GENERAL | NFORMATI ON AND PROGRAMM NG HI NTS

HARDWARL
OSHASP

ASPRGTC1

DOCUNMENT
LI NKAGE
DSECT
CSs102mML

SPECI FI C COURSE MATERI ALS

CS102TPA

CS102HN

CS102AS1

CS102FP1, 2,J

CS411TPA
CS411HN
Cs4114Gd 1

DUMPSICL, DUMPTEST

CS411A81
Cs411MC1
Cs411MC2

CS411FP1, 2, 3, 4,

SAMPLE PROGRAMS

FLOTLI NK

EXCP
BSAM
BPAM
QSAM
OVLY1
PTPCHVAC

DESCRI PTI ON OF DEVI CES, PSU 360/ 67
DESCRI PTI ON OF OS/ 360 AND HASP
WORKI NGS

S/ 360 ASSEMBLER PROG. TECHNI QUES
AND MODULARI TY

S/ 360 DOCUMENTATI ON HI NTS

S/ 360 LI NKAGE CONVENTI ONS

S/ 360 DSECT EXAMPLE

S/ 360 OPCODE FAM LI ES AND NAM NG
STRUCTURE

PARTI AL QUTLI NE OF | NTRO. ASSEMBLER
COURSE

HANDOUT LI ST FOR | NTRO ASSEMBLER
COURSE

ASSI GNMVENTS FOR | NTRO. ASSEMBLER
COURSE

FI NAL PRQIECT AND TEST DECKS
PARTI AL OUTLI NE OF SYSTEM5 COURSE
HANDOUT LI ST FOR ABOVE

GENERAL | NFORVATI ON FOR ABOVE

I NI TI AL DUMP | NTRODUCTI ON

ASSI GNVENTS FOR SYSTEMS COURSE
MACRO ASSI GNVENTS FOR SYSTEMS
COURSE

K SYSTEMS COURSE FI NAL

PROJECT AND TEST DECKS

FLOATI NG PT. FORTRAN ASSEMBLER
LI NKAGE

EXAMPLE OF A CHANNEL PROGRAM
BSAM | / O EXAMPLE

BPAM | / O EXAMPLE

@AM |/ O EXAMPLE

OVERLAY STRUCTURE EXAMPLE
BPAM | BM UTI LI TY EXAMPLE

HARDWARL - 01
FEB 1972
PENN STATE UNI VERSI TY COMPUTATI ON CENTER
360/ 67 CONFI GURATI ON
this witeup: pages 01 - 04, plus Diagram A (separate).

| NTRODUCTI ON

This witeup briefly describes the devices included in the PSU
360/ 67 system and shows how they are connected together. Each device
i s described bel ow, and di agram A shows the connecti ons.

Ref erences are nade to DEVI CE ADDRESSES. Each i ndividually
addressabl e device (such as a single disk drive, card reader, etc) has
a 3 digit (hexadecimal) nunber which uniquely identifies it to the
system and is used in all input/output operations. The DEVI CE ADDRESS
is of the follow ng form

abc where:

a gi ves the CHANNEL NUMBER (from O up)

b specifies a CONTROL UNIT attached to that channe

c not es whi ch device attached to a given control unit.

Since each digit can have the value 0-F, theoretically it would be
possible to attach 16 devices to each of 16 control units attached to
16 channels, for a maxi mum of 4096 separate devices. |In practice, this
nunber is nmuch |ess, since nost S/360's allow a MAXIMIM of 7 channels or
| ess.

The devices follow, nbore or less in order fromthe CPU outward.
CENTRAL PROCESSI NG UNI' T

2067-1 (a single 360/67 CPU). wuses 200 nanosec (.2 microsec) cycle
Read Only Storage (ROS) of 88 bits/word to inplenment S/ 360
instruction set (Universal plus special nodel 67 instructions)
i ncludes a H GH RESOLUTI ON TI MER (13 m crosec cycle).

i ncludes a BCU (Bus Control Unit), which is connected to al
menory nodul es, and determ nes which channel or CPU gets to
use a given nenory nodul e.

PRI MARY STORAGE

2365 111 (4 units) each unit contains 256K bytes. Physically each
2365 contains 2 arrays of 128K bytes, with physical word size
of doublewords, i.e., each has 2 arrays of 16K doubl ewords,
and is thus 2-way interleaved at this level. Each 2365 is

i ndependent of the others.
CYCLE TIME: 750 nanosec / ACCESS Tl ME: 375 nanosec

2361 11 (1 unit) - Large Core Storage (LCS) - 2048K bytes, organized
physically of 2-way interleaved doubl ewords.
CYCLE TI ME: 8000 nanosec (8 microsec) / ACCESS TIME 3.2 nmic

O the two types of storage, the first contains user prograns, and
heavily used parts of system prograns, while the LCS contains | ess-used
system prograns, tables, and buffer areas.

HARDWARL - 02
CHANNELS

2870 MULTI PLEXOR CHANNEL - includes 2 SELECTOR SUBCHANNELS (used
for magnetic tape drives). generally handl es LOW SPEED
devices (card readers, printers, etc)

MAXI MUM TOTAL TRANSFER RATE: 426 KB (kil obytes) per second

2860 SELECTOR CHANNELS - 5 total (2 in 2860 11, 3 in 2860 II1).
used for HI GH SPEED devices (di sk, drum etc)
MAXI MUM DATA TRANSFER UNI T, EACH SELECTOR: 1250KB

Al'l CHANNELS and the CPU contend for use of nenory nodul es. The
BCU arbitrates anong themusing a sinple priority schenme in follow ng
order:

SERVED EARLIER ---> SERVED LATER
CHANNEL # : 1 2 0 3 4 5 CPU
drums disk mx disk disk ADAGE

The above order is used since the drunms cannot wait very |ong and
have t he highest transfer rate, the nmultiplexor channel (0) is fairly
early because it may have a | arge nunber of things to do, and the CPU
is always | ast because it never hurts it to wait.

CONTROL UNI' TS

Each control unit can attach to a nunber of devices, and it is used
to control greatly different devices in a such a way as to nmake them
appear nore alike, as far as the channels are concerned. Each device
must be attached to a particular type of control unit, and each contro
unit normally can control a group of related devices.

2820 STORAGE CONTROL UNIT - controls the 2301 drumunits, attached
to channel 1 .

2821 CONTROL UNIT - controls UNIT RECORD devi ces (card readers,
printers, punches). attached to multiplexor channel

2848 DI SPLAY CONTROL - controls the 8 2260 scopes which displ ay
system status to the operators.

2701 DATA ADAPTOR - controls a small nunber of high-speed
transm ssion lines, i.e. high speed termnals (4800 bits/sec

transmt rate), such as 360/20's at various |locations.

2703 TRANSM SSI ON CONTROL - controls a | arger nunber of | ower-
speed termnals, including typewiter/teletype termnals and
read/ print/punch term nals at Commpnweal th Canpuses (such as
| BM 2780, DCS CP-4, etc).

HARDWARL - 03

DI SPLAY DEVI CES

1052

2260

SECONDARY

2301

231x

CONSOLE TYPEWRI TER - nessages are printed here requiring
action by conputer operators, and they can enter comuands
to the systemat this |ocation.

ALPHAMERI C DI SPLAY SCOPES (8 units) - these display current
system status (jobs, disk usage, etc), and also are used to
di spl ay requests for nmagnetic tapes to be nounted, etc.

STORACGE - DI RECT ACCESS STORAGE DEVI CES (DASDs)

MAGNETI C DRUMS (2 druns) - attached to channel 1 via 2820.
Each hol ds 4.09 nmegabytes (mllion bytes) of data, rotates
once each 17.5 nilliseconds, with average rotational del ay
(latency time) of 8.6 mlliseconds. Records data 4 bits in
paral l el (for high transfer rate). Has 200 conceptual TRACKS,
each of 20,483 bytes maxi mum si ze. EACH DRUM | S UNREMOVABLE
MAXI MUM TRANSFER RATE: 1.2 negabytes/second (FASTEST DEVI CES
USED ON THI S SYSTEM).

These hol d nost heavil y-used conpilers and system prograns.

(2314, 2319) MAGNETI C DI SK STORAGE FACILITIES - total of 22
di sk drives (including 2 spare ones). Each DRI VE hol ds one
2316 DI SK PACK: 29.17 negabytes nmaxi mum on 20 disk surfaces
(11 plates - outside ones not used). Uses MOABLE HEADS

to access information. Each CYLI NDER (of which there are 200
usabl e at any one tine) contains the 20 TRACKS accessi bl e at
one time wi thout noving the READ WRI TE HEADS. Each track can
record at nost 7294 bytes of information.

NOTE: unlike drums, each DI SK PACK can be renoved, and another
one nounted in is place if desired.

ROTATION TIME: 25 millisec, AVERAGE LATENCY: 12.5 milli sec.
SEEK TIMES (time to nove HEADS to correct cylinder):

M N = 25, AVERAGE = 60 or 75, MAX = 130 or 135 mllisec.

MAXI MUM DATA TRANSFER RATE: 312, 000 byt es/ sec.

NOTE: each of the three storage facilities contains its own
control unit, and each drive is nunbered accordingly, i.e.
230-237, 330-337, 430-433, on channels 2, 3, 4.

TOTAL DASD STORAGE IS AS FOLLOWS
2314 (8 drv) 233 negabyt es
2319 (8 drv) 233 negabyt es
2314 (4 drv) 116 megabytes
2301 (2 drums) 8 negabytes

590 negabytes (approx)

HARDWARL - 04
SECONDARY STORAGE - SEQUENTI AL DEVI CES

240x (2402 111, 2403 111) MAGNETIC TAPE DRIVES - read/wite tape
at maxi num density of 800 BPI (bits/inch), 9 tracks per tape
(2 of the drives also read/wite 7-track tapes). Each group
of 4 drives is connected to one SELECTOR SUBCHANNEL of the
MULTI PLEXOR CHANNEL. The control units for these drives are
contained in the 2403 units.
MAXI MUM TRANSFER RATE: 90, 000 bytes/sec (90KB), using tape
speed of 112.5 inches per second, tape gaps of .6 inch between
bl ocks of data.

UNI T RECORD DEVI CES

1403 LI NE PRI NTERS (of various nodels), printing with maxi mumrated
speed of 1100 I pm (lines/mnute) for 1403 N1, 600 | pm for
others. Use renovable TRAINs, so that different character
sets can be obtained (upper case only: QN, upper/lower: TN)
Attached to 2821 control units (on nultiplexor).

2540 CARD READ/ PUNCH - one unit contains a card reader and card
punch (treated logically as separate addresses: for exanple:
00C for reader, 00D for attached punch).

READS cards (optically) at 1000 cpm (cards/ m nute) maxi num
PUNCHES cards at 300 cpm maxi mum
Attached to 2821 control unit.

2671 PAPER TAPE READER - reads punched paper tape at up to 1000 cps
(characters per second). attached also to 2821 control unit.

SUMVARY OF DEVI CE CHARACTERI STI CS

DEVI CE CAPACI TY PER UNIT TRANSFER RATE AVERAGE DELAY

TYPE (megabyt es) (KB/ second) (seek) (latency) ms.
2301 DRUM 4.09 1200 0 8.6
2319 DI sSK 29. 17 per pack 312 60 12.5
2314 DI SK 29. 17 per pack 312 75 12.5
2400 TAPE DRI VE varies, 20 per 90 - -
2400-ft tape K
1403 PRI NTER 132 bytes/line 2.4 - -
2540 READER 80 bytes/card 1.3 - -
2540 PUNCH 80 bytes/card 0.4 - -
2671 PAPER TAPE -- 1.0 - -
REFERENCES: GA22- 6810 | BM S/ 360 SYSTEM SUMVARY

GA27-2719 |1 BM S/ 360 MODEL 67 FUNCTI ONAL CHARACTERI STI CS

OSHASP - 01
OVERVI EW OF OS/ 360 W TH HASP

This witeup gives a quick overview of the process by which any
0S/ 360 sytstemis initialized, how storage is used (particularly in
0s/ 360/ WT), and descri bes how OS/ 360 is nodified by the use of HASP
(Houston Automatic Spooling Priority systen). The storage |layout is
descri bed for the PSU CC 360/ 67 system

I. INITIALI ZATION - getting a system up and running

Consi der a computer with no operating systemcurrently in it. The
first necessity is to get a workable operating systemin it, so that
jobs can be run. This is NOT a trivial process: note that there is no
Program Fetch resident in the machine, no I/O Access Method routines,
and not even a correct set of PSWs in |low core for directing interrupt
actions.

For OS/ 360, the initialization process is conposed of two parts:
IPL and NIP. IPL (Initial Program Loader) initializes nenory and sone
ot her things, and brings the NUCLEUS (the core of the OS) into nenory.
NP (Nucleus Initialization Progran) perfornms the renaining actions
required to set up a specific NUCLEUS to be ready to execute.

A. IPL - Initial Program Loader

The process of getting an OS/ 360 systemrunning is called IPLing,
and includes the followi ng main steps:

1. The operator makes sure the di sk pack called SYSRES (SYStens
RESi dence) is nmounted on a disk drive. The LOAD UNIT switches are set
to show the device address of the SYSRES di sk pack, and the LOAD button
pressed. This causes the CONTROL RECORD to be read fromthe first
record on the di sk pack, consisting of a PSWand two CCWs, placed at
location O in nmenory. Execution of this record causes the |PL
BOOTSTRAP record to be read into nenory. The BOOTSTRAP record consists
of a set of CCWs which are used to read the | PL programinto nenory,
begi nning at location 0. It ends with a LPSWto give control to the
I PL program

2. I PL selects which NUCLEUS will be | oaded (there may be a choice
whi ch can be given by switches on the operator console).

3. IPL clears all nenory above itself to zeroes, al so obtaining
the size of menory; i.e., it stores until addressing interrupt occurs.

4. IPL clears the floating point registers, thus finding out if
the floating point feature is installed

5. IPL brings the NUCLEUS into menory. First, it relocates the
part of itself not yet executed into high nenory (near 252K), so that
t he NUCLEUS can be placed beginning at 0. It then sinulates Program
Fetch, loading the csects of the NUCLEUS | oad nmodul e into nmenory. The
first csect |loaded is the NIP, |oaded just below IPL, followed by the
I/O Interrupt Handler at 0 (which thus defines all of the special PSWs
inlowcore). |IPL then passes control to NIP

OSHASP - 02
B. NIP - Nucleus Initialization Program

The |1 PL process described above applies to all versions of OS/360.
The NIP is generated in different ways, depending on the specific type
of system and choice of options desired. Note: NIP is a csect which is
link-edited with the nucleus, so that it can refer to sections of the
nucl eus via address constants, and provide efficient and specific
initialization services. It includes the follow ng steps:

1. The CVT (Communications Vector TAble) is initialized, and its
| ocation placed at |ocation 16, so that it can be accessed from any
routi ne, whether part of the nucleus or not.

2. NI P determ nes whether the computer has Large Core Storage (LCS)
attached to it or not. This is particularly necessary for those
systenms which include H ARCHY SUPPCRT, i.e., the ability to usefully
di stingui sh between nmain core and LCS, perhaps splitting progranms into
heavi | y-used and | esser-used sections.

3. NIP checks the workability of operator consol e(s), and al so
checks the workability of ready direct-access devices (using TIO
instructions). It particularly checks that the SYSRES volunme is nounted
and contains certain datasets needed by the system

4. NI P performs various housekeepi ng actions, such as checking and
setting the tiner to make sure it is working correctly, initializing
some pointers for storage managenent, initializing the SVC table (which
gives a pointer to each routine associated with a defined SVC nunber).
It also sets up to be able to obtain nbdules fromthe SYS1. LI NKLIB
whi ch contains the heaviest-used | oad nodul es for the system and al so
est abl i shes comuni cations with the operator.

5. For any system having one, NIP | oads reentrant nodules into the
LI NK PACK. These nopdul es can be used during foll owing execution, and
are |located at the high end of menory. In a systemwth fast core+LCS
the LI NK PACK can be split, residing at both the high end of fast core
and the high end of LCS

6. Wth the addition of various other m scell aneous operations,
NI P prepares a REG ON which will contain the MASTER SCHEDULER, which is
t he program doi ng overall job scheduling and operator comrunication.
It then can pass control (LINK or XCTL) to the MASTER SCHEDULER, and
the systemis finally ready to run jobs

At this point, menory |ayout (fast core only) is as foll ows:

H GH ADDRESS LI NK PACK (reentrant nodul es)
M5 (MASTER SCHEDULER)
FREE AREA (dynam c for probl em prograns)

SQS (SYSTEM QUEU SPACE) (contains space for system
control blocks - TCB' s, etc)
LOW ADDRESS NUCLEUS

NOTE: in systens w th H ARCHY SUPPORT, FREE AREA, Ms, and
LI NK PACK woul d al so have areas in LCS

OSHASP - 03
[1. RUNNING JOBS I N AN OS/ 360 SYSTEM

This section describes how jobs are run in a standard OS/ 360
system using either OS-MFT or OS-WT. Note that OS-PCP runs jobs
one at a tinme (sequential scheduling, uniprogramrmng), with no SPOCLi ng
of jobs to and from di sk before and after execution. OS-MT and OS- WT
are generally simliar in that they both can SPOOL i nput onto DASD
execute jobs in priority order, and wite the output out later. The
main difference is in the handling of storage, in which CS-MWT is mnuch
nore dynamc. Note that all scheduling of jobs and comunication wth
the operator is effectively under the control of the MASTER SCHEDULER.

A. READI NG | NPUT STREAMS

For each existing input stream (card reader, or input on tape),
the operator can issue a START RDR command. This causes a copy of the
READER/ | NTERPRETER program (referred to herafter as a RDR) to read
cardi mages fromthe requested i nput devi ce.

During its operation, a RDR reads an input stream scans JCL cards
and converts themto a standard internal text form and al so obtains
cat al oged procedure definitions fromthe procedure |ibrary (PROCLIB).
Fromthe internal text, it builds INPUT QUEUE entries, representing
the infornation on the user JCL cards. It also wites any input data
cards onto disk, while placing pointers to the data into the | NPUT
QUEUE entries so that it can be found later. The job's | NPUT QUEUE
entry is enqueued in priority order with other jobs awaiting execution.

When all of the cards for a job have been read, it has in effect
been split up into the foll ow ng:

1. INPUT QUEUE ENTRIES, in priority order, in a special systemdata
set used only for work queue entries, referred to as SYSJIOBQUE.

2. | NPUT STREAM DATA SETS, placed on DASD, using normal OS/ 360
Direct Access Device Storage Managenent (DADSM routines. NOTE: DADSM
routines are thensel ves kept on DASD, nonresident, and allocating disk
space often requires a fair nunber of accesses to disk to look for free
space on one, and to allocate the space appropriately. The DADSM
routines are quite general and powerful, but also create sonme overhead.

B. INITIATI NG JOB STEPS

The operator may START one or nore | N Tl ATORs, each of which can
initiate jobs fromone or nore classes(categories) of jobs. Each
initiator will then attenpt to initiate the highest priority job from
the first class of jobs which has a ready job. |If there are no jobs
awai ting execution in its allowed classes, it WAITs for one to becone
available. Note that it essentially renmoves input queue entries from
SYSJOBQUE. Li ke every RDR, each INITIATOR is executed as a separate
task. (INITIATOR nmay be abbreviated INIT).

