is used to hold parsed ++IF modification control state-
ments for use by APPLY processing. The entries in the first part of the CRQ are
stored according to the SYSMOD-ID of the SYSMOD that contained the ++IF modifica-
tion control statements. These entries are referred to as SYSMOD entries. They
include the SYSMOD-IDs specified in the FMID and REQ operand values in the ++IF
modification control statements.

The entries in the second part of the CRQ are stored according to the SYSMOD-IDs
specified in the FMID operand values in the ++IF modification control statements.
They are referred to as FMID entries because they name the functional environment
that must exist in order for the requisite SYSMODs to be applied. The entries ref-

 Chapter 7: SMP Datasets 301

erance the SYSMOD entries that contained the ++IF modification control statements
in which they wore specified as FMID operand values.

CRQ entries are created when a SYSMOD is successfully applied. Deletion of CRQ
entries occurs when the associated SYSMOD is processed by RESTORE and when the
associated SYSMOD is deleted as a result of a DELETE specification on the ++VER
modification control statement of a function SYSMOD which is successfully proc-
essed by APPLY.

The CRQ can be updated using the UCLIN control statement. Its contents can be
listed using the LIST control statement.

SMPJCLIN DATA SET

Ddname: SMPJCLIN

Acronym: JCLIN

Description: JCL Input Data Set

Attributes: Sequential; LRECL=80,BLKSIZE=multiple of E0

Device: Card, tape, direct access, or terminal device

Information: This data set contains the Stage I output from the most recent full
or partial system generation (or other data in a similar format).

Information from this data set is used to update or create the CDS, or update or
create entries on the CDS.

SMPLIST DATA SET

Ddname: SMPLIST

Acronym: None

Descriptions LIST Output Data Set

Attributes: Sequential; BLKSIZE=multiple of 121,LRECL=121,RECFM=FB

Device: SYSOUT, printer, direct access, tape, or terminal

Information: This data set contains all SMP LIST output when the SMPLIST DD card
is present.

 302 Chapter 7 - OS/VS SMP System Programmer's Guide

SMPLOG DATA SET

Ddname: SMPLOG

Acronym: LOG

Description: History Log Data Set

Attributes: Sequential; RECFM=U,BLKSIZE=260,DISP=MOD

Device: Tape or direct access

Information: This data set contains a time-stamped record of events that occur
during SMP processing. SMP automatically writes records to this data set. The
user can write records to SMPLOG using the LOG control statement. The LIST con-
trol statement can be used to obtain a listing of all or selected portions of the
information on the data set.

The SMPLOG also contains SMP messages that result from BLDL and STOW operations
and any messages that would help in diagnosing and understanding the processing
that SMP performs.

The SMPLOG should be updated only through the use of SMP.

DISP=MOD must be specified to maintain a cumulative history.

SMPMTS DATA SET

Ddname: SMPMTS

Acronym: MIS

Description Macro Temporary Store Data Set

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct access only

Information: For APPLY processing, the SMPMTS data set must be allocated with
sufficient space to hold the entire set of SYSGEN macros as well as any other
macros that do not reside in a system library of the operating system. This is due
to the restructuring of the system into functional packages where the complete set
of SYSGEN macros are contained in the set of functional packages.

The SMPMTS data set must be included as the first library in the SYSLIB DD concat-
enation for APPLY and RESTORE processing. The SMPMTS data set must not be included
in the SYSLIB DD concatenation for ACCEPT processing. See "SMP Cataloged Proce-
dure" in Chapter 3 for a further discussing of SYSLIB concatenation requirements.

Chapter 7: SMP Datasets 303

SMPOUT DATA SET

Ddname: SMPOUT

Acronym: None

Description: Message Output Data Sat

Attributes: Sequential; RECFM=FBA,LRECL=121, BLKSIZE=multiple of 121

Device: SYSOUT, printer, direct access, tape, or terminal device

Information This data set contains all SMP messages. If the SMPRPT DD card is not
present, then SMPOUT also contains report output. If the SMPLIST DD card is not
present, SMPOUT also contains LIST output.

SMPPTFIN DATA SET

Ddname: SMPPTFIN

Acronym: PTFIN

Description: System Modification Input Data Set

Attributes: Sequential; LRECL=80,BLKSIZE=multiple of 80

Device: Card, tape, direct access, or terminal device

Information: This data set contains the system modifications to be processed.

SMPPTS DATA SET

Ddname: SMPPTS

Acronym: PTS

Description: PTF Temporary Store Data Sat

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct Access only

Information: This data set is used as temporary storage for SYSMODs. The name PTF
Temporary Store is a carry over from previous SMP releases when the name 'PTF'
described all types of modifications.

Two entries are present for each SYSMOD received. The first is an exact copy of
the SYSMOD as it was received and is called a Modification Control Statement (MCS)
entry. The second entry is similar to a SYSMOD entry on the CDS and ACDS and is

 304 Chapter 7 - OS/VS SMP System Programmer's Guide

also called a SYSMOD entry. Each ++VER modification control statement is repres-
ented with its operand values as subentries (that is PRE values become PRE sub-
entries). Each element modification control statement has its type and element
name represented as a subentry (that is, ZAP HMASMREC).

The SYSMOD data is deleted by REJECT processing or by ACCEPT processing when a
SYSMOD that has been accepted during the process has also been applied and the
PURGE indicator is set in the PTS SYSTEM entry.

The MCS entries can be printed or punched from the PTS using the IEBPTPCH utility
program. The SYSMOD entries and the MCS entries can be listed using the LIST con-
trol statement.

A SYSTEM entry is required for any processing involving this data set. The SYSTEM
entry is created by UCLIN facilities and must contain at least one system release
(SREL) subentry, any number of function modification identifier (FMID) subentries
and and a DSSPACE subentry. The PTS entries can be modified by UCLIN facilities.

SMPPUNCH DATA SET

Ddname: SMPPUNCH

Acronym: None

Description: Output from the UNLOAD function

Attributes: Sequential, LRECL=80,BLKSIZE=Multiple of 80

Device: Card, Tape, or Direct Access

Information: The SMPPUNCH dataset contains the output of the UNLOAD function which
consists of UCL control statements representing the contents of the CDS or ACDS
data sets.

SMPRPT DATA SET

Ddname: SMPRPT

Acronym: RPT

Description: Report Output Data Set

Attributes; Sequential; BLKSIZE=multiple of 121,LRECL=121, RECFM=FBA

Device: SYSOUT, printer, direct access, tape or terminal device

Information: This data set contains all SMP reports when the SMPRPT DD card is
present.

Chapter 7: SMP Datasets 305

SMPSCDS DATA SET

Ddname: SMPSCDS

Acronym: SCDS

Description: Save Control Data Set

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct access only

Information: This data set contains back-up copies of CDS entries that are modi-
fied during APPLY processing when ++JCLIN modification control statements are pre-
sent in SYSMODs. The back-up copies are used during RESTORE processing to return
the required CDS entries to the state that they were in before APPLY processing.

The SCDS entries can be deleted using the UCLIN control statement. Its contents
can be listed using the LIST control statement.

SMPSTS DATA SET

Ddname: SMPSTS

Acronym: STS

Description: Source Temporary Store

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80,DISP=OLD

Device: Direct access only

Information This data set contains source modules that do not reside in a target
system library (that is, no SYSLIB keyword was specified on the SMP modification
control statements, and there is no SYSLIB information in the CDS for that source
module). The updated version of the source module is stored on the SMPSTS during
APPLY processing. The data set is used in APPLY, ACCEPT, and RESTORE processing,
and is passed to the assembler as input.

SMPTLIB DATA SET

Ddname: SMPTLIB

Acronym: TLIB

Description: RELFILE Temporary Libraries

Attributes: Partitioned

 306 Chapter 7 - OS/VS SMP System Programmer's Guide

Device: Direct access only

Information: The SMPTLIB ddname is used by SMP to access partitioned data sets
used as temporary storage for unloaded partitioned data sets, contained on the
SMPPTFIN tape, that are dynamically loaded during RECEIVE processing. The DD
statement should specify at least one direct access storage device with sufficient
space to enable RECEIVE processing to dynamically allocate storage for the
libraries. Up to five volumes can be specified.

Temporary libraries are deleted in their entirety when their associated SYSMOD is
deleted by REJECT, RESTORE, or ACCEPT processing.

SMPWRK1 DATA SET

Ddname: SMPWRK1

Acronym: WRK1

Description: Work Data Set One

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80, DISP=(NEW,DELETE)

Device: Direct access only

Information: This data set is used as a temporary storage for input to the
IEBUPDTE and IEBCOPY programs. Data is placed in this data set by SMP during APPLY
and ACCEPT processing before invoking the utility. The source of the data is text
following ++MAC, ++MACUPD, or ++UPDTE modification control statements on the
SMPPTS. The data set is only needed for the duration of the SMP job step. The
disposition of this data set should be specified as DISP=(NEW,DELETE) to minimize
space loss problems. If you require that the data set be kept beyond the duration
of the SMP job step, it is your responsibility to reclaim any space that might be
required by subsequent invocations of SMP.

SMPWRK2 DATA SET

Ddname: SMPWRK2

Acronym: WRK2

Description: Work Data Set Two

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80, DISP=(NEW,DELETE)

Device: Direct access only

Information: This data set is used as temporary storage for input to the IEBUPDTE
or IEBCOPY program. Data is placed in this data set by SMP during APPLY and ACCEPT
processing before invoking the utility. The source of the data is text following

Chapter 7: SMP Datasets 307

++SRC and ++SRCUPD modification control statements on the PTS. The data set is
only needed for the duration of the SMP job step. The disposition of this data set
should be specified as DISP=CNEW,DELETE) to minimize space loss problems. If you
require that the data set be kept beyond the duration of the SMP job step, it is
your responsibility to reclaim any space which that be required by subsequent inv-
ocations of SMP.

SMPWRK3 DATA SET

Ddname: SMPWRK3

Acronym: WRK3

Description: Work Data Set Three

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80 and maximum of 3200

Device: Direct Access only

Information: This data set is used as temporary storage for object module text
supplied by a SYSMOD, object text generated by assemblies and AMASPZAP control
cards following ++ZAP modification control statements.

The object modules assembled during SMP processing are kept on this dataset until
SMP has successfully APPLIED or ACCEPTED the SYSMOD(s) which caused the assem-
blies. Therefore, if the dataset is allocated as permanent, these objects will be
available for the REUSE facility following a failure during APPLY or ACCEPT.

It is recommended that this dataset be scratched and allocated new before each
"normal" SMP run. If this "normal" SMP fails after SMP has assembled a large num-
ber of modules, and you wish to rerun without redoing the assemblies, do not
scratch WRK3 and code REUSE on the APPLY or ACCEPT statement.

If this dataset is kept, SMP will scratch objects when the SYSMOD causing an
assembly is successfully processed; you must, however, reclaim space by compress-
ing the dataset.

SMPWRK4 DATA SET

Ddname: SMPWRK4

Acronym: WRK4

Description: Work Data Set Four

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80, and maximum of 3200,
DISP=(NEW, DELETE)

Device: Direct access only

 308 Chapter 7 - OS/VS SMP System Programmer's Guide

Information This data set is used as temporary storage for input to IMASPZAP and
the linkage editor for ZAPS which contain EXPAND control statements. The data set
is only needed for the duration of the SMP job step. The disposition of this data
set should be specified as DISP=(NEW,DELETE) to minimize space loss problems. If
you require that the data set be kept beyond the duration of the SMP job step, it
is your responsibility to reclaim any space that might be required by subsequent
invocations of SMP.

SMPWRK5 DATA SET

Ddname: SMPWRK5

Acronym: WRK5

Description: Work Data Set Five

Attributes: Partitioned; RECFM=U

Device: Direct access only

Information: This data set is used when modules that would be link edited to form
new or replacement modules exist in more than one temporary library on the SMPTLIB
volumes. All applicable modules are copied to the SMPWRK5 data set before the link
edit, except for those in one of the SMPTLIB data sets chosen by SMP.

This data set is used during APPLY processing and is needed only for the duration
of the SMP job step. The disposition of this data set should be specified as
DISP=(NEW,DELETE) to minimize space loss problems. If you require that the data
set be kept beyond the duration of the SMP job step, it is your responsibility to
reclaim any space that might be required by subsequent invocations of SMP.

The block size of the data set must be compatible with the block size of the
SMPTLIB data sets.

SYSLIB DATA SET

Ddname: SYSLIB

Acronym: None

Description: Macro library (for assembler)

Attributes: Partitioned; LRECL=80,BLKSIZE=multiple of 80

Device: Direct access only

Information: The macro libraries are used as input to the assembler.

Chapter 7: SMP Datasets 309

For APPLY and RESTORE the libraries consist of data sets concatenated in the fol-
lowing sequence:

• SMPMTS

• Target system macro libraries (for example, those libraries specified on
the SYSLIB operand of the ++MAC modification control statement.)

• Distribution macro libraries (for example, those libraries specified on
the DISTLIB operand of the ++MAC modification control statement.)

For ACCEPT, only the distribution macro libraries make up the input to the assem-
bler. The MTS and target system libraries should not be included.

The block size of the first data set in the concatenation must be equal to or larg-
er than any of the subsequent data sets in the concatenation.

SYSPRINT DATA SET

Ddname: SYSPRINT

Acronym: None

Description: Output Data Set

Attributes: Sequential

Device: SYSOUT, printer, direct access, or tape. SYSOUT or a printer is recom-

-

mended because SYSPRINT might be opened with different DCB attributes by the util-
ities and service aids invoked by SMP.

Information: This data set contains all output generated by all invoked programs.
The LRECL, BLKSIZE, or RECFM attributes should not be specified unless they are
compatible with the attributes used by the utilities invoked.

You can specify an output listing data set to replace the SYSPRINT data set, which
is the default. See 'The UCL SYS Operands' in Chapter 5 for information regarding
substitute ddnames for SYSPRINT.

SYSUT1, SYSUT2 AND SYSUT3 DATA SETS

Ddname: SYSUT1, SYSUT2 and SYSUT3

Acronym: None

Description: Temporary Utility Storage Data Sets

Attributes: Sequential

 310 Chapter 7 - OS/VS SMP System Programmer's Guide

Device: Direct access only

Information: These data sets are used as scratch data sets for SMP and any pro-
grams called by SMP that require work data sets.

SYSUT4 DATA SET

Ddname: SYSUT4

Acronym: None

Description: Temporary Utility Storage Data Set

Attributes: Sequential: TRK=1,BLKSIZE=multiple of 80,LRECL=80

Device: Direct access only

Information: Required only if RETRY is requested or defaulted on APPLY, ACCEPT, or
RESTORE control statements.

TARGET AND DISTRIBUTION LIBRARY DATA SETS

Ddname: The ddnames used to define these libraries should be the lowest level
qualifiers of the data set names. For example, SYS1.LINKLIB has the ddname
LINKLIB.

Acronym: tgtlibs, DLIBs

Description: Target and distribution libraries

Attributes: Partitioned

Device: Direct access only

Information: These libraries contain updated versions of macros, source modules,
and load modules stored during APPLY, ACCEPT, and RESTORE processing.

Chapter 7: SMP Datasets 311

 312 Chapter 8 - OS/VS SMP System Programmer's Guide

CONTROL DATA SET ENTRIES

This chapter describes the entries in the primary SMP data sets. This information
can be used in the analysis of SMP listings and UCLIN functions.

DATASET ORGANIZATION

SMP uses partitioned (PDS) datasets; the entries in these datasets are actually
PDS members. The member names are generally encoded and cannot easily be accessed
by utilities which process PDS datasets. The data in the actual member portion of
the datasets contains hexadecimal (non-printable) codes. LIST and UCLIN facili-
ties are provided to display and update these entries.

In addition to the data stored in the actual member portion of the dataset, SMP
utilizes the user data portion of the directory entries to record certain informa-
tion. The use of SPF or other dataset utilities to examine or modify the SMP data-
sets may result in invalid directory user data which can cause unpredictable SMP
processing.

DEFINITION OF TERMS:

entry The term entry refers to a member of an SMP dataset. With the exception
of the MCS entry in the SMPPTS dataset, these member names are encoded
and cannot be easily accessed by utilities other than SMP. SYSMOD and
MACRO entries are examples of the types of entries maintained in the
SMPCDS dataset.

sub-entry A sub-entry is a field within an entry. Each sub-entry has associated
with it a type and a value. Multiple occurrences of the same sub-entry
type may exist in an entry each with a different value. For example, the
modules supplied by a PTF are saved as "MOD" type sub-entries within the
PTF's SYSMOD entry. Multiple occurrences of the same sub-entry type and
value pair do not exist. For example, there are not two "MOD" type
sub-entries with the same module name.

Indicator An indicator is a field in an SMP dataset entry that does not have a data
value associated with it. An example of an indicator is the APP indica-
tor in the SMPCDS SYSMOD entry. An indicator is either "on" or "off".

Control Data Set Entries 313

The descriptions in this chapter are arranged by data set and entry type as fol-
lows:

DATA SET Entry Type Page

CDS & ACDS ASSEM * 315
DLIB * 315
LMOD * 315
MAC 316
MOD 317
SRC 318
SYSTEM 321
SYSMOD 319

CRQ & ACRQ FMID 323
SYSMOD 323

PTS SYSMOD 328
SYSTEM 325

SCDS SYSMOD 331

STS

SRC 333

MIS

MAC 333

* CDS Only

 314 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPACDS/SMPCDS ENTRIES

SMPCDS entries basically control the SMP apply function and contain information
concerning SYSMODs and elements which have been applied.

SMPACDS entries basically control the SMP accept function and contain information
concerning SYSMODs and elements which have been accepted.

SMPCDS ASSEMBLER ENTRIES

These entries contain assembler source text found in JCLIN processing. This source
is assembled during apply processing of macro modifications. ASSEMBLER entries
exist only on the CDS.

There are no indicators or sub-entries within an ASSEMBLER entry.

SMPCDS DLIB ENTRIES

DLIB entries are created during JCLIN processing for distribution libraries which
are totally copied to a target system library. DLIB entries exist only on the CDS.

DLIB entries contain one sub-entry type:

• SYSLIB sub-entries: Specify the DDNAMEs of the target system libraries to
which the distribution library was totally copied. There can be at most two
SYSLIB sub-entries.

SMPCDS LMOD ENTRIES

LMOD entries are created during APPLY and JCLIN processing and contain the data
required to properly link edit modules into target system load modules. LMOD
entries exist only on the CDS.

In addition to the sub-entries and indicators listed below, LMOD entries contain
the linkage editor control statements (with the exception of INCLUDES) used to
link edit the load modules.

LMOD entries contain the following sub-entry types and indicators:

• LASTUPD sub-entry: Identifies the cause of the last change made to this entry.

• LASTUPDTYPE sub-entry: Identifies the last type of update made to this entry.

SMPACDS/SMPCDS Entries 315

• SYSLIB sub-entry: Specifies the DDNAME of the target system library that con-
tains the load module. There can be at most two SYSLIB sub-entries.

• AC=1 indicator: When this indicator is set, the AC=1 parameter is passed to
the linkage editor program when the load module is link edited.

• ALIGN2 indicator: When this indicator is set, the ALIGN2 parameter is passed
to the linkage editor program when the load module is link edited.

• COPY indicator: Indicates the load module was copied at SYSGEN time and
implies that the load module is made up on only one CSECT. When this indicator
is set, SMP will not include the earlier version of the load module when link
edits are performed.

• DC indicator: When this indicator is set, the DC parameter is passed to the

linkage editor program when the load module is link edited.

• NE indicator: When this indicator is set, the NE parameter is passed to the
linkage editor program when the load module is link edited.

• OVLY indicator: When this indicator is set, the OVLY parameter is passed to
the linkage editor program when the load module is link edited.

• REFR indicator: When this indicator is set, the REFR parameter is passed to
the linkage editor program when the load module is link edited.

• RENT indicator: When this indicator is set, the RENT parameter is passed to
the linkage editor program when the load module is link edited.

• REUS indicator: When this indicator is set, the REUS parameter is passed to
the linkage editor program when the load module is link edited.

• SCTR indicator: When this indicator is set, the SCTR parameter is passed to
the linkage editor program when the load module is link edited.

• STD indicator: Indicates that the load module is to be link edited with no
particular attributes. When this indicator is set the parameters passed are
those determined from LKEDPARMs in the PTS SYSTEM entry.

SMPACDS/SMPCDS MACRO ENTRIES

MACRO entries are created by APPLY and ACCEPT processing of ++MAC and ++MACUPD
elements. They describe the macro elements installed on the distribution and tar-
get system libraries.

ACDS and CDS MACRO entries contain the following sub-entry types and indicators:

• DISTLIB sub-entry: Distribution library DDNAME.

• FMID sub-entry: Names the function-SYSMOD which owns the macro.

 316 Chapter 8 - OS/VS SMP System Programmer's Guide

• GENASM sub-entries: Specifies the assemblies to be done when the macro is
updated at APPLY. The source for these assemblies may be either SMPCDS ASSEM
or SOURCE entries.

• MALIAS sub-entries: Specifies the alias name(s) of the macro in the distrib-
ution and target system libraries.

• RMID sub-entry: Names the last SYSMOD to replace the macro.

• SYSLIB sub-entries: DDNAMEs of the target system libraries for the macro.

• UMID sub-entries: Names the SYSMOD(s) which have updated the macro since the

last replacement.

• LASTUPD sub-entry: Identifies the cause of the last change made to this entry.

• LASTUPDTYPE sub-entry: Identifies the last type of update made to this entry.

