
 INTRODUCTION TO MY 1988 SMP ARTICLE

 My article, which explains the basic concepts of SMP and SMP/E,
was written in 1988, and is still almost completely applicable today.
I'm going to show you, in a few pages, how to understand SMP/E. Let's
first just say a few vitriolic, but true, introductory words.

 IBM has a habit of "only touting its latest stuff". They tell
us: "Here's our product SMP/E, which helps you maintain your MVS
system!" What they don't tell you are the concepts that are necessary
to grasp, so an intelligent person can get a basic understanding of
SMP/E ideas in a reasonable amount of time.

 In order to understand SMP/E, you have to understand where it
came from. SMP/E came from an effort to automate and keep track of
the SYSGEN process, and how to put subsequent fixes on an already-
generated MVS operating system. It is my fervent and passionate
belief, that if you don't understand the SYSGEN process, you'll never
have a clue to really understanding what SMP/E is all about.

 Problem: We don't do SYSGENs any more today, to construct an
MVS system. The reason is that IBM has done them for us, before they
shipped us the new system. The information from their SYSGEN of our
system is buried in the JCLIN information, in the target SMP/E control
datasets, of the system that they ship us.

 Previously, we could not dig that information out. Now we can.
In the newer SMP/E releases, after Release 1.3, there is an "un-JCLIN"
process in SMP/E, otherwise known as the GENERATE command. Using
GENERATE, we can re-create assembly and link-edit information which
is buried in the SMP/E datasets--the same information, like the SYSGEN
information, that tells us how the pieces of our system were put
together in the first place.

 So, we begin our journey as I take you back in time--to a time
that IBM will never admit ever existed--to the (ancient) time when
SYSGENs were done, to build MVS systems. We must go back there.
Because, if we don't ever go back there, we'll never have a clue to
understanding what IBM is selling us now--this nice, neat, clever,
intricate SMP/E product.

 This is the truth. Isn't "official IBM" great? They don't give
us what we need, because it's based on history, and they can't admit
that history exists, because they want to sell us their newest stuff!

 That's why we have USERS helping each other, and that's why I'm
helping you. It took me 4 long years to learn what could have taken 3
weeks, with a decent explanation, that wasn't there. Once I learned
the stuff, I vowed to provide the explanation too!

 So let's go learn about SMP/E from the beginning--the beginning
of time!

 SMP DE-MYSTIFIED

 Sam Golob
 MVS Systems Programmer

 Many otherwise-expert MVS systems programmers shy away from
doing operating system maintenance. Many new MVS systems programmers
have a very hard time getting started with doing this necessary work.
That is not because the work is intrinsically difficult, but because
IBM, until recently, has not provided to-the-point introduction to
their very good SMP maintenance products. We propose to do so. After
these several pages, the reader should feel much more confident with
IBM's SMP products and SMP literature.

 SMP stands for "System Modification Program". It is exactly
that. SMP does every operation necessary to maintain the MVS operating
system: source updates, assemblies, linkedits, copy operations, and
zaps. It keeps a thorough accounting of everything it did, and it also
allows the user to back out bad changes to the system. Every facility
provided in SMP is for this purpose, and this purpose only.

 The PURPOSE OF SMP must be constantly borne in mind when trying
to navigate its forbidding vocabulary. All of the strange words:
JCLIN, UCLIN, FUNCTION, DLIB, RESTORE, RELFILE, and so forth, are only
labels for things that are NECESSARY TO KEEP TRACK OF THE OPERATING
SYSTEM MAINTENANCE. THEY ARE NOTHING MORE THAN THAT. We'll try to
straighten you out on most of them, so they are put in their proper
perspective and their purpose is understood.

 Just for the record, IBM distributes two types of SMP. SMP
Release 4, known as SMP4, is the old version. It is provided free
with the operating system, and it works. It just doesn't have so many
bells and whistles. IBM has a much more enhanced product, known as
SMP Extended, or SMP/E. A large majority of MVS installations use
SMP/E, and its use is recommended. Most of the principles I will
discuss apply equally to both versions, since my purpose is to provide
enough insight and perspective for the reader to be comfortable with
the IBM literature. The name "SMP" will suffice for reference to things
applicable to both versions. Features particular to SMP/E will be
labeled as such.

 We must begin by describing how IBM has historically distributed
its MVS Operating System releases. That process is known as "SYSGEN".
How the SYSGEN process works must be clearly understood before one can
hope to get a clear picture of how SMP works. IBM does not describe the
contrast and connection between SYSGEN and SMP clearly enough in its SMP
literature. Therefore, we will now discuss how the SYSGEN process
works.

 MVS was always (and is still) extremely flexible to the
individual customer's needs and hardware configuration. Each customer's
operating system was intended to be configured by the customer, and not
just dumped in by the manufacturer, as is true with many other operating
systems. IBM therefore distributes the individual pieces of the system,
and it is up to the customer to put them together so that he creates a
complete working system that is appropriate to his needs. Since the
customer does not have the smarts of the IBM system designers, IBM gives
him the means to accomplish the feat of system construction in a rather
straightforward way. This is what the SYSGEN is.

 The individual components of MVS, whether they be assembler
macros, source, linkedited csects, sample JCL, or other ELEMENTS, are
distributed to the customer in individual partitioned datasets or
libraries. These are called DISTRIBUTION LIBRARIES appropriately.
Members of Distribution Libraries can be pictured as the BRICKS FROM
WHICH THE BUILDING WILL BE BUILT. Where then is the PATTERN or DESIGN
for the building? The pattern is put into a system of assembler
macros known as "SYSGEN MACROS". The SYSGEN MACROS contain the smarts
for building the operating system, and we must trust that IBM supports
them correctly.