OSHASP - 04

VWhen an al |l owabl e job becones avail able, the initiator obtains
a REAON for the job (fromthe FREE area, also called the DYNAM C area),
uses the information fromthe RDR to all ocate DASD storage, tape drives,
and other 1/0O devices. It then ATTACHes the first nodul e of the program
to be executed (thus creating the JOB STEP TASK), and WAI Ts until the
job step compl etes.

When a job step is finished, the TERM NATOR (part of the I N TI ATOR
really, so that the whole unit is called an I NI TI ATOR- TERM NATOR)
effectively cleans up, perform ng disposition of 1/0O devices (DI SP
parameter in JCL), and rel easing the REG ON whi ch had been acquired for
the job step.

During this process, job steps are essentially independent, i.e.,
they could require different sizes of regions, and m ght execute in
different locations. Note that the I N Tl ATOR TERM NATOR nust al so
control the skipping of steps as controlled by the JCL COND option.

Duri ng execution, SYSOUT datasets are witten to DASD, to be
printed/ punched | ater. Wen the |last job step of a job conpl etes,
the INIT creates a work queue entry calling for the job's output to be
print ed/ punched.

C. VWRITI NG SYSTEM QUTPUT

A program cal l ed a SYSTEM OQUTPUT WRI TER (WIR) can be STARTed by
the operator to transcribe output fromDASD to printers or punches, or
even tapes to be printed/ punched |ater. Qutput can originally be
grouped i nto CLASSes, which can be witten according to priority or
otherwi se treated differently as desired.

COMMENTS ON THE PROCESS ABOVE

The process described above is quite flexible and general. However,
it does require a fair amount of tinme to set up any job, even a snal
one. As such, it is quite satisfactory for any installation which runs
jobs which require a fair anmount of time, since then the setup tine is
negligible. However, due to the use of OS DADSM for PSPOOLed i nput and
out put, DASD space can becone fragnented, di sk head novenment can
beconme excessive, and nuch time can be used up allocating and
deal | ocating di sk space. Although 0OS/360 is quite reasonable in a
conmercial installation, or in one running a few large jobs, it seens
to have too much overhead for university or other installations which

often run many snmall jobs. For this reason, nost |arger S/ 360 conputers
(i.e., nodels 75,67,65, and larger 50's) typically use sone nethod to
reduce the overhead in running small jobs. Al of the nethods involve

'faking out' OS/360 in sone aspect or other. The method enphasi zed here
(whi ch happens to be the nost popular one) is HASP (Houston Automatic
Spooling Priority) system

OSHASP - 05
[11. RUNNING AN OS/ 360 HASP SYSTEM

In any OS/ 360 system it is fairly typical to have one or nore
special jobs in the system which are | oaded before normal user jobs.
and typically remain resident fromone IPL to the next. Such jobs may
control renmpote batch terminals, timesharing typewiter termnals, or
provi de any other service which the installation desires. Such jobs
are nornally placed into the high-address sections of the FREE area
(or of the two FREE areas, if the system has both main core plus LCS)
When HASP is used, it is nornmally the first job submtted to OS/ 360,
and it essentially takes over the system even though it appears to
0OS/ 360 as just another job.

A. HASP I NI TI ALI ZATI ON

There are two possibl e cases when starting HASP up after an | PL
A COLD START occurs when the systemis conpletely enmpty, i.e., there
are no jobs already enqueued on disk which can be executed. |If there
are di sk packs on the system containing previously-read jobs, the start
is called a WARM START. A WARM START nornmal |y occurs if the system was
previously taken down on purpose, such as for systems progranming, or

i f enough information had been saved previous to a 'crash'. A COLD
START only occurs when the system crashes badly, and destroys records
of jobs already SPOOLed onto disk. 1In this case, the jobs nust be read
i n again.

VWhen HASP first gains control, it issues a special SVC call, which
returns to HASP with protect key 0 and supervi sor state, also supplying
HASP wi th sonme useful pointers to control blocks in the nucl eus. NOTE
this special SVC can only be called 1 tine, since it |ocks after its
first usage after an I|PL.

UCB's (Unit Control Blocks) exist for every device connected to
the conputer system HASP now scans these, and essentially allocates to
itself:

1. All real unit-record devices (readers, punches, printers).
2. Al disk packs which have vol une | abel names begi nning SPOCL.

It also obtains effective control of the operator's consol e(s),
plus rempte termnals, if any.

Finally, HASP nodifies the SVC table (which contains pointers to
the routines which are called for each specific SVC nunber), so that
the following ones go into HASP, rather than to the original routines
(al so saving these addresses for later use for itself):

SVC 0 (EXCP - all input/output)
SVC 34 (WL - wite to |og)
SVC 35 (WO, WIOR - wite to operator, with/w thput reply)

OSHASP - 06
B. RUNNI NG NORVAL USER JOBS UNDER OS/ 360 W TH HASP

1. Input Stage - HASP continually reads cards from whatever card
readers are active in the system It checks for JOB cards, perforns
various accounting checks on input jobs, and transcribes the jobs to
disk. 1In this stage, each job is split up into two sections: the JCL
cards (with certain nodifications), and the input data cards. It
enqueues the jobs according to a priority schene, which can be found
frommany di fferent sources of information. These include category,
time, output, storage requirenents, originating site of job, and
conmands fromthe operator to change priority of either single jobs
or entire groups of jobs. The disk allocation schene used is quite
efficient, and is described later.

2. Execution Stage - HASP has the ability to control which jobs
may execute in which portions of the OS FREE area, and using the various
priority and storage requirenments, it selects jobs fromits queue to be
executed. One OS RDR exists, pernanently STARTed to a card reader.

This card reader does not actually exist (i.e., it has a device address
whi ch does not correspond to a real card reader). Since SVC 0's are

i ntercepted by HASP anyway, HASP effectively selects a job and feeds it
to the OS RDR, which thinks the job is com ng across a real card reader.
The OS RDR includes an EXIT LIST, which allows it to call some routine
after it has scanned each JCL Card, but before the JCL card's data is
actually recorded. HASP is entered, and takes this opportunity to

nodi fy any JCL that it wi shes to, for exanple, renoving any REG ON=
requests on JOB or EXEC cards. HASP has special treatnent for any
systeminput or output data sets, as described bel ow

[T XXXXXXXX DD * or DATA : the OS RDR would normally expect data
to follow such a card, and would normally thus SPOOL such to disk
itself. HASP does not want this to occur, since it has al ready SPOOLed
the data. It happens that there are |arge nunber of UCB s for pseudo
card readers already in the system HASP selects one of these UCB' s
which is not being used, and effectively changes the tables for this
type of card so that it appears as:

[T XXXXXXXX DD UNI T=xxX

As a result, the OS RDR thinks that the data set will be read from

unit xxx, so that it does not try to SPOCOL the input. In any case,
the input no longer follows that JCL card, because HASP feeds the RDR
only the JCL cards of a user job. During this process, HASP connects
up the device address xxx to the specific input data set which had
been previously SPOOLed.

[T XXXXXXXX DD SYSQUT=x : HASP also has a | arge nunber of UCB's for
nonexi stent, pseudo printers/punches. 1t does the sanme thing to this
kind of card as it does to DD * cards, except that it only allocates
t he pseudo devices, and will later save the output which is witten to
t hem

As soon as the RDR finishes reading a job, an initiator can
imediately initiate it, since HASP chooses jobs appropriately.
When the initiator chooses i/o devices, it finds that it can al ways
al l ocate devices for unit-record i/o, since HASP had al ready checked
to make sure a pseudo reader/printer/punch was avail able for each
SYSI N or SYSOQUT data set.

OSHASP - 07

Finally, a job step of the user job executes. Wen it w shes
to read cards or print lines, it acts as though it were using a rea
device attached to the system and OS/ 360 accepts this. Wenever an
SVC 0 is issued to request such I/O HASP intercepts it.

HASP may be entered for any of the follow ng reasons:

1. WIQ WOR, WL - HASP adds own processing as desired

2. 1/Oto disk, drum tape, termnals, etc - HASP does not
interfere, but passes these on to the real |/O Supervisor.

3. 1/Oto real unit-record devices - these have probably been
i ssued by HASP in the first place, so it passes control to the rea
I/Oroutines to let themperformthe 1/0Q

4. /O to a pseudo device - these nmust be caused by user program
For input, HASP fetches the cardimges fromdisk into nmenory (if they
are not already present), and feeds requested cardi nage(s) to the user
program by MVCing themthere (using user protect key for safety). For
output, it blocks up output and eventually wites it to disk. In al
cases, HASP sinmulates the effect of having real card readers/printers/
punches, which are odd only in possessing great speed; i.e., the effect
on OS5/ 360 is of having issued an I/O request and having had it conplete
i medi ately.

Duri ng execution, HASP can al so provide extra services, such as
nonitoring tine used, output records, etc. It also reorders priorities
of executing user tasks so that 1/0O bound jobs have higher priorities
than do CPU bound ones. This action (which is unknown to OS/ 360) hel ps
mnimze time spent waiting

3. Qutput Stages - Print and Punch - after a job has been executed,
it enters the Print queue, is printed, enters the Punch queue, and
has punched output (if any) actually punched. This activity occurs
wi t hout the know edge of OS/ 360, which believes the job di sappeared
whenever it finished execution. Only when a job is finished punching
is its disk space released. This allows for jobs to be saved across
system crashes, and for such useful services as repeating output by
operator control.

C. DASD STORAGE MANAGEMENT | N HASP

HASP nanages its DASD storage quite efficiently, not only needing
NO accesses to DASD to allocate or deall ocate space, but also doing a
good job of mnimzing arm novenent on noveabl e- head devi ces. HASP
requires the use of entire volunes (nornally 2311 or 2314 disks). For
exanpl e, the PSU CC s 360/67 has 3 2314 di sk packs for HASP. The
managenment of this storage works as foll ows:

A MASTER CYCLI NDER BIT-MAP is maintained in HASP. This is a
string of bytes, in which each bit represents 1 CYLINDER on the SPOCOL
di sks (for exanple, 600 bits for the cylinders on 3 packs). A one-bit
represents a FREE CYLINDER, while a zero-bit shows that the given
cylinder is allocated to sonme job. HASP al so renmenbers for each disk
whi ch cylinder was the |ast referenced, thus always noting the current
position of the read/wite heads.

OSHASP - 08

Two JOB BI T- MAPS exi st for each job, one for SYSIN data and t he
ot her for SYSOUT data. Whenever a cylinder is required for a job,
HASP searches for a free one in the follow ng fashion:

1. It first searches the master bit-map for a free cylinder at
the current position of any read/wite head, i.e., where it can read
or wite without even noving a head.

2. It then searches for a free cylinder at +1 from current head
positions, then -1 fromeach, followed by +2, -2, etc up to +8, -8
cylinders away from current head position.

3. If the above fail, it searches sequentially through al
cylinders in the master bit-nmap

VWhen a cylinder is found, its bit is turned off in the naster bit-
map, and turned on in the appropriate job bit-map. The overall effect
of this process is to mnimze head novenent.

When di sk storage for a job is to be released, the deallocation
schene is extremely fast and efficient: the job bit-maps are just
OR d into the master bit-map, thus returning all of the cylinders to
free storage.

V. OTHER PSEUDO- DEVI CE SYSTEMS FOR USE W TH OS/ 360

The following are other systems which are based on OS/ 360, but
use sone kind of pseudo-devices to nmake it run faster.

A. ASP - ATTACHED SUPPORT PROCESSOR

In this system 2 conputers are used. Al unit-record devices are
attached to the multiplexor channel of a nediumsized 360, along with
sonme disk. It performs all SPOCOLing, control of renote ternmnals, etc.
It is connected to a |arger systemvia a chnnel. 0S/360 is in the
large system and it reads its input and sends its output along the
channel - channel hookup between the two CPUs. A typical setup would
use a 360/50 hooked to a 360/ 75

An advantage over HASP is that ASP offers somewhat better setup
facilities for optim zing use of tapes and non- SPOOL di sks. A
di sadvantage is the requirement of two CPU s, either of which nmay have
probl ens, and thus stop the entire system

B. LASP (LOCAL ASP) or CLASP (CLOSELY LI NKED ASP)

These are versions of ASP in which the code fromthe snaller
conputer is noved over into a region on the larger nmachine. This allows

an ASP systemto be run on one processor. |If the systemis also run
under straight ASP, it requires switches to switch the unit-record
devices over to the bigger machine. It also requires nore nenory than

HASP, but does allow the systemto run even with one CPU down.
C. TUCC HYPERDI SK

This method uses LCS plus part of a 2314 disk pack to sinulate
the entire di sk pack containi ng heavy-used systens progranms. The nost
recently used tracks of this disk are kept in LCS, thus making the disk
effectively faster, w thout changing the internals of OS/ 360.

OSHASP - 09
V. PSU CC 360/67 SYSTEM - OS/ WT W TH HASP
The following tables gi$e the current layout (with no guarantee of

future appearance) as of 6/12/72, for the 360/67 at the PSU CC. The
system has both fast core (1024K) and Large Core Storage (2048K)

LOW H GH K LOW H GH
V5 2928 3072 144 2DC000 300000
HASP 1968 2928 960 1EC000 2DC000
FMGR 1628 1968 340 197000 1ECO000
RIE 1346 1628 282 150800 197000
WATFOR 1336 1346 10 14E000 150800
RASP 1236 1336 100 135000 14E000
FREE 1024 1236 212 100000 135000
%) 964 1024 60 OF1000 100000
HASP 876 964 88 0DB000O OF1000
RDR 866 876 10 0D8800 0DB000O
FMGR 852 866 14 0D5000 0D8800
RIE 832 852 20 0D0000 0D5000
WATFOR 704 832 128 0B000O 0D0000
FREE 122 704 582 01E800 0B000O
NUC 0 122 122 000000 01E800

NOTES

M5 (Master Scheduler) includes the Link Pack areas. The fast core
section contains nainly nodul es for the various I/O Access Mt hods,
while the LCS part contains reentrant parts of I N TIATORS, RDRS
pl us other routines (overlay supervisor, special tables,etc).

HASP Fast core section is npst heavily-used sections. LCS part has
| esser-used sections, plus such itens as in-core SYSJOBQUE (HASP
intercepts all RDR and INIT reads/wites to SYSIOBQUE, and keeps
such information in about 600K of LCS). Also has HASP buffers for
all devices, plus tables of tape names/locations for user tapes.

FMGR Fil e Manager - nmmanages, synchroni zes RJE, BAT files.
RIE Renote Job Entry - handles typewiter termnals.

WATFOR WATFOR REgi on - RPSS - manages CAtegory W fast processors
swapped in and out of nenory (WATFOR, ASSI ST, PL/C, etc).

RASP Interface between 360/67 and ADAGE AGI/ 30 graphics conputer.
FREE fast core - 560K for user prograns (4x140, 2x280, 1x280+2x

140, occasionally 1x560), rest for Sytem Queue Space.
LCS - currently unused, except for systens prograns.

ASPRGTC1 - 01

S/ 360 Assenbl er Language Programm ng Techni ques
John R Mashey - Wnter |972

Topic: Program Modul arity and Paranetrizati on Met hods:
Usi ng Macros, Internal Subroutine, External Subroutines
This topic: pages 01-08

It is generally inportant in any conputer programto avoid coding
any procedure nore times than necessary. It is generally best to wite
somet hing one time, then have it available for later use in many parts
of a program In assenbler |anguage, there are three main ways of doing
this: macros, internal subroutines, and external subroutines. Thi s
writeup describes each of these techniques, gives the advantages and
di sadvant ages of each, and notes under what condition each is best.

. DESCRI PTI ON, DEFIN TION, AND CALLI NG
A. MACRO | NSTRUCTI ONS

A macro instruction is defined, and either placed at the beginning
of an assenbly | anguage program (a USER macro), or entered into a nacro
library (a SYSTEM nacro). Wen called, it generates 0 or nore assenbly
| anguage statenents at the point of invocation, and the code generated
may vary greatly fromcall to call.

1. DEFINTION

A macro definition begins with MACRO followed by the PROTOTYPE
STATEMENT, which gives the name of the macro. The body of the nacro
i ncludes 0 or nore MODEL STATEMENTS, which are assenbler commands and
machi ne instructions to be generated, and nacro-operations, which serve
to direct the expansion processing of the macro. The nmacro definition
is termnated by the MEND statenent. The following steps are typica
i n defining a macro:

a. DETERM NE BASI C PURPOSE AND GENERATED CODE: It is generally
a good idea to wite at |least sonme of the statenents to be generated
toget her as a code segnent first, to get sone feel for what is needed.

b. DECI DE ON NECESSARY ARGUMENTS AND THEIR USAGE: it nmy be a goo
idea to wite the purpose of each argunment in the operand |list, punch it
and include it in a block of conments at the beginning of the nmacro.
This helps the macro to be done to do what it is supposed to do.

Use PCSI TI ONAL operands for heavily-used arguments, i.e., if an
argunent MUST be supplied every tinme, nake it positional. In a group
of positionals, place the nost heavily used ones near the front, since
it is much nore convenient to omit the later ones than the wearlier.
Use KEYWORD argunents for val ues which nay not be needed al ways, or for
ones which are conveniently supplied with default val ues which are nost
often used. Use SUBLI STS or &SYSLI ST for variable nunbers of argunents.

c. WRITE ACTUAL BODY OF MACRO BU LDING MACRO TYPE COMIVANDS
AROUND THE MCODEL STATEMENTS TO BE GENERATED.

ASPRGIC1 - 02
2. | NVOCATI ON

A macro can be called nmerely by witing its nanme and supplying it
wi th any needed argunments. Note that a | abel on a macro call is never
generated (and is thus UNDEFI NED) unless the macro definition is nade
to generate it on some nodel statenent.

B. | NTERNAL SUBROUTI NES

Internal subroutines are sections of code witten as parts of a
gi ven control section (CSECT), and are only used inside that CSECT. Like
external subroutines, internal subroutines can of course call others.
They are typically used for small to nedium sections of code which are
needed at several places in a CSECT, but are not needed by any other,
or are not big enough to warrant the overhead in nmaking them externa
subrouti nes.

1. DEFINTION

It is often typical to place a group of internal subroutines near
the end of the code section of a program (just before the data areas).
It is a good idea to set up conventions for the use of interna
subroutines, before witing any. The following are often needed:
return register (either one standard one, or several different ones),
argunent registers, and work regi sters which can be used w thout saving.
In general, internal subroutines should not need to do nuch saving and
restoring of registers. They should be able to return via BR REG

2. | NVOCATI ON

Calling an internal subroutine is usually done by first filling any
argunent registers with needed val ues, then coding: BAL REG | NSUB
This type of |inkage can be fast and snall

C. EXTERNAL SUBROUTI NES

External subroutines are wused for mjor program segnments, and
can usual ly be assenbl ed separately fromthe rest of the program In
fact they can be witten in a different |anguage (i.e., FORTRAN and
ASSEMBLER conbi nati ons).

1. DEFINTION

An external subroutine may be witten in either of tw ways in
assenbly | anguage: as a CSECT, or as an ENTRY within a CSECT. In the
first case, the subroutine is entered at the CSECT statenents and return
at one or nore places depending on the desired code. In the second case
each entrypoint may be given control, and may share code or be
totally separate fromthe other entries. This formis often wused for
a group of related routines (like SIN and COS, which are both entries in
a CSECT), or for a routine requiring initialization or termnation
functions different fromthe normal calling function.