SMPACDS/SMPCDS MOD ENTRIES

MOD entries are created by APPLY and ACCEPT processing of ++MOD and ++ZAP ele-
ments. SMPCDS MOD entries may also be created by JCLIN processing. They describe
the modules installed on the distribution and target system libraries.

The ACDS and CDS MOD entries contain the following indicators and sub-entry types:

• ASSEMBLE indicator: Indicates that this module should be assembled from ASSEM
or source text.

• DALIAS sub-entries: Specify the alias names of the module in the distribution
library and, for a copied module, in the target system library.

• DISTLIB sub-entry: DDNAME of module's distribution library.

• FMID sub-entry: Names the Function SYSMOD which owns the module.

• LMOD sub-entries: Specify the load modules into which the module is link edit-
ed.

• RMID sub-entry: Names the last SYSMOD to replace the module.

• RMIDASM indicator: Indicates that the last replacement to the module was done
by a SYSMOD supplying a MACRO or SOURCE element which required the assembly of
the module.

Note: this indicator will be set in a MOD entry for modules affected by
SYSMODs which supply MACRO or SOURCE elements and a corresponding assembled
MOD (even though SMP may actually choose the MOD and not do the assembly). As
such, this is used to allow installation of subsequent source/macro modifica-
tions which neither supply the MOD nor prereq the previous modification to the
assembled MOD.

SMPACDS/SMPCDS Entries 317

• UMID sub-entries: Name the SYSMODs which have updated (ZAPed) the module since
it was last replaced.

• LASTUPD sub-entry: Identifies the cause of the last change made to this entry.

• LASTUPDTYPE sub-entry: Identifies the last type of update made to this entry.

The following linkage editor indicators may be set in the SMPACDS. Their meaning
is exactly the same as the corresponding indicators in the CDS LMOD entries and
are used during ACCEPT processing when link editing the module to the distribution
libraries:

• AC=1 indicator

• ALIGN2 indicator

• DC indicator

• NE indicator

• OVLY indicator

• REFR indicator

• RENT indicator

• REUS indicator

• SCTR indicator

SMPACDS/SMPCDS SRC ENTRIES

SRC entries are created by APPLY and ACCEPT processing of ++SRC and ++SRCUPD ele-
ments. They describe the source elements installed on the distribution and target
system libraries.

ACDS and CDS SRC entries contain the following indicators and sub-entry types:

• DISTLIB sub-entry: DDNAME of source's distribution library.

• FMID sub-entry: Names the function-SYSMOD which owns the source.

• RMID sub-entry: Names the last SYSMOD to replace the source.

• SYSLIB sub-entry: DDNAME of the target system library for the source.

• UMID sub-entries: Name the SYSMODs which have updated the source since the
last replacement.

• LASTUPD sub-entry: Identifies the cause of the last change made to this entry.

• LASTUPDTYPE sub-entry: Identifies the last type of update made to this entry.

 318 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPACDS/SMPCDS SYSMOD ENTRIES

SYSMOD entries describe SYSMODs which have been installed in the distribution and
target system libraries. These entries are used to track the status of a SYSMOD
and maintain a historical record.

Date fields in these entries are Julian dates in the form, "yyddd".

Time fields in these entries are in the form, "hh:mm:ss".

ACDS and CDS SYSMOD entries have one of the following four TYPE indicators set:

• FUNCTION

• PTF

• APAR

• USERMOD

The following indicators and sub-entry types appear in the SYSMOD entry;

• ACCDATE sub-entry: Date that the SYSMOD was accepted.

• ACCEPT indicator: Indicates that the SYSMOD has been accepted.

• ACCTIME sub-entry: Specifies the time that the SYSMOD was accepted.

• APPDATE sub-entry: Julian data that the SYSMOD was applied.

• APPLY indicator: Indicates that the SYSMOD has been applied.

• APPTIME sub-entry: Specifies the time at which the SYSMOD was applied.

• ASSEM sub-entries: Names of ASSEM or SRC entries that were assembled in proc-
essing the SYSMOD or were specified in the ASSEM keyword of a ++MAC or
++MACUPD modification control statement.

• BYPASS indicator: Indicates that requisite or MODID checking error conditions
were bypassed in order to process this SYSMOD.

• DELBY sub-entries: Names the SYSMOD(s) that deleted this SYSMOD. These
sub-entry types are only present for deleted function SYSMODs.

• DELETE sub-entries: Name of SYSMOD(s) that were deleted by this SYSMOD.

• ERROR indicator: When this indicator is set, the SYSMOD is considered to have
been unsuccessfully processed by apply, accept or restore.

• FMID sub-entry: Names the function upon which the SYSMOD is dependent. For
base level functions (which are not dependent upon any other function), this
value will match the SYSMOD's Id.

SMPACDS/SMPCDS Entries 319

• JCLIN indicator: Indicates that the SYSMOD contains inline JCLIN.

• LASTSUP sub-entry: Names the last SYSMOD which superseded this SYSMOD.

• LASTUPD sub-entry: Identifies the cause of the last change to this entry.

• LASTUPDTYPE sub-entry: Identifies the last type of update made to this entry

• MAC sub-entries: Names of macro replacememnts (++MACs) supplied by this
SYSMOD.

• MACUPD sub-entries: Names of the macro updates (++MACUPDs) supplied by this
SYSMOD.

• MOD sub-entries: Names of the modules (++MODs) supplied by this SYSMOD.

• NPRE sub-entries: Names of SYSMODs which are negative prerequisites (NPREs) of
this SYSMOD.

• PRE sub-entries: Names of SYSMODs which are prerequisites (PREs) of this
SYSMOD.

• RECDATE sub-entry: Date that the SYSMOD was received.

• RECTIME sub-entry: Time at which the SYSMOD was received.

• REGEN indicator: If this indicator is set, the SYSMOD is considered to have
been in the ACDS prior to system generation and its associated elements
updated in the distribution libraries. SMP does not use this indicator to
imply ACCEPT status.

• REQ sub-entries: Names of SYSMODs which are requisites (REQs) of this SYSMOD.

• RESDATE sub-entry: Date this SYSMOD was restored.

• RESTIME sub-entry: Time this SYSMOD was restored.

• RESTORE indicator: If this indicator is set, the SYSMOD is considered to have
had a RESTORE operation attempted.

• RMAC sub-entries: Name macros in this SYSMOD which have been potentially
regressed (see APPLY Processing Chapter 2) by another SYSMOD.

• RMACUPD sub-entries: Name macro updates in this SYSMOD which have been poten-
tially regressed (see APPLY Processing Chapter 2) by another SYSMOD.

• RMOD sub-entries: Name modules in this SYSMOD which have been potentially
regressed (see APPLY Processing Chapter 2) by another SYSMOD.

• RSRC sub-entries: Name source elements in this SYSMOD which have been poten-
tially regressed (see APPLY Processing Chapter 2) by another SYSMOD.

• RSRCUPD sub-entries: Name source updates in this SYSMOD which have been poten-
tially regressed (see APPLY Processing Chapter 2) by another SYSMOD.

 320 Chapter 8 - OS/VS SMP System Programmer's Guide

• RSZAP sub-entries: Name the module update elements, ZAPs, in this SYSMOD which
have been potentially regressed (see APPLY Processing Chapter 2) by another
SYSMOD.

• RXZAP sub-entries: Name the expand-ZAP updates in this SYSMOD which have been
potentially regressed (see APPLY Processing Chapter 2) by another SYSMOD .

• SRC sub-entries: Name the source replacements (++SRC) supplied by this SYSMOD.

• SRCUPD sub-entries: Name the source updates (++SRCUPD) supplied by this
SYSMOD.

• SUPBY sub-entries: Name the SYSMODs which have superseded this SYSMOD.

• SUPING sub-entries: Name those SYSMODs superseded (SUP) by this SYSMOD.

• SZAP sub-entries: Name the module update elements (++ZAPs) supplied by this
SYSMOD.

Note: ZAPs supplied with the EXPAND control statement are considered
"expand-ZAPS" and show up as XZAP subentries.

• UCLDATE sub-entry: Date that the SYSMOD was updated by UCLIN.

• UCLTIME sub-entry: Time when UCL updated the SYSMOD.

• VERNUM sub-entry: The number of the ++VER statement which SMP used when proc-
essing the SYSMOD. This number is associated with those subentries that come
from the ++VER statements, such as SUP and PRE.

• VERSION sub-entries: Name the function SYSMODs that are functionally inferior
to this SYSMOD.

• XZAP sub-entries: Name the modules updated and expanded by this SYSMOD.

SMPACDS/SMPCDS SYSTEM ENTRIES

The SYSTEM entry is used by APPLY, RESTORE and ACCEPT processing for system ver-
ification and contains some indicators which control SMP's processing.

• CDSID sub-entry: A character string which identifies the control dataset.

The CDSID value from the CDS is put in the PTS SYSMOD entry when a SYSMOD is
applied to indicate those systems on which a SYSMOD has been applied.

The CDSID value from the ACDS is put in the PTS SYSMOD entry when a SYSMOD is
accepted to indicate those systems on which a SYSMOD has been accepted.

• NUCID sub-entry (CDS): A 1-digit number appended to the nucleus program name
IEANUCO to form the name of the nucleus load module saved during APPLY proc-
essing. This sub-entry may appear in the ACDS but is not used.

SMPACDS/SMPCDS Entries 321

• PEMAX sub-entry: A number from 1 to 9999 that defines the maximum number of
subentries that can be present in an entry on the ACDS or CDS respectively. If
this subentry is not present, a default value of 500 is used.

• SAVEMTS indicator (CDS only): When this indicator is set, the macros in the
MIS data set are not deleted by ACCEPT processing. The default for this indi-
cator is "reset". When the CDS SYSTEM entry is listed, the SAVEMTS option is
shown as "YES" if the SAVEMTS indicator is set and as "NO" if the SAVEMTS indi-
cator is reset.

• SAVESTS indicator (CDS only): When this indicator is set, the modules in the
STS data set are not deleted by ACCEPT processing. The default for this indi-
cator is "reset". When the CDS SYSTEM entry is listed, the SAVESTS option is
shown as "YES" if the SAVESTS indicator is set and as "NO" if the SAVESTS indi-
cator is reset.

• RETRYDDN sub-entry: names the DDNAMEs of the datasets for which out-of-space
retry is to be attempted. The value, 'ALL', causes RETRY to be attempted for
utility failures on any PDS target data set.

Note: If a RETRYDDN subentry is not present in the CDS or ACDS system entry,
then no RETRY will be attempted. If a RETRYDDN subentry of 'ALL' and one or
more 'ddname' values exists, RETRY will be processed as if only 'ALL' were
specified.

Unlike the normal SMP compress (via COMPRESS keyword), compress recovery done
as the result of coding RETRYDDN(ALL) will attempt to compress any candidate
including SYS1.LINKLIB.

• SREL sub-entry: System release identifier. Only one system release may appear
in a CDS or ACDS SYSTEM entry.

 322 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPACRQ/SMPCRQ ENTRIES

ACRQ and CRQ entries contain data saved from ++IF conditional requisite statements
during accept and apply processing respectively. They are used to determine
functionally-conditional requisites when function SYSMODs are installed.

SMPACRQ/SMPCRQ FMID ENTRIES

There is an FMID entry for every function named as an FMID in a ++IF conditional
requisite statement.

FMID entries contain only one subentry type, which i s referred to as a "SYSMOD"
sub-entry for UCL updates and is shown as a "CAUSER" in ACRQ/CRQ listings. These
subentries name the SYSMODs which supplied ++IF conditional requisites for the
function. The actual data from these ++IF statements is found in the ACRQ/CRQ
SYSMOD entry for the SYSMOD which supplied the conditional requisites.

SMPACRQ/SMPCRQ SYSMOD ENTRIES

These entries contain the ++IF conditional requisite information supplied by a
SYSMOD. There is a SYSMOD entry for every SYSMOD that supplied ++IF conditional
requisite statements.

SYSMOD entries contain FMID and associated REQ subentries. The FMID subentry names
a function-type SYSMOD and the associated REQ subentry(s) name the requisite
SYSMODs for the particular functional environment. The FMID subentries are shown
as "ENV" (environment), and the REQ subentries are shown as "IFREQ"s in ACRQ/CRQ
listings.

The following example illustrates the SMPCRQ entries created and/or updated for
the PTF shown

++PTF(UR00000) .
++VER(Z038) FMID(ESY1400) .
++IF FMID(ESY1401) THEN REQ(UR00001,UR00002) .
++IF FMID(ESY1402) THEN REQ(UR00003,UR00004) .

• Two CRQ FMID entries, ESY1401 and ESY1402, will be created (or added to).
These entries will contain the name of the PIP, UR00000, as a subentry.

• A CRQ SYSMOD entry, UR00000, will be created with:

FMID subentry ESY1401 containing requisites UR00001 and UR00002.

- FMID subentry ESY1402 containing requisites UR00003 and UR00004.

SMPACRQ/SMPCRQ Entries 323

-

 324 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPPTS ENTRIES

SMPPTS SYSTEM ENTRIES

The PTS SYSTEM entry is created by the user using UCLIN. This entry contains data
which controls not only RECEIVE but also APPLY, ACCEPT and RESTORE processing.

The PTS SYSTEM entry contains the following indicators and sub-entries:

• ASMNAME sub-entry: The name of the program to be invoked by SMP to perform
assemblies. The default program is "ASMBLR".

• ASMPARM sub-entry: The character string to be passed as parameters to the pro-
gram invoked by SMP to perform assemblies. The default character string passed
is "XREF,NOLOAD,DECK".

• ASMPRINT sub-entry: The DDNAME for the output listing data set produced by the
assembler program. The default DDNAME is "SYSPRINT".

• ASMRC sub-entry: The return code value to be compared with the code returned
from the assembler program. When the value returned is higher than the ASMRC
subentry value, then the result of the assembler function is considered unsuc-
cessful and the SYSMOD for which the assembler program was invoked is termi-
nated. The default value is "4".

• COMPNAME sub-entry: The name of the program to be invoked by SMP to perform
the PDS compress function. The default program name is "IEBCOPY".

• COMPPARM sub-entry: The character string to be passed as parameters to the
program invoked by SMP to perform the PDS compress function. There is no
default set of parameters; if COMPPARM is not present, no parameters are
passed.

• COMPPRINT sub-entry:

The ddname for the output listing data set produced by the PDS compress pro-
gram. The default DDNAME is "SYSPRINT".

• COMPRC sub-entry: The return code value to be compared with the code returned
from the PDS compress program. When the value returned is higher than the
COMPRC subentry value, then the result of the PDS compress function is consid-
ered unsuccessful and the SMP function which invoked the PDS compress program
is terminated. The default value is "0".

• COPYNAME sub-entry: The name of the program to be invoked by SMP to perform
the PDS copy and load functions. The default program name is "IEBCOPY".

• COPYPARM sub-entry: The character string to be passed as parameters to the
program invoked by SMP to perform the PDS copy and load functions. There is no
default set of parameters.

SMPPTS Entries 325

• COPYPRINT sub-entry: The ddname for the output listing data set produced by
the PDS copy and load program. The default DDNAME is "SYSPRINT".

• COPYRC sub-entry: The return code value to be compared with the code returned
from the PDS copy and load program. When the value returned is higher than the
COPYRC subentry value, then the result of the PDS copy or load function is
considered unsuccessful and the SYSMOD for which the PDS copy and load program
was invoked is terminated. The default value is "0".

Note: IEBCOPY returns a code of 4 when it encounters I/O errors during the
copying of members.

• DSPREFIX sub-entry: The high level qualifier data set name of data sets which
are allocated during RECEIVE processing for library loading. "prefix" may have

a maximum length of 26 characters. The value must conform to Operating System
data set naming conventions. For example, "MYPREFIX.SET1.SYS1 " is a valid pre-
fix; "MYPREFIXSET1SYS1" is not. If the DSPREFIX subentry is not present, then
no high order qualifier is used during allocation and subsequent accessing.
There is no default DSPREFIX.

• DSSPACE sub-entry: The space parameters for data sets that are allocated dur-

ing RECEIVE processing for library loading in terms of primary and secondary
track allocation and number of directory blocks. There are no default space
parameters; these must be set by the user when creating the PTS SYSTEM entry.

• FMID sub-entries: The functions which have been received (PTS).

• IOSUPNAME sub-entry: The name of the program to be invoked by SMP to perform
the IEHIOSUP function. The default program is "IEHIOSUP".

• IOSUPPARM sub-entry: The character string to be passed as parameters to the
program invoked by SMP to perform the IEHIOSUP function. There is no default
set of parameters.

• IOSUPPRINT sub-entry: The ddname for the output listing data set produced by
the IEHIOSUP program. The default DDNAME is "SYSPRINT".

• IOSUPRC sub-entry: The return code value to be compared with the code returned
from the IEHIOSUP program. When the value returned is higher than the IOSUPRC
subentry value, then the result of the IEHIOSUP function is considered unsuc-
cessful and the SYSMOD for which the IEHIOSUP program was invoked is termi-
nated. The default value is "0".

• LKEDNAME sub-entry: The name of the program to be invoked by SMP to perform
the linkage editor function. The default program is "IEWL".

• LKEDPARM sub-entry: The character string to be passed as parameters to the
program invoked by SMP to perform the linkage editor functions. These parame-
ters are always passed in addition to the link edit attributes determined dur-
ing APPLY, ACCEPT or RESTORE processing.

If no LKEDPARM sub-entry is present, "LET, LIST, XREF, NCAL" is used.

• LKEDPRINT sub-entry: The ddname for the output listing data set produced by
the linkage editor program. The default DDNAME is "SYSPRINT".

 326 Chapter 8 - OS/VS SMP System Programmer's Guide

• LKEDRC sub-entry: The return code value to be compared with the code returned
from the linkage editor program. When the value returned is higher than the
LKEDRC subentry value, then the result of the linkage editor function is con-
sidered unsuccessful and the SYSMODs for which the linkage editor program was
invoked are terminated. The default value is "8".

• PAGELEN sub-entry: A number from 1 to 9999 that is used as the number of lines
per page for the output listing in the SMPOUT data set. The default value is
60.

• PEMAX sub-entry: A number from 1 to 9999 that defines the maximum number of
subentries that can be present in an entry. The default value is 500.

PURGE indicator: When this indicator is set, any SYSMOD that is successfully
processed by ACCEPT is deleted from the PTS provided that the APPLY indicator
is set in the SYSMOD entry on the PTS and NOAPPLY was not specified on the
ACCEPT control statement. When the PTS SYSTEM entry is created, the PURGE
indicator is set. When the PTS SYSTEM entry is listed, the PURGE option is
shown as "YES" if the PURGE indicator is set and as "NO" if the PURGE indicator
is reset.

• REJECT indicator: When this indicator is set, any SYSMOD that is successfully
processed by RESTORE is deleted from the PTS. When the PTS SYSTEM entry is
created, the REJECT indicator is set. When the PTS SYSTEM entry is listed, the
REJECT option is shown as "YES" if the REJECT indicator is set and as "NO" if
the REJECT indicator is reset.

• RETRYNAME sub-entry: The name of the program to be invoked by SMP4 to perform
the RETRY recovery compress function for an out-of-space ABEND. If the
RETRYNAME subentry is not present in the PTS system entry SMP4 invokes the
program IEBCOPY to compress the out-of-space datasets.

• RETRYPARM sub-entry: specifies the character string to be passed as parameters
to the program invoked by SMP for RETRY recovery compress functions. If the
RETRYPARM subentry is not present in the PTS system entry, no parameters are
passed.

• RETRYPRINT sub-entry: The DDNAME for the output listing data set produced by
the RETRY recovery compress program. If the RETRYPRINT subentry is not present
in the PTS system entry, then the ddname SYSPRINT is used.

• RETRYRC sub-entry: The return code value to be compared with the code returned
from the RETRY recovery compress program. If the compress program return code
is higher than the RETRYRC subentry value, then the result of the compress
function is considered unsuccessful and RETRY is considered to have failed. In
this case SMP is terminated. If the RETRYRC subentry is not present in the PTS
system entry, then the value. 0, is used.

• SREL sub-entries: System release identifier. Multiple system release identi-
fiers may appear in the PTS SYSTEM entry.

• UPDATNAME sub-entry: The name of the program to be invoked by SMP to perform
the text update function. If the UPDATNAME subentry is not present in the PTS
SYSTEM entry, SMP invokes the program IEBUPDTE to perform the text update
function.

SMPPTS Entries 327

• UPDATPARM sub-entry: The character string to be passed as parameters to the
program invoked by SMP to perform the text update function. If the UPDATPARM
subentry is not present in the PTS SYSTEM entry, SMP passes "MOD" if the mem-
ber in the output PDS exists and is being updated, or "REP" if the member does
not exist or is being replaced. If the UPDATPARM subentry is present, then it
is appended to "MOD" or "REP" and passed to the text update program.

• UPDATPRINT sub-entry: The ddname for the output listing data set produced by
the text update program. If the UPDATPRINT subentry is not present in the PTS
SYSTEM entry, then the ddname SYSPRINT is used.

• UPDATRC sub-entry: is the return code value to be compared with the code
returned from the text update program. When the value returned is higher than
the UPDATRC subentry value, then the result of the text update function is
considered unsuccessful and the SYSMOD for which the text update program was

invoked is terminated. The value may be any number from 0 to 16. See OS/VS
Utilities for a description of the IEBUPDTE return codes. If the UPDATRC sub-
entry is not present in the PTS SYSTEM entry, then the default value of 0 is
compared with the text update program return code.

• ZAPNAME sub-entry: The name of the program to be invoked by SMP to perform the
IMASPZAP service aid function. If the ZAPNAME subentry is not present in the
PTS SYSTEM entry, SMP invokes the program IMASPZAP to perform the IMASPZAP
function.