 What must the customer do, then? The customer must code a
system configuration deck of assembler statements which contain the
SYSGEN MACROS that are appropriate for his installation's hardware and
software configuration. IBM refers to this deck as the STAGE I SYSGEN
DECK. A working operating system, called the TARGET SYSTEM, cannot be
made unless a STAGE I SYSGEN DECK has been coded, either by IBM in a
sample generated system, or by the customer.

 What next? The STAGE I DECK is assembled, using the
DISTRIBUTION LIBRARIES as the source for the SYSGEN MACROS. The
assembler output is a large JCL stream divided into a number of JOBS,
usually six of them. This output, which has assembly, linkedit, copy,
and other steps in it, is called the STAGE II DECK. The STAGE II DECK
has the actual JCL which creates the executing operating system
libraries (called the "TARGET LIBRARIES") from the building blocks in
the distribution libraries. In essence, the STAGE II DECK BUILDS THE
BUILDING FROM THE BRICKS. This is the gist of the SYSGEN process.
Most of its smarts come from IBM, which coded the SYSGEN macros to
correctly build the TARGET OPERATING SYSTEM.

 The logical next question is: What if a piece of the system
doesn't work? How do you correctly replace that piece in the context
of the whole system? Do you have to do the entire SYSGEN all over
again? The answer of course is NO, but the principle of what happens
here is of utmost importance to our topic. THIS IS WHAT SMP AND ITS
PREDECESSORS ARE ALL ABOUT.

 Let us begin to answer the question of how to replace a bad
piece of the system--a bad brick, so to speak. Put a good brick into
the same place. If the bad component is in source form, an update
to the source and a reassembly and relinkedit must be done. If the
component was distributed in object code form, the new object code
must be relinkedited to replace the old csect in the appropriate load
module(s). Again, how do we know the PATTERN where the new csect fits
into the system? We know it from the SYSGEN STAGE II DECK. That's how
that csect got there originally. IBM fixes to the system, called "PTFs"
or "Program Temporary Fixes" were originally applied to the system
libraries by pulling out the appropriate job steps from the SYSGEN
STAGE II deck and replacing the offending csects by IBM's replacements.
A program called AMAPTFLE, which is probably not used today, was an aid
in that process. This historical anecdote, if you will, gives insight
into what SMP was designed to do automatically.

 We have to answer one more question before we get into how SMP
operates. What if IBM changes the PATTERN of how it is putting the
system together. Suppose for example, that IBM breaks one module into
two or three modules. In that case, IBM will change the appropriate
SYSGEN MACRO(S), and a new SYSGEN STAGE II DECK will have to be
assembled. The STAGE I DECK that was coded by the user does not have
to be changed. It must only be reassembled against the changed macros.
The part of the SYSGEN STAGE II that is affected by the module change
will have to be rerun. The new TARGET LOAD MODULES to be executed
will then be linkedited correctly according to the new pattern
designed by IBM.

 Now we are in a position to start talking about what SMP does.
SMP automatically accomplishes the processes we just talked about,
with the exception of assembling the STAGE II SYSGEN DECK. Once the
STAGE II DECK is created and fed into SMP (through a process known
as "JCLIN"), SMP "knows the pattern" of how the TARGET SYSTEM is put
together, and it can apply system changes in an automated and audited
way.

 I must emphasize from the start that SMP is designed primarily
for APPLYING FIXES TO AN ALREADY CREATED SYSTEM. Its accommodation to
creating a completely new system is just that--a necessary
accommodation, but once the structure of a new system is fed into SMP,
using the SMP process called "JCLIN" of the SYSGEN STAGE II DECK,
fixes can be applied to that new system speedily and efficiently.

 There is one more fact of great value here. IBM made an
important decision once SMP (which is an efficient way of applying
system fixes) was invented and debugged. It was no longer necessary
for them to REPLACE ENTIRE RELEASES OF MVS, and require a NEW SYSGEN
each time. With SMP comfortably in place, many extensive system
revisions could be accomplished as A SUM OF INDIVIDUAL MODULE
REPLACEMENTS, or PTFs. The application of a large number of PTFs thus
ELIMINATED THE FREQUENT DISTRIBUTION OF NEW MVS RELEASES. Therefore
the PRESENCE OF SMP CHANGED MVS MAINTENANCE from NEW RELEASE orientation
to INCREMENTAL PTF organization. This means, in other words, a change
in emphasis from RUNNING ENTIRE SYSGENS to the SUCCESSIVE APPLICATION
OF PTF FIXES TO THE SYSTEM.

 Now, onward and upward to the mechanics of SMP, both in handling
fixes, and in handling a major system change.

 The single basic unit of work in SMP is called a "SYSMOD", or
"system modification". There are four kinds of SYSMODs: these are
"FUNCTION" sysmods, "PTFS", "APARS", and "USERMODS". Every SYSMOD
has a seven-character ID, which must begin with an alphabetic character.