ASPRGTC1 - 03
A multiple-entry CSECT is typically set up as foll ows:

CSECTNAM CSECT

ENTRY ENTRY1, ENTRY2, ... ENTRYN
..... code for entry at CSECTNAM nmultiple-entry routines often
..... are entered only at the entry points, not at the CSECT.

ENTRY1 LI NKAGE CODE (SAVE, XSAVE, etc)
..... execut abl e code when called at ENTRY1.....
RETURN LI NKAGE CODE (RETURN, XRETURN, etc).

..... remai ni ng entrypoi nt nanes and code
..... i nternal subroutines needed by nore than one entry point.
..... data areas used by various of the entry point routines.

The following are inportant points to renenber when using nultiple
entry CSECTS:

THE DI FFERENT ENTRY PO NTS NEVER CALL EACH OTHER In essence, all
of the routines represented by the various entry points are at the sane
level in calling structure of an entire program

ONLY ONE SAVE AREA |'S ACTUALLY NEEDED. Since the routines inside
t he CSECT never call each other, the user can code the save area at the
end of the LAST section of code, so that all of the previous sections
can refer to it (note that if placed on the first, it would be difficult
for the later ones to access it wusing a LA instruction: addr ess
constants must be used instead). Wth XSAVE/ XRETURN, this neans that
the SA=* operand is coded only on the LAST XRETURN.

CARE MUST BE TAKEN W TH ADDRESSI BILITY. Al of the code sections
can of course address the data areas at the end of the CSECT. However ,
t he programmer nust be very careful with any internal subroutines he
writes, because the BASE REG STERS USED TO ASSEMBLE | NTERNAL SUBROUTI NES
MJUST HAVE THE CORRECT VALUES IN THEM AT EXECUTION TIME. | F THEY DON T,
AS WHEN THEY ARE CALLED FROM DI FFERENT SECTI ONS HAVI NG DI FFERENT USI NG
SETUPS, THEY W LL ASSEMBLE PROPERLY AND THEN BLOW UP AT EXECUTI ON TI ME.
I N PARTI CULAR, THE PROGRAMVER SHOULD PLACE | NSTRUCTI ONS TO BE EXECUTED
(EX operation) WTH THE SECTI ON OF CODE USI NG THEM AND NOT AT WTH THE
DATA AREAS, | F THEY PERFORM ANY SYMBOLI C ADDRESSI NG.

The probl ens descri bed above are typically handl ed either by naking
all entry point code segnents set up the same USING conditions, or by
setting a specific register to point to the beginning of the internal

subroutines, EXecuted instructions and data. |If register 13 points to
a save area just above these code sections, it can be wused this way,
since it will always have that sanme val ue. Getting the sane USING

conditions across an entire nulti-entry CSECT can be done:
ENTRYX XSAVE
L BASEREG, =A(CSECTNAM
USI NG CSECTNAM BASEREG

Note that the above can be acconplished with the XSAVE AD= operand.

ASPRGIC1 - 04
D. COMBI NED FORMS

In sone cases, it is convenient to conbine the ease of use of the
macro with the small size of internal or external subroutines. In this
case, the macro expansion sets up any needed argunents, saves registers,
etc, then generates code to invoke the subroutine. The subroutine then
provi des the major portion of the processing code, any needed | arge data
areas, etc.

Exanpl es of the conbined formare the follow ng nmacros: XDECI
XDECO, XPRNT, XSNAP, which call XXXXDECI, XXXXDECO, XXXXPRNT, and
XXXXSNAP, respectively.

Two different extrenes exist in witing conbined forns:
1. COWVBINED FORM - STANDARD LI NKAGE

In sone case, the calling sequence to invoke an external subroutine
essentially includes the CALL nacro or equivalent code, i.e., it uses
standard conventions. It typically assunes that registers 0, 1, 14, 15
may be nodified wthout causing trouble. This nethod is efficient and
general , but can cause trouble if used inproperly.

2. COMBI NED FORM - SPECI AL NONDESTRUCTI VE LI NKAGE

In some cases, it may be useful to define a macro instruction which
i nvokes a subroutine, but can be used ANYWHERE wi thout disturbing any
regi sters, changing the condition code, or requiring that certain of the
regi sters not be the ones being used as base registers (in particular,
register 15). This is the kind of |linkage used from XDECO to XXXXDECO
XPRNT to XXXXPRNT, etc. The follow ng shows the general formof such a
i nkage setup, giving first the kind of code to be generated by the
macro part, then the entry and exit code for the associated routine:
(NOTE: label is typically an &SYSNDX- gener at ed uni que | abel)

STM 14, 0, | abel save registers to be changed
eval uate arguments of nacro: any required Load Addresses
nust be done using LA 0, argunment since doing LA into

any other register could destroy a base register. |If
nore than one argunent is needed, the remmining ones can
.... be stored into control block after |abel. Exanples:
LA 0O, argunent

ST 0, abel +12 2nd argunent (one arg left in RO
.... after all argunents are evaluated and saved, and ONLY
THEN, it is now possible to nodify registers:

L 15,1 abel -4 V-type adcon for routine
CNOP 2, 4 make sure next inst not on F boundry
BALR 14, 15 call routine, also point 14 at the

argunent list follow ng
DC V(subroutine entry point) adcon to get there

| abel DS 3F 3 words for saving 14, 15, O
DS F space for argunents after first
DS OR DC space here for any renmining argunents
.... the subroutine will return control to next instruction:
LM 14,0, 4(14) reload registers. Note that this is

only safe way, since 15 m ght have
current base register.

ASPRGIC1 - 05

The foll owi ng shows the typical code used to enter and exit the
supporting nodul e used with the previ ous macro expansion. Note that the
entry point of the routine mght be either a CSECT nane, or an ENTRY
nane, i.e., one CSECT might contain several entrypoints, one for each
supporting subroutine needed.

entrypoint |abel definition (CSECT, or |abel DS OH)
USI NG entrypoint, 15 initial base register
.... save all registers which may be nodified by code. Save
into TH'S CSECT (unlike nornmal OGS/ 360 conventions).
DO NOT SAVE | NTO CALLER S SAVE AREA, since it may not
exist, especially if caller is a |owest-level routine.

initialization code: if this routine perforns I/Q or
calls any others, or requests any supervisor services, it
is a good idea to set up another base register than 15,
set up a save area, and put its address into register 13,
since any of the above actions may result in registers
bei ng saved at wherever 13 points.

processing code to performrequired actions

result return code: result may be left in register O,

in which case it should not be restored (neither here nor
in generated code before: i.e., change LM 14,0,4(14) to
LM 14, 15, 4(14) and STM | i kew se).

register restoration: restore all registers nodified in
this routine. Especially restore 14.

SPM 14 restore original condition code (note
that calling BALR 14,15 saved it)

B nunber (14) branch to di spl acenent nunber beyond
address in 14, enough to pass contro
to statenent: LM 14,0, 4(14)

It may be useful for the programmer to create a DSECT which
descri bes the control block generated by the nmacro expansion. Thi s
woul d permt the nodule to refer to argunments and return points using
synmbol s rather than absol ute displacenents. A typical DSECT might be:

dsect nam DSECT

DS V(routine) space for adcon
DS 3F space for regs 14, 15, O
argunent DS F argunent val ue placed here, if any
further arugment DS statements foll ow.
return LM 14,0, 4(14) return label (YES, THIS IS LEGAL: it does

NOT generate code, but it nakes the point
clear as to description of block).

If such a DSECT were used, the routine code would include:
USI NG dsect nam 14 to set up DSECT addressibility
B return return (instead of B nunber(14)

ASPRGTC1 - 06
1. ADVANTAGES AND DI SADVANTAGES
The following lists the good and bad points of each type:
A. MACRO | NSTRUCTI ONS
1. ADVANTAGES

Code can be tailored to each individual request, i.e., the code
generated by each macro call can vary from a great deal to nothing,
such as debug code elinnated by testing a global set variable.

SPEED: nmcro-generated code can be the fastest in execution, since
it can performits actions wthout having to set up |linkage to another
section of code.

VARI ABI LI TY: generated code can vary depending on the nature of
argunents passed to a macro (such as testing the TYPE of argunents to
generate different instructions).

2. DI SADVANTAGES
SLOW ASSEMBLY: nacro processing can be very sl ow.
LARGE CODE: if used inproperly, macros can generate |arge anounts

of code very easily. |If there are many copies of |arge blocks of code,
much space can be wasted

OBJECT DECKS: a nmacro cannot be assenbl ed and an object deck of it
gotten |like a subroutine can, i.e., if acall is nade to a macro, the
macro definition rmust be included in the programor in a library, while
a CSECT may be saved as an object deck (which is wusually nuch smaller
than the source deck).

B. | NTERNAL SUBROUTI NES
1. ADVANTAGES

SPEED: al though not as fast as in-line code froma nacro, the code

for an internal subroutine is usually faster than the linkage to an
external one. In particular, values can be passed in registers, and
usual ly registers will not have to be saved.

SPACE: internal subroutines require |ess space than generating the

sanme code several tinmes via macro expansions.
2. DI SADVANTAGES

SPACE: if the sane function is perforned by internal subroutines
in several CSECTS, code is thus duplicated and space wast ed.

COVWPLEXI TY: in sone cases, in order to make efficient wuse of a
nunber of internal subroutines, it is necessary to set up fairly
extensive rules on usage of registers in a CSECT, so that the |Iinkage

anmong them may be fast and snall

ASPRGTC1 - 07

C. EXTERNAL SUBROUTI NES

1. ADVANTAGCES

SPACE: if witten as an external subroutine, code can be wusefully
called from al nrost anywhere in a program Thus, there is only one copy
of it, and it generally will occupy the |east space.

SEPARATE COWPI LE/ ASSEMBLY: a routine witten as a CSECT can be
assenbl ed separately fromthe rest of the program an object deck can
be obtained, and translation tine generally saved. The routine may of
course be witten in a different | anguage than the rest of the program

2. DI SADVANTAGCES

LI NKAGE TIME: if standard OS/ 360 linkage is followed, a fair anount
of execution tine and object code space can be consuned by this |inkage.
More efficient nonstandard |inkage can be used instead, but this brings
with it the disadvantage of nonuniformty and Ilack of generality.

D. COMBI NED FORMS
1. ADVANTAGCES

In general, the conbined forns can possess all the advantages of
the separate forms especially since the macro portions can generate
di fferent code dependi ng on circunstances; thus the code for the sane
macro mght expand in-line in one case and generate an out-of-line cal
to a routine in another.

2. DI SADVANTAGES
COWPLEXI TY: it of course requires somewhat nore planning and code

to set up a good conbined formsystem since both a mnmacro and nodule
nust be created and neshed toget her properly.

ASPRGTC1 - 08
I11. C RCUMSTANCES FAVORI NG USE OF THE VARI QUS FORMS
A. MACRO | NSTRUCTI ONS
In general, a pure macro instruction is used as fol | ows:

VARYI NG CODE: the required code varies radically from call to

call. For exanple: XSAVE and XRETURN

SHORT CODE: if a mmcro can generate less in-line code to perform
the required function than is needed to generate a call to the routine,
then it should be witten as a macro. |n some cases, it takes as rmuch

work to set up the argunents as it does just to performthe operations.
For exanple: the code to obtain the mnimum or naximum of severa
argunents is probably nost efficiently witten as a in-line nmacro.

LI NKAGE CODE: code for linking to routines is alnost necessarily
witten as macros, since it makes little sense to call a routine in
order to performlinkage, unless the Ilinkage code required is very
conplex (in which case the program is probably going to be SLOW.

B. | NTERNAL SUBROUTI NES

Internal subroutines are usually used (as opposed to nmmcros which
generate code in-line) under the follow ng circunstances:

CODE WTH LI TTLE VARIANCE: if the code is not going to be rmuch
different fromnacro call to macro call, it nmay be better to let the
macro call generate a BAL to one copy of the code as an internal subr.

Internal subroutines are wusually wused (as opposed to EXTERNAL
subroutines) under these circunstances:

SHORT CODE, HEAVILY USED: if code mnust be wused many tines by
a CSECT, then the faster |inkage of internal subroutines wusually nakes
it worth witing it that way.

CODE NEEDED ONLY BY ONE CSECT: if not too long, it is fairly
logical to incorporate it as part of that CSECT. It wll probably be
much nmore efficient since it will have access to the internal variables
of the CSECT, and be able to conmunicate via register values easily,
rather than requiring |long operand lists.

C. EXTERNAL SUBROUTI NES

LONG CODE: if something is long and conpl ex enough, it my be a
good idea to make a separate nodule of it, test it, get an object deck,
then leave it along thereafter.

CCDE OF GENERAL USE, NEEDED MANY PLACES: in this case, it is

practically necessary to make code an external subroutine, so that it
can be accessed where needed.

D. COvVBI NED FORM5

These are useful anywhere the others are. The nondestructive form
is specially useful if it is to be wused by beginning programers.

DOCUMENT- 1

S/ 360 Assenbl er Language
Docurent ati on and Listing Techni ques

by John R Mashey and Andrea Rhodes

CGoal s of Good Documentation :

1. A d in designing good prograns

2. Aid in debuggi ng prograns

3. Make prograns cl ear and understandable once witten
4. Make structure of program well -organized

Good docunentation is a great aid to producing clear, well-witten,
and under st andabl e prograns, and can save mnmuch progranm ng and conputing
time. Good docunentation is especially necessary for pr ogr amm ng
projects requiring either a long period of time by one programrer,
any period of tinme by nore than one programmer, or nodifications to any
code by anyone other than the original author. Good docunentation
techni ques can be hel pful in the foll owi ng ways:

PROGRAM DESI GN

Many begi nning progranmers seem to wite prograns in haphazard
and unpl anned ways, and often add conments only after the program is
running. This nethod not only leads to poorly-structured prograns,
but usually results in wasted time, and is not feasible except for
relatively trivial problens.

A much better method is to wite npst of the overall coments with
a flowchart first, specifying the structure and conventions of the
program and then witing the programto fit. This usually leads to
cl eaner-coded, well-structured prograns which are produced in I|ess
time than those witten by nost novice programrers.

PROGRAM DEBUGGE NG

Pr ogram debuggi ng is aided by docunenting a program before and
during its creation, rather than afterward. Many mistakes can be
avoi ded by havi ng progranmm ng conventions well-specified before witing
the code. The very act of adding a conment to a statenent often helps
identify errors in the statenent, because it forces the programmer to
t hi nk about the function of the statenent. Finally, good docunentation
is useful if help is required fromsomeone else, since it aids one in
under st andi ng the program quickly. (It also makes other people much
nore willing to | ook at a program)

PROGRAM MODI FI CATI ONS

Cl ear and conpl ete docunentation is absolutely invaluable when a
program rmust be nodified, especially if anyone but the origina
progranmmer is making the changes. It may be noted that useful prograns
tend to be nodified often.

DOCUMENT- 2

ASSEMBLY LANGUAGE DOCUMENTATI ON

The follow ng advantages apply to any conput er | anguage.
However, they are npbst inportant for assenbly |[|anguage, for the
fol |l owi ng reasons:

1. Assenmbly |anguage programs typically require many nor e
statenments than do high-level |anguage programs for the same task.

2. Assenbly | anguage prograns are not wusually self docunenting.
Wt hout good docunentation, not even the programer who wote the code
will be able to understand it several nonths |ater

3. Assenbly | anguage prograns are often very sensitive to mnor
changes, nmuch nmore so than higher-1evel |anguages.

The remai nder of this paper describes a well-docunmented assenbly
program and notes the various techni ques which can be used to achieve
this result. Briefly, a well-documented program has the follow ng
characteristics:

1. The docunentation structure mrrors the program structure, and

it leads fromthe general to the specific. Thus, the program begins
with a block of coments which describes the overall purpose of the
program and gives sone indication of the general structure. Each

maj or section has a block of coments describing it, as does each
of the section's subsets.
2. At least 95% of nmachine-instruction statenents have coments.
3. The programis easy to read, and blocked off into 1ogica
sections, so that anyone may look at it and wunderstand it easily.
4. Good prograns typically have 15-25% of the total statenents
as comment cards, in addition to the coments on the individua
stat enents.

S/ 360 ASSEMBLER DOCUMENTATI ON HI NTS--DO S and DON TS

DON' T

punch statements in random col ums. This nakes a program very
unreadable. Use a drumcard, and if you do not know how, ask your
assistant. The following is a defacto standard for S/ 360 Assenbler
statenents:

Col. 1 : LABELS

Col . 10: OPERATI ON CODES

Col . 16: OPERAND FI ELD

Col. 36: COWMENTS (col. 40 is preferred by sone peopl e)

Col . 72: CONTI NUATI ON COLUWN

Col. 73-80: SEQUENCE NUMBERS (very wuseful--ask your assistant
how to sequence a deck if you are unsure)

This layout can be obtained by the use of the following drum card:
Cols. 1,10,16,36,73: punch '1" (gives tab stops at these cols.)
Col. 72: punch '-'" (skips col. 72 automatically, wunless AUTO
DUP/ SKIP is off)
Al other columms: punch 'A
If for sone reason these colums are not wanted, a standard set should
be deci ded upon, and then held to conpletely.

DOCUMENT- 3

DON' T

Pl ace a comrent card before every statenent. This bad habit makes
prograns absol utely unreadable. Enbedded coments should be wused to
bl ock programs into logical sections, not to explain the function
of individual statenents.

DON' T

bury code with too many interspersed comments. If so nmany
conments are necessary, place them in blocks ahead of the program
segnents and not in the mddle.

DO

put a comment on nearly every nmachine instruction. Conmments are
al so hel pful for explanations of variables and flags. Each conment
shoul d describe the function of its statement, and generally, it al one.
If a coment is needed to describe the function of a block of
hal f - a-dozen cards, it probably should be placed on a coment card
precedi ng the block of code. These conmments should be punched when
the programis originally punched. A good technique is to add these

conments while keypunching the program Oten, this results in
cat chi ng many m stakes at that point. It is noted that few novice
programrers do this, while npbst experts do. It is also noted that

many progranmmers who do this wish they had started doing so earlier
since they realize how nuch tine they had wasted by not commenting
the original deck.

DO
use TI TLE, SPACE, and EJECT commands. The command
TI TLE ' A HEADI NG MESSAGE'
skips the listing to a new page, and prints the heading nessage at the
top of every page until another TITLE command is issued. This not only
clearly labels your listing, but it saves time in looking through a
listing which is nmore than a few pages |ong. The command

EJECT
skips the listing to a new page, and is useful in blocking off mgjor
parts of a program The command

SPACE n
inserts n blank lines into the listing at that point. This is wusefu

for blocking off smaller sections of a program particularly snmall
| oops, register equates, etc.

Not only do listing control instructions aid to the readability
of a program but they also save the progranmer tine in debugging.

DON' T
nerely restate an instruction when you place a coment on it.
O the followi ng two exanples, which is nore expl anatory?

A 1, VAR ADD VAR TO REG STER 1
A 1, VAR R1=SUMVATI ON OF ODD PRI ME NUMBERS
DON' T
put several single comments between statenents in an unreadable
manner. |t is often useful to indent a single coment to colunmm 16.

This keeps it frominterfering with the reading of Iabels and opcodes,
and thus distinguishes it fromthe machi ne instructions.