• ZAPPARM sub-entry: The character string to be passed as a parameter to the
program invoked by SMP to perform the IMASPZAP function. If the ZAPPARM sub-
entry is not present in the PTS SYSTEM entry, SMP does not pass any parameters
to the IMASPZAP program.

• ZAPPRINT sub-entry: The ddname for the output listing data set produced by the
IMASPZAP program. If the ZAPPRINT subentry is not present in the PTS SYSTEM
entry, then the ddname SYSPRINT is used.

• ZAPRC sub-entry: The return code value to be compared with the code returned
from the IMASPZAP program. When the value returned is higher than the ZAPRC

subentry value, then the result of the IMASPZAP function is considered unsuc-
cessful and the SYSMOD for which the IMASPZAP program was invoked is termi-
nated. The value may be any number from 0 to 16. If the ZAPRC subentry is not

present in the PTS SYSTEM entry, then the value of 4 is compared with the
IMASPZAP program return code.

SMPPTS SYSMOD ENTRIES

PTS SYSMOD entries are created by RECEIVE processing and describe the SYSMODs
which are potentially eligible for APPLY and ACCEPT processing. Associated with
each SYSMOD entry is a MCS entry which contains the actual SMP modification con-
trol statements which compose the SYSMOD.

SYSMOD entries have one of the following four TYPE indicators set:

• FUNCTION - indicates ++FUNCTION SYSMOD

 328 Chapter 8 - OS/VS SMP System Programmer's Guide

• PTF - indicates ++PTF SYSMOD

• APAR - indicates ++APAR SYSMOD

• USERMOD - indicates ++USERMOD SYSMOD

The following indicators and sub-entry types appear in the SYSMOD entry:

• ACC indicator: indicates that the SYSMOD has been accepted on one or more sys-
tems.

• ACCID sub-entries: CDSID values from the ACDS SYSTEM entries for systems on
which the SYSMOD has been accepted. Thus, these sub-entries identify where the
SYSMOD has been accepted.

• APP indicator: indicates that the SYSMOD has been applied to one or more sys-
tems.

• APPID sub-entries: CDSID values from the CDS SYSTEM entries for systems on
which the SYSMOD has been applied. Thus, these sub-entries identify where the
SYSMOD has been applied.

• BYP indicator: indicates that BYPASS(FMID) was used to receive this SYSMOD.

• DSPREFIX sub-entry: The user-specified high-level data set name qualifier for
the files on the SMPTLIB volume for this SYSMOD.

• ERROR indicator: When this indicator is set, the SYSMOD is considered to have
been unsuccessfully processed by RECEIVE.

• FMID VER(vernum) sub-entries: Names the functions to which the SYSMOD is
applicable.

• JCLIN indicator: Indicates that the SYSMOD contains inline JCLIN.

• MAC sub-entries: Names of macro elements supplied by this SYSMOD.

• MACUPD sub-entries: Names of the macro updates supplied by this SYSMOD.

• MOD sub-entries: Names of the modules supplied by this SYSMOD.

• NPRE VER(vernum) sub-entries: Names of SYSMODs which are negative prerequi-
sites of this SYSMOD (NPREs).

• PRE VER(vernum) sub-entries: Names of SYSMODs which are prerequisites (PREs)
of this SYSMOD.

• RECDATE sub-entry: Julian date that the SYSMOD was received.

• RECTIME sub-entry: Time at which the SYSMOD was received.

• REQ VER(vernum) sub-entries: Names of SYSMODs which are requisites (REQs) of
this SYSMOD.

SMPPTS Entries 329

• SRC sub-entries: Names of source replacement elements supplied by this SYSMOD.

• SRCUPD sub-entries: Names of source update elements supplied by this SYSMOD.

• SREL VER(vernum) sub-entries: Names the system releases to which the SYSMOD is
applicable.

• SUP VER(vernum) sub-entries: Names those SYSMODs superseded by this SYSMOD.

• SZAP sub-entries: Names the module update elements (ZAPS)

• VERSION VER(vernum) sub-entries: Name the function SYSMODs that are func-
tionally inferior to this SYSMOD.

Note: vernum is the 1 to 3 digit number of the ++VER statement which SMP used when
processing the SYSMOD. This number is associated with those subentries that come
from the ++VER statements (SREL, FMID, PRE, REQ, NPRE, SUP and VERSION).

 330 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPSCDS ENTRIES

SMPSCDS entries contain data saved from the SMPCDS during APPLY processing (gener-
ally for inline JCLIN). A COPY is saved of any MOD, MAC, SRC, DLIB, ASSEM, or LMOD
entry which was updated or deleted by applying the SYSMOD. There is an entry for
each SYSMOD which modified element processing data in the CDS. This data is used
by the RESTORE function to remove updates to the CDS caused by SYSMODs which are
being restored.

SMPSCDS Entries 331

 332 Chapter 8 - OS/VS SMP System Programmer's Guide

SMPMTS AND SMPSTS ENTRIES

SMPMTS

MTS entries contain macros from ++MAC and ++MACUPD elements processed during
APPLY. The macro elements maintained on the MTS are those elements which have no
target system library for APPLY.

• These macro elements are deleted when the SYSMOD(s) supplying the MAC or
MACUPDs are ACCEPTED.

SMPSTS

STS entries contain source from ++SRC and ++SRCUPD elements processed during
APPLY. The source elements maintained on the STS are those elements which have no
target system library for APPLY.

• These source elements are deleted when the SYSMOD(s) supplying the SRC or
SRCUPDs are ACCEPTED.

SMPMTS and SMPSTS Entries 333

 334 Chapter 9 - OS/VS SMP System Programmer's Guide

SYSMOD CONSTRUCTION CONSIDERATIONS

A SYSMOD consists of the following basic components:

• Header Modification Control Statement

A header modification control statement (++APAR, ++FUNCTION, ++PTF,
++USERMOD) is required for each SYSMOD. It must be the first modification con-
trol statement in the SYSMOD. All other modification control statements for
the SYSMOD follow. The header statement supplies SMP with a unique seven char-
acter sysmod-id used to describe the SYSMOD.

• VERIFY Modification Control Statement

The VERIFY statements (++VER) describe system, function and service dependen-
cies in terms of a system release, FMIDs and requisite SYSMODs. At least one
++VER modification control statement must be present for a SYSMOD, and a maxi-
mum of 255 ++VER modification control statements are permitted.

- FMID - is required for dependent-level functions and all non-function
SYSMODs. The SYSMOD named in the FMID parameter is treated as a prerequi-
site for the installation of the SYSMOD which contains the FMID parameter.

When specified for dependent-level functions, FMID implicitly indicates
that elements in the dependent-level function are superior to those ele-
ments in the function named.

When specified for non-function SYSMODs, FMID indicates the
function-level of the elements in the SYSMOD. Unless functional "superi-
ority" is expressed using the VERSION parameter, SMP will exclude elements
from a SYSMOD if the corresponding elements in the target system belong to
another function (that is, if the target system elements have a different
FMID).

- PRE and REQ - indicate that the SYSMOD requires the installation of the
named SYSMOD(s). If the required SYSMOD(s) must be installed before the
SYSMOD being built, it should be specified as a PRE (prerequisite); if the
order in which SMP installs the SYSMODs is irrelevant, the required
SYSMODs may be specified as REQs (requisites).

For non-function SYSMODs, PRE is generally used to specify the presence of
previously defined SYSMODs containing some, but not all, of the elements
in the SYSMOD. Thus, PRE ensures that the complete set of elements (in-
cluding those not in the present SYSMOD) is installed.

Further, PRE provides a positive indication that the SYSMOD "knows" about
earlier SYSMODs containing elements in common; this "knowledge" implies,
to SMP, that the elements in the present SYSMOD are at a higher
service-level than those in the prerequisite SYSMOD. Thus, PRE provides
service-level relationships between SYSMODs in much the same manner as
VERSION provides function-level relationships.

SYSMOD Construction Considerations 335

- NPRE - indicates that the SYSMOD being built is mutually exclusive with
another SYSMOD, and that it should not be installed if the other SYSMOD is
present on the target system. 5MP will not install the SYSMOD with the
NPRE parameter if the SYSMOD specified in the NPRE parameter is installed
on the system.

SUP (supersede) - indicates that this SYSMOD includes the modifications
made by those SYSMODs named as superseded (SUP). SMP maintains a record of
the superseded SYSMODs and allows installation of other SYSMODs which
specify these SYSMODs as requisites.

In contrast with the use of PRE, SUP is generally used when the present
SYSMOD contains all of the elements supplied by previously defined
SYSMODs. When a SYSMOD does contain all the elements supplied by previous-
ly defined SYSMODs, the SYSMOD will SUP these previous SYSMODs indicating
that they need not be installed.

When both the superseded and superseding SYSMOD are processed in the same
APPLY step, none of the elements (including in-line JCLIN) from the super-
seded SYSMOD are processed.

As with the use of PRE, SUP provides a positive indication that the pre-
sent SYSMOD "knows" about earlier SYSMODs containing elements in common
and is used to derive service-level relationships between SYSMODs.

- DELETE - indicates that the SYSMOD is replacing the function SYSMODs named
as operands of the DELETE parameter. DELETE is used to clean up data in
the CDS and ACDS pertaining to the deleted functions: the CDS and ACDS
SYSMOD entries for all PTFs, APARs, USERMODs and functions dependent upon
the deleted functions are removed; the element entries (MOD, MAC and SRC)
belonging to the deleted functions and dependent SYSMODs are removed; load
module entries (LMODs) are removed if all the modules which make up the
load module are removed. Further, CRQ/ACRQ FMID entries for explicitly
deleted SYSMODs are themselves deleted, and CRQ/ACRQ SYSMOD entries are
deleted if all of the FMID environments in the SYSMOD entry are explicitly
deleted.

Since DELETE removes CDS and ACDS entries containing element processing
data (such as element distribution libraries and load module system
libraries), the function deleting another function must supply sufficient
data on the element statements (and possibly JCLIN) to allow SMP process-
ing.

SMP keeps a record for each SYSMOD which is explicitly deleted (that is,
named as an operand on the DELETE parameter). SMP will not install any
subsequent SYSMODs that require the presence of the explicitly deleted
SYSMODs.

DELETE may only be specified in a function SYSMOD.

- VERSION - indicates that the elements in the SYSMOD being built are func-
tionally superior to elements belonging to the functions named as operands
of the VERSION parameter.

 336 Chapter 9 - OS/VS SMP System Programmer's Guide

-

In order to ensure the function level of a system, SMP will not select
elements from a SYSMOD whose FMID does not match the FMID of the corre-
sponding elements on the target system unless VERSION is coded to indicate
that the SYSMOD's elements are functionally superior. VERSION is used to
change the functional ownership of elements.

Since a dependent-level function's specification of its dependency to a
base-level function (using FMID) also implies functional superiority to
the base, a dependent-level function does not "version" the base-level
function. If, however, a dependent-level function is supplying elements
which are functionally superior to elements in functions other than its
base, the dependent-level function must indicate this "superiority"
relationship by coding the FMIDs of the "inferior" functions as VERSION
operands.

• Conditional Requisite Modification Control Statements

Conditional Requisite statements (++IFs) provide SMP with the data necessary
to resolve requisites which are dependent upon particular functional (FMID)
environments.

++IF modification control statements, if specified, are associated with the
++VER modification control statement preceding them in the SYSMOD. Multiple
++IF modification control statements can be specified following each ++VER

modification control statement.

• Installation Data (JCLIN)

The ++JCLIN statement specifies that a job stream of assembly, update, copy
and link edit steps is available in order to provide SMP with information
required to properly install the SYSMOD's elements on the operating system.
There can be only one ++JCLIN modification control statement for each SYSMOD.
It appears anywhere after the ++VER and ++IF modification control statements.

• Element Modification Control Statements

The ++MAC, ++MOD, ++SRC, ++MACUPD, ++SRCUPD, ++UPDTE and ++ZAP modification
control statements describe the elements being modified by the SYSMOD. They

are referred to as element modification control statements.

A SYSMOD may not be constructed which has more than one version of the same

element type (such as two ++MOD(A)'s) or which has a replacement and update
for the same element (such as a ++SRC(X) and a ++SRCUPD(X)).

Although a source and a module element with the same names are related to one
another, a SYSMOD may contain both a source modification and a ++MOD object
deck for the same element. Such construction requires that the object deck

match the object that would be produced if the corresponding source were
assembled.

Figure 36 illustrates the valid (VALID) and invalid (INV) combinations of mod-
ifications to the same element within one SYSMOD.

Note: since JCLIN cannot determine distribution and operating system
libraries for macros and source elements, ++MACs and ++SRC generally require

SYSMOD Construction Considerations 337

DISTLIB and SYSLIB information when they are first introduced to SMP.

 338 Chapter 9 - OS/VS SMP System Programmer's Guide

MOD ZAP SRC SRCUPD MAC
MACUPD/
UPDTE

MOD INV INV VALID VALID VALID VALID

ZAP INV INV INV INV VALID VALID

SRC VALID INV INV INV VALID VALID

SRCUPD VALID INV INV INV VALID VALID

MAC VALID VALID VALID VALID INV INV

MACUPD/
UPDTE VALID VALID VALID VALID INV INV

Figure 36: - Valid Modifications to the Same Element.

MISCELLANEOUS CONSTRUCTION RULES:

A function cannot be a base level function for one system release and a depen-
dent level function for a different release at the same time. Therefore, for
function SYSMODs, if the FMID operand is specified on one ++VER modification
control statement, then it must be present on all of the other ++VER modifica-
tion control statements, as shown in the following erroneous SYSMOD con-

struction:

++FUNCTION(HVT1403).
++VER(Z039) /* BASE LEVEL FUNCTION */ .
++VER(Z038) FMID(HVT1303) /K DEPENDENT FUNCTION */ .

• SMP must be able to determine the function to which a service SYSMOD (PTF,
APAR or USERMOD) applies. Therefore, service SYSMODs that can be processed by
SMP Release 4 must have an FMID coded on their Release 4 applicable ++VER

statements.

Since SMP will only consider ++VER statements whose SREL matches an SREL in a
control dataset SYSTEM entry, it is possible to construct a service SYSMOD
without an FMID on the ++VER as follows,

++PTF(UZ00001).
++VER(Z037) /* FOR MVS 3.7 / SMP R3 SYSTEMS */ .
++VER(Z038) FMID(ESY1400) /* FOR MVS 3.8 / SMP R4 SYSTEMS */ .

• The functional "owner" (FMID) of a SYSMOD on any given system release (SREL)
must not be ambiguous. Therefore, a SYSMOD cannot be constructed which speci-
fies different FMIDs for the same system release (SREL). The following example
shows a SYSMOD construction error:

SYSMOD Construction Considerations 339

•

++PTF(UZ00005).
++VER(Z038) FMID(ESY1400).
++VER(Z038) FMID(ESY1101).

• Service SYSMODs cannot specify the DELETE or NPRE keywords on their SMP
Release 4 ++VER statements.

• The same SYSMOD-ID may not be specified more than once in the same ++VER
keyword operand list. The following illustrates this error by coding the same
SYSMOD-ID twice in the PRE list.

++PTF(UZ00079).
++VER(Z038) FMID(ESY1400) PRE(UZ00010,UZ00010).

• The same SYSMOD-ID may not be specified in more than one ++VER keyword operand
list. The following illustrates this error by coding the same SYSMOD-ID in the
PRE and REQ lists.

++PTF(UZ00080).
++VER(Z038) FMID(GVT1202) PRE(UZ00010) REQ(UZ00010).

Exception: a SYSMOD-ID that is specified in the VERSION operand list can also
be specified in any one of the other operand lists except for the FMID oper-
and.

• The FMID operand on a ++IF statement specifies the conditonal presence of a

function whereas the FMID operand on a ++VER specifies the absolute presence

of a function.

Thus, FMID operand on a ++IF statement cannot be the same as the FMID speci-
fied in the associated ++VER or the SYSMOD-ID specified in the header modifi-
cation control statement. The following example shows a SYSMOD with an
incorrect ++IF modification control statement specification:

++PTF(UZ00079).
++VER(Z038) FMID(GVT1202) PRE(UZ00010).
++IF FMID(GVT1202) THEN REQ(UZ00021).

• IEBUPDTE Control Cards: The only IEBUPDTE control statements allowed in the
SYSMOD are the ./ CHANGE and ./ ENDUP. The member name specified on the ./
CHANGE statement must match the name in the SMP modification control state-
ment.

SMP generates any ./ ALIAS statements needed and places them in the IEBUPDTE
input data following the last text statement. The ./ ALIAS control statements
are generated only for macro updates.

When processing multiple updates to the same source or macro, SMP will use the
"./ CHANGE" statement from the last update to the element.

 340 Chapter 9 - OS/VS SMP System Programmer's Guide

PACKAGING TECHNIQUES FOR SYSMODS

There are three techniques for packaging SYSMODs: inline, indirect library, and
relative file, as described in the following three topics. A SYSMOD can be con-
structed using more than one technique.

INLINE PACKAGING TECHNIQUE

With the inline technique, the entire SYSMOD data is present in a single package.
The element data and any JCLIN data for the SYSMOD immediately follow the associ-
ated element and ++JCLIN modification control statements. This is the only method
used for elements that are updated rather than replaced. When you receive a
SYSMOD packaged using this technique, SMP writes the entire SYSMOD to the PTS data
set as an MCS entry. During subsequent processing of the SYSMOD by APPLY and
ACCEPT, SMP reads the element data from the MCS entry and writes the data to the
appropriate work data set prior to invoking the utility programs to update the
target system and distribution libraries. Most IBM PTFs are packaged using this
technique.

INDIRECT LIBRARY TECHNIQUE

the indirect library technique, SYSMODs are packaged with element and JCLIN
data in files separate from the file containing the modification control state-
ments. Each indirect library is a partitioned dataset containing one or more mem-
bers:

• MAC and SRC elements specify the DDNAME of the library containing the respec-
tive elements using the TXLIB keyword.

• The MOD elements specify the DDNAME of libraries containing object decks using
TXLIB and link-edited load modules using LKLIB.

• JCLIN specifies the DDNAME of the library containing JCL using the TXLIB
keyword. The library specified must be a partitioned dataset. The JCL must be
in a member whose name matches the SYSMOD name. In the following example, SMP
expects to find the JCL for SYSMOD FAA1000 in a member named FAA1000 in the
library identified by the AAJCLIN DD statement.

• Update elements (ZAPS. MACUPDs and SRCUPDs) cannot be supplied in indirect
TXLIB or LKLIB libraries.

The following is an example of a SYSMOD packaged with the indirect library tech-
nique:

SYSMOD Construction Considerations 341

++FUNCTION(FAA1000).
++VER(Z038).
++JCLIN TXLIB(AAJCLIN).
++MAC(AAQRST) TXLIB(AAMACLIB) DISTLIB(AOSMACAA).
++MAC(AAWXYZ) TXLIB(AAMACLIB) DISTLIB(AOSMACAA).
++MOD(AAABCD01) LKLIB(AAMODLIB) DISTLIB(AOSMODAA).
++MOD(AAABCD02) LKLIB(AAMODLIB) DISTLIB(AOSMODAA).

After you have loaded the libraries to direct access storage, you must provide DD
statements when executing the APPLY function. For example:

//AAJCLIN DD DSN=FAA1000.AAJCLIN,VOL=SER=PACK01,
// UNIT=SYSDA,DISP=OLD
//AAMACLIB DD DSN=FAA1000.AAMACLIB,VOL=SER=PACK01,
// UNIT=SYSDA,DISP=OLD
//AAMODLIB DD DSN=FAA1000.AAMODLIB,VOL=SER=PACK01,
// UNIT=SYSDA,DISP=OLD

The advantages of this technique over the inline packaging technique are improved
performance, since the data does not have to be moved to work data sets during the
APPLY and ACCEPT functions, and less space is needed for the PTS.

RELATIVE FILE TECHNIQUE

The relative file technique is similar to the indirect library technique in that
the element and JCLIN data is packaged in files separate from the modification
control statements. With this technique, the FILES keyword is specified on the
header modification control statement and the RELFILE keyword is specified on each
element and ++JCLIN modification control statement whose data is in a separate
file. The FILES keyword specifies the number of files that are associated with the
SYSMOD. The RELFILE keyword specifies the relative file number, with respect to
other files associated with the SYSMOD, of the file containing the element or
JCLIN data.

SMP loads the files onto direct access storage when the SYSMOD is received. This
process is done using IEBCOPY. Each element modification control statement
included in the SYSMOD for a specific file is selectively copied. Every alias
specified in the DALIAS, MALIAS, and TALIAS operands is also selectively copied.
This selective copying ensures that the contents of the unloaded partitioned data
sets are correct. These files will be accessed during APPLY and ACCEPT processing.

This packaging technique permits multiple SYSMODs on the same physical tape. All
SYSMOD modification control statements are contained in a single file with their
related text files following in the sequence specified by the order of the SYSMODs
and, within each SYSMOD, by the RELFILE operands on the element modification con-
trol statements. Figure 37 is an example of multiple SYSMODs packaged on a single
tape. SMP processing calculates the absolute file number of each file that is
loaded during RECEIVE processing although some of the SYSMODs may not be selected
or processed.

See 'RECEIVE Processing' on page 15 in Chapter 2 for a further description of how
relative files are processed.

 342 Chapter 9 - OS/VS SMP System Programmer's Guide

FILE DATA

1 ++FUNCTION(GBB3100) FILES(3).
++VER(Z038).
++JCLIN RELFILE(1).
++MOD(A) DISTLIB(ABBDLIB) RELFILE(2).
++MOD(B) DISTLIB(ABBDLIB) RELFILE(2).
++MAC(X) DISTLIB(ABBMACS) RELFILE(3).