 A FUNCTION SYSMOD basically represents A SEPARATE PRODUCT. One
piece of MVS, such as "data management", may be composed of a number of
separate FUNCTIONs, each of which owns a distinct "piece of the piece".
The currently consolidated data management package of MVS/370, known as
DFP, consists of three FUNCTIONs. DFP replaces a conglomeration of
over thirty separate FUNCTIONS which covered the data-management area
before. The seven-character SYSMOD ID of a FUNCTION has a special
name. It is called an "FMID", or "Function Modification IDentifier".
EVERY SYSMOD OF ANY TYPE MUST BE OWNED BY AN FMID. In other words,
every SYSMOD must belong to a product (a FUNCTION) which OWNS it.
Every piece or ELEMENT of the system MUST ALSO BE OWNED by a unique
FMID.

 A FUNCTION SYSMOD can belong to another FUNCTION or FMID, or
it may be a PRIMARY FUNCTION. A PRIMARY FUNCTION SYSMOD is the only
SYSMOD that is not owned by another FMID, since it is, by definition,
the base level of a program product.

 A real illustration of this is the control program of MVS/370.
The BASE FUNCTION of MVS/370 has the FMID of EBB1102. EBB1102 is the
original MVS release 3.8, and it does not belong to any other product.
MVS SP 1.3.0 is a rewriting of many (but not all) of the modules of
MVS 3.8. MVS SP 1.3.0 has its own FMID of JBB1326, which BELONGS TO
THE FMID EBB1102. The modules that were rewritten BELONG to FMID
JBB1326. Now MVS SP 1.3.3 is in turn a partial rewriting of MVS SP
1.3.0. Therefore, the FMID of MVS SP 1.3.3, which is JBB1329, BELONGS
to the FMID JBB1326, which in turn belongs to EBB1102, the base MVS
release. The MVS SP 1.3.3 revised modules belong to FMID JBB1329.
Finally, the current MVS/370 release, MVS SP 1.3.5, is a rewriting of
some of the modules of MVS SP 1.3.3. Therefore all of its rewritten
pieces belong to its FMID of JBB1356. JBB1356 itself belongs to
JBB1329, which in turn belongs to JBB1326, whose primary FMID is
EBB1102. Please notice that EBB1102 was never superseded by the
higher levels of MVS/370. This illustrates the product relationship
of FMID numbers, when whole sections of a base product have been
revised by IBM.

 On the other hand, separate non-overlapping products will have
separate, completely unrelated FMIDS. The important fact is that
every SYSMOD that is not a FUNCTION SYSMOD, and many FUNCTION SYSMODS
themselves, MUST BE OWNED BY AN FMID. No SYSMOD or system objects
(called "ELEMENTS" in general) can belong to more than one FMID. All
ELEMENTS (macros, load module csects, etc.) must belong to one and
only one FMID.

 We are now at the point where we want to know several things.
First, what does an SMP environment consist of? Second, how do SYSMODS
get onto an SMP-controlled system. Third, how do the ELEMENTS, the
PIECES OF THE SYSTEM, relate to the SYSMODS. Fourth, how does all
this SMP stuff fit in with what we already know about the SYSGEN
process, and how does SMP build an actual working operating system?

 Answering these four questions constitutes the goal of this
article. With an understanding of the answers, any person can easily
negotiate IBM's SMP literature and thereby gain real competence in
SMP use. (BOB, PLEASE PUT EMPHASIS ON THIS PARAGRAPH - - -.)

 Let us discuss the SMP environment. Roughly, the concept of
an SMP environment breaks down to two things: first, a set of
LIBRARIES controlled by SMP, and second, special SMP CONTROL DATASETS
which keep accounting of all the system changes that occurred. A
sequential SMP LOG records and time-stamps all significant actions
which are occurring during SMP processing.

 The set of libraries controlled by SMP is broken down into
two types of libraries. There are TARGET LIBRARIES, which contain
copies of actual working system code. And there are DISTRIBUTION
LIBRARIES, which have the pieces from which the system is built. The
concept of DISTRIBUTION LIBRARIES and TARGET (or "SYSTEM") LIBRARIES
corresponds exactly to what we discussed before, concerning the SYSGEN
process. In fact, there is no difference. We have seen that with the
SYSGEN process, the DISTRIBUTION libraries are SUPPLIED INITIALLY by
IBM and the TARGET libraries are CREATED FROM THE DISTRIBUTION
LIBRARIES using the STAGE II SYSGEN DECK. With SMP however, (once an
initial operating system has been created) the TARGET LIBRARIES are
supplied first, using material sent by IBM in the form of SYSMODS.
These are plugged into the actual working operating system libraries
by SMP. Then they are tested, and if the changes are good, they can
then be put into the DISTRIBUTION LIBRARIES PERMANENTLY. Thus, the
usual SMP flow is from IBM-supplied SYSMODS, to TARGET LIBRARIES, and
then to DISTRIBUTION LIBRARIES. This is the opposite of the flow of
changes during the SYSGEN PROCESS.

 Our discussion of control datasets must be based on the three
PROCESSES OF SMP FLOW. These are called "RECEIVE", "APPLY", and
"ACCEPT". RECEIVE, APPLY, and ACCEPT are the SMP-language equivalent
of: taking a new SYSMOD into the SMP environment, putting its pieces
into the TARGET libraries into the proper places, and finally, storing
its pieces in the DISTRIBUTION libraries for archival and possible
later use. Again, the flow is: IBM-supplied SYSMODS, to TARGET
libraries, to DISTRIBUTION libraries.

 How do the RECEIVE, APPLY, and ACCEPT processes work? We shall
discuss them briefly in order. Please bear in mind that our aim is to
simplify the discussion and keep it conceptual. Once the concepts are
understood, and the vocabulary words associated with them are learned,
then the IBM literature will become quite readable.