DOCUMENT- 4

DO

use conment card blocks which [list wuseful information. For
exanple, a list of register allocation and usage is extremely
hel pful, not only in debugging, but also in revising a program
Such a list should appear as part of the preface to the appropriate
section of code. Another exanple is a list of calling conventions for
subroutines. For extensive progranms, lists of the following mght be
kept at the beginning of each subroutine: MACROS USED, SUBROUTI NES
CALLED BY THIS SUBROUTI NE, SUBROUTINES WHI CH CALL THI'S SUBROUTI NE
VARI ABLES USED BY THI S SUBROUTI NE, VARI ABLES CHANGED BY THI S
SUBROUTI NE, etc.

DO

bl ock off large sections of coment cards. Large blocks of
conments can begin in whatever colum is appropriate, but in general,
shoul d use nost of the card, since they will otherwi se add a great dea
of length to a program For the sake of appearance, coments should
be blocked off by blank lines (SPACE n) or lines of continuous
characters. The nbst comon characters used for this purpose are
asterisks (in colums 1-71, or in just the odd colums). An esthetic

appear ance can be obtained by placing an asterisk in colum 71 of each
conment card in a major block, with Iines of asterisks before and after
the entire block of documentation.

DO

flag instructions which will be nodified during execution in order
to make progranm ng | ogic obvious. This may be acconplished by using
"*.*' or '$', the latter EQU ed to zero, for any nodified field. For
exampl e,

$ EQU O $ => INST. MODIFIED I N EX
.......... other statenents

STC 2, WC+1 SET BUFFER LEN. FOR LATER
* USE.

.......... other statenents

M/C MWC OUTPUT($), 0(5) MOVE VAR ABLE # BYTES [|NTO
* OUTPUT BUFFER.

.......... other statenents

The above met hods have been derived both from the exam nation of
many professionally-witten prograns and from the aut hor s' own
experiences. Thus, they are not arbitrary rules but techniques which
have been wi dely used and proven to be effective aids in progranmm ng
assenbl er | anguage.

LI NKAGE- 1

STANDARD LI NKAGE CONVENTI ONS
Charl es Pfl eeger

Under OS/ 360, certain conventions have been established regarding

the use of registers. These conventions will have been followed when
you, the problem programmer, receive control from the system they
shoul d be followed for any routines which you <call, or for communi-
cating with the system (e.g. system macro calls, SVCs, returning
control, etc.). Foll owing these conventions wll make your code
easi er for someone else to follow Certain debugging aids are also
avail abl e for those who adhere to standard conventi ons. In general

unl ess there is a strong reason to deviate, these conventions should
be enpl oyed.

REA STER 14 is called the return register and contains the address
to which this routine is to return upon exit.

REA STER 15 is called the entry point register, and contains the
address through which this routine was entered. Note that tenpor-
ary addressability may be established by

USI NG entrypoi nt name, 15
If this routine calls no other routines, register 15 may be used as
a permanent base register. |If this routine calls any other routines,
however, register 15 will be changed, and should not be used as a
per manent base register. In this latter case, the sequence

LR BASEREG, 15

USI NG ent rypoi nt name, BASEREG

(where BASEREG is any of registers 2-12) nay be used to establish
per manent addressability.

On return, register 15 may be used to return a code to indicate
normal or error return. One frequently-used technique is to set RI15
zero on a normal return and set it non-zero if some error condition
occurred prior to return.

REA STER 0 is used to return the single result from some process

(as in a Fortran function subprogran. Note: although vyou wll
probably not use this convention nuch, it is heavily used by the
operating system Register 0 cannot be guaranteed to be intact
after executing some call to the system as a system nacro, or
an SVC.

REG STER 1 is the pointer to an argunent |ist. It contains the
address of the first of one or nore full word entries (on con-

secutive f.w. boundaries). These entries are the addresses of arg-
uments to be used by the calling routine.

If there may be an indefinite nunber of argunents, (as wth a
routi ne which would accept one, two, or any nunber of argunents--
c.f. Fortran MAXO0), the first bit of the last address is set to
al (This bit wll not interfere with ordinary S/ 360 addresses,
since an address can be fully specified in 3 bytes; byte 1 is ig-
nored on an address constant.)

L1 NKAGE- 2

The following exanple illustrates how to use the address |ist
passed through register 1

LA 1, ARGIST get argunent |ist address
L 15, =V(CALLRTN) get entry address
BALR 14, 15 call routine

ARGLIST DC A(ARGL)
DC A(AR®)

DC X 80',AL3(ARGY) Note the length factor
does not provi de auto-
matic alignment.

CALLRTN CSECT

L 2,001 get addr. of next arg.

LTR 1,1 last arg. in list?

BM RETURN if yes, return

LA 1,4(1) el se get addr. of next arg.

VWhen a programmer receives control from the system information
fromthe PARM field of his EXEC card is passed via register 1.
Register 1 points to a fullword of storage. Bit 0 of this fullword
isset to 1 (to indicate the last--only--argunment of the list).
This fullword contains the address of a hal fword. The halfword is a

count of the nunmber of <characters in the parm field nessage, and
these characters follow inmediately after the halfword count field.
The contents of the halfword may be picked up to use as a length
count in an execute instruction, and the address of the halfword may
be used as a base to nove the information characters of the PARM
field.

REA STER 13 is called the save area register. It contains the add-
ress of an 18 fullword area (on a f.w boundary) wthin the <calling
routine. The routine called will use this area to save the contents

of registers, to be able to return the registers intact to the
calling program This save area has a set format:

word 1 Used by PL/1 and FORTRAN

word 2 address of the save area used by the calling
program

word 3 address of the save area set up by the called
program

Wor d address to which to return (reg. 14).

4
word 5 address of entry point (reg. 15).
Wword 6 contents of register O.

Wword 18 contents of register 12.

Save areas are chained in a doubly-linked 1|ist. At any |ow
| evel routine, by tracing back through a chain of save area I|inks,
one can eventually return to the system at the original point of
call.

L1 NKAGE- 3

VWhen your routine is entered, first you should save registers
and then establish and |ink your own save area.

STM 14, 12,12(13) save regs. 14, 15, and 0-12 in
calling program s save area.

LA 5, MYSAVE get addr. of my save area
ST 5,8(13) link calling pgm s.a. to mne
ST 13, 4(5) link ny s.a. to calling pgns
LR 13,5 transfer pointer to s.a

On return:
L 13, 4(13) retrieve addr. of calling pgms

save area

LM 14,12,12(13) restore registers as they were
BR 14

MYSAVE DC 18F 0O

A calling programis known as a "higher routine", and the routine
called is the "lower routine". Register 13 is always to point to an
area whose contents nay be destroyed

An exception to the requirenent that a routine nust always
establish a save area is that the | owest-level routine (the one which
calls no others) need not set up a save area. The reason for this is
the save area is for the use of any called routines, but that the
| owest -1 evel routine will have no called routines.

It is inmportant to know the conventions on save areas, but the
use of XSAVE AND XRETURN (consult appropriate docunentation) can
reduce the problens in coding and |inking save areas.

THE NAME CONVENTION is a neans of having the EBCDIC form of the name
of a routine appear at certain key places on dunps. To wuse this
convention, the first four bytes of a routine nust be a branch, on
15 as a base register, which passes over a series of bytes.

These bytes contain the EBCDIC form of the nane of a routine, and
also a length count for this name area. This exanple shows how to
code a nane field.

nane CSECT
B m+1+4(, 15)
DC X ni

DC CLm nane'
next instruction

The value of mmust be odd, in order to have the next instruction
properly aligned. An alternate approach uses the convention on
regi ster 15:
name CSECT

USI NG nane, 15

B NEXTI NST

DC X m

DC CLmM nane’

NEXTI NST next instruction

LI NKAGE- 4
Not es:

QS follows these conventions strongly. In particular, the
system often destroys the contents of registers 0, 1, 14, and 15 when
it returns control froma system nmacro, an SVC, or another system
function. One must SAVE THE CONTENTS of these registers BEFORE exec-
uting one of these functions; hard-to-locate errors wll frequently
occur after failure to do so.

It is a good idea to nmark a save area upon exit. This is wusually
done be moving X FF' into the first byte of the fourth word of the
save area (the place register 14 was stored). Although this technique
does not seriously affect the contents of the save area for reading
in a dunp, this technique quickly shows what save areas are active and
whi ch are not active when reading a dunp.

Regi ster 13 must be kept as the save area pointer; however, by
careful programmng, it can also double as a base register. Consul t
the appropriate section from XSAVE and XRETURN docunentation for the
codi ng sequence using these nacros. You nay set up your own save area
for this purpose by setting it high in a program and following it by
a USING on register 13, referencing the name of the save area.

For reserving the 18 fullwords of storage for a save area, use DC
instead of DS. A constant of FF0', or FF-1' wll quickly show in a
dunp if the save area was ever used.

SAVE and RETURN are two system macros which will elimnate nuch of the
coding for saving and returning conventions. SAVE generates the code

necessary to save a specified series of registers. The registers are
specified as they would be for a STM instruction. In addition, the
operand T will cause registers 14 and 15 to be stored, regardless of
what other registers may al so be saved from the pair specified. The
foll owi ng exanple will cause registers 5, 6, ... 10 and 14 and 15 to
be saved.

SAVE (5,10), T
The RETURN macro will generate code to restore registers, insert a ret-

urn code in register 15, flag the save area (X FF in wd. 4), and
branch back via register 14. The registers to be restored are coded
as with SAVE. If 15 already has a return code in it and should not
be restored, it is coded as RC=(15); else RC=n nmay be coded, where n
is sone value to insert into register 15. The operand T causes the
flag X FF' to be inserted in the save area. The following code wll
restore registers 5, 6, ... 10 to be reloaded, the save area to be

flagged, and 15 to be | oaded with a val ue 16.

RETURN (5, 10), T, RC=16
NOTE Both of these nmamcros expect that register 13 wll already be
| oaded with the address of the appropriate save area.

L1 NKAGE- 5

The use of the PSU nacros XSAVE and XRETURN can provide added
flexibility in saving and restoring registers. Both can generate
code to print a trace nessage showing entry and exit from a nodule;
XSAVE can be used to establish and |oad a base register or to print a
snap of the registers saved; XRETURN can create a save area. NOTE
that as with RETURN, XRETURN assumes that register 13 still points to
t he rel evant save area

For nmost uses, the code XSAVE al one can be wused to save regis-
ters. For a routine with only one return point, XRETURN SA=* will suf-
fice; if aroutine has nore than one return point, however, XRETURN
al one should be coded at all return points except one, and at that one
XRETURN SA=* shoul d be coded. The reason for this is that SA=* wll
cause a save area to be created; only one should be created per nodule.
For further details on the paraneters involved in these two nacros, see
t he appropriate PSU docunent ati on.

The foll owi ng exanpl e causes register 12 to be established as a
base register, causes all registers to be saved on entry, cuases no
trace nessages to be printed on entry or on exit, and causes R15 to be
| oaded with the return code val ue 8.

MAI N CSECT
XSAVE BR=12, TRENO (Note--default is for al
regi sters to be saved)
XRETURN SA=*, TR=NO, RC=8

CVMPSC 411 -

PRI NT NOGEN
EQUREGS

MAI N CSECT
XSAVE .
CALL NEXT
XRETURN ~ SA=*
LTORG

NEXT CSECT
XSAVE .
CALL LAST
XRETURN ~ SA=*
LTORG

LAST CSECT
XSAVE .
CALL TRACE
XRETURN ~ SA=*
LTORG

THROUGH THE SAVE AREAS

CSECTS OF ACTIVE S. A.'S.

L T I R T T

DSECT Exampl e

ESTABLI SH STANDARD LI NKAGE
CALL LOVNER ROUTI NE
ESTABLI SH SAVE AREA

ESTABLI SH STANDARD LI NKAGE
CALL LOVWEST ROUTI NE
ESTABLI SH SAVE AREA

ESTABLI SH STANDARD LI NKAGE
CALL TRACE RTN TO PRNT S. A
GENERATE SAVE AREA

THE ABOVE ROUTI NES DO NOTHI NG BUT ESTABLI SH LI NKS TO TRACE

ROUTI NE TRACE PROVI DES A PRI NTED TRACE OF THE NAMES OF THE
| T USES DSECTS SAVEAREA AND NAMECONV
TO FORVAT THE SAVEAREA AND FI RST FEW BYTES OF THE PROGRAM

TRACE CSECT
XSAVE SA=TRACESA ESTABLI SH LI NKS
USI NG SAVEAREA, R13
USI NG NAMECONV, R15
XPRNT =CL25' OBACK TRACE OF SAVE AREAS--', 25
L R13, 4(R13) CONNECT TO FI RST ACTI VE S. A
LOCP LTR R13,R13 CHECK | F END OF CHAI N
BZ DONE IF YES, EXIT
L R15, REGL5SAV GET PTR. TO BEG N. OF CSECT
CLC BRANCH, =X 47F0' CHECK TO SEE | F VALI D BRANCH
BNE ERRCR | F NOT, ABCRT
IC R7, LENGTH Pl CK UP LENGTH OF NAME
BCTR R7, RO SET UP FOR EXECUTE
EX R7, MOVE MOVE CHARS. OF NAME TO QUTPUT
XPRNT QOUT, 40 PRI NT NAME OF ROUTI NE
WwC QUT+1(39), OUT BLANK OUT OUTPUT AREA
LM R14, R11, REGL4SAV RELOAD REGS. (FOR RETURN)
L R13, BACKLI NK FOLLOW LAST LI NK
B LOCP
DONE XPRNT =CL25' OBACK TRACE COWPLETED , 25

LA R13, TRACESA
XRETURN SA=TRACESA

ERRCOR XPRNT =CL25" OERROR I N TRACE- BACK' , 25

ABEND 999
MOVE wC
aJt DC

LTORG

cL40" '

OUT+1(*-*), NAME

ABORT

I NSTR. FOR EXECUTE

DSECT - 2

*

* THE FOLLOW NG DSECT FORVATS THE SAVE AREA

*

SAVEAREA DSECT

UNUSED DS F

BACKLI NK DS F PTER TO H GHER S. A.

FORELI NK DS F PTER TO LOAER S. A

REGL4SAV DS F SAVE AREA FOR REG 14
REGL5SAV DS F START OF S. A FOR REG 15-12
*

* THE FOLLOW NG DSECT FORVATS THE BEGA NNI NG OF A CSECT. | F THE
* NAME CONVENTION IS FOLLOWED, THE FI RST | NSTR MUST BE A BR. ON
* R15 AS A BASE REG FOLLOWED BY A LENGIH AND A NAME.

*

NAMECONV DSECT

BRANCH DS XL2, XL2 SPACE FOR BSC | NSTR(4 byt es)
LENGTH DS C
NAVE DS C SPACE FOR NAME (MARK BEG NNI NG
* ADDR ONLY)

END MAIN

/*

Following is the output fromthis exanple--

*** MAIN ENTERED ***
*** NEXT ENTERED ***
*** LAST ENTERED ***
*** TRACE ENTERED ***
BACK TRACE OF SAVE AREAS
TRACE

LAST

NEXT

MAI' N

| EWLCTRL

BACK TRACE COVPLETED
*** TRACE EXI TED ***
*** LAST EXI TED ***
*** NEXT EXI TED ***
*** MAIN EXI TED ***

Foll owing is the actua

DSECT - 3

assenbler listing of the TRACE csect.

Notice those instructions which reference | abels fromthe SAVEAREA and

NAMECONV dsects.
and di spl acenent

LoC
000300

000000
000000

000386
00038A
00038C
000390
000394
00039A
00039E
0003A2
0003A4

0003CE
0003D4
0003D8
0003DC

000406

0004D2
0004D8
000500

000000
000000
000004
000008
0ooo00C
000010

000000
000000
000004
000005

000000

OBJECT COCDE ADDR1 ADDR2 STMT

58DD 0004 00004
12DD

4780 CO7E 003EO0
58F0 D010 00010
D503 FOOO C1C6 00000 00528
4770 Cl13A 0049C
4370 FO04 00004
0670

4470 C170 004D2
D226 C177 Cl176 004D9 004D8
98EB DOOC 0000C
58D0 D004 00004
47F0 C028 0038A
41D0 COF2 00454
D200 C177 FOO5 004D9 00005
4040404040404040

47F0 FOOO 00000

192
193
220
221
222
232
233
234
235
236
237
238
239
240
241
251
252
253
254
255
265
266
285
295
303
304
305

310
311
312
313
314
315
316
317

318
319
320
321
322
323

SOURCE
TRACE

LOOP

DONE

ERRCR

MOVE

*

SAVEAREA
UNUSED
BACKLI NK
FORELI NK
REG14SAV
REGL5SAV
*

NAMECONV
BRANCH
LENGTH
NAVE

Look at the object code and see what the base register
by which they were assenbled is.

STATEMENT

CSECT

XSAVE SA=TRACESA

USI NG SAVEAREA, R13

USI NG NAMECONV, R15
XPRNT =CL15" BACK TRACE

L R13, 4(R13)
LTR R13, R13

BZ DONE

L RL5, REGL5SAV

CLC BRANCH(2), =X' 47F0
BNE ERROR

IC R7, LENGTH

BCTR R7,0

EX R7, MOVE

XPRNT OUT, 40

M/C OUT+1(39), OUT

LM Rl14, R11, REGL4SAV
L R13, BACKLI NK

B LOOP

XPRNT =CL20' TRACE COWPL
LA RIL3, TRACESA
XRETURN SA=TRACESA
XPRNT =CL20' ERROR | N TR
ABEND 999, DUVP

M/C OUT+1(*-*), NAVE
DC CL40'

LTORG

DSECT
DS
DS
DS
DS
DS

T

DSECT
B 0(, 15)
DS C
DS C

END MAIN

csi102mL - 01
COVPUTER SCI ENCE 102 - RUN ASSI GNVENT

1. Punch up the foll owi ng program and run:

/1 YOUR JOB CARD

/| EXEC ASACG

/1 SYSIN DD *

MAI' N CSECT

* TH' S PROGRAM | LLUSTRATES XDUMP AND PROGRAM | NTERUPTI ON
BALR 12,0 THESE TWO STMIS ARE FOR
USI NG *, 12 COVMMON LI NKAGE CONVENTI ONS
LA 3, CARD PTR TO CARD | MAGE READ I N
XREAD CARD, 80 READ DATA CARD
XPRNT CARD, 80 ECHO PRI NT
XDECI 4, 0(3) CONVERT DECI MAL TO | NTERNAL HEX
XDECI 5, 0(1) CONVERT NEXT # ON CARD

* THE NEXT STMI' PRI NTS CONTENTS OF USERS REG STERS.
* NOTE REG 4,5

XDUMP

B 4000 ABEND- BRANCH OUT OF PROGRAM
CARD DS 80C

END

/*

/ / DATA. | NPUT DD *
100 -1024

/*

2. This next programis a batch run of 5 jobs, each term nating
abnormal ly. The programis stored on RJE file. Punch up the

fol | woi ng cards EXACTLY to run the program

/1 YOUR JOB CARD

/| EXEC ASACG PARM=BATCH

/1 SYSIN DD *

/*1 NCLUDE RABO1. BATCH

/ *

3. To nmerely get a listing of the prog in 2., use the follow ng cards:
/1 YOUR JOB CARD

/ *1 NCLUDE RABO1. PRI NT

/ *1 NCLUDE RABO1. BATCH

/-k

cs102ML - 02
A GUIDE TO S/ 360 MNEMONI C OPERATI ON CODES
. I NTRODUCTI ON

The begi nning programrer facing the variety of operations avail abl e
on a nodern | arge conputer is often overwhel ned by the |arge number of
operations and conplexity thereof. 1In sone cases, a few hints can be
hel pful in | earning and renenbering the nanes, purposes, and usage of
the various operations. |In particular, certain properties of S/ 360
nmenenoni cs can help the | earner a great deal. Sone of them are:

A. REGULAR SCHEME FOR NAM NG OPCODES

In general, a fairly coherent and regul ar nethod has been used in
nam ng operations. In sonme cases, it is possible to deternmine the bit
pattern and operation of a menonic just fromlooking at it. Related
operations usually have rel ated menoni cs.