++FUNCTION(EBB3101) FILES(3).
++VER(Z038) FMID(GBB3100).
++JCLIN RELFILE(1).
++MOD(A) DISTLIB(ABBDLIB) RELFILE(2).
++MOD(C) DISTLIB(ABBDLIB) RELFILE(2).
++MAC(Y) DISTLIB(ABBMACS) RELFILE(3).

2
DSN = GBB3100.F1
Unloaded PDS containing member GBB3100, which is
JCLIN data for function GBB3100

3
DSN = GBB3100.F2
Unloaded PDS containing modules A and B for
function GBB3100

4
DSN = GBB3100.F3
Unloaded PDS containing macro X for function GBB3100

5
DSN = EBB3101.F1
Unloaded PDS containing member EBB3101, which is
JCLIN data for function EBB3101

6
DSN = EBB3101.F2
Unloaded PDS containing modules A and C for
function EBB3101

7
DSN = EBB3101.F3
Unloaded PDS containing macro Y for function EBB3101

Figure 37 - Physical Organization of Relative File Tape

RELFILE Packaging Notes:

• Tapes containing SYSMODs packaged with this technique must have standard
labels.

SYSMOD Construction Considerations 343

•
•

•

•
•

•

• The files containing the unloaded partitioned datasets must have a DSNAME of
the form:

iiiiiii.Fnnnn

where "iiiiiii" is the SYSMOD-ID of the owning SYSMOD and "nnnn" is a one-to
four-digit file number corresponding to the value in the associated element or
++JCLIN modification control statement, with no leading zeroes.

• The SMPPTFIN DD statement must point to the file on the tape containing the
SMP modification control statements. This file is expected to be a sequential,
card-image dataset.

• All RELATIVE files on the tape containing elements accessed by SMP are
expected to be IEBCOPY-unloaded partitioned datasets. These files must follow
the sequential file containing the SMP modification control statements.

- The ++JCLIN RELFILE is expected to be a partitioned dataset containing a
member matching the SYSMOD name. SMP accesses this member to obtain the
SYSMOD's JCL data.

- ++MOD RELFILES are expected to contain link-edited load modules.

- Alias members must exist in the RELFILE datasets for each DALIAS, MALIAS
and TALIAS specified on the SMP element modification control statements.

• In-line elements may be supplied in the sequential modification control state-
ment file.

• Update elements (ZAPs, MACUPDs and SRCUPDs) cannot be supplied in RELATIVE
files. They may, however, be supplied in-line for a SYSMOD which supplies oth-
er elements in RELATIVE files.

SYSMOD CONSTRUCTION TECHNIQUES

The only elements allowed in a system modification package are those belonging to
one function. The owning function is identified by the operand value of the
++FUNCTION modification control statement for function packages or the value of
the FMID operand on ++VER modification control statements for service packages.
Furthermore, all service packages must identify the owning function of the ele-
ments in the package. These restrictions remove ambiguity with respect to deter-
mining function ownership.

To demonstrate some of the problems that the SYSMOD formulation technique solves,
it is necessary to understand relationships of functions and their associated ele-
ments. Figure 38 shows functions and module relationships:

 344 Chapter 9 - OS/VS SMP System Programmer's Guide

Figure 38 - Function and Module Relationships

The example that follows assumes that function ESY1400 must be present for either
function ESY1500 or ESY1500 to be applicable. Either ESY1500 or ESY1500 can be
present without the other but, if both are present, function ESY1500 is superior
to function ESY1500.

++FUNCTION(ESY1400).
++VER(Z038).
++MOD(A) /* FOR ESY1400 */.
++MOD(B) /* FOR ESY1400 */.
++MOD(C) /* FOR ESY1400 */.
++MOD(D) /* FOR ESY1400 */.

++FUNCTION(ESY1500).
++VER(Z038) FMID(ESY1400).
++MOD(A) /* FOR ESY1500 */.
++MOD(B) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.

++FUNCTION(ESY1500).
++VER(Z038) FMID(ESY1400) VERSION(ESY1500).
++MOD(B) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.
++MOD(D) /* FOR ESY1500 */.

The following example shows how you would construct the PTFs required to fix APARs
spanning all four modules in three functions:

++PTF(UZ13001).
++VER(Z038) FMID(ESY1400).
++IF FMID(ESY1500) THEN REQ(UZ13002).
++IF FMID(ESY1500) THEN REQ(UZ13003).
++MOD(A) /* FOR ESY1400 */.
++MOD(B) /* FOR ESY1400 */.
++MOD(C) /* FOR ESY1400 */.
++MOD(D) /* FOR ESY1400 */.

SYSMOD Construction Considerations 345

++PTF(UZ13002).
++VER(Z038) FMID(ESY1500) REQ(UZ13001).
++IF FMID(ESY1500) THEN REQ(UZ13003).
++MOD(A) /* FOR ESY1500 */.
++MOD(B) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.

++PTF(UZ13003).
++VER(Z038) FMID(ESY1500) REQ(UZ13001).
++IF FMID(ESY1500) THEN REQ(UZ13002).
++MOD(B) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.
++MOD(D) /* FOR ESY1500 */.

Only three PTFs, the minimum possible, are required to service all the elements in
all the functions. Each PTF has information that refers to the other PTFs in the
set. The ++IF modification control statements are processed only when the func-
tion SYSMOD specified is present.

COMBINED PACKAGING FOR COMPATIBILITY

You can construct a set of PTFs that will service the above functions and can be
processed by both this and previous releases of SMP.

++PTF(UZ13001).
++VER(Z037) PRE(E5Y1400) NPRE(ESY1500,ESY1500)

REQ(UZ13002,UZ13003).
++VER(Z037) PRE(ESY1400,ESY1500) NPRECESY1500)

REQ(UZ13006).
++VER(Z038) FMID(ESY1400) REQ(UZ13002,UZ13003).
++IF FMID(ESY1500) THEN REQ(U213004,UZ13005).
++IF FMIDCESY1500) THEN REQ(U213006).
++MOD(A) /* FOR ESY1400 */.

++PTF(UZ13002).
++VER(Z037) PRE(ESY1400) NPRE(ESY1500,ESY1500)

REQ(UZ13001,UZ13003).
++VER(Z038) FMID(ESY1400) REQ(UZ13001,UZ13003).
++IF FMID(ESY1500) THEN REQ(UZ13004,UZ13005).
++IF FMID(ESY1500) THEN REQ(UZ13006).
++MOD(B) /* FOR ESY1400 */.
++MOD(C) /* FOR ESY1400 */.

++PTF(UZ13003).
++VER(Z037) PRE(ESY1400) NPRE(ESY1500,ESY1500)

REQ(UZ130014213002).
++VER(Z037) PRE(ESY1400,ESY1500) NPRE(ESY1500)

REQ(UZ13004,UZ13005).
++VER(Z038) FMID(ESY1400) REQ(UZ13001,UZ13002).
++IF FMID(ESY1500) THEN REQ(UZ13004,UZ13005).
++IF FMID(ESY1500) THEN REQ(UZ13006).
++MOD(D) /* FOR ESY1400 */.

 346 Chapter 9 - OS/VS SMP System Programmer's Guide

++PTF(UZ13004).
++VER(Z037) PRE(ESY1400,ESY1500) NPRECESY1500)

REQ(UZ13003,UZ13005).
++VER(Z037) PRE(ESY1400,ESY1500,ESY1500)

REQ(UZ13006).
++VER(Z038) FMID(ESY1500) REQ(UZ13005,UZ13003).
++IF FMID(ESY1500) THEN REQ(UZ13006).
++MOD(A) /* FOR ESY1500 */.

++PTF(UZ13005).
++VER(Z037) PRE(ESY1400,ESY1500) NPRE(ESY1500)

REQ(UZ13003,UZ13004).
++VER(Z038) FMID(ESY1500) REQ(UZ13004,UZ13003).
++IF FMID(ESY1500) THEN REQ(UZ13006).
++MOD(B) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.

++PTF(UZ13006).
++VER(Z037) PRE(ESY1400,ESY1500) NPRE(ESY1500)

REQ(UZ13001).
++VER(Z037) PRE(ESY1400,ESY1500,ESY1500)

REQ(UZ13004).
++VER(Z038) FMID(ESY1500) REQ(UZ13001).
++IF FMID(ESY1500) THEN REQ(UZ13004).
++MOD(8) /* FOR ESY1500 */.
++MOD(C) /* FOR ESY1500 */.
++MOD(D) /* FOR ESY1500 */.

When this set of PTFs is processed by previous versions of SMP, the new operands
and the ++IF modification control statements are ignored. If you are using a pre-
vious version of SMP, the CDS SYSTEM entry must not have "Z038" as the SREL
subentry value. If you are using this version of SMP, the PTS SYSTEM entry and the
CDS SYSTEM entry must not contain "Z037" as an SREL subentry value so that all
++VER modification control statements with "2037" will be ignored.

SYSMOD Construction Considerations 347

USER MODIFICATIONS

You can use SMP to perform user modifications that:

• Modify existing system elements, such as load modules, object modules, source
modules, and macros

• Add new load modules to your target system

• Add modules to existing load modules in your target system

When IBM-supplied service is installed, the MODID verification checks described in
Chapter 2 will ensure that you are notified by a message when the service inter-
sects with your modification. The following situations might be encountered when
service is installed on a system with user modifications:

• If a service SYSMOD attempts to replace an element you have replaced or
updated, the service SYSMOD will be terminated.

• If a service SYSMOD attempts to update an element you have replaced, the serv-
ice SYSMOD will be terminated.

• If a service SYSMOD attempts to update an element you have updated, the serv-

ice SYSMOD will be processed and a message will inform you that there is a
potential loss of your modification.

When function is installed, element selection is based upon functional relation-
ships and the MODID verification checks will not detect overlaid user modifica-
tions. In general, the processing of the function is not affected by the presence
of non-superseded PTFs, APARs and USERMODs. To provide an indication of overlaid
user modifications, SMP will issue a message whenever a function SYSMOD element
overlays an element which was modified by a USERMOD.

USERMOD CONSIDERATIONS

• The seven character sysmod-id should be choosen so as not to conflict with the
conventions used by IBM. The sysmod-ids for IBM function and service SYSMODs
begin with the letters A through K and U through Z; sysmod-ids beginning with

the letters l through T and the numbers 0 through 9 are available for user mod-
ifications.

• When an APAR or USERMOD is built, it must name the functional owner of the ele-
ment in the ++VER FMID keyword; if it does not, the element will not be
updated. If the APAR/USERMOD affects elements from more than one function
(FMID), more than one APAR/USERMOD package must be constructed. One
APAR/USERMOD package is required for each function (FMID) whose elements are
affected.

• An APAR/USERMOD should never use VERSION to control the selection of elements
from a number of different FMIDs as this will change the functional ownership
of the elements; subsequent IBM-supplied service will not be properly applied.

 348 Chapter 9 - OS/VS SMP System Programmer's Guide

User modifications which replace target system elements should PRE the last
SYSMOD to replace the element (the element's RMID) and all SYSMODs which have
updated the element since the last replacement (the element's UMIDs).

• User modifications which update target system elements should PRE the last
SYSMOD to replace the element (the element's RMID); they need not PRE all pre-
vious updates.

• A user modification (or APAR) to a macro which causes an assembly will cause
the ASSEMBLY indicator in the assembled module's MOD entry to be set. This
indicator tells subsequent SMP processing that the module is in some way
affected by a user modification to a macro. Since service modifications to the

module will not know the relationship between the user macro change and the
module, SMP will re-assemble the module whenever a subsequent SYSMOD attempts
to modify the module. These re -assemblies may be suppressed by resetting the
ASSEMBLY indicator in the module entry.

SUPERZAP MODIFICATIONS

The following four examples illustrate the use of IMASPZAP to perform modifica-
tions to distribution library modules, load modules, modules, and CSECTs within
the modules. The examples assume that the load module structures are:

Load Module Name

Load Module Name
Module Name

Module Name
CSECT Name

CSECT Name

LMODA LMODB
MOD1 MOD1

CSECT1 CSECT1
CSECT2 CSECT2
CSECT3 CSECT3

MOD2 MOD2
MOD2 MOD2

MOD3
MOD3

MOD4
MOD4

Figure 39 - Load Module Structure for Zap Examples

The examples assume the use of the cataloged procedure described in "SMP Cataloged

Procedure" from Chapter 3. The appropriate DD statements for defining the target
system and distribution libraries have been added to the procedure.

SYSMOD Construction Considerations 349

•

ZAP Example 1

Control section CSECT2 in module MOD1, which is in both LMODA and LMODB, is to be
modified in both load modules.

//SMPCNTL DD *
RECEIVE.
APPLY S(MYMODO1).

/*
//SMPPTFIN DD
++USERMOD(MYMODOl).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD1).
NAME CSECT2
VER 000D FF
REP 000D FE

/*

ZAP example 2

Control section MOD3 in module MOD3, which is in LMODA, is to be modified.

//SMPCNTL DD *
RECEIVE.
APPLY S(MYMOD02).

/*

//SMPPTFIN DD *
++USERMOD(MYMOD02).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD3).
NAME MOD3
VER 000A 00
REP 000A FF

/*

ZAP Example 3

Control section CSECT2 in module MOD1, which is in LMODA and LMODB, is to be modi-
fied in LMODB only.

//SMPCNTL DD *
RECEIVE.
APPLY S(MYMOD03).

/*
//SMPPTFIN DD *
++USERMOD(MYMOD03).
++VER(Z038) FMID(FXY1000).
++ZAP(M0D1).
NAME LMODB CSECT2
VER 0000 00
REP 0000 FF

/*

3

 350 Chapter 9 - OS/VS SMP System Programmer's Guide

ZAP Example 4

Control section CSECT3 in module MOD1, which is in LMODA and LMODB, is to be modi-
fied with an EXPAND-type request.

//SMPCNTL DD
RECEIVE.
APPLY S(MYMOD04).

/*
//SMPPTFIN DD *
++USERMOD(MYMOD04).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD1).
NAME CSECT3
VER 000D FF
REP 0000 FE
EXPAND CSECT3(4)

/*

ADDING NEW LOAD MODULES

The following example shows how to add new load modules to your target system.
Alternative methods involve executing the SMP JCLIN function prior to applying the
modifications; however, this example requires only a single invocation of SMP and
is the recommended method.

The set of elements to be added to the target system include:

• Load modules USERSVC1 and USERSVC2 in SYS1.SVCLIB

• Load module USERTWO in SYS1.LINKLIB

• Modules USERSVC1, USERSVC2, IEFUSERA, and IEFUSERB

• Macros USERMACA and USERMACB in SYS1.MACLIB

• Assembler input text for module IEFUSERA

The JCL input data that describes the assembler step for IEFUSERA, the link edit
step for load module USERTWO, and the copy step for USERSVC1 and USERSVC2 are
placed in the user modification itself following the ++JCLIN modification control
statement.

SYSMOD Construction Considerations 351

//ADDMYMOD JOB 1,'MYNAME',MSGLEVEL=1,CLASS=A
//STEPA EXEC SMPPROC
//SVCLIB DD DSN=SYS1.SVCLIB,DISP=OLD
//USERLIB DD DSN=SYS1.USERLIB,DISP=OLD
//SMPCNTL DD

RECEIVE.
APPLY S(MYMOD05) RC(RECEIVE=04).
ACCEPT S(MYMOD05) USERMODS RC(APPLY=04).

/*

//SMPPTFIN DD DATA,DLM='$$'
++USERMOD(MYMOD05).
++VER(Z038) FMID(FXY1000).
++JCLIN.
//MYJOB JOB 1,'MYNAME',MSGLEVEL=1,CLASS=A
//STEP1 EXEC PGM=ASMBLR
//SYSPUNCH DD DSN=USER.OBJPDS(IEFUSERA),DISP=OLD
//SYSIN DD *

PRINT ON,NODATA
USERMACA PARM1,PARM2

COPY USERMACB
END

/*

//STEP2 EXEC PGM=IEWL,PARM='RENT'
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=OLD
//USERLIB DD DSN=SYS1.USERLIB,DISP=OLD
//SYSPUNCH DD DSN=USER.OBJPDS,DISP=OLD
//SYSIN DD *

INCLUDE SYSPUNCH(IEFUSERA)
INCLUDE USERLIB(IEFUSERB)
ENTRY USERONE

NAME USERTWO(R)
/*

//STEP3 EXEC PGM=IEBCOPY
//USERLIB DD DSN=SYS1.USERLIB,DISP=OLD
//SVCLIB DD DSN=SYS1.SVCLIB,DISP=OLD
//SYSIN DD

COPY INDD=USERLIB,OUTDD=SVCLIB
SELECT MEMBER=(USERSVC1,USERSVC2)

/*

++MAC(USERMACA) TXLIB(MACTXLIB) SYSLIB(MACLIB) DISTLIB(AMACLIB).
++MAC(USERMACB) TXLIB(MACTXLIB) SYSLIB(MACLIB) DISTLIB(AMACLIB).
++MOD(IEFUSERB) TXLIB(MODTXLIB) DISTLIB(USERLIB) LEPARM(RENT).
++MOD(USERSVC1) TXLIB(MODTXLIB) DISTLIB(USERLIB) LEPARM(RENT).
++MOD(USERSVC2) TXLIB(MODTXLIB) DISTLIB(USERLIB) LEPARM(RENT). $$

Figure 40 - JCLIN For "Adding New Load Modules"

During APPLY processing, the following updating will occur:

3

 352 Chapter 9 - OS/VS SMP System Programmer's Guide

• By processing the JCL input data following the ++JCLIN modification control
statement, SMP creates the following CDS entries:

- An ASSEM entry for IEFUSERA

- MAC entries for USERMACA and USERMACB with a GENASM subentry for IEFUSERA

- An LMOD entry for USERTWO

- MOD entries for IEFUSERA and IEFUSERB with LMOD subentries for USERTWO

- MOD and LMOD entries for USERSVC1 and USERSVC2

• SMP places macros USERMACA and USERMACB in SYS1.MACLIB.

• By processing the ++MAC modification control statements for USERMACA and
USERMACB, SMP assembles IEFUSERA.

• SMP link edits modules IEFUSERA and IEFUSERB to form load module USERTWO and
places the load module in SYS1.LINKLIB.

• SMP link edits modules USERSVC1 and USERSVC2 individually and places the
resultant load modules in SYS1.SVCLIB.

• SMP assigns MYMOD05, the SYSMOD-ID of the user modification, as the value of
the RMID subentries for the affected MAC and MOD entries. SMP assigns FYX1000
as the value of the FMID subentries for macros and modules created by this
SYSMOD.

During ACCEPT processing, SMP performs the following updates:

• Macros USERMACA and USERMACB are placed in the distribution library
SYS1.AMACLIB.

• Modules IEFUSERB, USERSVC1, and USERSVC2 are link edited and placed in the
distribution library SYS1.USERLIB.

• MAC and MOD entries for the macros and modules defined in the element modifi-
cation control statements are created with an RMID subentry value of MYMOD05.
An FMID subentry of FXY1000 will be assigned to macros and modules created by
this SYSMOD.

SYSMOD Construction Considerations 353

SERVICE UPDATED FUNCTION SYSMODS

Function SYSMODs may be periodically repackaged to incorporate existing service
modifications into the function. The result is called a service updated function
SYSMOD. You may choose to reapply and reaccept a function SYSMOD that has been
service updated to bring that function up to a higher service level than what you
currently have in your target system and distribution libraries.

RULES FOR INTEGRATING SERVICE SYSMODS

When a function SYSMOD is service updated, the original modification control
statements may be changed and new ones added to the SYSMOD, depending on the
elements that have been modified since the function was first packaged.

The modifications performed to service update a function SYSMOD are as follows:

• The SYSMOD-IDs of all service SYSMODs integrated into the function SYSMOD are
placed in the SUP operand list of the ++VER modification control statement.

All SYSMOD-IDs from the SUP operand lists on the ++VER modification control
statements from integrated service SYSMODs are placed in the SUP operand list
of the ++VER modification control statement for the function SYSMOD. No
duplicate SYSMOD-IDs will be present in the SUP operand list.

• The ++IF modification control statements from integrated service SYSMODs are
included in the function SYSMODs. For each unique FMID operand, the REQ oper-
and list values are placed into a combined ++IF modification control state-
ment; duplicates are eliminated.

The JCLIN data from integrated service SYSMODs is combined with that from the
original function SYSMOD. The merge is done according to service order so
that the most recent JCLIN data is the last in the combined data.

All elements that have been deleted by the inclusion of the DELETE operand on
an element modification control statement from an integrated service SYSMOD
are deleted from the function SYSMOD. If you reapply and reaccept the service
updated function SYSMOD and have not applied and accepted the integrated serv-
ice SYSMODs that deleted those elements, you might have to delete some ele-

ments from the target system and distribution libraries and the element
entries from the CDS and ACDS.

• Load module names from the LMOD operand lists of ++MOD modification control
statements from integrated service SYSMODs are placed in LMOD operands on the
corresponding ++MOD modification control statements in the function SYSMOD;
duplicate names are eliminated.

• Element modification control statements for elements added by integrated
service SYSMODs are added to the function SYSMOD.

• SYSMOD-IDs from the VERSION operand lists of ++VER modification control state-
ments from integrated service SYSMODs are placed in the VERSION operand list
on the ++VER modification control statement for the function SYSMOD; dupli-

 354 Chapter 9 - OS/VS SMP System Programmer's Guide

•

•

cotes are eliminated.