 RECEIVE basically involves STORING A NEW SYSMOD and recording
some vital statitstics about it, so that it is pre-digested a bit by
SMP. The text of the entire SYSMOD is stored in a partitioned dataset
called the "PTS" or "PTF Temporary Store Data Set". In the older
version of SMP, SMP4, the control information taken during the RECEIVE
process is stored in the PTS also. However, in the new SMP/E, all
control information is stored in VSAM files known as "ZONES". The
VSAM file which stores the control information from the RECEIVE process
is known as the "GLOBAL ZONE". The text of the SYSMOD thus goes to
the PTS as before, but the control information is stored in the
GLOBAL ZONE.

 There are certain SYSMODS which are RECEIVED a bit
differently. These are SYSMODS which have what are known in SMP
language as "RELFILES". The word RELFILE roughly translates to
"IEBCOPY". If a modification has large numbers of linkedited
csects, macros, ISPF panels, or other ELEMENTS, which are suitable for
direct IEBCOPY into TARGET LIBRARIES, then those ELEMENTs included in
the SYSMOD which have SIMILAR RECORD FORMAT AND RECORD LENGTH can be
loaded into a single pds. This pds is unloaded onto the SYSMOD
distribution tape using IEBCOPY, and its file sequence order on the
tape is very important. If the Sysmod Specification File on the
tape (known as the "SMPMCS") calls for THREE RELFILES for instance,
then the next three files on the tape, hopefully IEBCOPY unloaded,
are known as RELFILE(1), RELFILE(2), and RELFILE(3) respectively.

 The RECEIVE process on a SYSMOD with RELFILES is then the
following: The SMPMCS, which contains the SMP control statements of
the SYSMOD, is read from the tape. The number of RELFILES (3 in our
example) is determined from the "RELFILES (3)" keyword in the SMPMCS.
The three files on the tape which follow the SMPMCS file are then
unloaded to a disk pack (determined by the "SMPTLIB" DD statement in
the SMP job) and given special names, which SMP will understand during
later APPLY and ACCEPT processing of the SYSMOD. These names are of
the format: PREFIX.sysmodid.Fn, where n is 1, for the first relfile,
2 for the second, and so forth. The prefix is set in the global zone
for SMP/E (or in the PTS system entry in SMP4) and is not changed
during the entire process. Therefore, when a SYSMOD with RELFILES is
RECEIVED, the relfile libraries are loaded from tape to disk. The
elements they contain are thus readied, so that the APPLY and ACCEPT
processes to follow can selectively copy them to where they will be
needed. Meanwhile, the SMPMCS is itself copied to the PTS, and its
control information is dealt with as we discussed before.

 With SMP/E there is a bit more to the RECEIVE process. Besides
the RECEIVE of SYSMODS, one must also RECEIVE SYSMOD ERROR INFORMATION.
This is known as "HOLDDATA". HOLDDATA consists of a list of "++HOLD"
and "++RELEASE" control statements in sequential order. Each such
statement points to a PTF or an APAR SYSMOD. The purpose of the ++HOLD
statement is to prevent SMP/E from APPLYing a PTF that is in error,
known as a "PE PTF". A ++RELEASE statement that is RECEIVED AFTER a
++HOLD statement against the same SYSMOD will UNDO THE EFFECT of the
++HOLD statement. The ORDER in which the statements are RECEIVED is
of paramount importance. SMP/E will honor the ++RELEASE only if it
occurs AFTER ALL ++HOLD statements for that particular SYSMOD. The
HOLDDATA is kept in the SMP/E GLOBAL ZONE.

 A quick word about UN-doing the RECEIVE of a SYSMOD. A RECEIVE
can be undone by an SMP process called "REJECT". To REJECT a SYSMOD
that has been RECEIVEd causes the SYSMOD to be erased from the PTS and
its control information associated with the RECEIVE process to be
wiped out. If the SYSMOD has RELFILES, the disk-loaded copies are
deleted. The SYSMOD cannot then be RE-APPLIED or RE-ACCEPTED unless
it is RE-RECEIVED. REJECTing a SYSMOD WILL NOT AFFECT THE STATUS of a
SYSMOD that has ALREADY BEEN APPLIED OR ACCEPTED. It stays in the
TARGET libraries and in the DLIBs.

 OK, we've talked about getting the SYSMOD into SMP. Now is a
good time to mention the syntax of SMP MODIFICATION CONTROL STATMENTS,
before going to the details of APPLY and ACCEPT processing.

 Rule number one is that all SYSMOD control statements (known
in IBMese as MCS or "Modification Control Statements") must begin
with the characters "++" in columns 1 and 2 of the SYSMOD's card-image
records. The other keywords and parameters in SYSMOD syntax are
free-flowing. Extra blanks don't count. Columns 73 to 80 are
not used in the SYSMOD statements themselves, but they are required
for IEBUPDTE source and macro update cards, so you have to be careful
and one can't renumber a SYSMOD. Comments are as in the PL/I language.
They begin with the characters "/*" and end with the characters "*/".
Everything in between these specific strings, even on many successive
lines, is treated by SMP as a comment. All SMP statements must end in
a period, ".". The period is the delimiter for statements in SMP
syntax, and one must be EXCEEDINGLY careful with them.