B. COWONLY USED MNEMONI CS

The designers apparently went to sone effort to nake the nost often
used mmenoni cs the shortest and easiest to renmenber. Mst of these have
1 or 2 letter mMmenonics.

1. NAM NG OF MNEMONI C OPCODES
A. VERB (MODI FI ER) (DATA TYPE) (MACH NE FORMAT)

The mmenonics generally follow the format given above, with the
VERB al ways present, while the others may be onmtted. The genera
nmeani ngs of the fields are given bel ow.

1. VERB: specifies a general type of action perfornmed, such as
addi ti on, subtraction, conparison, data novenent.

2. MODIFIER specifies a nodification of the general action given
by the verb, such as logical addition (rather than al gebraic), noving
nmultiple registers rather than single ones, and perform ng different
actions while | oading one register into another.

3. DATA TYPE: specifies the type of data being operated on, and is
usual ly the same letter as that used to define a constant of the given
type, such as H (halfword), P (packed decinal), etc.

4. MACHI NE FORMAT: gives the type of machine instruction being
used. This is nost typically done by adding Ror | to an RX mmenonic to
obtain a simliar RR or Sl instruction.

In general, the RX instructions, which are the heavi est used, have
t he shortest menonics, and nost of the other instructions can be built
fromthem by adding nore letters.

Csi102ML - 03
B. EXAMPLES OF COVMMONLY USED MNEMONI C ELEMENTS
The foll owi ng sections explain the cormbn mMmenoni c el enents.
1. VERBS

VERB MEANI NG, COMVENTS

Add two nunbers (which may be binary, decimal, or floating)
Branch to another instruction (like GOTO

Conpare two fields (nunbers or character strings)

ConVert a number from one base to anot her

Di vi de one nunber by anot her

Load a quantity into a register fromanother or from storage
Mul tiply one nunber by anot her

MoVe information fromone area in storage to another.

aNd information together (I ogical AND)

O information together (logical OR

Subtract one nunber from another

STore a register (or part of one) into storage

eXclusive or information together (logical exclusive OR

>:g}0)c>z s;gl—(jng)UJ>

For exanple, note that a given VERB may begin nmany instructions,
whi ch i medi ately shows they are related to each other. For exanple,
the followi ng are all conparison operations: C, CD, CE, CH CL, CP
CR, CDR, CER, CLC, CLR

2. MODI FI ERS
The following lists verbs and their conmon nodifiers.

VERBS MODI FI ERS MEANI NG, EXAMPLES

ACS L Logi cal addition, conparison, or subtract is used
rather than algebraic. EX: AL, CL, CLC, SLR

B AL And Link - form of branch for doing |linkage to
subroutine so it can return. EX: BAL, BALR
C Condition - branch or not depending on a previously
set condtion (IF(--) GOTO --). EX BC, BCR
CT Count - branch formused to decrenent a register and
branch i f value not zero (DO LOOP). EX: BCT, BCTR
X i ndeX - branch formfor increnmenting and testing

i ndex quantities. (DO LOOP). EX BXH, BXLE

L C Conpl erent - used to set a register to conpl enent
itself or other (Y = -ABS(X)). EX: LNR, LNDR
P Positive - set register to positive value fromself
or other (Y = ABS(X)). EX LPR LPER
T Test - set register to value fromself or other,
L, ST M Multiple - several registers are | oaded or stored

in one operation. EX: LM STM

CS102ML - 04

3. DATA TYPES

As noted previously, a data type character is usually the sane as
that used in a DC or DS statenment to obtain a given type of data.
If a type character is onmtted, it usually inplies that the instruction
operates on 32-bit, fullword, binary quantities (such as A, C, S, etc).

DATA TYPE MEANI NG, COMVENTS

C Character - usually a contiguous string of bytes in nenory,
treated as printable characters or a string of bits.
(FORTRAN LOG CAL*1). EX: MC, CLC, CC, IC, STC
USUALLY | MPLI ES SS | NSTRUCTI ON FORMAT (all except IC, STC).

D Doubl e precision floating point (Doublewrd, 64 bit)
(FORTRAN REAL*8). EX: AD, SD, LTDR, LD.
| MPLI ES RR OR RX | NSTRUCTI ON FORVAT.

E Exponent - single precision floating point (fullword, 32 bit,
FORTRAN REAL*4). EX: AE, LER, M
| MPLI ES RR OR RX | NSTRUCTI ON FORIVAT.

H Hal fword - 16 bit binary nunber (FORTRAN | NTEGER*2)
EX: AH, MH, STH, CH
| MPLI ES RX FORMNAT.

P Packed decimal format (2 decinal digits per byte).
EX: AP, SP, CP.
| MPLI ES SS | NSTRUCTI ON FORMAT OF TWO- LENGTH TYPE.

4. MACHI NE FORMATS

Several characters are used to denote the specific type of
operand format being used (note that the data types can also inply
specific formats. If they inmply one of several, the |ast character
di stingui shes anong thenj.

FORVAT MEANI NG, EXAMPLES

I | mredi ate - I MPLIES SI FORMAT. EX: W, CLI, O.

R Regi ster - | MPLIES RR FORVAT. EX: AR, BCR DDR

CS102ML - 05
[11. EXAVPLE OF FAM LY OF RELATED OPCODES

This section lists all the nenbers of the 'Conpare' family of
nmenenoni cs, showi ng their rel ationships adn the el enents present in each
nane. The letters V MD F stand for Verb, Mdifier, Data type, and
machi ne Format.

OP-CODE VMDF TYPE COMENTS

C C RX fullword al gebraic conpare, the basic one.

CL CL RX fullword | ogical comparison (logical nodifier)

CcD C D RX conpare double precision floating nunbers

CE C E RX conpare single precision floating nunbers

CH C H RX conpare a register algebraicly with hal fword
fromstorage (with sign extension)

cP cC P SS conpare two packed deci mal numnbers

CR C R RR conmpare two fullword val ues al gebriacly, gotten
fromC by adding R

CLC cLC SS conpare logically character strings

CLI CL I Sl conpare |logical immediate (a byte in nenory
with the one inside the instruction)

CDR CD R RR conpare double precision (in registers)

CER CE R RR conpare single precision (in registers)

The Sytem 370 conputers have sone additional opocdes:
CLM CL M RS compare |ogical masked (fromregister to nen
CLCL cLCL RR conpare |ogical character strings long (up to

16 mllion bytes in one conpare)

Consi der the problemof witing a FORTRAN program whi ch woul d
simul ate the operation of the instructions above (i.e., nmaintain
vari abl es representing PSW Menory, GP Registers, etc, and go through
the Fetch-Instruction, Decode, Fetch-Operands, Execute cycle). The
arrangenent of the opcodes would nake it easy to share code, i.e., it
woul d not be necessary to code each instruction separately. As an
exanpl e, consider the followi ng related instructions:

MNEMONI C HEX CODE Bl NARY CODE SAMPLE | NSTRUCTI ON/ ASSEMVBLED

CR 19 0001 1001 CR 0,1 1901
CH 49 1000 1001 CH 0,2(3,4) 49034002
C 59 1001 1001 C 0, 4(5,6) 59056004

Exam ne the bit patterns above. The first teo bits give the
Machi ne Format (00-RR, 10-RX), the third and fourth give a Data Type
(01- Ful Il word, 00-Hal fword in this case). The fifth-eighth bits give the
Verb (1001 - al gebraic Conpare). In essence, there is only 1 Conpare,
which is branched to after the operands are obtained.

CS102TPA - 01

COVPUTER SCI ENCE 102 - TOPI CS COVERED, HANDQOUTS
W NTER TERM 1972 - MASHEY

The handouts given are described in file CS102HN

DATE TOPI CS, HANDOUTS, READI NG ASSI GNVENTS
- R A B & B T
1 01/ 07 introduction to course. prerequistites (101, 401, equivV)

listed text materials for course
1) STRUBLE: ASSEMBLER LANGUAGE PROGRAMM NG | BM SYSTEM 360

2) | BM SYSTEM 360 PRI NCl PLES OF OPERATI ON (POP)
3) | BM S/ 360 OS ASSEMBLER LANGUAGE
4) PSU ASSI ST | NTRODUCTORY ASSEMBLER USER S MANUAL
(25 cents, at 426 McAllister)
5) | BM S/ 360 REFERENCE CARD (GREEN CARD- BRI NG TO CLASS)

introduction to information representation in conputer.
nmenory, addressing, simliarity to FORTRAN vector witl index
beginning at 0 rather than 1. elenments of nmenory in S/ 360:
byte, hal fword, fullword, doubl eword.

positional notation. nunber systens (binary, octal, decinal,
hexadeci mal). conversion between them uses.

representations of binary nunbers: Two's conpl enent, One's
conpl ement, Sign-nmagni tude. advantages and di sadvant ages:

(TC - 1 zero, but harder for people; OC - 2 zeroes, but easier
to handle; SM - easiest to handle, but slower circuitry)

READI NG STRUBLE CHAPTER 1. Look at ASSI ST PART I11.

2 01/10 nore on information representation; introduction to
machi ne structure.

neani ngs of bit patterns: 1,2,4-byte binary nunbers; charcters
packed deci mal (good for people, but wastes space); floating
point (sign, characterisitc, and fraction).

structure of a very sinple nmachine: menory of 16-bit words;

1 register; 1 programcoiunter. a few instructions, each with
opcode and address. expl anati on of basic instruction cycle:
1) Fetch instruction from where program counter points.

2) Increment program counter.

3) Decode instruction into its parts.

4) Execute instruction.

5) Loop back to 1.

S/ 360 machi ne structure: nenory (note abbrev. K), GP and
floating point registers, PSW refer to GREEN CARD.

Begi n instruction types:

1) RR (nanes with -R exanpl es)

2) RX (give first explanation of base-di splacenent)
3) RS

READI NGS: STRUBLE - CHAPTER 2; POP - pp. 7-15.
HANDOUTS: CS102ML - page 01 (run some ASSI ST progranms for dunps)

CS102TPA - 02
3 01/12 finish operands formats and introduce assenbly | anguage.

4) Sl instructions (exanples: WI, CLI)

5) SS instructions (exanples: MWC, CLC

machi ne | anguage - easy for nachine to execute, hard to wite
assenbly | anguage converted by assenbler to machi ne code.

format of assenbly | anguage: | abel opcode operand coments
machi ne instructions - actual operations to be executed
assenbl er instructions (pseudo ops) - give information to
the assenbl er (ex: CSECT, DS, DC)
some basic functions of the assenbler:
1) location counter
2) convert menoni c opcodes
a) machine ops - translate to codes, incremlocation cntr
b) assenbler ops - take actions specified, incremloc cnt
3) operands - convert to internal binary, base-displacenent
4) print out a listing
5) make programready for execution and pass control to it

st epped through conpl ete test program (XREAD, XPRNT, XDEC
XDUWP) and explained listing and contents of dunp.

READI NGS: STRUBLE: Chapter 3; ASSI ST MANUAL: PARTS Il and 1V,
ASSEMBLER LANGUAGE: pp. 1-18.
HANDOUTS: DOCUMENT (document ati on techni ques for assenbl er)

4 01/ 14 go over sonme dunps and errors; discuss operand fields.

go through various dunps, show ng 0Cl, 0C4, and 0C6 errors.
cover STRUBLE cahpter 3, pp.50-56: synbols, self-defining
terns, literals, |ocation counter reference, absolute and
rel ocatabl e terns, expressions.

READI NGS: STRUBLE: Chapter 4 to page 78.

ASSI GNVENT: STRUBLE: Chapter 1: problems 5,6,7,8,9. Chapter 2:
problems 2,3. Chapter 3: problens 1,2, 3,4,6.

| NFORMAL ASSN. nodi fy dunp programto use XDECO and DUMP st or age;
use programwith START to check relocatable vs absol utes.
nodi fy one of batch prograns to get 0C6 rather than 0CA4.

5 01/ 17 introduction to arithnetic and data novenment instructions
i ntroduce idea of instruction famlies and regularity of
mmenoni cs. Go thru followi ng instructions: LR LPR LCR, LNR
LTR, L, LH LA AR ALR A AL, AH SR SLR S, SL, SH
mention Mand D, also briefly note existence of Condition Code
and show how to test it, w thout worrying about encodi ng.

20-m nut e question answer and review. questions occurred on
di fferences between literals and sel f-defining terms, and on
use of synbolic register equates.

READI NGS: STRUBLE: Chapter 5.
HANDOUTS: CS102AS1 (pages 01 - 02) first assignnent - input,
out put of nunbers, calculations in binary.
Cs102ML (pages 02 - 05) S/360 mmenoni c construction.

6

10

CS102TPA - 03

01/19 qui z and finish up data novenent and binary arithenetic.
Twenty-m nute quiz (diagnostic mainly): base conversions (2,
8, 10, 16); negative nunbers, base-index-di splacenment addrs,
rel ocat abl e vs absol ute.
Instructions: LM STM WC, WI. M MR, D, DR M and hints
on what to watch for.
Programm ng techni ques: review input/output & conversions
(XREAD, XPRNT, XDECI, XDECO ; nethod for buil ding nmessages
and obtaining length for XPRNT via MG EQU *-NSG .

ASSI GNVENT: i ndexi ng and conpari son assi gnnent, CS102AS1 - 03,
due 02/02/72.

HANDOUTS: CS102AS1 - 03 (labeled CS 102 AS2 al so) - indexing.

READI NGS: STRUBLE CHAPTER 5, start on STRUBLE CHAPTER 7.

01/ 21 condition code, branching instructions, |oops.
condition code values and encodi ng. BCR, BC, Extended
Mhenoni cs (recomrended for use over BC #). BALR BAL and
subroutines, BCT, BCTR usage, including decrenenting regs.
exanpl e of basic loop to sumarray of nunbers.
fl owcharti ng and good desi gn versus kludge programm ng.

READI NGS: STRUBLE Chapters 7,8, 5.

01/ 24 finish | oop control, begin on USING DROP, |inkage
Expl ai n BXH, BXLE instructions, give typical setups:
forward BXLE | oop, backwards BXH | oop, BXH scan | oop.
show need for USING conmand. give rules for conputation of
base di spl acenents: ninimum base di spl acenent for those which
are avail able, higher nunberred register if several have sane.
begi n conventions: exaplin registers 15, 14 usage on entry.

HANDOUTS: LINKAGE OS/ 360 |inkage conventions
READI NGS: STRUBLE: Chapter 5, LI NKAGE HANDOUT

01/ 26 savearea |inkage ans one review
Describe 18-fullword save area. go through the standard code
used at begi nning and end of a routine, calling nmethods. Do
not work on argument passing, just normal code
M sc. instructions: IC, STC, start on Shifts.
Various review for problens.
Not e general usage of registers: get students into good habits

READI NGS: STRUBLE: Chapter 11.

01/ 28 | ogi cal /al gebraic arithnetic, shifts
20-mi nute quiz on previous instructions.
di fferences between condition code setting, aroverflowin
al gebraic arithnetic and logical arithnetic. exanples.
shift instructions and how they are used.

READI NGS: STRUBLE: Chapter 11, begin on chapter 10.

11

12

13

14

15

16

CS102TPA - 04

01/ 31 bit mani pul ati on and uses. review on branching
bit manipulation instructions: NR, XR OR N, X, O N, X,
A, NC, XC, OC, plus T™M what they do, and how to use them
EQU trick for SI instructions and how to use it.
review. prototypes on |oop control, advantages/di sadvant ages.

READI NGS: STRUBLE: Chapter 10, first 3 sections.

02/ 02 assenbl er housekeepi ng, m sc areas.
go over all of DC, DS operand formats in detail, show ng
what can exist as duplication factor-type-Iength-constant,
including nultiple operands and constants, expressions as
duplication factors and length nodifiers. also cover
TI TLE, EJECT, SPACE

READI NGS: STRUBLE: CHAPTER 6, pp 110-121, problens 7,9, 10
ASM LANG 3, 7-9, 10-18 (except variable synmbol s/ sequence
synbol s, 19-21, 29-33. section 5: EQU, DC (all except Bit
Length Modifier, Scale Mdifier, Exponent Mdifier. all types
except E, DL L, P, Z, Y, S, Q conplex relocatability). DS
ORG LTORG END. SPACE, EJECT, TITLE
POP: pp 24-34 except CVB, CVD. Logical instructions except
TR, TRT, ED, EDMK. Branchi ng except EX

02/ 04 give out final project, discuss assenbler/interpreters
concepts of assenblers: 2 pass assenblers, how to set up
opcode and synbol tables (indexed junp methods), output
desired.
go over structure of SIGVA 4.5 conputer and its interpreter
noting indirect addressing in particular.

HANDOUTS: CS102FP1 (01 -08) general assenbler/interpreter descr
CS102FP2 (01 -06) specific nmaterial for final project

ASSI GN: Final project, due 13 March (described in CS102FPx)

02/ 07 deci mal nunbers and conversi ons
zoned/ packed decimal to and from binary. PACK, UNPK, CvB, CVD
equi val ent codes using M D |l oops for decinal -binary-deci mal .
exanpl es of various formats/conversions.

READI NGS: STRUBLE: Chapter 5: 106-110, Chapter 218-228, 228-233.

02/ 09 m sc review, nmisc instructions, program nask.
SPMinstruction, use of program mask, review BXLE, BXH, etc.

02/ 11 M DTERM
covered data representations, nost standard instructions,
hand assenbly, etc

17

18

19

20

21

CS102TPA - 05

02/ 14 on midtermand final project
review of mdtermresults and problemareas. final project:
overall structure, useful nodules and how to set them up:
deci mal scan and out put conversions, synbol scan, synbol table
manager, opcode | ookup, hexadeci mal output, etc.
revi ew of BXLE | oop control

HANDOUT: CS102PX1 (01 - 03) progranmi ng exercises: hand assenbly,
interrupts.

02/ 16 nore on assenbly process, location counter control
use of ORGto set up tables, tinetable for gettting fina
proj ect done, program design process and debuggi ng

02/ 18 qui z, TR, TRT
30-m nute quiz: hand assenbly, BXLE | oop setup.
TR uses, setup, worKkings.
TRT uses, setup, exanples.

READI NGS: STRUBLE CH 15: pp 342-345, 350-352. prob 1, 3, 4.
ASSI GN: wite TRT table for scanning over hex digits.

02/ 21 programm ng techni ques, use of TR, TRT, conversions
use of global table pointer, exanples on TR TRIT.
deci mal input conversion, using two TRT's, EX, PACK, CVB
hexadeci mal out put conversion, using UNPK, TR

ASSIGN: wite code to performconversions, also to read in
nanes, place in table, then search table for |ater names.
READI NGS: STRUBLE CH 15: ED, EDMWK start.