• SYSMOD-IDs from the VERSION operand lists of element modification control
statements from integrated service SYSMODs are placed in the VERSION operand
list on the element modification control statements for the function SYSMOD;
duplicates are eliminated.

• For each element that has been modified by integrated service SYSMODs, the
SYSMOD-ID of the service SYSMOD that last replaced the element is placed in
the element modification control statement as the value of the RMID operand.

• For Each element that has been modified by integrated service SYSMODs, the
SYSMOD-ID of the service SYSMODs that have updated the element since its last
replacement are placed in the element modification control statement as the
values of the UMID operand.

When a service updated function SYSMOD is applied or accepted, the RMID subentry
of the element entry of elements selected from the SYSMOD for replacement is
replaced with the value from the RMID operand, if it is present.

See 'APPLY Processing' in Chapter 2 for a description of how a service updated
function SYSMOD is applied to a target system.

SAMPLE SERVICE UPDATED FUNCTION SYSMOD

The following shows a function SYSMOD and four PTFs that service elements within
that function SYSMOD.

++FUNCTION(FXX4101) FILES(S).
++VER(Z038).
++JCLIN RELFILE(1).
++MAC(IXXKLTD) DISTLIB(AXXMACLB) RELFILE(2).
++MAC(IXXLQIQ) DISTLIB(AXXMACLB) RELFILE(2).
++MAC(IXXMWTS) DISTLIB(AXXMACLB) RELFILE(2).
++MAC(IXXNJDW) DISTLIB(AXXMACLB) RELFILE(2).
++MOD(IXXJWMDW) DISTLIB(AOS98) RELFILE(3).
++MOD(IXXJWXDC) DISTLIB(AOS98) RELFILE(3).
++MOD(IXXJWYCV) DISTLIB(AOS98) RELFILE(3).
++MOD(IXXJWYD1) DISTLIB(AOS98) RELFILE(3).
++MOD(IXXJWYD2) DISTLIB(AOS98) RELFILE(3).
++MOD(IXXJWYDS) DISTLIB(AOS98) RELFILE(3).

++PTF(UZ13579).
++VER(Z038) FMID(FXX4101) SUP(AZ11335).
++MACUPD(IXXKLTD) DIST.LIB(AXXMACLB).
++MOD(IXXJWYCV) DISTLIB(AOS98).

SYSMOD Construction Considerations 355

++PTF(UZ13601).
++VER(Z038) FMID(FXX4101) PRE(UZ13579) SUP(AZ11442).
++IF FMID(FXX4102) THEN REQ(UZ13607).
++MOD(IXXJWYCV) DISTLIB(AOS98).
++MOD(IXXJWYDI) DISTLIB(AOS98).
++MOD(IXXJWYD2) DISTLIB(AOS98).

++PTF(UZ13613).
++VER(Z038) FMID(FXX4101) PRE(UZ13601) SUP(AZ11456).
++IF FMID(FXX4102) THEN REQ(UZ13614).
++MACUPD(IXXLQIQ) DISTLIB(AXXMACLB).
++MOD(IXXJWMDW) DISTLIB(AOS98).
++MOD(IXXJWXDC) DISTLIB(AOS98).
++MOD(IXXJWYD1) DISTLIB(AOS98).

++PTF(U213644).
++VER(Z038) FMID(FXX4101) PRE(UZ13613,UZ13601)

SUP(AZ11487).
++IF FMID(FXX4102) THEN REQ(UZ13645).
++IF FMID(FXX4103) THEN REQ(UZ13646).
++MOD(IXXJWYCV) DISTLIB(AOS98) VERSION(FXX4102).
++MOD(IXXJWYDS) DISTLIB(AOS98).

After integrating the four PTFs, the service updated function SYSMOD would appear
as follows.

++FUNCTION(FXX4101) FILES(3).
++VER(Z038) SUP(AZ11335,AZ11442,AZ11456,AZ11487,

UZ13579,UZ13601,UZ13613.UZ13644).
++JCLIN RELFILE(1).
++IF FMID(FXX4102) THEN REQ(UZ13607,UZ13614,UZ13645).
++IF FMID(FXX4103) THEN REQ(UZ13646).
++MAC(IXXKLTD) DISTLIB(AXXMACLB) RELFILE(2)

UMID(UZ13579,UZ13601).
++MAC(IXXLQIQ) DISTLIB(AXXMACLB) RELFILE(2)

UMID(UZ13613).
++MAC(IXXMWTS) DISTLIB(AXXMACLB) RELFILE(2).
++MAC(IXXNJDW) DISTLIB(AXXMACLB) RELFILE(2).
++MOD(IXXJWMDW) DISTLIB(AOS98) RELFILE(3)

RMID(UZ13613).
++MOD(IXXJWXDC) DISTLIB(AOS98) RELFILE(3)

RMID(UZ13613).
++MOD(IXXJWYCV) DISTLIB(AOS98) RELFILE(3)

VERSION(FXX4102) RMID(UZ13644).
++MOD(IXXJWYD1) DISTLIB(AOS98) RELFILE(3)

RMID(UZ13613).
++MOD(IXXJWYD2) DISTLIB(A0S98) RELFILE(3)

RMID(UZ13601).
++MOD(IXXJWYDS) DISTLIB(AOS98) RELFILE(3)

RMID(UZ13644).

 356 Chapter 9 - OS/VS SMP System Programmer's Guide

APPENDIX A: RULES FOR CODING SMP STATEMENTS

Use the following rules to code SMP control statements and modification control
statements:

1. Each statement must begin on a new logical 80-byte record.

a. The symbol '++' in the modification control statement must appear in bytes
1 and 2.

b. The KEYWORD for the '++' must appear on the same card as the '++'

Note: Except for these two restrictions, the control statements and mod-
ification control statements can begin and end anywhere up to and includ-
ing byte 72.

2. The statement function must be specified first, followed by any keywords.

3. The optional keywords can be coded in any sequence, except where noted in the
syntax and operand descriptions.

4. At least one blank must occur between each keyword.

5. Blanks or a comma, as specified in the syntax, must separate the keywords and
their options.

6. Comments are delineated by '/*' at the beginning and '*/' at the end. A com-
ment can appear anywhere on a statement before the ending period, but should
not begin in column 1.

7. Each statement must be terminated with a period(.).

8. Bytes 73-80 are ignored by SMP.

9. A statement continues until a period is encountered, and the statement can
continue on more than one physical record. Continuation is assumed if no peri-
od(.) is found before byte 73.

10. SMP completes processing one statement before the next statement is processed.

11. All input to SMP must be in UPPER CASE letters

Appendix A: Rules For Coding SMP Statements 357

 358 Appendix B - OS/VS SMP System Programmer's Guide

APPENDIX B: SYNTAX NOTATION CONVENTIONS

This publication uses the following syntax notation conventions to define the SMP
control statements and modification control statements:

1. Uppercase letters, numbers, and the set of symbols listed below should be
coded in an actual statement exactly as shown in the statement definition.

apostrophe '
asterisk *
blank blanks are not coded
comma ,
equal sign =
parentheses ()
period

2. Lowercase letters and symbols should not be coded; they represent variables
for which you should substitute specific information in the actual statement.

Example: If 'name' appears in a statement definition, you should substitute a
specific value (for example, ALPHA) for the variable when you code the state-
ment.

3. Hyphens join lowercase words and symbols to form a single variable, and should
never be coded in an actual statement.

Example: If 'member-name' appears in a statement definition, you should
substitute a specific value (for example, BETA) for the variable when you code
the statement.

4. An underscore indicates a default option, and should never be coded in an
actual statement. If you select an underscored alternative, you need not
specify that alternative when you code the statement.

Example: The representation

 A | B | CC

indicates that you are to select A or B or C. However, if you do not specify
anything, C is chosen because it is the default.

5. Braces group required items and should never be coded in an actual statement.
One of the items enclosed within the braces must be selected.

Example: The representation

ALPHA={ ADD | DEL | REP }

indicates that you must choose one of the items ADD, DEL, or REP.

Appendix B: Syntax Notation Conventions 359

6. Brackets group optional items and should never be coded in an actual state-
ment. Only one of the items enclosed within the brackets must be selected, or
you should not specify the keyword at all.

Example: The representation

ALPHA=[A | B | C]

indicates that you can choose one of the items A, B or C, or you must omit the
keyword entirely.

7. An ellipsis indicates that the preceding item or group of items can be
repeated more than once in succession, and should never be coded in an actual
statement.

Example: The representation

ALPHA[option[,option]...]

indicates that ALPHA can appear alone or can be followed by an option any num-
ber of times in succession.

8. A slash represents 'or', and should never be coded in an actual statement.

Example: The representation

A | B | C

indicates that you are to select A or B or C.

 360 Appendix B - OS/VS SMP System Programmer's Guide

APPENDIX C: PTF COMPATIBILITY FEATURE

This appendix describes a PTF compatibility feature that enables you to process
PTFs that were created using SMP syntax from previous releases. These PTFs
include the initial PTF that defines the function and subsequent PTFs that service
that function.

ELIGIBLE PTFS

The PTFs that can be processed with this feature are restricted to program pro-
ducts that are independent of the system control program. PTFs that are SU defi-
nitions and service PTFs that are applicable to the base system control program
and the SUs which modify that system control program are not eligible.

PTFs that do not define the program product initial installation package may not
contain the NPRE operand in the ++VER modification control statements. If more
than one ++VER modification control statement is determined to be applicable dur-
ing APPLY or ACCEPT processing, the PTF is terminated.

SMP ENVIRONMENT

You should define the SMP environment for processing with the PTF compatibility
feature separately from the system control program and other program products.
The SMP primary data sets should be allocated exclusively for the processing of
the program product. The ACDS and CDS SYSTEM entries are initialized with the
SREL subentry value present in the SREL operand of the ++VER modification control
statement from the PTF defining the program product. If a separate PTS is to be
used, the SREL subentry value is also placed in the PTS SYSTEM entry. The ACRQ,
CRQ, and SCDS data sets can be null, but must be defined.

THE FMID EXECUTION PARAMETER

Prior to receiving the PTF that defines the program product, the SYSMOD-ID from
the ++PTF modification control statement must be specified as the value following
'FMID=' in the PARM operand of the EXEC statement in the JCL statements used to
invoke SMP. All subsequent executions of SMP that process PTFs or invoke the
UCLIN function must also have the FMID parameter specified in the EXEC statement.

Appendix C: PTF Compatibility Feature 361

SMP FUNCTION VARIATIONS

The SMP functions RECEIVE, APPLY, ACCEPT, and UCLIN are sensitive to the presence
of the FMID parameter coded on the EXEC statement. The processing variations for
each of these functions is described below:

• RECEIVE

All PTFs are received that have at least one ++VER modification control state-
ment whose SREL operand list contains a value found in the SREL subentries of
the PTS SYSTEM entry. The absence of the FMID operand on ++VER modification
control statements does not result in a syntax error as is normally the case.
When the PTF whose SYSMOD-ID matches the FMID parameter value is received, the
SYSMOD entry created has the FUNCTION indicator set so that subsequent APPLY

and ACCEPT processing treats the PTF as a function type SYSMOD. The MCS
entries of all PTFs received are unchanged.

• APPLY

PTFs processed that do not contain FMID operands on their applicable ++VER
modification control statements have the FMID value in the EXEC statement log-
ically appended to them with the exception of the PTF that is treated as a
function. This is the only variation in APPLY processing. The function PTF
must be applied prior to or concurrent with the service PTFs.

• ACCEPT

The processing is the same as for APPLY.

• UCLIN

All SYSMOD and element entries that are created, updated, or replaced have the

FMID parameter value from the EXEC statement placed in the FMID subentry
unless one already exists or is specified on the UCL statement. If you add or
replace an entry and specify the FMID operand on the UCL statement, you must
ensure that it matches that specified in the EXEC statement. SMPCDS is the
default data set for UCLIN operations.

 362 Appendix C - OS/VS SMP System Programmer's Guide

APPENDIX D: SMP RELEASE 3/SMP RELEASE 4 AMMENDMENTS

This appendix describes the major changes between SMP Release 3 and Release 4. The
information that you will read was formally the "Summary of Amendments" section of
OS/VS SMP System Programmer's Guide GC28-0673-5, and is here to assist SMP Release
3 users to understand the basic differences between the two Releases.

INCOMPATIBILITIES

• The SU process as supported by the INSTALL macro and Release 3 of SMP is not
supported by Release 4.

• SMP control information applicable to Release 3 of SMP requires modification
to be applicable to Release 4.

SUPPORT OF FUNCTION INSTALLATION

• SMP Release 4 recognizes when a function is being installed. Facilities are
provided for the support of a hierarchy of function.

• SMP Release 4 provides facilities for the management of function. Specif-
ically, SMP Release 4 allows the element content of a function package to
change and parts or all of the function to be replaced in a system.

• The service level of the system is maintained whenever a function is
installed. SMP Release 4 ensures that the service level of other functions
and of the installed function is at the proper level.

• A facility is provided that allows SMP Release 4 to ensure that, upon function
installation, the system is automatically brought up to the correct service
level with respect to the functions installed.

• SMP Release 4 allows the installation of a function even if the function had
been previously installed, and ensures that the proper service level is main-
tained.

USER PROCESSES

The user is allowed to receive function and service for that function without
requiring the application of the function and service to his system. This
provides an enhanced pre-sysgen planning capability that does not interfere
with the ability to service existing systems.

Appendix D: SMP Release 3/SMP Release 4 Ammendments 363

• The user is able to do dry runs of APPLY and ACCEPT processing and thereby
determine the effects of applying and accepting new service or function.

• SMP Release 4 allows function and service to be received regardless of the
state of the control data set (CDS). For installations with more than one

version of an operating system, this allows one RECEIVE operation to be valid
for all system versions.

• SMP Release 4 allows a user to specify a permanent parameter list in the SMP
data sets to override some default operations.

• SMP Release 4 controls the preparation of the user distribution libraries by
the use of RECEIVE and ACCEPT NOAPPLY.

• A facility is provided that allows the user to have SMP Release 4 merge a user
modification into a source module or macro.

• The JCLIN information, which includes the description of load module target
system structure, is automatically maintained by SMP Release 4. You have the
ability to package JCL input data inline with the associated modification.

SERVICE INSTALLATION

SMP Release 4 only supports a system modification (SYSMOD) construction that
uses FMID operands.

• SMP Release 4 allows the user to receive all potentially applicable service
into the PTS. SMP Release 4 then automatically groups together related serv-
ice whenever the environment of the target system or distribution libraries
changes.

• SMP Release 4 allows multiple modifications to an element during APPLY proc-
essing. This allows you to apply as many modifications as desired to a single
element without accepting any modifications into your distribution libraries.

• SMP Release 4 allows multiple replacements and updates to elements to be proc-
essed concurrently during APPLY and ACCEPT processing.

• SMP Release 4 distinguishes between APAR fixes, PTFs, user modifications, and
function modifications.

• SMP Release 4 provides facilities to merge source updates to the same source
module and macro updates to the same macro at APPLY/ACCEPT time.

MISCELLANEOUS

• The name of a modification may be any seven character alphanumeric string, the
first character of which should be alphabetic. SMP is insensitive to the con-
tent of the system modification name, but the alphabetic first character is

 364 Appendix D - OS/VS SMP System Programmer's Guide

•

required by some system utilities used by SMP.

• Each element has associated with it a `unction modification identifier (FMID).
This identifier represents the function package to which this element belongs.
Future modifications to an element must specify a relationship to the function
using the FMID modification identifier.

• A new keyword (VERSION) is provided to allow a system modification package to
indicate superiority to other functions.

RELIABILITY. AVAILABILITY AND SERVICEABILITY (RAS)

SMP Release 4 has a positive impact on system RAS because it automates the func-
tion and service installation process and thereby improves your ability to keep
your system at the highest IBM-provided service level. This has the potential of
reducing reported system failures and thereby improving the serviceability of IBM
products. This improvement comes from two factors:

• First, by integrating function and service installation with the SMP process.
SMP Release 4 removes user dependency on the INSTALL macro and its level.

• Secondly, SMP Release 4 permits a significantly improved service strategy for
both the user and IBM. Release 4 provides for the staging of any function and
its service into the SMP PTF Temporary Store Data Set (SMPPTS). SMP allows any
valid combination of modifications to be taken from this data set and applied
to the target system libraries and accepted into the distribution libraries
(DLIBs).

These two functions allow the user to maintain in the PTS an accumulation of all
potentially applicable IBM function and service. The user may then, either peri-
odically or because of a system failure, APPLY all or selected applicable service
to the system libraries.

The user is also able to plan function installation and ensure that all applicable
service to the function is being accumulated on the PTS in preparation for appli-
cation.

DATA SETS

The following is a list of new data set ddnames that have been added to SMP.

• SMPACRQ • SMPTLIB

• SMPADDIN • SMPWRK1

• SMPCRQ • SMPWRK2

• SMPLIST • SMPWRK3

Appendix D: SMP Release 3/SMP Release 4 Ammendments 365

• SMPPUNCH (new use) • SMPWRK4

• SMPRPT • SMPWRK5

• SMPSCDS • SYSUT4

The following is a list of data sets that have been deleted from SMP.

• SMPREPIN

• SMPUCS

SMP CONTROL STATEMENTS

The following SMP control statements have been added:

• DEBUG MSGMODID - Provides debug facitlites.

• RESETRC - Sets SMP return code to zero.

• UNLOAD -CDS or ACDS data is punched in UCLIN format.

The following SMP control statements have been deleted:

• CONVERT - No conversion is required to SMP Release 4 data sets.

• PRINT -You can print elements using IEBPTPCH or a comparable utility

• PUNCH -You can punch elements using IEBPTPCH or a comparable utility

• PTPCH -You can print or punch elements using IEBPTPCH or a comparable utility.

• RTNCODE - You can set the PTS SYSTEM entry RC parameters in place of RTNCODE.

SMP CONTROL STATEMENT KEYWORDS

The following new SMP control statement keywords have been added:

• ACCEPT - APARS, ASSEM, BYPASS, DIS, USERMODS, RETRY, REUSE

The APARS and/or USERMODS keyword must be specified in order for ++APAR
and/or ++USERMOD system modifications to be accepted into the distrib-
ution libraries.

- The ASSEM keyword is for SYSMODs that contain both source and object text
for the same modules; it is used when the source text is to be assembled to
replace the object text.

 366 Appendix D - OS/VS SMP System Programmer's Guide

-

BYPASS allows you to bypass termination conditions resulting from SYSMOD
processing.

DIS allows you to specify a mode for processing the ACDS directory.

- RETRY causes SMP to retry following dataset out of space conditions.

- REUSE causes SMP to use assemblies done during a previous (failing) SMP
execution.

• APPLY - ASSEM, BYPASS, DIS, NOJCLIN, RETRY

- ASSEM, BYPASS, RETRY and REUSE are same as for ACCEPT above.

DIS allows you to specify a mode for processing the CDS directory.

NOJCLIN specifies that all or selected SYSMODs with ++JCLIN modification
control statements are not to have the JCLIN data processed.

- RETRY causes SMP to retry following dataset out of space conditions.

• JCLIN - DIS

- DIS allows you to specify a mode for processing the CDS directory.

• LIST - ACRQ, CRQ, PTS, SCDS

Support is included for new or redefined data sets. The CDS is no longer
the default for the LIST control statement. Additional options are avail-
able on the LIST control statement, including the XREF option which can be
specified when listing the ACDS or CDS to produce macro or module cross
references or SYSMOD histories.

• RECEIVE - BYPASS

- BYPASS allows you to bypass the function modification identifier check
during RECEIVE processing.

• REJECT - PURGE

PURGE allows you to remove SYSMODS from the PTS which have been accepted.

• RESETRC

A new control statement that resets the return code values previously
returned by SMP functions.

• RESTORE - BYPASS, DIS, RETRY

BYPASS specifies MODID and requisite checking to be bypassed.

DIS allows you to specify a mode for processing the CDS directory.

RETRY causes SMP to retry following dataset out of space conditions.

Appendix D: SMP Release 3/SMP Release 4 Ammendments 367

-

-

-

-

-

-

-

-

-

-

• UCLIN - ACRQ, CRQ, DIS, SCDS

ACRQ, CRQ and SCDS provide support for new SMP data sets.

DIS allows you to specify a mode for processing the CDS or ACDS directory.

The CDS is no longer the default data set. A data set name must be speci-
fied.

UCL Statements - SYSMOD

SYSMOD replaces the PTF keyword.

The following SMP control statement keywords have been eliminated:

• ACCEPT - ERROR, FORCE, LIB, NOLIB , NOREQ, REPLACE

The ERROR, FORCE, LIB, NOLIB , NOREQ and REPLACE keywords are no longer sup-
ported. Specification of any of these keywords causes a syntax error.

SYSMODs with the ERROR status indicator set can be processed by specifying
their SYSMOD-IDs in the SELECT or GROUP operand list.

The FORCE keyword is replaced by the new keyword, BYPASS, which more accurate-
ly describes the resulting SMP action.

The LIB keyword is eliminated because users can update their own permanent
libraries rather than the distribution libraries by specifying their own data
sets on the DD statements that would normally specify the distribution
libraries.

NOLIB has been eliminated because the CDS SYSMOD entries do not require that
an ACCEPT indicator be set. This support was for the user who maintained two
or more target systems with the same distribution libraries used for RESTORE
processing.

NOREQ is replaced by the BYPASS(REQ) option.

REPLACE is unnecessary because of support for user modifications.

• APPLY - ERROR, FORCE, NOASM, NOREQ, REPLACE

ERROR, FORCE, NOREQ, and REPLACE are the same as ACCEPT.