 Every SYSMOD must begin with the statements: "++ FUNCTION",
"++ PTF", "++ APAR", or "++ USERMOD", followed by the seven character
SYSMOD ID enclosed in parentheses, and delimited by a period. We've
already discussed FUNCTION sysmods. PTF sysmods or "PTFs" are (after
the invention of SMP and the change in IBM's maintenance philosophy)
really PERMANENT SYSTEM FIXES, although their name stands for "Program
Temporary Fix". The TEMPORARY fixes are called "APARs", which is
really a short term for "APAR FIX". APAR stands for "Authorized
Program Analysis Report", and it really refers to a problem that was
reported to IBM. IBM assigns a number to each problem, and when the
problem is fixed, the temporary fix itself is assigned the same
number. This number (or something very close to it) is what SMP uses
for the APAR SYSMOD ID. APAR SYSMODS are intended to be replaced, or
"SUPERSEDED" by permanent fixes, or PTFs. They are therefore not
usually "ACCEPTED" into the distribution libraries. More about this
later.

 USERMODs are packaged SMP SYSMODS written by the individual
installation for its own needs, usually to modify some IBM code. They
look like PTFs or APARs, but SMP puts them in a special category so
that they stay a bit distant from the real IBM maintenance. The user
has flexibility to assign almost any seven character SYSMOD ID to his
USERMOD, but each different SYSMOD must have a unique ID, and it is
wise to steer clear of IBM-type names. USERMODs are also usually
not ACCEPTed into IBM distribution libraries (also known as "DLIBS")
because they are likely to overlay IBM code there. USERMODs should
only be ACCEPTed if you really know what you are doing.

 We'll quickly explain the concepts of the other strange keywords
you're likely to find at the top of SMP SYSMODS. I don't intend to
be exhaustive. The idea is to cut through the ice and give you some
idea of what is happening.

 "++ VER" means "version of the operating system", or perhaps
"domain of SMP activity" would also be an appropriate explanation.
The values for this parameter have 4 characters, and there aren't too
many valid choices. "Z038" means MVS 3.8 and upwards thru XA. ("Z037"
or MVS 3.7 probably isn't used anymore.) "C150" means CICS 1.5 and
upwards. There are a few more of them. These values almost never
change, and within the same domain of activity, you always find the
same value. The ++VER values were originally intended to differentiate
between similar maintenance on different MVS releases, but because of
the evolution of the SMP product since those "old" days, it doesn't
have that importance any more. The purpose of the ++VER statement has
been largely taken over by the FMID. It is necessary and required,
however; it must be included in all SYSMODs.

 Inside of the ++VER sentence (and before the period) you'll
most likely see the FMID, PRE, REQ, and SUP keywords. FMID has been
discussed. Every SYSMOD must belong to a unique FMID. In the
parentheses following the FMID keyword, the FMID which will own the
SYSMOD must be specified. PRE and SUP are quite simple. In the
parentheses following the PRE keyword, and separated by spaces or
commas, is a list of SYSMOD IDs which have to be present before OUR
SYSMOD can be put onto the system, or "APPLIED". The "prerequisite
SYSMODs" must have been already APPLIED themselves, or else they have
to be APPLIED together with this new SYSMOD. Otherwise if all the
PREs or prerequisites are not present, the new SYSMOD will not go on.

 REQ is like PRE, but the SYSMODs that are REQuired for the
new SYSMOD, must BE APPLIED IN THE SAME RUN as the new SYSMOD. It
is seldom necessary to use the "REQ" keyword. Ususally "PRE" will
suffice.

 Following the SUP keyword is a list of SYSMODS that are
effectively replaced, or "SUPERSEDED" by the new SYSMOD. This keyword
is used when the intent is that the new material to be added to the
system COMPLETELY OBSOLETES all the material from all of the SYSMODs
in the SUP list. If only SOME of the material in a previous SYSMOD
or PTF will be replaced, that SYSMOD should be placed in the PRE list
or "prerequisite list". For a SYSMOD to be superseded or "SUPed"
(to use the common parlance) its purpose in the operating system
should be COMPLETELY REPLACED by the later SYSMOD.

 Our new SYSMOD may have a sequence of "++IF FMID(fmidnam) THEN
REQ(sysmdid)." statements. This will happen if we have different
levels of the same product, as we mentioned earlier regarding the
various MVS/370 product levels. If our SYSMOD is for a lower level of
the product, and the installation has both that level and a higher
level, it may be necessary to apply another fix to satisfy the
requirements of the higher level. SMP is informed of this by means of
a coded ++IF statement in the lower level SYSMOD. If the higher level
referred to (in the ++IF statement) is not present on our system, then
our fix suffices for us, and it will go on to our system normally. If
our installation has the higher level of the product also, the lower
level SYSMOD will not go on without the sysmod id in the REQ keyword
of the ++IF statement also being present. The FMID name within the
++IF statement is usually for a higher level of the product than the
current SYSMOD is for.

 Below all this "version", PRE, SUP and IF stuff is the actual
fix. A "++MOD" statement followed by object code signifies an object
module replacement of a CSECT. A "++SRC" statement followed by source
code is a complete source code replacement. A "++SRCUPD" statement or
"++ MACUPD" statement followed by IEBUPDTE control cards signifies
updates to an existing source module or macro. A "++MAC" statement
is followed by the complete replacement for the macro. Keywords in
these statements supply necessary additional instructions so that the
change is done according to the author's or IBM's specifications and
requirements. Specification of the destination libraries for the
ELEMENT to be changed is also accomplished by these keywords.