02/ 23 conversi ons - hexadeci mal input, deciml output, ED
go through hexadeci mal input, but not in detail (TRT, TRT,
EX of MWC right-justified, TR, PACK 9 into 5, ignoring extra
byt e)
decimal output: CVD, UNPK, O for plus nunber, with |eading
zer oes.
deci mal output: begin on ED, EDMWK, doing parts with basic
wor ki ngs of ED, and standard pattern for integer nunbers.

CS102AS1 - 01

COVPUTER SCI ENCE 102 - ASSI GNMVENT 1
DUE
Thi s assignnent covers sinple input/output, binary arithnetic for
ful lword and hal fword nunbers, and basic data novenent and testing codes
for handling such nunbers.

Al . BASI C PROGRAM
The basi c program should do the foll ow ng:

A. Read a card (XREAD), and print it out imrediately (called an ECHO
CHECK - standard practice). The card contains 5 nunbers punched on it,
which are to be scanned and converted (XDECI) to binary form and placed
in 5 consecutive fullwords in menory. Print the hexadeci nal val ues of
these 5 words (20 bytes), using XDUWP.

B. Performthe follow ng conputations in a straightforward way,
storing each result in name given, using RX instructions where you can):

1. F=A+B+C

2. G=-A-B-C (LCR useful)

3. H=A* B* E

4. | = A/ B (be careful, watch for negative #'s)
5. J = MOD(A B) (i.e., remainder fron¥# 4.)

6. K=((A+E *(B- Q) / D

C. Print all of the above values (F - K) in hexadeci mal (XDUMP), then
also print themin decimal, using XDECO and XPRNT (print their val ues
an headings all on one |ine.

D. According to the sign of result H, print one of the 3 nessages:
H 1S LESS THAN ZERO, H I S GREATER THAN ZERO, H I S ZERO

1. EXTENDED VERSI ON OF PREVI QUS PROGRAM

Modi fy the previous program (which only had to read 1 card), to
read cards and follow the actions above for each card, until there are
no nore cards (END-OF-FILE). Keep a count of the nunber of cards read,
and print out this total nunber before ending the program

[11. HALFWORD VERSI ON OF PROGRAM I | .

Modi fy program Il to use hal fwords wherever possible (i.e., store
A - K as halfwords, use AH instead of A etc. Wtch out for divides,
since no DH instruction exists). How nuch storage is saved?

V. REG STER VERSI ON OF PROGRAM I 1.

Change program Il by saving all values A - F in registers, then
use RR instructions rather than RX instructions. Do XDECI commands
directly into registers where the values are saved. A useful trick may
be to NAMVE the registers synbolicly:

RA EQU 3 REG STER WHERE VALUE A KEPT
XDECI RA, CARD CONVERT VALUE A I NTO REG RA
This technique will make it clear which value you are using (note

that any register reference can be synbolic to an EQU synbol).

CS102AS1 - 02

V. WHAT TO HAND I N

By using the BATCH feature in ASSI ST, you can run several prograns
in one run. Turn in one run, with each of the progranms II, Ill, and IV
shown in execution, with results and output as requested. The run
will use control cards |ike:

/| EXEC ASACG, PARM=BATCH

/1 SYSIN DD *

$JOB ASSI ST PROGRAM VERSI ON | |

..... program I |

$ENTRY

..... test data

*** repeat above, starting at $JOB, for prograns |1l and IV.
/*

The followi ng test data should be used for each program

A B C D E
5 2 -4 -2 2
-2 -1 10 1 -1
4096 1 1 -1 -1

Note that the columms they are punched in should not nmatter.

CS102AS1 -

COVPUTER SCI ENCE 102- ASSI GNVENT 2

Thi s assi gnnent uses the concept of indexing into an
array of elenents.

l. BASI C PROGRAM

A. Read a card (and echo print) containing a nmaxi mum of 20
nunbers. Convert the nunbers to hex(XDECI) and store themin
successive fullwords in nmenory. Use a loop to elimnate redundant
codi ng. Then, for each card, find the maxi mum val ue and t he
m ni mum val ue, printing out these nunbers with appropriate
| abel s.

B. Form of data
1. Each card contains a maxi mum of 21 nunbers, where
the first nunber =the nunber of nunbers on the card. You will
need the first number for a counter in the loop in part A
2. There are an unspecified # of data cards. i.e.
make your program general to accept any # of data cards.

. DATA FOR YOUR PROGRAM

56 76 -76
11 123 432 -123 748 -9087 -0
33 33 45 10 6 90
145 1024 6698 -1024 345

HFhrhoONW

03

PRI ME | NDEX - J R MASHEY

TH'S FI LE PROVI DES THE PRI ME | NDEX TO FI LES VWHI CH ARE | NSTRUCTI ONAL

FI LES OF MATERI AL TO BE | NCLUDED ON THE ASSI ST DI STRI BUTI ON TAPE.
THE FORMAT OF THI'S FILE ALLOAS I T TO BE USED TO PRODUCE PSU JCL
I NCLUDE CARDS TO BE USED TO COPY THESE FI LES FROM BAT FI LES TO TAPE.

EACH FI LENAME | S PRECEDED BY '>', AND FOLLOWED BY A PSU RIJE I D,
IF THE FILE I S NOT SAVED UNDER RJE I D JRMD2, WHICH | S THE DEFAULT.

THE PROGRAM JRWD5. BATCOPY READS THI' S FI LE AND PRODUCES JOBS
TO COPY THE FILES TO TAPE. ON TAPE, THE FORMAT OF THE FILES I S:

, >FI LENAME BEG NNI NG I N COLUWN 1, ON A SEPARATE CARD
PRECEDI NG EACH FI LE. THE COVBI NATION ',>" IS
NOWHERE ELSE USED IN THE TAPE FILE, SO THAT IT IS
EASY TO SEARCH THE FI LE FOR A SPECI FI C SECTI ON
AND PUNCH OR PRINT I T.

NOTES: THE FOLLOW NG COMMENTS MAY BEG N THE DESCRI PTI ONS:
(JCL): THE FILE CONTAINS JOB CONTROL LANGUAGE CARDS FOR USE ON A
0s/ 360/ 370 SYSTEM PLUS TYPI CAL SAMPLE PROGRAMS.
(TEXT): THE FILE CONTAINS TEXT MATERI AL, W TH EACH PACE BEGUN BY A
CARD HAVING '," I N COLUW 1. THESE ALSO HAVE LOWER CASE LETTERS,
AND SO TYPI CALLY REQUIRE A ' TN PRI NT TRAIN OR EQU VALENT FOR
BEST APPEARANCE.

>AAAI NDEX OVERALL | NDEX.
>ASBROPS2 (TEXT) ASSI GNMENT USI NG ASSI ST REPLACE MONI TOR

TO REPLACE THE BASE REG STER PART OF ASSI ST. SEE
ASREPLGD, AND $ASBROPS2

>$BRTEST TEST DATA FOR USE W TH ASSI GNVENT ASBROPS2

>ASPRGIC1 (TEXT) ASSEMBLER PROGRAMM NG TECHNI QUES: LI NKACE,
MACRCS, MODULAR PROGRAMM NG

>ATTACH (JCL) - Os/ 360 SAMPLE PROGRAM ATTACH, DETACH, ETC

>BDAML (JCL) - ©s/ 360 BDAM EXAMPLE, PART 1 OF 2

>BDAM2 (JCL) - ©s/ 360 BDAM EXAMPLE, PART 2 OF 2

>BPAM (JCL) - Os/ 360 BPAM EXAMPLE

>BSAM (JCL) -0S/ 360 BSAM EXAMPLE

>CS102AS1 (TEXT) - 1ST ASSEMBLER COURSE ASSI GNMENT

>CS102FP1 (TEXT) - FINAL PROQIECT IN FI RST COURSE - PARTL.

>CS102FP2 (TEXT) - 2ND PART OF FI NAL PRQJECT (WHI CH | SAN
(ASSEMBLER | NTERPRETER FOR SMALL MACHI NE)

>CS102MmL (TEXT) - M SC. WRI TEUPS FOR 1ST ASM COURSE

>CS102TPA (TEXT) - DAY-BY-DAY OUTLI NE OF 1ST ASSEMBLER COURSE

>CS411AS1

>Cs4114d 1
>CS41143 2
>CS411FP1
>CS411FP2
>CS411FP3
>CS411FP4

>CS411MC1

>CS411MC2

>CS411TPA

>DOCUMENT

>DSECT

>DUMPSJCL

>EXCP

>FLOTLI NK

>GETMAI N

>HARDWARL

>| NDEX102

>| NDEX411

>L1 NKAGE

>LI NKLOAD

AAAlI NDEX - 02

(TEXT) - 2ND ASSEMBLER COURSE, 1ST ASSI GNMVENT:

LI NKAGE BETWEEN FORTRAN ASSEMBLER, PARM FI ELD
ACCESS. 0s/ 360.

(TEXT) - GENERAL | NFORMATI ON, COURSE QUTLI NE,

| NDEX, ETC FOR 2ND ASSEMBLER/ SYSTEMS COURSE, 1 OF 2
(TEXT) - GENERAL | NFORVATI ON ETC, PART 2 OF 2.

(TEXT) - A FINAL PROIECT ASSI GNMENT WRI TEUP FOR A

SI MULATOR FOR MJLTI PROGRAMM NG OPERATI NG SYSTEMS,
FOR USE I N 2ND ASSEMBLER/ SYSTEMS COURSE. PART 1 OF 4
(TEXT) - FINAL PRQIECT, PART 2 OF 4

(TEXT) - FINAL PRQIECT, PART 3 OF 4

(TEXT) - FINAL PRQIECT, PART 4 OF 4

(TEXT) - MACRO | NSTRUCTI ON ASSI GNVENTS: WVRI TE OMN
VERSI ONS OF CALL, SAVE, RETURN, 2ND: WRI TE MACRO
MCODULE COVBI NATI ONS FOR HEXADECI MAL CONVERSI ONS.
(TEXT) - MACRO- | NSTRUCTI ON ASSI GNVENT: WRI TE MACRO
PACKAGE FOR MANI PULATI ON OF LI NKED LI STS. ALSO

TO BE USED I N CS411FP1-4.

(TEXT) - COURSE QUTLI NE AND DAY- BY- DAY NOTES FOR
2ND COURSE | N ASSEMBLER/ SYSTEMS.

(TEXT) - H NTS AND GOOD PRACTI CES ON DOCUMENTATI ON
OF ASSEMBLER PROGRAMS.

(TEXT) - SAMPLE USE OF DSECTS AND EXPLANATI ONS.

(TEXT) - Os/360 - BRIEF NOTES ON JCL TO BE USED
FOR ASSEMBLER RUNS; SAMPL DUMPS FOR VARI QUS ERRORS.

(JCL) - SAMPLE RUN SHOW NG EXCP COMVANDS.

(JCL) - I LLUSTRATES LI NKI NG FORTRAN & ASSEMBLER,
FLOATI NG PO NT OPERATI ONS | N ASSEMBLER

(JCL) - I LLUSTRATES GETMAI N FREEMAI N MACRCS.

(TEXT) - DESCRI BES TYPI CAL DEVI CES USED ON LARGE
S/ 360 SYSTEM W TH DATA RATES, CAPACI TIES, ETC.

(TEXT) - I NDEX TO MATERI ALS FOR 1ST ASM COURSE
(TEXT) - | NDEX TO MATERI ALS FOR SYSTEMS COURSE
(TEXT) - TUTORI AL ON OS/ 360 LI NKAGE CONVENTI ONS

(JCL) - ©s/360 - | LLUSTRATES USE OF LOAD MODULE
MANAGEMENT COMVANDS LI NK, LOAD, XCTL, ETC.

>OSHASP

>0OVLY1

>PTPCHVAC

>QSAM

>RECURASM

>SPI ESTAE

>TI VE

>WOML

AAAlI NDEX - 03

(TEXT) - EXPLAINS JOB SCHEDULI NG AND FUNCTI ONI NG
OF OS/ 360 W TH HASP.

(JCL) - ILLUSTRATES USE OF LI NK-EDI TOR OVERLAY
FACI LI TIES, SHOW NG DI FFERENT TREE STRUCTURES.

(JCL) - I LLUSTRATES USE OF UTILITY | EBPTPCH TO
PRI NT MACRCS FROM LI BRARY.

(JCL) - SHOWS USE OF 0OSs/ 360 QSAM MACROCS.

(JCL) - SHOWS USE OF GETMAI N FREENMAI N I N MAKI NG
RECURSI VE ASSEMBLER PROGRAMS.

(JCL) - SHOWS USE OF SPI E/ STAE MACROS

(JCL) - ILLUSTRATES USE OF TI Mg, STIMER, TTI MER
MACRCS FOR TI' M NG

(JCL) - |ILLUSTRATES WIO, WL MACROCS.

ASBROPS2- 01

ASSI ST BASE REG STER ASSI GNVENT

This assignnent is essentially to wite the base register handling
routine for ASSIST, and run and test it wusing the ASSIST Replace
Moni t or . The programrer should first consult the following witeup
for general information, ASSIST conventions, and use of the Replace
Moni t or:

ASSI ST REPLACEMENT USER S GUI DE (ASREPLQD)
. S/ 360 BASE REQ STER ASSI GNVENT

This section briefly describes the conversion of program addresses
to base-displacement form as done by S/ 360 assenblers, particularly
ASSI ST. The foll owi ng manual shoul d al so be consul t ed:

| BM S/ 360 OS Assenbl er Language GC28-6514, pp. 19-21

A. Each control section and each dummy section in an assenbly is
assigned a uni que nunber or section identification (ID), and every
| abel in a given section has that sane section ID associated wth it.

B. Wien a register is specified in a USING statenent, it is assuned
to contain the specified | ocation counter value, and is also flagged
with the section ID of the first expression in the USING

C. Wwen a value used in an instruction nmust be converted to base-
di spl acenent form the only possible registers which are usable are the
ones(if any) which have the sane section ID as the value to be
converted.

D. If two or nore registers are usable as base registers, and have
the sane section ID, the register used is that one having a value which
results in the smallest displacement (0-4095).

E. If two or nore registers have the sane ID and value, the higher
nunbered regi ster is used.

F. (ASSIST only) - in ASSIST, all values for USING statements are
rel ocatable, and register 0 is handl ed exactly the same as any other,
which is slightly different from the standard handling. Al so, the
ASSI ST section ID s range from1 to 255 only.

ASBROPS2- 02
1. ASSI ST | NTERFACE REQUI REMENTS FOR BROPS2
General register conventions are given in ASREPLGCD. This section

describes the nmodule to be witten, with the specific requirenents for
each of the entry points of the BROPS2 nodul e. The register notation
used is that from ASREPLGD.
CSECT NAME: BROPS2
ENTRY PO NTS: BRIN T, BRUSIN, BRDROP, BRDI SP
ENTRY AND EXI T CONVENTI ONS

AL BRINIT - is called one tine at beginning of asenbly, to perform
any initialization required by BROPS2. Mist be serially reusable, and
so cannot just DC any tables to required val ues.

B. BRUSIN - is called whenever a USING is processed.

ENTRY CONDI TI ONS

RA = nunber of register which can be used. (0-15)
RB = address declared for base register. (0-2**24-1)
RC = section ID of the address. (1-255)

C. BRDROP - is called when a DROP is found.
ENTRY CONDI Tl ONS
RA = nunber of register to be dropped. (0-15)

EXI'T CONDI TI ONS

RB = 0 if register was an active base register.
= nonzero value, if register was not usable at the tine.
D. BRDISP - is called to convert an address-1D to base-dsipl acenent.

ENTRY CONDI TI ONS

RA
RB

address to be converted to base-displacenment form (0-2**24-1)
section ID of the address to be converted. (1-255)

EXI T CONDI TI ONS

RA = base-di spl acenent form of address, if there was one, in |ow-order
hal fword of register (bits 16-31). Bits 0-15 should be zeroes.

RB =0 if the address was properly converted.
= nonzero value if an addressibility error occurred, i.e., if there

was no register with the proper section ID, and a value from 0 to
4095 | ess than the value to be converted

NOTE the above rul es nust be followed exactly. If they are
not, error nmessages wll be given by the ASSIST Replace Mbnitor.

ASBROPS2- 03
[11. | MPLEMENTATI ON METHODS

This section outlines several different nethods of inplenmenting
the BROPS2 nodul e. The followi ng are ways in which the assignment nay
be handl ed, with the instructor specifying in class which oneis to be
fol | owed:

Wite the nodule in 1 specific way.

Wite the nodule in several ways, and conpare their performance.
Wite the nodul e any way at all

Wite the nmodul e any way, but optim zing for one of several goals.

A. REG STER TABLE ORDERED BY REG STER NUMBER

Afairly sinple way to handle the problemis to just keep a table
ordered by regi ster number, which can easily be indexed into to change
t he val ues, and can be searched by a fairly sinple |Ioop.

B. REG STER TABLE - LINKED LI ST FORM BY ACTI VE REG STERS

A linked list can be kept of the active registers and their val ues
and section IDs. This can nake for faster searches, but can require
nore space, and nore conpl ex code.

C. REG STER TABLE WTH LINKED LIST ORDERED BY SECTION IDs

A set of linked lists can be kept, wth one for each of the
section IDs currently active. Each list links together the register
or registers which are active base registers and are flagged wth the
given section ID. This is potentially the fastest nethod, but also
requi res the nost conpl ex programm ng.

D. REG STER TABLE W TH SEPARATE | D TABLE AND TRT USAGE

In this nethod, a separate search is nade of a 16-byte table which
contains the active section ID s, possibly using the TRT instruction,
then computing the register nunber fromthe position in the index table,
and going to antoher table to conputer the value. This nethod can be
fast, but may require nore space, unless 256 bytes of TRT table are
avai |l abl e el sewhere

PCSSI BLE OPTI M ZATI ON GOALS

SPEED - optimze for the fastest program possible. Note that this
i nvol ves determining the relative frequency of USING DROP, and base-
di spl acement conputations, which can differ depending on the type of
programrer producing the test program (i.e., experienced programers
usual | y have nany nore USING s and DROP's because they use DSECTs nore
t han do begi nners).

SPACE - optimze to produce the smmllest conplete program

PROGRAMM NG SIMPLICITY - optimze to produce a running program
whi ch is sinple and understandabl e, and can be programred quickly, i.e.
simulating the conditions which require a programto be finished in a
short period of tinme.