NOASM is unnecessary because assemblies are always required for source module
updates unless the module is replaced in the same SYSMOD. Usage of the NOASM
keyword results in a syntax error.

• LIST - PDS

The LIST PDS option is no longer valid; the LIST PTS option has been defined.
The UCS is no longer used and the MTS and STS data set member names can be
listed using IEHLIST or a comparable utility program.

 368 Appendix D - OS/VS SMP System Programmer's Guide

-

-

-

-

• RECEIVE - FORCE, NOMERGE, PRINT, PUNCH, PTPCH

The PRINT, PUNCH, PTPCH, FORCE and NOMERGE keywords are no longer supported.
Specification of any of these keywords causes a syntax error.

The FORCE keyword has been replaced. A SYSMOD that would not be received
because of FMID validation failure can be received by specifying BYPASS(FMID).

The NOMERGE keyword is no longer used. SYSMODs are now stored as single enti-
ties instead of element replacements and updates, and there is no need to
merge SYSMODs that have elements in common.

The PRINT, PUNCH and PTPCH keywords are eliminated because of PTS restructur-
ing. Individual updates and replacements within a SYSMOD are not stored as
separate members on the PTS. To print or punch the SYSMODs in the PTS data set,
use IEBPTPCH or any comparable utility program.

• REJECT - GROUP

The GROUP keyword has been eliminated and specification of this keyword causes
a syntax error.

• RESTORE - ERROR, FORCE, NOREJECT, NOREQ

ERROR, FORCE and NOREQ are the same as in ACCEPT.

A function equivalent to NOREJECT is available through the setting of the
REJECT indicator in the PTS SYSTEM entry. If the REJECT indicator is off, a
successfully restored SYSMOD is not deleted from the PTS.

• UCLIN - UCS

The SMPUCS data set is no longer used and specification of the UCS keyword
causes a syntax error.

• UCL Statements - SRCUPD, UPDTE, ZAP

The SRCUPD, UPDTE, and ZAP keywords applied to the PTS data set, which has
been redefined.

The following SMP control statement keywords have assumed new meanings:

• APPLY, ACCEPT - GROUP

The GROUP keyword specifies one or more SYSMODS to be placed into the target
system libraries or the distribution libraries. Any requisite and prerequi-
site SYSMODs are automatically included in the processing, including any req-
uisites and prerequisites of those SYSMODs.

• RESTORE - GROUP

The GROUP keyword specifies one or more SYSMODs to be removed from the target
system libraries, including any other SYSMODs not specified that reference any
of the specified SYSMODs as requisites or prerequisites.

Appendix D: SMP Release 3/SMP Release 4 Ammendments 369

SMP MODIFICATION CONTROL STATEMENTS

The following SMP modification control statements have been added:

• ++APAR - identifies a temporary corrective fix

• ++FUNCTION - identifies new or replacement function

• ++IF - identifies conditional actions

• ++JCLIN - used to include JCL input data within a SYSMOD

• ++MACUPD - identifies a macro update and is interchangable with ++UPDTE

• ++USERMOD - identifies a user modification to IBM software

The SMP REPIN modification control statements are no longer supported.

The following modification control statement has been redefined:

• ++PTF - identifies only IBM supplied service.

SMP MODIFICATION CONTROL STATEMENT KEYWORDS

The following new SMP modification control statement keywords have been added:

• ++MAC - DELETE, DISTMOD, DISTSRC, RELFILE, RMID, VERSION, PREFIX

• ++MACUPD/++UPDTE - DISTMOD, DISTSRC, VERSION. PREFIX

• ++MOD - DELETE, LMOD, RELFILE, RMID, VERSION

• ++PTF - FILES

• ++SRC - DELETE, DISTMOD, RELFILE, RMID, VERSION

• ++SRCUPD - DISTMOD, VERSION

• ++VER - DELETE, FMID, VERSION

EXEC CARD PARAMETERS

The following parameters can be specified in the FARM operand field of the EXEC
JCL card:

DATE=U or IPL or REPLY or yyddd

DATE specifies the date to be used for listings and date fields in the created

 370 Appendix D - OS/VS SMP System Programmer's Guide

or updated PTS, CDS and ACDS SYSMOD entries. The default is 'U' or 'IPL',
which means the data maintained by the operating system. 'yyddd' is the Julian
date.

NORECOVERY

Specifies that the SMP ESTAE recovery environment ngi be established when run-
ning on non-VS1 and non-MVS systems.

ASM, COMPRESS, COPY, LKED, UPDTE and ZAP are no longer specifiable. See 'The UCL
SYS Statement' in Chapter 6 for specification of these program names.

The SIZE parameter is no longer supported. The SIZE parameter for the linkage
editor is now contained in the PTS SYSTEM entry and is specified by the UCL SYS
LKEDPARM statement.

The NODIS parameter is no longer supported. Directories in storage for the APPLY,
ACCEPT, RESTORE, JCLIN and UCLIN functions can be circumvented by specifying
DIS(NO) on their respective control statements.

Appendix D: SMP Release 3/SMP Release 4 Ammendments 371

 372 Appendix E - OS/VS SMP System Programmer's Guide

APPENDIX E: UCL OPERAND/DATA SET REFERENCE

This appendix consists of a set of charts which indicate the allowable UCL modifi-
cations to entries in the various SMP datasets.

The general syntax for UCL updates to SMP datasets is:

UCLIN dataset /* Begin UCL Updates */ •

{ ADD | DEL | REP } entry_type(entry_name) [sub_entry[,sub_entry]...] •

ENDUCL /* End UCL Updates */ •

where,

dataset specifies the SMP data set (ACDS, CDS, ACRQ, CRQ, MIS, PTS, SCDS or
STS);

ADD specifies that new data is to be added to an existing entry or that a new
entry is to be created;

DEL specifies that an entry is to be deleted or, within an entry, subentries are
to be deleted and indicators placed in reset state;

REP specifies that subentries are to be replaced and indicators placed in set
state in an existing entry;

entry type specifies the type of entry to be updated (such as, ASSEM, DLIB,
FMID, LMOD, MAC, MOD, SRC, SYSMOD and SYSTEM);

entry name specifies the name of the entry to be updated,

and

sub entry specifies the sub-entries and indicators that are to be updated.

Appendix E: UCL Operand/Data Set Reference 373

Notation:

• All characters entered in upper case must be entered as shown.

• All characters entered in lower case represent data that must be specified as
appropriate to the entry.

• When an item is followed by three periods (...) that indicates that the data
value can be repeated multiple times. The limit is established by the value of
PEMAX in either the SMPCDS, SMPACDS, or SMPPTS SYSTEM entry. An example of
this is the GENASM sub-entry of the SMPCDS MAC entry:

GENASM(name...)

• When an operand has a specified number of values then that indicates an upper
limit. An example of this is the SYSLIB sub-entry for a SMPCDS LMOD entry:

SYSLIB(ddname(,ddname))

This indicates that at most two ddnames may be specified.

• The syntax of SMP allows for either blanks or commas to be used to separate
items of a list. Thus the above example could have been specified as

SYSLIB(ddname1,ddname2)
or
SYSLIB(ddname1 ddname2)

• "nn" indicate a numeric value must be entered with a length of at most the num-
ber of characters as the number of n's in the syntax.

• "ddname" names must be at most 8 characters long and must follow standard nam-
ing conventions.

• '|' indicates alternative forms of an operand.

• 'r' in the table indicates that the information specified by the operand must
be present in the entry after all the UCL statement operands are processed. It
does not mean that the operand must be specified on the UCL statement.

• 'c' in the table indicates that the operand is present in the current release
of SMP only to maintain compatibility with previous releases. No processing,
other than syntax checking, will be done for these operands.

• 'n' where n is a numeric value indicates that a note is present for this oper-
and describing special considerations.

• 'x' in the table indicates that the operand is valid for the dataset.

 374 Appendix E - OS/VS SMP System Programmer's Guide

UCL Examples:

• To DELETE an entire ENTRY, no sub-entries are specified as illustrated below:

DEL entry_type(entry_name) •

For example,

DEL MAC(macro1) •

will delete the specified macro entry.

• To Delete all occurrences of a particular multiple-occurrence sub-entry type,

DEL entry_type(entry_name) sub_entry() •

For example,

DEL MAC(macro1) GENASM () •

will delete all GENASM sub-entries for the specified macro.

• To change a particular single-occurrence sub-entry type,

REP entry_type(entry_name) sub_entry(new_value) •

For example,

REP MAC(macro1) DLIB(new_dlib) •

will change the distribution library for the specified macro.

• To "set" a particular indicator,

ADD entry_type(entry_name) sub_entry •

For example,

ADD SYS PURGE •

will set the PURGE indicator in the SYSTEM entry (note that the SYSTEM entry
has no "entry_name" since there is only one SYSTEM entry in any particular SMP
data set).

• To "reset" a particular indicator,

DEL entry_type(entry_name) sub_entry •

For example,

DEL SYS PURGE •

will reset the PURGE indicator in the SYSTEM entry.

Appendix E: UCL Operand/Data Set Reference 375

The following chart illustrates the UCL functions which may be performed for the
entries on each SMP data set.

UCL Functions For Each SMP Data Set

The following chart illustrates the entries which exist in each SMP data set.

Entries to Data Set Chart

The charts on the following pages illustrate the sub-entries of each SMP data
set ENTRY in terms of the UCL keywords used to modify them.

 376 Appendix E - OS/VS SMP System Programmer's Guide

Appendix E: UCL Operand/Data Set Reference 377

Note: no sub-entries exist in the MTS MAC entry. The only UCL function which may be
Performed against the MTS MAC entry is delete.

 378 Appendix E - OS/VS SMP System Programmer's Guide

Note: no sub-entries exist in the STS SRC entry. The only UCL function which may be
performed against the STS SRC entry is delete.

Appendix E: UCL Operand/Data Set Reference 379

 380 Appendix E - OS/VS SMP System Programmer's Guide

Appendix E: UCL Operand/Data Set Reference 381

Notes - CDS/ACDS SYSMOD Entries:

1. The keywords APAR, PTF, FUNCTION and USERMOD specify the SYSMOD type. Only one
type is valid for any given SYSMOD entry or sysmod-id.

2. An element sub-entry (module, macro or source) cannot be added or replaced if
there is an update or regressed element sub-entry for the same element (and
vice versa). For example, a MAC sub-entry cannot be added it the SYSMOD
already has a MACUPD sub-entry for the same macro.

3. NPRE sub-entries can only be added to FUNCTION-type SYSMOD entries.

4. The APPLY, APPDATE and APPTIME sub-entries cannot be removed from a CDS SYSMOD
entry.

5. The ACCEPT, ACCDATE and ACCTIME sub-entries cannot be removed from an ACDS
SYSMOD entry.

6. In order to remove the apply indications from an ACDS SYSMOD entry, the APPLY,
APPDATE and APPTIME sub-entries must all be deleted.

7. In order to remove the accept indications from a CDS SYSMOD entry, the ACCEPT,
ACCDATE and APPTIME sub-entries must all be deleted.

8. A CDS SYSMOD entry with the RESTORE indicator set is always "in-error" (the
ERROR indicator is set). The ERROR indicator can only be deleted in conjunc-
tion with the deletion of the RESTORE, RESDATE and RESTIME sub-entries.

 382 Appendix E - OS/VS SMP System Programmer's Guide

GLOSSARY

This glossary defines terms used in SMP publications. Additional terms can be
found by referring to the index of the publication, to prerequisite publications,
and to the IBM Data Processing Glossary, GC20-1699.

*IBM is grateful to the American National Standards Institute (ANSI) for permis-
sion to reprint its definitions from the American National Standards Vocabulary
for Information Processing (Copyright 1970 by American National Standards Insti-
tute, Inc.), which was prepared by Subcommittee X3K5 on Terminology and Glossary
of American National Standards Committee X3.

 - A -

accent

In SMP, the process initiated by the ACCEPT control statement that places SYSMODs
into the distribution libraries or permanent user libraries.

accented SYSMOD

A SYSMOD which has been successfully processed by the SMP ACCEPT function.
Accepted SYSMODs are those found as SYSMOD entries on the ACDS with the ERROR flag
off.

ACCID

The identifier of the ACDS data set, maintained as a subentry in the PTS SYSMOD
entry to identify the ACDS data set on which the SYSMOD is accepted. See CDSID.

ACDS

The Alternate Control Data Set (SMPACDS) describes the SYSMODs and elements in the
distribution libraries.

ACRQ

The Alternate Conditional Requisite Queue Data Set (SMPACRQ) holds the parsed ++IF
modification control statements for ACCEPT processing of conditional requisite
data.

APAR

Authorized program analysis report.

APAR fix

An APAR fix is a temporary correction mechanism because the correction is usually
replaced at a later date by a permanent correction (PTF). In SMP, APAR fixes are
identified by the ++APAR modification control statement. APARs can be fixed in
PTFs and functions as denoted by the SUP operand.

Glossary 383

APPID

The identifier of the CDS data set, maintained as a subentry in the PTS SYSMOD
entry to identify the CDS data set on which the SYSMOD is applied. See CDSID.

apply

In SMP, the process initiated by the APPLY control statement that places SYSMODs
into the target system libraries.

applied SYSMOD

A SYSMOD which has been successfully processed by the SMP APPLY function. Applied
SYSMODs are those found as SYSMOD entries on the CDS with the ERROR flag off.

authorized program analysis report

The report of a defect in an IBM System Control Program (SCP) or Program Product
(PP). The correction that results is known as an APAR fix.

- B -

base level system

The level of the target system modules, macros, source modules and DLIBs created
by system generation (SYSGEN) to which function and service are applicable.
OS/VS2 MVS Release 3.8 and OS/VS1 Release 6.7 are two examples of what would be
considered base level systems.

base level function SYSMODs

SYSMODs that define elements of the base system or program products that were not
previously present in the target system. They are identified to SMP using the
++FUNCTION modification control statement. Base level function SYSMODs do not have
an FMID keyword in the ++VER modification control statement.

bypass

In SMP, to circumvent error conditions that would normally result in termination
of SYSMOD processing using the BYPASS keyword on the ACCEPT. APPLY, RECEIVE or
RESTORE control statements.

- C -

The Control Data Set (SMPCDS) contains information about the target system macros,
modules, assemblies, load modules, source modules, libraries copied from DLIBs
during SYSGEN, and the SYSMODs applied to the target system.

 384 Glossary - OS/VS SMP System Programmer's Guide

CDSID

A one to eight character system identifier of the CDS or ACDS data set contained in
the CDS or ACDS SYSTEM entry. The identifier is placed in the SYSMOD entry on the
PTS as an APPID subentry when the SYSMOD is applied, and as an ACCID subentry when
the SYSMOD is accepted.

CNTL

The Control Statement Input Data Set (SMPCNTL) contains the SMP control state-
ments.

collapse

See element version collapse.

conditional actions

Actions described by the ++IF modification control statements in terms of SYSMODs
required to be applied to the target system libraries, or accepted into the dis-
tribution libraries when a specified function SYSMOD is present. The condition is
described by the FMID operand; the actions are described by the REQ operand.

conditional requisite data

Data supplied in the ++IF modification control statements. This data is used to
determine service requirements that are environment dependent.

The Conditional Requisite Queue Data Set (SMPCRQ) holds ++IF modification control
statements for APPLY processing of conditional requisite data.

- D -

dependent level SYSMODs

Function SYSMODs that introduce new elements or redefine elements of the base lev-
el system or program products. Dependent level SYSMODs cannot exist without a
base level function; therefore, they must have an FMID keyword in the ++VER mod-
ification control statement, which specifies a prerequisite function SYSMOD.

deleted SYSMOD

A function SYSMOD specified as the value of a DELETE operand by the deleting
SYSMOD.

deleting SYSMOD

The function SYSMOD that specifies other function SYSMODs as values of the DELETE
operand.

Glossary 385

distribution libraries

IBM-supplied partitioned data sets containing elements for subsequent inclusion
in a new system. These data sets are updated by ACCEPT processing.

DLIB

Distribution library

- E -

element

In SMP, a module, macro or source module, identified to SMP by the element modifi-
cation control statements.

element modification control statement

Consist of the

Consist of ++MAC, ++MACUPD, ++MOD, ++SRC. ++SRCUPD, ++UPDTE or ++ZAP modification
control statements. They are used by SMP to identify the type of element and
whether it is an update or a replacement.

element selection

The process of choosing the appropriate modification(s) to an element from the
SYSMODs selected for APPLY or ACCEPT processing that have elements in common.

element version collapse

To transfer ownership of an element from one function to another, even though the
elements may already be present in the function to which the elements are trans-
ferred. See VERSION.

entry

The term entry refers to a member of an SMP dataset. With the exception of the MCS
entry in the SMPPTS dataset, these member names are encoded and cannot be easily
accessed by utilities other than SMP. SYSMOD and MACRO entries are examples of the
types of entries maintained in the SMPCDS dataset.

environment

In SMP, the set of function SYSMODs successfully applied to the target system or
successfully accepted into the distribution libraries.

ERROR indicator

In SMP, an indicator in a SYSMOD entry on the CDS or ACDS set prior to any SMP
updating of libraries. The ERROR indicator is reset if updating completes suc-
cessfully. If updating does not complete successfully, the ERROR indicator
remains set in the SYSMOD entry to indicate that processing of that SYSMOD failed.

 386 Glossary - OS/VS SMP System Programmer's Guide

EXCLUDE

The keyword used to specify a SYSMOD not to be included in SMP processing.

- F -

feature level SYSMOD

See dependent level SYSMOD.

FMID

Function modification identifier.

function

In SMP, system components and program products that can be optionally installed in
a user's system. Functions are identified to SMP by the ++FUNCTION modification
control statement.

function SYSMOD

A SYSMOD identified by the ++FUNCTION modification control statement.

function modification identifier

An identifier in the form of a SYSMOD-ID that identifies the function to which the
elements belong. It is associated with all elements installed on the user's sys-
tem as part of a function system modification. It becomes the FMID subentry of the
MOD, MAC, SRC, and SYSMOD entries.

functional version of an element

The functional version of an element is identified by the FMID of the SYSMOD which
contains the particular element. For function SYSMODs, the FMID is the SYSMOD-ID
itself. For service SYSMODs, the FMID is found in the ++VER modification control
statements. When a function SYSMOD is applied to the target system libraries or
accepted into the distribution libraries, the FMID from the selected SYSMOD is
placed into the associated entries on the CDS or ACDS.

- G -

GENASM

Subentries of MAC entries that are names of ASSEM or SRC entries to be assembled
when the macro is modified.

Glossary 387

- H -

header modification control statement

Header modification control statements are used by SMP to identify the type of
modification. They consist of the ++APAR, ++FUNCTION, ++PTF and ++USERMOD modifi-
cation control statements.

hierarchy

In SMP, used to describe the top-down structure of function and service SYSMODs,
where each SYSMOD is dependent on the one above it.

- I -

IMASPZAP

The IBM service aid used to apply superzaps. In VS1, IMASPZAP may also be invoked
under the name HMASPZAP, and in VS2 under the names HMASPZAP or AMASPZAP. SMP
invokes this service aid under the name IMASPZAP.

indicator

Is a field in an SMP dataset entry that does not have a data value associated with
it. An example of an indicator is the APP indicator in the SMPCDS SYSMOD entry. An
indicator is either "on" or "off".

inline JCLIN

The JCL statements supplied with the ++JCLIN modification control statement in a
SYSMOD. They are used to update the CDS when a SYSMOD is processed by APPLY proc-
essing.

inner macro

Is a macro invoked by another macro. In particular, inner macros are those which
SMP does not detect during JCLIN processing of assembler job steps.

install

In SMP, to apply a SYSMOD into the target system libraries or to accept a SYSMOD
into the distribution libraries.

- J -

JCLIN

This term is used to describe:

• The process of creating or updating the CDS using JCL input data,

• The data set that contains the Stage I output from system generation used to
update or create the CDS,

• The JCLIN control statement used to read in the JCLIN data set,

 388 Glossary - OS/VS SMP System Programmer's Guide

• The ++JCLIN modification control statement, packaged as part of a SYSMOD to
enable SMP to perform the CDS updates during APPLY processing. See inline
JCLIN.

- L -

load module

The output of the linkage editor; a program in a format suitable for loading into
main storage for execution.

LMOD

In SMP, an abbreviation for load module. For example, an entry on the CDS that
represents a load module is an LMOD entry.

The History Log Data Set (SMPLOG) contains time-and-date stamped records of all
significant events that occur during modification processing, and user messages
supplied using the LOG control statement.

logical deletion

Data set entries that are treated as if they do not exist but are not physically
deleted.

- M -

In SMP, an abbreviation for macro. The element modification control statement
that identifies a macro replacement is ++MAC: macro updates are identified by the
++MACUPD (or ++UPDTE) modification control statement. An entry on the CDS that
represents a macro is a MAC entry.

*macro

An instruction in a source language that is to be replaced by a defined sequence of
instructions in the same source language.

mass

In SMP, to process every eligible SYSMOD.

merge

In SMP, to combine source or macro updates into a temporary work data set, based on
the service order relationship and type of SYSMOD.

Glossary 389

LOG

MAC

In SMP, an abbreviation for module. The element modification control statement
that identifies a module replacement is ++MOD. An entry on the CDS that represents
a module i5 a MOD entry. module is a MOD entry.

MODID

Modification identifier.

modification

In SMP, an alteration or correction to an IBM SCP, PP or user program,, also known
as a system modification (SYSMOD).

modification identifier

A list of system modification identifiers consisting of the last system modifica-
tion to totally replace the element and any subsequent partial updates to the ele-
ment (that is, ZAPS on module elements) plus the function that owns the element.
These entities are referred to as the FMID, UMID and RMID. MODIDs are part of the
element entries on the CDS and ACDS.

modification text

The statements associated with the element modification control statements, such
as macro definition statements, source code, and object code.