 A single SYSMOD can contain fixes for many system ELEMENTS.
Each element to be changed must have its own ++SRC, ++MOD, +SRCUPD,
++MAC or ++MACUPD control card, followed by the new replacement or
additional material for that element. An approximate limit to the
number of element fixes in one SYSMOD is set by a global SMP parameter
called "PEMAX". It is advisable to set PEMAX to a high number, usually
to 9999.

 One more important note. Libraries in SMP control statements
are referred to by their DDNAMES ONLY. These must be one to eight
characters long. It is safe and wise practice in SMP work to ALWAYS
MAKE THE DDNAME OF THE LIBRARY CORRESPOND TO THE LOWEST-LEVEL
QUALIFIER OF ITS DATASET NAME. DATASET NAME PREFIXES DON'T COUNT TO
THE SMP PROGRAM. It is therefore advisable to use the SAME SMP JCL
PROCEDURE when doing system modifications to one system. The JCL of
that PROC will uniquely and unchangeably determine the destination
libraries of the SMP action. Thus, the SMP control information and
the actual contents of the affected libraries will always be kept in
synchronization. (SMP/E has a facility for determining dataset names
by dynamic allocation. These dynamically determined library names are
called "DDDEFs". I want to keep the discussion here simple, and I
will not dwell on DDDEFS, except to say that they DYNAMICALLY
accomplish what DD cards do in a JCL procedure.)

 This will take some of the mystery away from what a SYSMOD
looks like. Now once it is RECEIVEd, how do we APPLY it to the
TARGET LIBRARIES?

 When thinking about APPLYing SYSMODS to our system, we must
never forget that the PURPOSE OF A SYSMOD IS TO SUPPLY NEW COMPONENTS
for our operating system or our product. THE APPLY PROCESS PUTS THE
NEW PIECES OR ELEMENTS INTO THEIR PROPER PLACES IN THE EXECUTING
LIBRARIES OF THE SYSTEM, the TARGET LIBRARIES. IT ALSO KEEPS DETAILED
TRACK OF WHAT IT HAS DONE.

 APPLY can ONLY be done to a SYSMOD that has been RECEIVED. The
RECEIVE process has put the SYSMOD into the SMP staging areas, the PTS
and possibly the UNLOADED RELFILES, and has done some preliminary
accounting in the SMP/E GLOBAL ZONE or the SMP4 PTS. The APPLY
process will pick the SYSMOD up from there. Accounting for the APPLY
process is done in SMP/E using a VSAM cluster called the TARGET ZONE,
and in SMP4 using several partitioned datasets, the most important of
which is called the "CDS" or "Control Data Set".

 A word about ELEMENT ACCOUNTING. If a SYSMOD will replace an
ELEMENT (a macro or a module or source code - a MAC, a MOD, or SRC),
that ELEMENT acquires an "RMID" (or "Replacement Module ID") equal to
the SYSMOD ID of the SYSMOD which replaced it. Since the piece
was completely replaced, each MAC, MOD, or SRC ELEMENT can have ONLY
ONE RMID. If on the other hand, the SYSMOD will UPDATE A MACRO,
UPDATE SOURCE, or ZAP A LOAD MODULE, then that ELEMENT acquires a
"UMID" ("Update Module ID") equal to the SYSMOD ID that updated it.
One macro or module can have MANY UMIDS, because it is possible to
update a single ELEMENT many times, and in many ways.

 Now back to APPLY processing. Many SYSMODS can be APPLIED
together in one run. This is one of the great conveniences of the SMP
product. When APPLYing more than one SYSMOD, the programmer can
SELECT a list of individual SYSMODS by their seven-character SYSMOD
IDs. This is done in the SMPCNTL DD statement, where one enters the
"APPLY" parameter into the SMP job. One simply states "APPLY SELECT
(sysmdid,sysmdid, ...).". We can also select just one SYSMOD to
APPLY, if that is what we want.

 Before we get too far, I must mention "APPLY CHECK", which is
a dry run of the APPLY process. By inclusion of the word "CHECK"
in an APPLY request, SMP will do a dry run. All SMP control
information will be verified, just as if the real APPLY was being
done. With APPLY CHECK however, no real library updates are done, and
the SYSMODS will not really be APPLIED to the system. A report will
be generated that tells us what WOULD be done. "ACCEPT" and "RESTORE"
processing, to be mentioned later, also have the "CHECK" facility. IT
IS ALMOST ALWAYS ADVISABLE TO DO APPLY CHECK BEFORE DOING THE REAL
APPLY.

 We continue. It is also possible to do what is called a MASS
APPLY. MASS APPLY works as follows. By simply stating the word APPLY
in the SMPCNTL DD statement of an SMP job, SMP will ATTEMPT TO APPLY
ALL RECEIVED SYSMODS THAT ARE ELIGIBLE FOR THE SYSTEM but have not
been APPLIED yet. SMP will look at ALL THE UNAPPLIED RECEIVED SYSMODS
and will BUILD A SYSMOD SELECT LIST. It will then proceed to APPLY
ALL THE SELECTED SYSMODS to your system. It is possible to EXCLUDE a
list of SYSMODS specifically from a MASS APPLY, by using the EXCLUDE
or "E" parameter in the APPLY control statement. In SMP/E (but not in
SMP4) there is an additional way to exclude a SYSMOD from an APPLY.
This is through the use of a "++HOLD" modification control statement
which has been RECEIVED previous to this APPLY request. MASS APPLY
is the normal means of APPLYing IBM's periodic system maintenance
known as "PUTs" (Program Update Tapes) to the system, because this
maintenance consists of large numbers of PTFs, perhaps several hundred
of them, and it is inconvenient to SELECT them individually.