TEST

T1

AA4

QUTR
AAS

DSECT1
DS1
DS2

DS5
DS6
DS8
DSECT2
CARD
DS2A
BASE

TI TLE ' ASSI ST BASE REQ STER/ USI NG DROP TEST PROGRAM
TH S PROGRAM PROVI DES VARI OUES ERROR TESTS FCOR BROPS2.
ALL STATEMENTS LEGAL, EXCEPT THOSE W TH ERROR COMVENTS.
CSECT

BALR 12,0

USI NG *, 12

L 0, AA5 AS100

L 5, AA4

USI NG AA5, 9

ST 3, AA5

USI NG AA5, 10

A 2, AA5

USI NG AA4, 10

SL 3, AAS

ST 3, AAMd

DROP 10

USI NG DSECT1, 7

STH 4, DS1

LH 5, DS6

DROP 8,10 TWO AS003 MESSAGES
CvB 6,DS8

USI NG DSECT1, 9

CvD 6, DS8

USI NG DSECT2, 10

M 8, D4

LA 5, CARD

D 8, DS5

DROP 10

B T1

IC 10, DS2A AS100 ADDRESSI BILITY
LA 11, QUTR AS100 ADDRESSI BI LI TY
USI NG *, 13

ST 5, AA4

DS F

DS 1500F

DS C

DS F

EJECT

DSECT

DS H

DS HL8

DS A

DS F

DS CL6

DS D

DSECT

DS CL80

DS P

CSECT

USI NG *, 13, 14, 15

DROP 8,12 AS003 REGQ STER NOT USED ON 8
AH 6, DS1

AH 4, AAG

L 5, AAS AS100 ADDRESSI Bl LI TY ERROR
DROP 7,9,10 AS003 ON 10

DROP 13, 14,15

DS H

TITLE ' OVERALL TEST - STUDENT-WRI TTEN PROGRAM

CSECT

THI' S SECTI ON CAN BE USED TO TEST BROPS2 - | T PROVI DDES
STUDENT- WRI TTEN SAMPLE PROCRAM

START

out

I'N

I NX
SUPERVR

VAl NSAV
BOUT1
Bl N1
CORQUT2

BLANK
QUTPUT
auT1

H1

STORE

STORE1L

SUPER

ENTRY
STM
BALR
USI NG
ST

LA

LA

LA

BR
ST

BR
ST

BR

LM
BR
LTORG

DS

DS

DC
CSECT
ENTRY
PRI NT
BALR
USI NG

DC
DS
LA
LA
LA
wC
LA
LTR
BH

BALR
ST
LA
CLI
BE

BALR
BCT
LA
LA

BNE
LA
XPRNT
CLI
BE
LA

BR

I N, OUT, SUPERVR
14,12, 12(13)
12,0

* 12
13, MAI NSAV
9,0

6,0

11, 0

15, =V(COROUT2)
15

14, BI N1

15, BOUT1

15

14, BOUT1
15, BI N1

15

13, MAI NSAV

14, 12, 12(13)
14

OF
F
F
V(COROUT1)

STORE, STORE1L
NOGEN

13,0

* 13

ouT1

OF

4c

64C

4,0

1, QUTPUT

5, BLANK
0(64, 1), 3(5)
3,3

9,9

STORE

15, =V(I N)
14, 15

10, QUTPUT(4)
4, 1(4)

10,C .

HO

15, =V(I N)
14, 15

3, STORE

3,3

4,1(4)

4, =F 63'
STORE

3,3
BLANK(3) , 65
OUTPUT+62, C .
SUPER

9,1

ouT1

15, =V(SUPERVR)
15

CORQOUT1

I N1

REPEAT

NUMBER
DOUBLE
NEXTCHAR

BLNK
I NPUT
ASTERI CK
BEG N
CHECK

F1

READ

F2
F3

LTORG
CSECT
BALR
USI NG

BALR

BALR
CLI
BL
ST
LA
PACK
CcvB

BALR

BALR

BNM

LTORG

DS

DS
CSECT
ENTRY
PRI NT
BALR
USI NG

DC
DS
DS
ST
LTR
BNE
LTR
BE

BNE
LA
XREAD
LA
XPRNT

IC
SLDA
LA
CLI
BNE

LTORG
END

8,
*
[

= 0 O

15, =V(OUT)

14, 15

15, =V(NEXTCHAR)
14, 15

10,C 0’

H2

10, NUVBER

5, NUVBER
DOUBLE(8) , 0(4, 5)
5, DOUBLE

15, =V(BEG N)
14, 15

15, =V(OUT)

14, 15

5, =F 1'

REPEAT

I N1

OF
F
D

BEG N
NOGEN

7,0

* 7

BEG N

OF

4C

16F

F

14, ASTERI CK
11, 11

F3

6,6

READ

6, =F' 16'

F2

6,0

| NPUT, 64
2,3

BLNK(2) , 65
11, | NPUT(6)
10,C
10, 8

6, 1(6)
10,C
ASTERI CK
CHECK

ASPRGIC1 - 01

S/ 360 Assenbl er Language Programm ng Techni ques
John R Mashey - Wnter |972

Topic: Program Modul arity and Paranetrizati on Met hods:
Usi ng Macros, Internal Subroutine, External Subroutines
This topic: pages 01-08

It is generally inportant in any conputer programto avoid coding
any procedure nore times than necessary. It is generally best to wite
somet hing one time, then have it available for later use in many parts
of a program In assenbler |anguage, there are three main ways of doing
this: macros, internal subroutines, and external subroutines. Thi s
writeup describes each of these techniques, gives the advantages and
di sadvant ages of each, and notes under what condition each is best.

. DESCRI PTION, DEFIN TION, AND CALLI NG
A. MACRO | NSTRUCTI ONS

A macro instruction is defined, and either placed at the beginning
of an assenbly | anguage program (a USER macro), or entered into a nacro
library (a SYSTEM nacro). Wen called, it generates 0 or nore assenbly
| anguage statenents at the point of invocation, and the code generated
may vary greatly fromcall to call.

1. DEFINTION

A macro definition begins with MACRO followed by the PROTOTYPE
STATEMENT, which gives the name of the macro. The body of the nacro
i ncludes 0 or nore MODEL STATEMENTS, which are assenbler commands and
machi ne instructions to be generated, and nacro-operations, which serve
to direct the expansion processing of the macro. The nmacro definition
is termnated by the MEND statenent. The following steps are typica
i n defining a macro:

a. DETERM NE BASI C PURPOSE AND GENERATED CODE: It is generally
a good idea to wite at |least sonme of the statenents to be generated
toget her as a code segnent first, to get sone feel for what is needed.

b. DECI DE ON NECESSARY ARGUMENTS AND THEIR USAGE: it nmmy be a goo
idea to wite the purpose of each argunment in the operand |list, punch it
and include it in a block of conments at the beginning of the nmacro.
This helps the macro to be done to do what it is supposed to do.

Use PCSI TI ONAL operands for heavily-used argurments, i.e., if an
argunent MUST be supplied every tinme, nake it positional. In a group
of positionals, place the nost heavily used ones near the front, since
it is much nore convenient to omit the later ones than the earlier.
Use KEYWORD argunents for val ues which nay not be needed al ways, or for
ones which are conveniently supplied with default values which are nost
often used. Use SUBLI STS or &SYSLI ST for variable nunbers of argunents.

c. WRITE ACTUAL BODY OF MACRO BU LDING MACRO TYPE COMIVANDS
AROUND THE MCODEL STATEMENTS TO BE GENERATED.

ASPRGIC1 - 02
2. | NVOCATI ON

A macro can be called nmerely by witing its nanme and supplying it
wi th any needed argunments. Note that a | abel on a macro call is never
generated (and is thus UNDEFI NED) unless the macro definition is mnade
to generate it on some nodel statenent.

B. | NTERNAL SUBROUTI NES

Internal subroutines are sections of code witten as parts of a
gi ven control section (CSECT), and are only used inside that CSECT. Like
external subroutines, internal subroutines can of course call others.
They are typically used for small to nedium sections of code which are
needed at several places in a CSECT, but are not needed by any other,
or are not big enough to warrant the overhead in making them external
subrouti nes.

1. DEFINTION

It is often typical to place a group of internal subroutines near
the end of the code section of a program (just before the data areas).
It is a good idea to set up conventions for the use of interna
subroutines, before witing any. The following are often needed:
return register (either one standard one, or several different ones),
argunent registers, and work registers which can be used w thout saving.
In general, internal subroutines should not need to do nuch saving and
restoring of registers. They should be able to return via BR REG

2. | NVOCATI ON

Calling an internal subroutine is usually done by first filling any
argunent registers with needed val ues, then coding: BAL REG | NSUB
This type of |inkage can be fast and snmall.

C. EXTERNAL SUBROUTI NES

External subroutines are wused for mjor program segnments, and
can usual ly be assenbl ed separately fromthe rest of the program In
fact they can be witten in a different |anguage (i.e., FORTRAN and
ASSEMBLER conbi nati ons).

1. DEFINTION

An external subroutine may be witten in either of tw ways in
assenbly | anguage: as a CSECT, or as an ENTRY within a CSECT. In the
first case, the subroutine is entered at the CSECT statenents and return
at one or nore places depending on the desired code. In the second case
each entrypoint nmay be given control, and may share code or be
totally separate fromthe other entries. This formis often wused for
a group of related routines (like SIN and COS, which are both entries in
a CSECT), or for a routine requiring initialization or termnation
functions different fromthe normal calling function.

ASPRGTC1 - 03
A multiple-entry CSECT is typically set up as foll ows:

CSECTNAM CSECT

ENTRY ENTRY1, ENTRY2, ... ENTRYN
..... code for entry at CSECTNAM nmultiple-entry routines often
..... are entered only at the entry points, not at the CSECT.

ENTRY1 LI NKAGE CODE (SAVE, XSAVE, etc)
..... execut abl e code when called at ENTRY1.....
RETURN LI NKAGE CODE (RETURN, XRETURN, etc).

..... remai ni ng entrypoi nt nanes and code
..... i nternal subroutines needed by nore than one entry point.
..... data areas used by various of the entry point routines.

The following are inportant points to renenber when using nultiple
entry CSECTS:

THE DI FFERENT ENTRY PO NTS NEVER CALL EACH OTHER In essence, all
of the routines represented by the various entry points are at the sane
level in calling structure of an entire program

ONLY ONE SAVE AREA |S ACTUALLY NEEDED. Since the routines inside
t he CSECT never call each other, the user can code the save area at the
end of the LAST section of code, so that all of the previous sections
can refer to it (note that if placed on the first, it would be difficult
for the later ones to access it wusing a LA instruction: addr ess
constants must be used instead). Wth XSAVE/ XRETURN, this neans that
the SA=* operand is coded only on the LAST XRETURN.

CARE MUST BE TAKEN W TH ADDRESSI BILITY. Al of the code sections
can of course address the data areas at the end of the CSECT. However ,
t he programmer nust be very careful with any internal subroutines he
writes, because the BASE REG STERS USED TO ASSEMBLE | NTERNAL SUBROUTI NES
MJUST HAVE THE CORRECT VALUES IN THEM AT EXECUTION TIME. | F THEY DON T,
AS WHEN THEY ARE CALLED FROM DI FFERENT SECTI ONS HAVI NG DI FFERENT USI NG
SETUPS, THEY W LL ASSEMBLE PROPERLY AND THEN BLOW UP AT EXECUTI ON TI ME.
I N PARTI CULAR, THE PROGRAMVER SHOULD PLACE | NSTRUCTI ONS TO BE EXECUTED
(EX operation) WTH THE SECTI ON OF CODE USI NG THEM AND NOT AT WTH THE
DATA AREAS, | F THEY PERFORM ANY SYMBOLI C ADDRESSI NG.

The probl ens descri bed above are typically handl ed either by naking
all entry point code segnents set up the same USING conditions, or by
setting a specific register to point to the beginning of the internal

subroutines, EXecuted instructions and data. |If register 13 points to
a save area just above these code sections, it can be wused this way,
since it will always have that sanme val ue. Getting the sanme USING

conditions across an entire nulti-entry CSECT can be done:

ENTRYX XSAVE
L BASEREG, =A(CSECTNAM)
USI NG CSECTNAM BASEREG

Note that the above can be acconplished with the XSAVE AD= oper and.

ASPRGIC1 - 04
D. COMBI NED FORMS

In sone cases, it is convenient to conbine the ease of use of the
macro with the small size of internal or external subroutines. In this
case, the macro expansion sets up any needed argunents, saves registers,
etc, then generates code to invoke the subroutine. The subroutine then
provi des the major portion of the processing code, any needed | arge data
areas, etc.

Exanpl es of the conbined formare the follow ng nmacros: XDECI
XDECO, XPRNT, XSNAP, which call XXXXDECI, XXXXDECO, XXXXPRNT, and
XXXXSNAP, respectively.

Two different extrenes exist in witing conbined forns:
1. COWVBI NED FORM - STANDARD LI NKAGE

In sone case, the calling sequence to invoke an external subroutine
essentially includes the CALL nacro or equivalent code, i.e., it uses
standard conventions. It typically assunes that registers 0, 1, 14, 15
may be nodified wthout causing trouble. This nethod is efficient and
general , but can cause trouble if used inproperly.

2. COMBI NED FORM - SPECI AL NONDESTRUCTI VE LI NKAGE

In some cases, it may be useful to define a macro instruction which
i nvokes a subroutine, but can be used ANYWHERE wi thout disturbing any
regi sters, changing the condition code, or requiring that certain of the
regi sters not be the ones being used as base registers (in particular,
register 15). This is the kind of |inkage used from XDECO to XXXXDECO
XPRNT to XXXXPRNT, etc. The follow ng shows the general formof such a
i nkage setup, giving first the kind of code to be generated by the
macro part, then the entry and exit code for the associated routine:
(NOTE: label is typically an &SYSNDX- gener at ed uni que | abel)

STM 14, 0, | abel save registers to be changed
.... evaluate argunents of macro: any required Load Addresses
nust be done using LA 0, argunment since doing LA into

any other register could destroy a base register. |If
nore than one argunent is needed, the remmining ones can
.... be stored into control block after |abel. Exanples:
LA 0O, argunent

ST 0, abel +12 2nd argunent (one arg left in RO
.... after all argunents are evaluated and saved, and ONLY
THEN, it is now possible to nodify registers:

L 15,1 abel -4 V-type adcon for routine
CNOP 2, 4 make sure next inst not on F boundry
BALR 14, 15 call routine, also point 14 at the

argunent list follow ng
DC V(subroutine entry point) adcon to get there

| abel DS 3F 3 words for saving 14, 15, O
DS F space for argunents after first
DS OR DC space here for any renmining argunents
.... the subroutine will return control to next instruction
LM 14,0, 4(14) reload registers. Note that this is

only safe way, since 15 m ght have
current base register.

ASPRGTC1 - 05

The foll owi ng shows the typical code used to enter and exit the
supporting nodul e used with the previ ous macro expansion. Note that the
entry point of the routine mght be either a CSECT nane, or an ENTRY
nane, i.e., one CSECT might contain several entrypoints, one for each
supporting subroutine needed.

entrypoint |abel definition (CSECT, or |abel DS OH)
USI NG entrypoint, 15 initial base register
.... save all registers which may be nodified by code. Save
into TH'S CSECT (unlike nornmal OGS/ 360 conventions).
DO NOT SAVE | NTO CALLER S SAVE AREA, since it may not
exist, especially if caller is a |owest-level routine.

initialization code: if this routine perforns I/Q or
calls any others, or requests any supervisor services, it
is a good idea to set up another base register than 15,
set up a save area, and put its address into register 13,
since any of the above actions may result in registers
bei ng saved at wherever 13 points.

processing code to performrequired actions

result return code: result may be left in register O,

in which case it should not be restored (neither here nor
in generated code before: i.e., change LM 14,0,4(14) to
LM 14, 15, 4(14) and STM | i kew se).

register restoration: restore all registers nodified in
this routine. Especially restore 14.

SPM 14 restore original condition code (note
that calling BALR 14,15 saved it)

B nunber (14) branch to di spl acenent nunber beyond
address in 14, enough to pass contro
to statenent: LM 14,0, 4(14)

It may be useful for the programmer to create a DSECT which
descri bes the control block generated by the nmacro expansion. Thi s
woul d permt the nodule to refer to argunents and return points using
synmbol s rather than absol ute displacenents. A typical DSECT might be:

dsect nam DSECT

DS V(routine) space for adcon
DS 3F space for regs 14, 15, O
argunent DS F argunent val ue placed here, if any
further arugment DS statements foll ow.
return LM 14,0, 4(14) return label (YES, THIS IS LEGAL: it does

NOT generate code, but it nakes the point
clear as to description of block).

If such a DSECT were wused, the routine code would include:
USI NG dsect nam 14 to set up DSECT addressibility
B return return (instead of B nunber(14)

ASPRGTC1 - 06
1. ADVANTAGES AND DI SADVANTAGES
The following lists the good and bad points of each type:
A. MACRO | NSTRUCTI ONS
1. ADVANTAGES

Code can be tailored to each individual request, i.e., the code
generated by each macro call can vary from a great deal to nothing,
such as debug code elinnated by testing a global set variable.

SPEED: nmcro-generated code can be the fastest in execution, since
it can performits actions wthout having to set up linkage to another
section of code.

VARI ABI LI TY: generated code can vary depending on the nature of
argunents passed to a macro (such as testing the TYPE of argunents to
generate different instructions).

2. DI SADVANTAGES

SLOW ASSEMBLY: nacro processing can be very sl ow.

LARGE CODE: if used inproperly, macros can generate |arge anounts
of code very easily. |If there are many copies of |arge blocks of code,
much space can be wasted

OBJECT DECKS: a nmacro cannot be assenbl ed and an object deck of it
gotten |like a subroutine can, i.e., if acall is nade to a macro, the
macro definition rmust be included in the programor in a library, while

a CSECT may be saved as an object deck (which is wusually nuch smaller
than the source deck).

B. | NTERNAL SUBROUTI NES
1. ADVANTAGES

SPEED: al though not as fast as in-line code froma nmacro, the code

for an internal subroutine is usually faster than the linkage to an
external one. In particular, values can be passed in registers, and
usual ly registers will not have to be saved.

SPACE: internal subroutines require |ess space than generating the

sanme code several tinmes via macro expansions.
2. DI SADVANTAGES

SPACE: if the sane function is perforned by internal subroutines
in several CSECTS, code is thus duplicated and space wast ed.

COVPLEXI TY: in sone cases, in order to make efficient wuse of a
nunber of internal subroutines, it 1is necessary to set up fairly
extensive rules on usage of registers in a CSECT, so that the |Iinkage

anmong them may be fast and snall

ASPRGIC1 - 07

C. EXTERNAL SUBROUTI NES

1. ADVANTAGES

SPACE: if witten as an external subroutine, code can be wusefully
called from al nost anywhere in a program Thus, there is only one copy
of it, and it generally will occupy the |east space.

SEPARATE COWPI LE/ ASSEMBLY: a routine witten as a CSECT can be
assenbl ed separately fromthe rest of the program an object deck can
be obtained, and translation tine generally saved. The routine may of
course be witten in a different | anguage than the rest of the program

2. DI SADVANTAGCES

LI NKAGE TIME: if standard OS/ 360 linkage is followed, a fair anount
of execution tine and object code space can be consuned by this |inkage.
More efficient nonstandard |inkage can be used instead, but this brings
with it the disadvantage of nonuniformty and Ilack of generality.

D. COMBI NED FORMS
1. ADVANTAGCES

In general, the conbined forns can possess all the advantages of
the separate forms especially since the macro portions can generate
di fferent code dependi ng on circunstances; thus the code for the sane
macro mght expand in-line in one case and generate an out-of-line cal
to a routine in another.

2. DI SADVANTAGES
COWPLEXI TY: it of course requires sonmewhat nore planning and code

to set up a good conbined formsystem since both a mnmacro and nodule
nust be created and neshed toget her properly.