*module

A program unit that is discrete and identifiable with respect to compiling, com-
bining with other units, and loading; for example, the input to or output from an
assembler, compiler, linkage editor, or executive routine.

The Macro Temporary Store Data Set (SMPMTS) contains macro modifications not
intended to be placed into a target system library.

- N -

negative prerequisite

In SMP, a SYSMOD (or SYSMODs) that must not be present in the system in order for
the SYSMOD currently being processed to be successfully installed.

NPRE

The NPRE operand on the ++VER modification control statement.

 390 Glossary - OS/VS SMP System Programmer's Guide

MOD

MTS

null CDS

An allocated but uninitialized CDS; that is, no entries have been made on it.

- 0 -

*object module

A module that is the output of an assembler or compiler and is input to a linkage
editor. operating system

The system updated by APPLY and RESTORE processing. Also referenced to as the tar-
get system.

- P -

package

In SMP, a package consists of all of the input that comprises one system modifica-
tion, including the modification control statements, modification text, relative
files, or data sets containing modification text, such as TXLIB.

parse

In SMP, to examine, syntax check, and resolve a statement into component parts.

PEMAX

The maximum number of SYSMOD elements that can exist in a SYSMOD (MAC, MOD, SRC,
SRCUPD, UPDTE, MACUPD, or ZAP), plus the related SYSMODs listed in the CDS or ACDS
SYSMOD entry (SYSMODs listed in the PRE, SUP, REQ or merge group fields). PEMAX is
used to determine the size of SMP work areas.

PP

Program product.

The PRE operand on the ++VER modification control statement.

prerequisite

In SMP, a SYSMOD (or SYSMODs) that must either be in the system or be in the proc-
ess of installation on the system for the SYSMOD currently being processed to be
successfully installed .

primary data set

In SMP, the SMP data sets that must be allocated after system generation.

Glossary 391

PRE

program product

A licensed program that performs a function for the user and usually interacts
with and relies upon the SCP or some other IBM provided control program. IMS and
CICS are program products.

program temporary fix

A correction to a defect in an IBM System Control Program (SCP) or Program Product
(PP). In the absence of a new release of a system or component that incorporates
the correction, the fix is not temporary but is the permanent and official cor-
rection mechanism. New elements might also be defined in a PTF.

PTF

Program temporary fix.

The System Modification Input Data Set (SMPPTFIN) contains the SYSMODs to be proc-
essed by RECEIVE.

PTF tape

In SMP, the IBM-supplied tape that contains the SYSMODs.

The PTF Temporary Store Data Set (SMPPTS) is used as a temporary storage for
SYSMODs that are received using the RECEIVE control statement.

purge

In SMP, to delete any SYSMOD that is successfully processed by APPLY and ACCEPT
from the PTS. This process is controlled by setting the PURGE indicator in the
SYSTEM entry of the PTS.

- R -

receive

In SMP, the process initiated by the RECEIVE control statement that reads the
SYSMODs from the PTFIN Data Set and stores them on the PTS for subsequent SMP proc-
essing.

regressed SYSMOD

A SYSMOD that has one or more of its elements modified by subsequent SYSMODs that
are not related to it.

 392 Glossary - OS/VS SMP System Programmer's Guide

PTFIN

PTS

regressing SYSMOD

The SYSMOD that causes regression of previous modifications when it is installed.

regression

In SMP, when a modification is made to an element by a SYSMOD that is not related
to SYSMODs that previously modified the element.

reject

In SMP, the process of removing SYSMODs from the PTS data set and temporary
libraries from the SMPTLIB volumes. The reject process may invoked by the REJECT
control statement or as part of ACCEPT and RESTORE processing. For ACCEPT and
RESTORE processing, the PURGE and REJECT indicators in the PTS SYSTEM entry deter-
mine whether reject will be invoked.

related SYSMOD

Associations between SYSMODs established by the FMID, PRE, REQ, or SUP keywords.

relative files

Files that contain modification text and JCL input data associated with a SYSMOD.

replacement modification identifier

The modification identifier of the last SYSMOD to completely replace a given mod-
ule, macro, or source module. It is known as the RMID subentry of the MOD, MAC, and
SRC entries.

REQ

The REQ operand on the ++VER modification control statement.

requisite

A SYSMOD (or SYSMODs) specified in either the PRE or REQ keywords on the ++VER mod-
ification control statement or in the REQ keyword on the SYSMOD's associated ++IF
modification control statement. It defines a SYSMOD (or SYSMODs) that must be
processed concurrently or prior to the SYSMOD being processed.

requisite SYSMOD set

The set of PTFs necessary to fix a set of APARs across a number of environments.

restore

In SMP, the process initiated by the RESTORE control statement that removes
SYSMODs processed by APPLY from the operating system libraries, the CDS, and
optionally, the PTS.

Glossary 393

restore group

Consists of all the SYSMODs that have a direct or indirect relationship with a
SYSMOD being restored using the GROUP operand.

RMID

Replacement modification identifier.

- S -

SCDS

The Save Control Data Set (SMPSCDS) contains back-up copies of CDS entries that
are modified during APPLY processing by inline JCLIN.

System control program.

secondary data sets

In SMP, the data sets that are allocated using JCL during the SMP job.

select

In SMP, the process of selecting a specific SYSMOD.

SELECT

The keyword that is used to specify the SYSMOD (or SYSMODs) to be included in SMP
processing.

selectable unit

A functional enhancement to an IBM SCP (OS/VS1 Release 6.0 and OS/VS2 Release
3.7).

service order relationship

A relationship among service SYSMODs determined by the PRE and SUP operands, and
the type of SYSMOD.

service level of an element

A set of FMID, RMID, and UMID subentry values.

service SYSMOD

Any SYSMOD identified by the ++APAR, ++PTF or ++USERMOD modification control
statements.

 394 Glossary - OS/VS SMP System Programmer's Guide

SCP

service update process

The method for integrating PTFs into function SYSMOD packages.

SMP

System Modification Program

SMP control statements

Define the SMP processes to be performed, such as RECEIVE.

SMP modification control statements

Statements that define the type of system modification. such as ++MAC for a macro
replacement. They also identify the elements to be added to, modified in, or
deleted from the system libraries and distribution libraries. In addition, there
are modification control statements that describe the environment and conditions
that must be met in order for SMP to install the modification.

source

See source module.

source module

The source statements that constitute the input to a language translator for a
particular translation.

source update

In SMP, a SYSMOD that updates a source module.

In SMP, an abbreviation for source. An entry in the CDS that represents a source
module is a SRC entry. An element modification control statement that replaces a
source module is ++SRC; that updates a source module is ++SRCUPD.

SRCUPD

A source module update.

SREL-ID

System release identifier

The Source Temporary Store Data Set (SMPSTS) contains source code modifications
that are not intended to be placed into a target system library.

Glossary 395

SRC

STS

SU

Selectable unit.

sub-entry

Is a field within an entry. Each sub-entry has associated with it a type and a val-
ue. Multiple occurrences of the same sub-entry type may exist in an entry each
with a different value. For example, the modules supplied by a PTF are saved as
"MOD" type sub-entries within the PTF's SYSMOD entry. Some sub-entries may occur
only once within an entry; for example, the CDSID sub-entry in a CDS SYSTEM entry.

S

UP

Supersede.

supersede

In SMP, a SYSMOD (or SYSMODs) contained in or replaced by the SYSMOD or requisite
set of SYSMODs currently being processed. A superseded SYSMOD is inferior to the
SYSMOD that superseded it.

super zap

A generic term for the process performed by IMASPZAP.

SYSMOD

System modification.

SYSMOD-ID

System modification identifier

SYSMOD selection

The process of determining which SYSMODs are eligible to be processed.

system modification

The input data to SMP that defines the introduction, replacement or update of ele-
ments in the operating system and associated distribution libraries, installed
under the control of SMP. A system modification is defined by a set of modifica-
tion control statements. It must include one header modification control state-
ment and at least one ++VER modification control statement. It may also include
++IF modification control statements, one ++JCLIN modification control statement,
and includes element modification control statements.

system modification identifier

The name that SMP associates with a system modification. It is specified as the
value of the ++APAR, ++FUNCTION, ++PTF or ++USERMOD operand. A SYSMOD-ID can be
any alphanumeric string of seven (7) characters, the first of which must be alpha-
betic. IBM reserves the characters "A" thru "K" and "U" for the first character of
IBM SYSMOD-IDs.

 396 Glossary - OS/VS SMP System Programmer's Guide

SUP

system release identifier

A four-byte value representing the system release level, such as Z038 for OS/VS2
MVS Release 3.8.

- T -

target system

The system updated during APPLY and RESTORE processing. Also referred to as the
operating system.

TLIB

A DD statement (SMPTLIB) pointing to a volume or set of volumes used as temporary
storage for libraries loaded during RECEIVE processing when SYSMODs are packaged
using the relative file technique.

- U -

UCL statement

Is the command to SMP that results in a change to one of the SMP dataset entries.
UCL statements come between the UCLIN and ENDUCL commands. The UCL statement spec-
ifies the action to be taken (ADD, REP or DEL), the entry to be modified and possi-
bly the indicators and sub-entries to be affected.

UMID

Update modification identifier.

update

In SMP, the process of modifying, without replacement, existing modules, macros,
or source modules.

update modification identifier

The modification identifier of the SYSMOD that updated the last replacement of a
given module, macro or source module.

USERMOD

User modification.

user modification

A modification to IBM-supplied code that is prepared by the user and identified to
SMP using the ++USERMOD modification control statement. User modifications can
also define elements created by the user to interface with IBM software.

Glossary 397

- V -

VERSION

used to specify one or more SYSMODs that contain elements that are functionally
inferior to elements contained in the SYSMOD that specifies the VERSION operand.
The VERSION operand is also used to change ownership of elements.

 398 Glossary - OS/VS SMP System Programmer's Guide

INDEX

Modification Control
Statements

++APAR modification control
statement 335, 253

(see also APAR SYSMOD)
example 254
operands 253
programming
considerations 253

syntax 253
++FUNCTION modification control

statement 335, 255
(see also function SYSMOD)
example 256
operands 255
programming
considerations 255

syntax 255
++IF modification control

statement 337, 257
example 258
on service updated function
SYSMODs 354

operands 257
programming
considerations 258

syntax 257
++JCLIN modification control

statement 337, 259-261
(see also inline JCLIN)
example 260
operands 259
packaging techniques 341-343
processing
APPLY use 26
integrating service 354
NOJCLIN use 26

programming
considerations 260

syntax 259
++MAC modification control

statement 337, 263-266
example 266
operands 263-265
packaging methods 341-343
programming
considerations 266

syntax 263
++MACUPD modification control

statement 337, 267-269
example 269
operands 267
programming
considerations 269

syntax 267
++MOD modification control

statement 337, 271-274
example 274
operands 271-273
packaging methods 341-343
programming
considerations 273

syntax 271
++PTF modification control

statement 335, 275
example 276
operands 275
programming
considerations 275

syntax 275
++SRC modification control
statement 337, 277-279
assembly of source text 32
example 279
operands 277-279
packaging methods 341-343
programming
considerations 279

syntax 277
++SRCUPD modification control
statement 337, 281
assembly of source text 32
example 282
operands 281
programming
considerations 282

syntax 281
++UPDTE modification control

statement
(see ++MACUPD modification
control statement)

++USERMOD modification control
statement 335, 283

(see also user modification)
example 284
operands 283
programming
considerations 283

syntax 283
++VER modification control

Index 399

statement 335, 285-287
applicability 112
examples 287
operands 285-287
programming
considerations 287

syntax 285
++ZAP modification control

statement 337, 289-291
example 291
operands 289
programming
considerations 289

syntax 289

A

ACCEPT control statement 123-128
ddnames 126
operands 123-126
programming
considerations 127

syntax 123
ACCEPT indicator
adding/deleting/changing 214

with ERROR status 127
ACCEPT processing 49

ACCEPT indication 52
DISTLIB operand checking 50
DISTSRC/ASSEM/DISTMOD 50
inline JCLIN 51
messages and reports 113

ACCID subentry
ACCEPT indication 52
adding/deleting/changing 227
REJECT SYSMOD selection 19

ACDS data set 82, 298
allocation 106*
copying to the CDS 82, 142
directories in-storage 125, 298
DISTLIB processing 50
DLIB/LMOD/ASSEM entries 50
listing 146
null 82
RESTORE
processing 44, 47, 48

SYSTEM entry 298
updating (see UCL Statements)

ACRQ data set 299
allocation 106
creation of entries 299
deletion of entries 299
FMID entries 299
listing contents 157

SYSMOD entries 299
updating (see UCL Statements)

Alternate Conditional Requisite
Queue data set

(see ACRQ data set)
Alternate Control Data Set

(see ACDS data set)
APARS operand

on ACCEPT 124
APARs operand requirement 124
APPLY processing

reprocessing applied
source text assemblies 32

APPID subentry
adding/deleting/changing 227
REJECT SYSMOD selection 19
RESTORE processing 47
updating 39

APPLY control statement 129
ddnames 132
operands 129-131
programming
considerations 132-134

syntax 129
APPLY indicator
adding/deleting/changing 215
and ERROR status 133

APPLY processing 22
CHECK 36

creating CDS SYSMOD
entries 36

element entries 37
PTS SYSMOD entries 39

DISTLIB checking 35
element selection 26
messages 36
processing inline JCLIN 26
reports 41, 39, 113
source/macro processing 31
assembly of source 32
IEBUPDTE control cards 33

SYSMOD selection 49
avoiding 40

of APPLY 41
of SYSMODs 39

using ++IF modification
ASMLIB operand

(see also DISTSRC operand)
on ++MAC 264
on ++MACUPD 268

ASM operand
on ++JCLIN 259
on JCLIN 140, &i7d004d

ASMRC operand
i n UCL SYS 230

ASMRC subentry 34

 400 Index - OS/VS SMP System Programmer's Guide

B

BACKUP entry
ACCEPT processing
of inline JCLIN 51

APPLY processing 26
LIST SCDS 166
RESTORE processing 45
UCLIN processing 56

base level system 74, 73
BASE keyword
on ++MAC 264
on ++MACUPD 268
on ++SRC 277
on ++SRCUPD 281

BYPASS operand
bypassing FMID checks
on RECEIVE 112, 171

bypassing ID verification
checks 38, 40, 46,

117, 124, 130, 181
bypassing requisite checks
on APPLY 40

element entry updating 38
on ACCEPT 124
on APPLY 130
on RECEIVE 171
on RESTORE 181
on UCL SYSMOD statement 215
operands

FMID 112, 171
ID 38, 40, 46

117, 124, 130, 181
IFREQ 40, 124, 130
PRE 40, 124, 130
REQ 40, 124, 130

processing regressing
SYSMODs 117

receiving SYSMODs 13
reprocessing received
SYSMODs 16

ASSEM entry 315
ACCEPT use 50
source processing 34

ASSEM Keyword
on ++MAC 263
on ++MACUPD 267
on ACCEPT 124
on APPLY 130

ASSEMBLE indicator 32, 33, 205
assembler 315, 79
assembly of source text 32, &i

saving service on
the PTS 13

source text assemblies 32
updating source module
text 31

C

c3c033cataloged procedure, SMP 76
CDS data set 300
++JCLIN processing 26
allocation 106
APPLY use 26, 33
back-up copies 306

(see also SCDS data set)
creation 82, 300
directories in-storage 300
DISTLIB processing 35, 34
entries
ASSEM entry 315
DLIB entry 315
LMOD entry 315
MAC entry 316
MOD entry 317
SRC entry 318
SYSMOD entry 319, 36
SYSTEM entry 321

listing 146
MODID subentry updating 37
null 82
processing inline JCLIN 26
RECEIVE requirements 13
RESTORE processing 45, 48
SYSTEM entry
requirement 300

updating (see UCL Statements)
CDSID operand
on UCL SYS statement 211

CDSID subentry
ACCEPT indication 52
APPLY indication 39
creating 82
RESTORE processing 47

CHECK operand
on ACCEPT 113, 124
ddnames required 127
with COMPRESS operand 124

on APPLY 36, 113, 130
ddnames required 133
with COMPRESS operand 130

on RESTORE 113, 181
ddnames required 183
with COMPRESS operand 182

Index 401

reports produced 113
CNTL data set 301
allocation 108

COMPRESS operand
compressing the nucleus
data set 88

direct access storage
on ACCEPT 124, 128
on APPLY 130, 133
on REJECT 175, 176
on RESTORE 182, 183

compressing (see the COMPRESS
operand)

conditional action modification
control statements

(see }+IF modification
control statements)

Conditional Requisite Queue data
set (see CRQ data set)

Control Data Set
(see CDS data set)

control statement input data
set (see CNTL data set)

control statements 121
ACCEPT 123-128
APPLY 129
ENDUCL 135
JCLIN 140
LIST 143
LOG 169
RECEIVE 171
REJECT 175
RESETRC 179
RESTORE 181
SMPADDIN 249
UCL 189
UCLIN 185
UNLOAD 245

COPY operand
on ++JCLIN 259
on JCLIN 140

CRQ data set 301
allocation 106
creation of entries 302
deletion of entries 302
FMID entries 301
listing 157
RESTORE processing 47
SYSMOD entries 301
updating (see UCL Statements)

D

DALIAS operand

loading relative files 342
on ++MOD 271
on ++ZAP 289

data sets 293-311
allocation 106
compressing (see the

COMPRESS operand)
definitions 298-311
distribution
library 311

primary 106, 80
organization/directory block
allocation on a 3330 108

track requirements 107
requirements 106, 295
distribution library 311
link library 298
SMPACDS 298
SMPACRQ 299
SMPADDIN 305
SMPCDS 300
SMPCNTL 301
SMPCRQ 301
SMPJCLIN 302
SMPLIST 302
SMPLOG 303
SMPMTS 303
SMPOUT 304
SMPPTFIN 304
SMPPTS 304
SMPRPT 305
SMPSCDS 306
SMPSTS 306
SMPTLIB 306
SMPWRK1 307
SMPWRK2 307

SMPWRK3 308
SMPWRK4 308
SMPWRK5 309
SYSLIB 309
SYSPRINT 310
SYSUT1 310
SYSUT2 310
SYSUT3 310
target library 311
text library 298

secondary 108
DD statements, SMP 76
DELETE operand
APPLY processing 24
DELETED FUNCTION
report 119

on ++MAC 264
on ++MOD 271
on ++SRC 277
on ++VER 285

 402 Index - OS/VS SMP System Programmer's Guide

on service SYSMODs 340
on service updated function
SYSMODs 354

on UCL SYSMOD 215
RESTORE eligibility 45
RESTORE processing 46

DELETED FUNCTION Report 119
directories in-storage
processing 85
JCLIN 140, 142

DIS operand
defaults 86
on ACCEPT 125
on APPLY 131
on JCLIN 140
on RESTORE 182
on UCLIN 186
performance 86

DIS processing
(see directories in-storage
processing)

DIS(NO) operand
on ACCEPT 125, 128
on APPLY 131, 133
on JCLIN 140, 142
on RESTORE 182, 184
on UCLIN 186, 187
performance 86

DIS(READ) operand
on ACCEPT 125
on APPLY 131
on JCLIN 140, 142
on RESTORE 182
on UCLIN i86
performance 86

DIS(WRITE) operand
on ACCEPT 125
on APPLY 131
on JCLIN 140
on RESTORE 182
on UCLIN 186
performance 86

DISTLIB operand
ACCEPT processing 50
APPLY SYSMOD termination 40
checking during APPLY 35
on ++MAC 264
on ++MACUPD 268
on ++MOD 272
on ++SRC 278
on ++SRCUPD 281
on ++ZAP 289

DISTLIB subentry
ACCEPT use 50, 50
APPLY checking 35

RESTORE processing 46
DISTMOD operand
ACCEPT use 50
APPLY use 33
on ++MAC 264
on ++MACUPD 268
on ++SRC 278
on ++SRCUPD 281
source processing 33

DISTOBJ operand
(see DISTMOD operand)

distribution library data
set 311
allocation 108
ddnames required 127, 133, 183
macro concatenation 309
macro/source use 33

DISTSRC operand
ACCEPT use 50
APPLY use 33
on ++MAC 264
on ++MACUPD 268
source processing 33

DLIB entry 315
on the ACDS 50
source processing 33

DSPREFIX operand
on UCL SYS statement 232
RECEIVE use 16

DSSPACE operand
initializing for RELFILEs 81, 87
on UCL SYS statement 232
RECEIVE use 15

E

element modification control
statement 337

(see also ++MAC, ++MOD,
++MACUPD, ++SRC, ++SRCUPD,
++UPDTE, and ++ZAP
modification control
statements)
on integrated service 354

element selection 26
ELEMENT SUMMARY report 115
restoration 46
selection 26
SUP/DELETE processing 24

ENDUCL control statement 135
ddnames 135
operands 135
programming

Index 403

considerations 135
return codes 135
syntax 135

ERROR indicator 216
CDS SYSMOD entries 36
in ACCEPT 127
in APPLY 36, 133
in RECEIVE 16, 111
in ELEMENT SUMMARY report
in RESTORE 183

EXCLUDE operand
on ACCEPT 123
on APPLY 129
on RECEIVE 171
on REJECT 19, 175

EXEC parameters, SMP 76
EXEC statement, SMP 76
exit routines

(see user-written exit
routines)

EXPAND linkage editor control
statement 289

F

FILES operand 342
on ++APAR 253
on ++FUNCTION 255
on ++PTF 275
on ++USERMOD 283
REJECT processing 20
relative file packaging 342