 There is another APPLY option called APPLY with the GROUP
parameter. "APPLY GROUP" works very much like "APPLY SELECT" for
APPLYing a list of SYSMODS. The difference concerns missing
prerequisites. If "APPLY GROUP(sysmdid,...)" is coded instead of
"APPLY SELECT", and if a necessary prerequisite SYSMOD has not been
included in the explicit SELECT list, SMP will go to the trouble of
adding all such necessary prerequisites to the SELECT list before
doing the APPLY. It is only necessary that the added SYSMODS have
been previously RECEIVED. "APPLY GROUP" is good if you are not sure
what other PTFs are necessary to include, when you are APPLYing new
PTFs that you really want. It does use extra overhead, but it should
be used for avoiding multiple SMP runs when some prerequisites may be
missing.

 BYPASS. This is a useful facility of SMP APPLY processing,
especially during APPLY CHECK, when you're determining if the APPLY
should work. The BYPASS parameter of APPLY (and ACCEPT) allows SYSMODS
to be APPLIED to the system, even though they are missing prerequisites
or other requirements. During a real APPLY situation, the BYPASS
parameter will allow the putting on of a SYSMOD in an exceptional
circumstance, when there is no other way of getting it on. During
a CHECK situation however, it is advisable to BYPASS ALL OR MOST ERROR
CONDITIONS on the first try. This is because SMP WILL OFTEN STOP
FURTHER ACTION when it encounters the FIRST ERROR.

 For instance (to use an SMP/E example), suppose SYSMODS B and C
both require SYSMOD A, and SYSMOD A has a ++HOLD against it. When we
try to APPLY CHECK SELECT SYSMODS A, B, and C together, and we don't
have a BYPASS (HOLDERROR) coded, SMP will not tell us how the three
SYSMODS will APPLY, and what ELEMENTS they will affect. It will
simply say that it cannot APPLY SYSMODS B and C because it could not
APPLY SYSMOD A. On our next try, if we did code BYPASS (HOLDERROR) in
the APPLY CHECK, SMP/E would give us a complete report of the ELEMENTs
affected by all three SYSMODS, because the BYPASS allowed the
simulation of a completed APPLY, and all the consequences of the APPLY
will show in the report.

 As a matter of procedure, most people BYPASS every error
condition during APPLY CHECK, but some try not to use BYPASS on the
real APPLY. They exert much effort to completely clean up the APPLY
CHECK so that they can avoid coding a BYPASS for the real APPLY run.
I personally leave the BYPASS in during the REAL APPLY runs too. I
just make sure that the APPLY CHECK will show the exact result that
I want to achieve. My approach avoids an excessive number of APPLY
CHECK runs, which can take a long time. This is a matter of personal
preference. The important thing is that THE REAL APPLY SHOULD ALWAYS
BE DONE WITH THE SAME PARAMETERS AS THE LAST SATISFACTORY APPLY CHECK
RUN.

 Our final word on APPLY processing will be to show how the
PATTERN OF THE SYSTEM is determined or changed during APPLY. SYSTEM
PATTERNS are communicated to SMP by means of the "JCLIN" facility.
JCLIN consists of MODEL JCL statements for ASSEMBLY, LINKEDIT or COPY
steps. SMP reads these statements, and uses them to determine how
source can be reassembled after a MACRO change, or how load modules
of one or many csects (called LMODs by SMP) are linkedited from
component parts, including all linkedit control statements and
attributes. JCLIN is only associated with TARGET LIBRARIES and the
TARGET ZONE, not with DISTRIBUTION LIBRARIES, which have only separate
pieces of the system. JCLIN tells SMP how to construct the working
programs of the system from their component pieces.

 This is reminiscent of our discussion of the SYSGEN process.
In fact, JCLIN is the means of communicating the contents of the
SYSGEN STAGE II DECK to SMP. A JCLIN stream can be put into SMP in
two ways. The first way is by means of a dataset of JCL, which is
referred to the SMP job by the SMPJCLIN DD statement. The second
means is from within a SYSMOD itself. This second way is called
"INLINE JCLIN". The JCL stream is included in the text of the SYSMOD
and preceded with a "++ JCLIN." statement. This will cause the JCL
pattern to be read into the TARGET ZONE or CDS when the SYSMOD is
APPLIED.

 The APPLY process is reversed with the RESTORE process. RESTORE
takes off SYSMODS that have already been APPLIED but NOT ACCEPTED.
SMP provides a RESTORE CHECK facility so the user can determine in
advance if the RESTORE will work. RESTORE allows you to back off bad
SYSMODS if they are causing trouble during your system tests, after
APPLYs have been done.

 We shall talk about ACCEPTing the APPLIED SYSMODS into the DLIBS.
The ACCEPT process of SMP takes the ELEMENT REPLACEMENTS which have
already been APPLYed to the system (and presumably tested), and puts
them into the DISTRIBUTION LIBRARIES to archive them. This also allows
them to be used in a subsequent SYSGEN or IOGEN (a partial SYSGEN to
rearrange IO-configuration related ELEMENTS). ACCEPT is thus a very
important process.

 Control information for the ACCEPT processing is kept, for SMP/E,
in a VSAM cluster known as a DLIB ZONE. Each DLIB ZONE must be paired
with a corresponding TARGET ZONE. This is because SMP will normally
ACCEPT only SYSMODS that have already been APPLIED, and the TARGET
ZONE has the control information for the APPLIED SYSMODS. It is
possible for ONE GLOBAL ZONE to control SEVERAL PAIRS OF TARGET AND
DLIB ZONES, so that several sets of system libraries can be maintained
out of one SMP/E configuration.

 For SMP4, control information for ACCEPT is kept in two
partitioned data sets, the "ACDS" or "Alternate Control Data Set"
and the "ACRQ" or "Alternate Conditional Requisite Queue Data Set".
(There is also a "CRQ" dataset for APPLY information.) These datasets
correspond to the information that is kept in the DLIB ZONE for SMP/E.

 ACCEPT control parameters are similar to those for APPLY,
as we discussed above. It is always advisable to do ACCEPT CHECK
runs before doing a real ACCEPT run, just to make sure the job will
achieve the desired result. Doing ACCEPT CHECK runs will make it
possible to fix errors before the ACCEPT run. Once a SYSMOD has been
ACCEPTed on the SYSTEM, it cannot be removed, except by another SYSMOD
that will SUPERSEDE it and replace all its ELEMENTS.

 In order for an ELEMENT to be used in a subsequent SYSGEN or
IOGEN, its SYSMOD must first be ACCEPTED. This loads the ELEMENT into
its proper DISTRIBUTION LIBRARY. As we stated before, the SYSGEN
PROCESS uses the material in the DLIBS to build the system, and one
doesn't want back-level code to creep into his system after an IOGEN
has been done. It is therefore mandatory to do a MASS ACCEPT before
a SYSGEN or IOGEN is done.

 There is a special case of ACCEPT processing which allows SMP
to simulate the SYSGEN process. This type of ACCEPT processing is
called "ACCEPT NOAPPLY", and its purpose is to replace SYSGEN MACROS
and other pieces of the DISTRIBUTION LIBRARIES so a newly updated
SYSGEN STAGE II DECK can be created. This new STAGE II DECK will
reflect the NEW PATTERN that IBM has planned for the new version of
the operating system. ACCEPT NOAPPLY processing replenishes the
DLIBS directly from RECEIVED SYSMODS, bypassing the TARGET LIBRARIES
entirely. After the ACCEPT NOAPPLY has been done, and the DLIBS
reflect the state of the new system, a STAGE II SYSGEN DECK is assembled
from the installation's STAGE I DECK, and the new STAGE II DECK
is made known to SMP through the JCLIN process. When a subsequent
APPLY of the same SYSMODS is done, all their ELEMENTS will fit into
the system according to their proper new pattern.

 We shall finish our discussion with the topics of "UCLIN" and
"LIST". Then I'll let you try your hand at the SMP books. You'll
probably find them clear and well-written now, because you're past the
"vocabulary barrier". Any words I haven't defined here can probably
be found in the glossaries of the SMP publications, and you can be on
your way.

 UCLIN for SMP CONTROL DATASETS roughly corresponds to ZAP for
data. UCLIN provides the facility for ARBITRARILY CHANGING SMP
CONTROL INFORMATION. Sometimes SMP control entries must be adjusted
to allow a PTF to be APPLIED or ACCEPTED properly. For example,
suppose PTF B is intended to replace ELEMENT A, but our installation
has modified ELEMENT A with a USERMOD. Our intention is to replace
ELEMENT A with IBM's new version of it, supplied by PTF B. After the
element is replaced, we will refit our USERMOD to the new version.
This is what we want, but SMP will not let us do it. That is because
PTF B doesn't "know", in its "PRE" and "SUP" keywords about our
USERMOD, which tagged ELEMENT A with a UMID equal to the USERMOD's
SYSMOD ID. The APPLY CHECK run to APPLY PTF B will report an ID
CHECK, stopping PTF B from going on.

 One way to get around this situation is to use UCLIN processing
to remove the strange UMID from ELEMENT A before doing the APPLY for
PTF B. Then PTF B can be APPLIED without any trouble, and it will
replace ELEMENT A on the system, achieving the result that we want.
(Another approach is to BYPASS ID CHECKS and force PTF B on. The
UCLIN approach seems cleaner to me.)

 UCLIN can also be used to replace large pieces of SMP control
data. SMP has a facility called UNLOAD, that converts entire SMP
entries, or even an entire ZONE into UCLIN control statements. This
may prove useful to some users. The point is that the UCLIN facility
gives us fine control on the SMP entries, outside of the RECEIVE,
APPLY, ACCEPT milieu. We must obviously be very careful with UCLIN,
and we should only use it when we know exactly what we are doing.
Sometimes an IBM-supplied PTF will recommend the application of UCLIN.
This should also be done with care, because a previous SYSMOD may
have done the proper adjustment already.

 "LIST" allows the SMP user to DISPLAY ALL SMP CONTROL
INFORMATION, and it is obviously the tool to use when determining if
UCLIN is necessary, and if your UCLIN worked properly. LIST has much
more general-purpose use in SMP. It is THE WAY TO DO SMP INQUIRY.
With SMP4, it is practically the only way find out SMP control
information. (There are a few other tools around, including a
"LISTCDS" TSO command on file 300 of the CBT tape.) With SMP/E, there
is an extensive ISPF INQUIRY SYSTEM that takes the place of the LIST
function for most routine lookups. LIST can still be used for big
inquiries in batch. The SMP books have much information on the use
of the LIST command.

 That's all for now, but I hope it's enough to achieve our
purpose. Now you can hit the books, and use SMP carefully, but with
confidence.