FMID Attributes 26
FMID entry
RESTORE processing 47

FMID operand
applicability 112
element selection 26
on ++IF 257
on ++VER 286
on UCL FMID statement 223
on UCL SYS statement 232
on UCL SYSMOD statement 225
RECEIVE syntax/validity
RESTORE SYSMOD

selection 43
use in SYSMOD
construction 344

DISTLIB processing 50
MODID updating 37
processing service updated
PTS requirements 13
updating the PTS SYSTEM
entry 14, 20

G

GENASM sub-entries
created by JCLIN 59
use at APPLY 32
in UCL MAC 203

glossary 383-398
GROUP operand
on ACCEPT 123, 127
on APPLY 129, 133
SYSMOD selection 49
termination 39

on RESTORE 181
processing 43-45

H

header modification control
statement
(see also ++APAR, ++FUNCTION,
++PTF, and ++USERMOD
modification control
statement) 122, 335

History Log data set
(see LOG data set)

HMASMUXD 100
HMASMUXP parameter list 100

I

ID checks
(see MODID checks)

IDENTIFY linkage editor
control statement 142

IEANUC01 module

use in selection process 26
function modification identifier

(see FMID operand)
(see also ++FUNCTION
modification control
statement)
APPLY processing 22
DELETE processing 24

116 DELETED FUNCTION
report 117

RECEIVE requirements 13
RESTORE eligibility 45
service updated 354-356

FESN operand 216

 404 Index - OS/VS SMP System Programmer's Guide

storage requirements 88
IEBCOPY processing
loading relative files 16
program requirements 79
SMPWRK1/SMPWRK2 use 307

IEBUPDTE processing
program requirements 79
SMPWRK1/SMPWRK2 use 307

IEHIOSUP processing
program requirements 79
system level 79

IMASPZAP modification control

statement
(see ++ZAP modification
control statement)

IMASPZAP processing
++ZAP considerations 289
during ACCEPT
program requirements 79
RESTORE processing 46
use of SMPWRK4 308
user modification
examples 349-351

indirect library technique 341
inline JCLIN 341

(see also ++JCLIN modification
control statement)
ACCEPT processing 51
APPLY processing 26, 40
NOJCLIN use 26
on service updated function
SYSMODs 354

packaging :methods 341-343
RESTORE processing 45
UCLIN processing 56

inline packaging technique 341
integrated service SYSMODs 354-356
I/O errors

reading relfile 111
writing to SMPTLIB 111

I/O GEN 89

J

JCL input data
(see inline JCLIN)

JCL input data set
(see JCLIN data set)

JCL required for SMP 76
JCLIN control statement 140
ddnames 141
operands 140
programming

considerations 141
syntax 140

JCLIN data set 302
allocation 108
in ACCEPT 51

JCLIN control statement
packaging 341-343
with DIS(NO)/DIS(READ) 142

job control language
modification control statement
(see ++JCLIN modification
control statement)

JOB statement, SMP 76

L

LEPARM operand
on ++MOD 272, 30,

51
link library data set 298
allocation 108
search for IEHIOSUP 79

tracks needed for SMP 106

user-written exits 100
linkage editor processing
parameter determination (APPLY) 30
parameter determination (ACCEPT) 51
program requirements 79
use of SMPWRK3/SMPWRK5 308, 309

LINKLIB data set
(see link library data set)

LIST ACDS exception reports 155
LIST CDS exception reports 155
LIST control statement 143
data sets

ACDS 146
ACRQ 157
CDS 146
CRQ 157
LOG 160
PTS 161
SCDS 167

exception reports 155,
165, 166

programming considerations 145
summary reports 155,

155, 165, 166
LIST output
on SMPOUT 304

on SMPLIST 302
LIST output data set

(see SMPLIST data set)
LKED operand

Index 405

on ++JCLIN 259

on JCLIN 140
LKLIB data set

(see link library data set)
LKLIB operand 341
ACCEPT processing

DO statements required 126
APPLY processing

DO statements required 132
RECEIVE processing

resulting PTS MCS entries 15
on ++MOD 272, 273

LMOD entry 315
on the ACDS 50
RESTORE processing 46
use in source processing 34

LMOD operand
on ++MOD 272

on service updated function 354
RESTORE processing 46

LOG control statement 92,
169
ddnames 170
operands -169
programming
considerations 170

syntax 169
LOG data set 303
allocation 106
contents 303
listing 160
writing messages to 92

M

MAC entry 316
macro library for assembler
(see SYSLIB data set)

macro modification control
statement

(see ++MAC modification
control statement)

macro processing
APPLY processing 31
assembly of source 33
update merge order 31

RESTORE processing 46, 48
Macro Temporary Store data set

(see MTS data set)
macro update modification

control statement
(see ++MACUPD modification
control statement)

MALIAS operand

loading relative files 342

on ++MAC 264
on ++MACUPD 268

MALIAS subentry
REJECT processing 19

mass rejection 19
MCS entry 13, 15

creation 341
relative file processing

creation 16
deletion 16
modifying 16

message output data set
(see SMPOUT data set)
APPLY 39
RESTORE 48
UCLIN 56

messages, user-specified
LOG control statement 169

MOD entry 317
ACCEPT use 50
MODID subentry updating 37
use in source processing 34

MODID checks 28, 40
MODID subentry
updating during APPLY 37
updating during RESTORE 47

modification control
statements 4
++APAR 335, 253
++FUNCTION 335, 255
++IF 337, 257
++JCLIN 337, 259-261
++MAC 337, 263-266
++MACUPD 337, 267-269
++MOD 337, 271-274
++PTF 335, 275
++SRC 337, 277-279
++SRCUPD 337, 281
++UPDTE 337, 267-269
++USERMOD 335, 283
++VER 335, 285-287
++ZAP 337, 289-291
SYSMOD construction 344,

335

module replacement modification
control statement

(see ++MOD modification
control statement)

module update modification
control statement

(see ++ZAP modification
control statement)

MTS data set 303
++MAC considerations 266
++MACUPD considerations 269

 406 Index - OS/VS SMP System Programmer's Guide

allocation 106
blocksize 303
concatenation 309
RESTORE processing 46, 48

N

NOAPPLY operand
DISTLIB checking 50
i nline JCLIN 51

bypassing RESTORE
termination 47

on ACCEPT 125
NOGO status
in ELEMENT SUMMARY report 116
in SYSMOD STATUS report 114

NOJCLIN operand
avoid ++JCLIN processing 26,

260
on APPLY 131, 133

NPRE operand
APPLY termination 41
on ++VER 286
on service SYSMODs 340

NUCID operand
on APPLY 131, 133
on UCL SYS statement 211.

NUCID subentry 82
nucleus

APPLY considerations 133
data set 88
saving a back-up copy 290
storage requirements 88

null ACDS 82
null CDS 82
null PTS 81

O

operating system 73
output data set

(see SYSPRINT data set)

P

packaging techniques for
SYSMODs 341-343

i ndirect library 341
i nline 341

relative file 342
partial SYSGEN
applying SYSMODs 89
JCLIN considerations 142
running ++JCLIN 300
SMPJCLIN data set use 302

PEMAX
values 83

PEMAX operand
on UCL SYS statement 234

permanent corrective fix
(see ++PTF modification
control statement)

PRE operand
SYSMOD termination 40
element selection 26
on ++VER 286
RESTORE SYSMOD selection 43
source/macro processing 31

PREFIX keyword
assemblies 32
on ++MAC 264
on ++MACUPD 268

primary data sets
creating 80
null ACDS/CDS/PTS 82
PEMAX values 83
storage requirements 106

printing/punching
modification text 15
PTS entries 15
TLIB members 15
TXLIB members 15

program temporary fix
modification control statement

(see ++PTF modification
control statement)

PTF compatibility 346
(see also ++PTF modification
control statement)

PTF Temporary Store data set
(see PTS data set)

PTFIN data set 304
allocation 108
user exit processing 17, 105

PTS data set 13, 304
allocation 106
APPLY SYSMOD selection 49
entries 13
maintaining multiple
environments 112

MCS entry 15, 304
printing or punching 305

null 81
RECEIVE processing 13

Index 407

saving service 13
REJECT processing

selection of SYSMODs 19
updating SYSTEM
entry 20

SYSMOD entry 15, 304
ACCEPT indication 52
APPLY indication 39
ERROR status indicator 16, 111
listing 305
RESTORE processing 47

SYSTEM entry 13, 13, 112, 305
adding the FMID 112
adding the SREL 112
ASMRC subentry use 34
DSSPACE parameter 112
overriding default
RECEIVE considerations 172
updating 14

punching/printing
modification text 15
PTS entries 15
TLIB members 15
TXLIB members 15

PURGE indicator

deleting PTS SYSMOD

entries 305
PURGE operand

on UCL SYS statement 234

R

RC operand 84
on ACCEPT 125
on JCLIN 141
on LOG 169
on RECEIVE 171
on REJECT 175
on RESTORE 182
on UCLIN 186

RECEIVE control
statement 171
ddnames 172
operands 171
programming
considerations 172

syntax 171
RECEIVE processing 13
inline JCLIN 341
of relative files 15
output data 14
PTS data set 13
reprocessing received
SYSMODs 16

requirements 13
user exit 17

RECEIVE SUMMARY report 14
REGEN indicator 217
REGION parameter on
JOB/STEP card 76

regression
detection by SMP 117
SYSMOD REGRESSION
report 117

REJECT control statement 175
ddnames 176
operands 175
programming considerations 176
syntax 175

REJECT indicator

RESTORE processing 47
REJECT operand
on UCL SYS statement 235

REJECT processing 19
messages 21
of received SYSMODs 16
selection of SYSMODs 19
EXCLUDE 19
mass rejection 19
SELECT 19

temporary library deletion 20

updating the PTS SYSTEM
entry 20

related SYSMOD failure 40
relative file packaging
technique 342

relative files
allocation error 112
data set names 342
indication of success 112
inline JCLIN 341
loading error 112
organization of a relfile 342
packaging 342
processing 342

library loading 15
reducing space 112

REJECT processing 20
resulting PTS MCS entries 15
SYSMOD termination 16

RELFILE operand 342
on ++JCLIN 259
on ++MAC 264
on ++MOD
on ++SRC

272,
278

273

REJECT processing 20
Relfiles (see relative files)
Report output data set

(see SMPRPT data set)
reports, SMP 111

 408 Index - OS/VS SMP System Programmer's Guide

APPLY 39
DELETED FUNCTION
report 119

ELEMENT SUMMARY report 115
output data sets 304, 305
RECEIVE SUMMARY report 111

RESTORE 48
SYSMOD REGRESSION
report 117

SYSMOD STATUS report 114
REQ operand
on ++VER 286
RESTORE SYSMOD
selection 43

in SYSMOD STATUS report 114
RESETRC control statement 84,

179
ddnames 179
operands 179
programming
considerations 179

syntax 179
RESTORE control

statement 181
ddnames 183

operands 181-183
programming
considerations 183

syntax 181
restore group 43
RESTORE indicator 218

processing partially
with ERROR indicator 183

RESTORE processing 43-48
avoiding termination 46
deleting data from the CRQ 47
deleting CDS entries 48
deleting STS/MTS members 48
element restoration 46
inline JCLIN 45
reports and messages 48
supersede processing 47
SYSMOD ineligibility 44
SYSMOD selection 43
updating MODID subentries 47
updating the PTS 47

RETRY processing 86
on ACCEPT 126
on APPLY 131
on RESTORE 182
LIST &i7e005
resetting 84
user exit 101

reuse of assemblies 33, 87
REUSE operand

on ACCEPT 126
on APPLY 131

RMID Attributes 26
RMID operand
on ++MAC 265
on ++MOD 273
on ++SRC 278
service updated SYSMODs 355

RMID subentry
DISTLIB processing 50
MODID subentry updating 37
RESTORE termination 46

SYSMOD termination 40
rules for coding SMP
statements 357

S

Save Control Data Set
(see SCDS data set)

SAVEMTS operand
on UCL SYS statement 212

SAVESTS operand
on UCL SYS statement 212

saving SYSMODs on the PTS 13
SCDS data set 306
ACCEPT use 51
allocation 106
BACKUP entry
contents 166

listing 167

processing inline JCLIN 26
RESTORE processing 45
updating (see UCL Statements)

selection
element 26
SYSMOD 13, 19, 49,

43
SELECT operand
APPLY SYSMOD selection 49
APPLY termination 41
on ACCEPT 123, 127
on APPLY 129, 133
on RECEIVE 13, 171
on REJECT 19, 175
on RESTORE 43, 181

service SYSMODs
(see ++APAR, ++PTF,
and ++USERMOD modification

control statements)
element selection 26
identifying the owning
function 344

Index 409

processings service updated
function SYSMODs 354-356

service updated function
SYSMODs 354-356

SMP (see System Modification
Program)

SMPACDS data set
(see ACDS data set)

SMPACRQ data set
(see ACRQ data set)

SMPCDS data set
(see CDS data set)

SMPCNTL data set
(see CNTL data set)

SMPCRQ data set

(see CRQ data set)
SMPIO procedure 89
SMPJCLIN data set

(see JCLIN data set)
SMPLIST data set 302
allocation 108

SMPLOG data set
(see LOG data set)

SMPMTS data set
(see MTS data set)

SMPNUC procedure 89
SMPOUT data set 304
allocation 108
APPLY output 39
RECEIVE output 14
REJECT output 21
UCLIN output 56

SMPPTFIN data set
(see PTFIN data set)

SMPPTS data set
(see PTS data set)

SMPRPT data set 305
allocation 108
APPLY output 39
RECEIVE output 14

SMPSCDS data set
(see SCDS data set)

SMPSTS data set
(see STS data set)

SMPTLIB data set
(see TLIB data set)

SMPWRK1 data set 307
allocation 108

SMPWRK2 data set 307
allocation 108

SMPWRK3 data set 308

SMPWRK4 data set 308
allocation 108

SMPWRK5 data set 309
allocation 108

source processing 31,

46, 48

assembly 32
order of merge 31
RESTORE
processing 46, 48

source module replacement
(see ++SRC modification
control statement)

source temporary store data set
(see STS data set)

source update modification
control statement

(see ++SRCUPD modification
control statement)

SRC entry 318
use during ACCEPT 50
use in source
processing 32, 33

SREL operand
on ++VER 112, 285, 287
on UCL SYS statement 235

SREL subentry
creating 235
on the PTS 13
relating to packaging
technique 347

SSI operand
on ++MAC 265
on ++SRC 278

Stage I output 82
creating a CDS 82

JCLIN use 140
on JCLIN data set 302
partial SYSGEN 89, 142

Stage I SYSGEN macros 89
START command 89
data set requirements 106
nucleus storage
requirements 88

(see also COMPRESS operand)
STS data set 306
++SRC considerations 279
++SRCUPD considerations 282
allocation 106
RESTORE processing 46, 48

SUP operand
element selection 26
on ++VER 287
on service updated
function SYSMODs 354

RESTORE SYSMOD selection 43
source/macro processing 31
SYSMOD termination 40
superseding SYSMODs that
contain JCLIN 142

SUPBY subentries 47

 410 Index - OS/VS SMP System Programmer's Guide

supersede processing
(see SUP operand)

syntax notation
conventions 359

SYSGEN 82
(see also partial SYSGEN)
applying SYSMODs to Stage I
SYSGEN macros 89

JCLIN considerations 142

SYSLIB data set 309
allocation 106
concatenation 309

SYSLIB operand
on ++MAC 265
on ++MACUPD 268
on ++SRC 278

on ++SRCUPD 282
SYSLIB subentry
ACCEPT use 50

SYSLMOD data set
SYSMOD (see system modification)
SYSMOD entry 319
accepting SYSMODs
with inline JCLIN 51

adding/deleting/
changing 243

bit indicators 144
CDS
ASSEM subentry 33
creation 26, 36
ERROR indicator 36
PEMAX values 83
SUPBY subentries 47

PTS 15
ACCEPT processing 52
RECEIVE processing 16, 16
REJECT selection 19
RESTORE processing 47
relative file processing 16

SYSMOD-ID
(see system modification
identifier)

SYSMOD REGRESSION report 117
SYSMOD STATUS report 114
SYSPRINT data set 310
allocation 108
ddname substitution 230,

231, 231, 232, 233,
236, 236

SYSTEM entry 321

adding/deleting/
changing 229

bit indicators 144
CDS
APPLY validation 13

CDSID subentry
APPLY validation 13

PTS 13
APPLY checking 13
DSPREFIX subentry 16
DSSPACE subentry 15
rejecting a function 20
specifying PEMAX 83

PEMAX values 83

SREL subentry
ACCEPT processing 49
APPLY processing 22
corequisite PTF
method 346

packaging for
compatibility 346

rules 335
SYSMOD formulation

on SMPPTFIN 304
packaging techniques 341-343
RECEIVE processing 13
RECEIVE requirements 13
REJECT processing 19
relative file
processing 15

RESTORE processing 43-48
saving on the PTS 13
selection 49, 43
service updated 354-356

SMPADDIN control statement 249
system modification

defining on ++USERMOD 283
system modification input

data set
(see SMPPTFIN data set)

cataloged procedure 76
data sets required 106
executing 74
installing 73

JCL 76
nucleus storage required 88
program requirements 79

system levels 79
system release identifier

(see SREL operand)
SYSUT1 data set 310
allocation 108

SYSUT2 data set 310
allocation 108

SYSUT3 data set 310
allocation 108

SYS1.NUCLEUS data set 88

Index 411

T

TALIAS operand
on ++MOD 273
on ++ZAP 289
loading relative files 15

target system library
data set 311
allocation 108
base level 74
ddnames required 133, 183
macro library

concatenation 309
temporary corrective fix
(see ++APAR modification
control statement)

temporary libraries
(see TLIB data set)

temporary utility storage
data sets

(see SYSUT1, SYSUT2 and
SYSUT3 data set)

TLIB data set 306
allocation 108
RECEIVE use 15
REJECT use 20
relative file packaging 342

TXLIB data set 298
++MAC considerations 266
++MOD considerations 273
allocation 108
PTS MCS entries 15

TXLIB operand 341
DD statements required
for ACCEPT 126
for APPLY 132

on ++JCLIN 260
on ++MAC 265
on ++MOD 273
on ++SRC 278

U

UCL statements 189
ENDUCL requirement 189
operands 189
ADD/DEL/REP 189

entries
CDS ASSEM 195
CDS DLIB 197
CDS LMOD 199
CDS/ACDS MAC 203
CDS/ACDS MOD 205

CDS/ACDS SRC 209
CDS/ACDS SYSTEM 211
CDS/ACDS SYSMOD 213
CRQ/ACRQ FMID 223
CRQ/ACRQ SYSMOD 225
PTS SYSMOD 227
PTS SYSTEM 229
SCDS SYSMOD 239
STS SRC 241
MTS MAC 243

syntax 189
UCLIN control statement 185
ddnames 187
operands 186
programming
considerations 187

syntax 186
UCLIN processing 53-56
messages 56
update indication 56

UMID Attributes 26
UMID operand
on ++MAC 265
on ++MOD 273
on ++SRC 278
service updated SYSMODs 355

update control language
statements

(see UCL statements)
UNLOAD control statement 245

program considerations 247
syntax 245
operand 245
ACDS operand 246

UPDATE operand
on ++JCLIN 260
on JCLIN 140

UPDID subentry 56
user exit-1 17, 105
user exits

(see user-written exit routines)
user modifications 348

(see also ++USERMOD
modification control
statement)
examples 349
source text updates 31
USERMODS operand

requirement 182
user-written exits 100
activating 101
HMASMUXD module 100
placement 100
return codes 101
User Exit Determinator
module 100

 412 Index - OS/VS SMP System Programmer's Guide

User exits 17, 102
USERMOD SYSMOD
(see user modifications)

USERMODS operand 182

VS1 SYSGEN considerations 89

W

V

verify modification control
statement

(see ++VER modification
control statement)

VERSION operand
element selection 26
on ++MAC 265
on ++MACUPD 268
on ++MOD 273
on ++SRC 279
on ++SRCUPD 282
on ++VER 287
on service updated
SYSMODs 354

work data set five
(see SMPWRK5 data set)

work data set four
(see SMPWRK4 data set)

work data set one
(see SMPWRK1 data set)

work data set three
(see SMPWRK3 data set)

work data set two
(see SMPWRK2 data set)

X

XREF operand 143
on LIST CDS 146

Index 413

414 - OS/VS SMP System Programmer's Guide

OS/VS System Modification Program READER'S
(SMP) System Programmer's Guide COMMENT
GC28-0673-6 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers.
and operators of IBM systems. This form may be used to communicate your views about this
publication. They will be sent to the author's department for whatever review and action, if any,
is deemed appropriate.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information
you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system,
to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If comments apply to a Selectable Unit, please provide the name of the Selectable Unit

If you wish a reply, give your name and mailing address:

Please circle the description that most closely describes your occupation.

(Q) (U) (X) (Y) (Z) (F) (I) (L)
Customer Install System System System Applica. System I/O Term.

Mgr. Consult. Analyst Prog. Prog. Oper. Oper. Oper.

(O)

Other

IBM

(S)

System
Eng.

(P)

Prog.
Sys.
Rep.

(A)

System
Analyst

(B)

System
Prog.

(C)

Applica.
Prog.

(D)

Dev.
Prog.

(R)

Comp.
Prog.

(G)

System
Oper.

(J)

I/O
Oper.

(E)

Ed.
Dev.
Rep.

(N)

Cust.
Eng.

(T)

Tech.
Staff
Rep.

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments.)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438