ASPRGTC1 - 08
I11. C RCUMSTANCES FAVORI NG USE OF THE VARI QUS FORMS
A. MACRO | NSTRUCTI ONS
In general, a pure macro instruction is used as fol | ows:

VARYI NG CODE: the required code varies radically from call to

call. For exanple: XSAVE and XRETURN

SHORT CODE: if a mamcro can generate less in-line code to perform
the required function than is needed to generate a call to the routine,
then it should be witten as a macro. |n some cases, it takes as rmuch

work to set up the argunents as it does just to performthe operations.
For exanple: the code to obtain the mnimum or naximum of severa
argunents is probably nost efficiently witten as a in-line nmacro.

LI NKAGE CODE: code for linking to routines is alnost necessarily
witten as macros, since it makes little sense to call a routine in
order to performlinkage, unless the Ilinkage code required is very
conplex (in which case the program is probably going to be SLOW.

B. | NTERNAL SUBROUTI NES

Internal subroutines are usually used (as opposed to nmcros which
generate code in-line) under the follow ng circunstances:

CODE WTH LI TTLE VARIANCE: if the code is not going to be rmuch
different fromnacro call to macro call, it nmay be better to let the
macro call generate a BAL to one copy of the code as an internal subr.

Internal subroutines are wusually wused (as opposed to EXTERNAL
subroutines) under these circunstances:

SHORT CODE, HEAVILY USED: if code nust be wused nmany tinmes by
a CSECT, then the faster |inkage of internal subroutines wusually nakes
it worth witing it that way.

CODE NEEDED ONLY BY ONE CSECT: if not too long, it is fairly
logical to incorporate it as part of that CSECT. It wll probably be
much nmore efficient since it will have access to the internal variables
of the CSECT, and be able to conmunicate via register values easily,
rather than requiring |long operand lists.

C. EXTERNAL SUBROUTI NES

LONG CODE: if something is long and conpl ex enough, it my be a
good idea to make a separate nodule of it, test it, get an object deck,
then leave it along thereafter.

CCDE OF GENERAL USE, NEEDED MANY PLACES: in this case, it is

practically necessary to make code an external subroutine, so that it
can be accessed where needed.

D. COvVBI NED FORM5

These are useful anywhere the others are. The nondestructive form
is specially useful if it is to be wused by beginning programers.

11*
11*
/1*
[1*

THIS JOB WLL RUN WTH TI Me= 75 SECONDS
RECORDS = 1000

/1 EXEC ASGCL
/1 SQURCE. | NPUT DD *

L I N S B N T B N N N N . T N R R T R T N . N N R N S N N S

L I

O DEMONSTRATE THE MACRO S LI STEC B
O DENMONSTRATE THE MACRO S LI STECD

THE PUTPCSE OF THI S
THE PUTPOSE OF THI' S
BELOW

JOB IS T
JOBIST
ATTACH

DETACH

VAI'T

POST

EXTRACT

THE OVERALL FLOW OF THI'S PROGRAM | 'S

1 THE CSECTS SECOND AND THI RD ARE COVPI LED AND LI NKED
2 MAIN I'S COVPI LED AND LI NKED EDI TED AND EXECUTES.
3 DURI NG THE EXECUTI ON OF MAIN I T ATTACHES SECOND

TW CE USI NG THE ATTACH MACRO
BEFORE SECOND | S ATTACHED THE DI SPATCH PRIOCRITY OF MAIN | S
OBTAI NED USI NG THE EXTRACT MACRO. AFTER I T HAS BEEN OBTAI NED
ITIS DVIED BY 2 AND WHEN SECOND | S ATTACHED THE PRIORITY OF
MAIN IS HALVED USI NG THE DPMOD PARM VWH LE BOTH MAI N AND
SECOND ARE COVPETI NG FOR CPU USE, THE TCB' S FOR MAI N AND
SECOND ARE SNAPPED USI NG THE EXTRACT MACRO.
WHEN SECOND AND
WHEN SECOND | S EXECUTING | S ATTACHED IT IS G VEN AN ECB AND
IN MVAIN A WAIT MACRO I S | SSUED FOR THI S ECB.

4 THEN SECOND | S DETACHED I N MAI N USI NG THE DETACH
MACRO.

5 THEN THE PRIORI TY OF MAIN | S RESTORED.

6 THEN SECOND | S ATTACHED AGAI N USI NG THE ATTACH MACRO

ONLY THIS TIME SECOND IS G VEN AN EXIT ROUTINE. IN THE EXIT
ROUTI NE SECOND | S DETACHED AND CONTROL |'S RETURNED TO MAI N.
AGAIN THERE IS AN ECB G VEN TO SECOND AND A WAI T MACRO | SSUED
N MAIN.

7 THEN THIRD IS ATTACHED BUT IT IS NOT 3 VEN AN ECB.
AN ADDRESS | S PASSED IN THE ATTACH MACRO FOR THE ECB AND THI RD
USES A POST MACRO TO SET THE ECB.

EJECT
PRI NT NOGEN

WHEN SECOND OBTAI NS CONTROL | T DETERM NES WHI CH CALL |'S BEI NG
MADE THEN | T OUTPUTS THE APPROPRI ATE HEADI NG AND RETURNS.

SECOND CSECT
XSAVE TR=NO
L 2,0(1) GET ADD OF PARM LI ST
L 4,4(1) GET SECOND PARM
L 4,0(4) GET VALUE OF SECOND PARM

LTR 4,4 CHECK FOR O

BZ SEC | F ZERO THEN SECOND CALL

LA 5, SHEAD1 GET ADD OF QUTPUT FOR FI RST CALL
B QUTPUT GO TO DO AQUTPUT
SEC LA 5, SHEAD2 GET ADD FOR QUTPUT OF SECOND CALL

OUTPUT PUT 0(2), 0(5)
XRETURN SA=*, TR=NO
SHEAD2 DC CL132' OTHIS |'S SECOND CALL TO SECOND
SHEADL DC CL132' OTHIS IS FIRST CALL TO SECOND
PRI NT GEN
END
/ *
/*LOG
/ 1 OBJECT. SYSLMOD DD DSNAVE=&&L OADMOD(SECOND)
/1 EXEC ASGCL
/ | SOURCE. SYSGO DD DI SP=(OLD, PASS)
/ | SOURCE. | NPUT DD *
PRI NT NOGEN
ECBDSECT DSECT
ECBADD DS F

THE PURPOSE OF THIRD |'S GAI N CONTROL AND OUTPUT A MESSAGE
THEN TO POST THE ECB THEN RETURN

L T

THIRD CSECT
XSAVE TR=NO
L 2,0(1) GET ADD OF DCB
L 3, 4(1) GET ADDRESS OF ECB
PUT 0(2), THEAD
PRI NT GEN
POST 0(3), 240
PRI NT NOGEN
XRETURN SA=*, TR=NO
THEAD DC CL132' OTHI RD NOW EXECUTI NG '
END
/ *
/ 1 OBJECT. SYSLMOD DD DSNAVE=&&LOQADMOD(THI RD) , DI SP=(OLD, PASS)
/1 EXEC ASGCLG
/ | SOURCE. SYSGO DD DI SP=(OLD, PASS)
/ | SOURCE. | NPUT DD *
PRI NT NOGEN

THIS IS THE MAIN JOB STEP.

MAI N ATTAHCES SECOND TW CE AND THI RD ONCE | T USES ATTACH,
DETACH, EXTRACT, CHAP, WAI T, AND POST

DETACH, WAI T, AND EXTRACT.

I T DOES ALL THREE ONE STEP AT A TI ME

L B R R

=
z

CSECT
XSAVE TR=NO
OPEN (OTPT, QUTPUT)
PUT OTPT, MHEAD
PRI NT GEN
EJECT
TCB DESCRI PTI ON

* ok Xk

L . T S R R S N B S T R . R R N T T S . T R B I R S T T

L I S T S

x BYTE 1 x BYTE 2 x BYTE 3 x BYTE 4 x

X
*
ANSVEER AREA
ADDRESS- - - *
X
X
X
*
X
GRS X
X
*
X
FRS X
X
X
*
X
*
X
AETX X
X
*
X
PRI X
X
*
X
CcMC X
*
X
TI OT X
*
COwW X
X
X
*
X
TSO X
*
X
PSB X
*
X
TJI D x
*
EJECT

X X X X
_________________________________ *
_________________________________ *

x ADDRESS CGENERAL PURPCSE X

x SAVE AREA FOR TASKS REG S «x

x WHEN TASK NOT ACTI VE X
_________________________________ *

x ADDRESS GENERAL PURPCSE X

x SAVE AREA FOR TASKS X

x FLOATI NG PO NT REGQ STERS X

x WHEN TASK NOT ACTI VE X
_________________________________ *

RESERVED SET TO 0O X
_________________________________ *

x ADDRESS OF END OF TASK X

x ROUTI NE SPECI FIED I N X

x ATTACH MACRO - EXTR - X
_________________________________ *

X X TASK x TASK x

X x LIMT x DI SPATCHx

X x PRI ORI TYXPRI ORI TY x
_________________________________ *

X COMPLETI ON CODE X

1 | F NOT COWPLETE O X
_________________________________ *

x ADDRESS OF TASK | NPUT AND x

x QUTPUT TABLES X
_________________________________ *

X ADDRESS OF COVIVAND X

x SCHEDULER COVMUNI ATl ONSS X

X LI ST X
_________________________________ *

x ADDRESS OF TI ME SHARI NG X

x FLAGS FIELD I N TCB X
_________________________________ *

X ADDRESS OF PROTECTED X

x STORAGE CONTROL BLOCK X
_________________________________ *

X x THE TERM NAL JOB x

X X | DENTI FI ER X

*

OBTAI N DI SPATCH PRI ORI TY FOR MAI N,

ATTACH SECOND.

SNAP THE TCB'S FOR MAI N AND SECOND.
SET A WAT MACRO FOR THE ECB QUT OF SECOND

DETACH SECOND.

E o T T R

L R B SR T R B N N B B

* ok Xk X * L T S

* ok Xk

THE ANSVWER PARM IS A FULL WORD | N CORE STORAGE FOR THE RESULT
OF THE EXTRACT MACRO.

'S PARM | NDI CATES THI S JCB.

THE FI ELDS PARM SPECI FI ES WHI CH ONE WE DESI RE.

EXTRACT ANSWER, ' S', FI ELDS=(PRI)

SR 10, 10 ZERO REG STER 10

LA 9, ANSVER GET ADDRES OF ANSVER
IC 10, 3(9) GET PRRORITY OF MAIN
SRL 10,1 DI VIDE DI SP PRI BY 2
LNR 10,10 MAKE DI SPATCH PRI NEG

THE EP IS THE ENTRY PO NT FOR THE LOAD MODULE TO BE ATTACHED.
PARAM SPECI FI ES A LI ST OF PARM TO BE PASSED TO THE LOAD MODULE
AND VL | NDI CATES AN | NDEFI NIl TE NUMBER OF PARMVS.

ECB SPECI FI ES THE ADDRESS OF ANDEVENT CONGRCL BLOCK TO BE
ECB SPECI FI ES THE ADDRESS OF AND VENT CONGROL BLOCK TO BE
ECB SPECI FI ES THE ADDRESS OF AN EVENT CONGRCL BLOCK TO BE
POSTED WHEN SECOND COVPLETES EXECUTI ON.

THE LPMOD SPECI FI ES AN | NTEGER VALUE TO BE SUBTRACTED FROM
THE LIMT PRIORI TY OF SECOND.

THE DPMOD G VES ANVALUE TO BE ADDED TO DI SPATCH PRIORI TY OF
MAIN. IN TH S EXAMPLE A REGQ STER VALUE.

THE ADDRESS OF THE TCB OF SECOND |'S RETURNED I N REG 1.

ATTACH EP=SECOND, PARAM=(OTPT, ONE) , VL=1, ECB=ECB1, LPMOD=1, X
DPMOD=(10)
ST 1, TCBADD SAVE TCB ADDRESS.

NEXT SNAP THE TCB FOR MAI N AND SECOND USI NG EXTRACT MACRO
SEVEN1 1S THE AREA FOR THE RESULT.

THE 'S | NDI CATES TCB FOR MAI N.

THE FI ELDS SPECI FY THE FI ELDS TO BE SNAPPED.

EXTRACT SEVEN1, ' S', FlI ELDS=(ALL, TSO, PSB, COW TJI D)

PRI NT NOGEN

XSNAP T=NOREGS, STORAGE=(SEVEN1, SEVEN1+44) , X
LABEL="TCB FOR MAIN WTH PRI ORI TY LONERED

PRI NT GEN

NEXT SNAP THE TCB FOR SECOND
TCBADD IS A FULL WORD CONTAI NI NG THE ADDRESS OF SECOND TCB.

EXTRACT SEVENL, TCBADD, FI ELDS=(ALL, TSQO, PSB, COW TJI D)

PRI NT NOGEN

XSNAP T=NOREGS, STORAGE=(SEVEN1, SEVEN1+44) , X
LABEL="THIS I S TCB FOR SECOND ON FI RST CALL'

PRI NT GEN

| SSUE A WAI T MACRO FOR THE EVENT CONTROL BLOCK PASSED TO
SECOND | N THE ATTACH MACRO. CONTROL PROGRAM W LL POST ECB.

* *

* ok X kX X X X EE I

¥ % Xk 3k X X X 3k X X X X

* Xk k F

* X X %k F

WAI T ECB=ECB1

THE TCBADD |'S THE ADDRESS OF THE TCB FOR LOAD MODULE TO BE
DETACHED

DETACH TCBADD

PRI NT NOGEN

PUT OTPT, MHEADL
LPR 10,10

PRI NT GEN

RESCRE PRI ORI TY FOR MAI N.

(10) | NDI CATES THE VALUE TO BE ADDED TO DI SPATCH FOR MAIN | S
IN REG 10.

THE ' S' | NDI CATES THE CURRENT LOAD MODULE.

CHAP (10),'S
EJECT

ATTACH SECOND W TH EXI T ROUTI NE TO DETACH SECOND.
SNAP TCB FOR MAI N AND SECOND.
THEN SET WAI T MACRO | N MAI N BEFORE CONTI NUI NG

EXTR |'S THE ONYL NEW PARM | T Gl VES THE ADDRESS OF A ROUTI NE TO
BE G VEN CONTROL WHEN SECOND FI NI SHES.

ATTACH EP=SECOND, PARAM=(OTPT, ZERO) , ECB=MECB, ETXR=MEXTR, VL=1
ST 1, TCBADD PUT ADD OF TCB FOR DETACH

AGAI N SNAP TCB'S FRO MAI N AND SECOND.

EXTRACT SEVEN, TCBADD, FI ELDS=(ALL)

PRI NT NOGEN

XSNAP STORAGE=(SEVEN, SEVEN+28) , T=NOREGS, X
LABEL="THI S I S TCB FOR SECOND ATTACH OF SECOND

PRI NT GEN

EXTRACT SEVEN, 'S, Fl ELDS=(ALL)

PRI NT NOGEN

XSNAP STORAGE=(SEVEN, SEVEN+28) , T=NOREGS X
LABEL="TCB FOR MAIN W TH ONLY ALL SPECI FI ED FOR FI ELDS

PUT OTPT, MHEAD2

PRI NT GEN

W AT FOR SECOND TO COVPLETE BEFORE ATTACHI NG THI RD.

VWAI T ECB=MECB

b T L T T R I T R

* ok X F F * X X %k F

* ok X X ok

* ok X X ok

MEXTR

L I

EJECT
XC MECB(4) , MECB CLEAN OQUT MECB FOR WAI T AND PCST

ATTACH THI RD
SNAP PRI ORI TY OF MAI N
WAI T ON THI RD

HERE ECB | S PASSED AS PARM
DPMOD | S NEGATI VE | NTEGER

ATTACH EP=THI RD, PARAM=(OTPT, MECB) , DPMOD=- 30
ST 1, TCBADD SAVE TCB ADDRESS FOR DETACH

EXTRACT PRI ORI TY FOR MAI N AND SNAP | T.

PRI NT NOGEN
EXTRACT ANSVER, ' S', FI ELDS=(PRI)
XSNAP T=NOREGS, STORAGE=(ANSVIEER, ANSVER+4) ,
LABEL=" PRI ORI TY SNAPPED FOR MAI N ON ATTACH TO THI RD
PRI NT GEN

WAI T FOR TH RD TO COVPLETE.
WAI T ECB=MECB

DETACH THI RD.

DETACH TCBADD

CLOSE OUTPUT FILE AND RETURN

PRI NT NOGEN
CLOSE (OTPT,)
XRETURN SA=*, TR=NO
DROP 12

EJECT

EXI T ROUTI NE FOR SECOND CALL TO SECOND.

XSAVE TR=NO, SA=NO
PRI NT GEN

DETACH SECOND | N EXI T ROUTI NE W TH ADD OF TCB OF SECOND
| N TCBADD.

DETACH TCBADD

PRI NT NOGEN
XRETURN SA=NO, TR=NO

VECB DC F 0
ZERO DC F 0
ONE DC F 1
ECB1 DC F o
TCBADD DC F 0O
ANSWER DC F 0
SEVEN DC 7F 0O
SEVEN1 DC 7F 0
VHEAD2 DC CL132' OSECOND W LL ATTACHED AGAIN W TH POST ON COVPLETE
VHEAD DC CL132' OMAIN | S NOW EXECUTI NG NEXT OUTPUT SECOND
MHEADL DC CL132' OMAI N EXECUTI NG W TH DI SPATCH PRI ORI TY HALVED
OrPT DCB DSORG=PS, MACRF=PM LRECL=132, BLKSI ZE=132, RECFM=FA,
DDNAMVE=FTO06F001, EROPT=ACC
END

/ *

/1 OBJECT. SYSLMOD DD DSNAME=&&L OADMOD(MAI N) , DI SP=(OLD, PASS)
/| DATA. STEPLI B DD DSNAME=&&L OADMOD, DI SP=(OLD, PASS)

/ / DATA. SYSUDUWP DD SYSQUT=A

/ / DATA. XSNAPOQUT DD UNI T=AFF=FT06F001

11*
11*
/1*
[1*

THIS JOB WLL RUN WTH TIME = 170 SECONDS
RECORDS = 1500

/'l EXEC ASGCG
/1 SQURCE. | NPUT DD *

[*LOG

*

L R T R B N T

L T S I B

MAI' N

* %k %k X X X F

L I S

TEH PURPOSE OF THIS JOB |'S TO DEMONSTRATE BASI C DI RECT ACCESS
VETHOD (BDAM) .

THE BASI C FLOWOF THI'S JOB IS AS FOLLOAS.

1 JOB STEP 1 CREATES THE DI RECT ACCESS DATA SET

2 JOB STEP 2 ADDS RECORD TO THE DATA SET.

3 JOB STEP 3 UPDATES THE DATA SET.

4 JOB STEP 4 PRINTS OUT THE DATA SET I N LOG CAL ORDER

EJECT

THI'S JOB STEP CREATES THE DI RECT ACCESS DATA SET.

THE I NPUT IS CARDS WTH A KEY OF 4 DIGA TS BETWEEN 1001 AND
1020. THE KEY IS CONVERTED TO A BI NARY NUMBER WHI CH | S USED
AS THE BLOCK NUMBER FOR THE | NPUT RECORD. FOR EACH | NPUT

THE NEXT 40 CHARACTERS ON THE CARDS ARE WWRI TTEN TO DI SK.

FOR EACH KEY THAT IS NOT PRESENT A DUMW RECORD IS WRI TTEN ON
DI SK. THUS THERE ARE 20 BLOCKS OF DATA ON THE DI SK.

SPACE 5

PRI NT NOGEN
EQUREGS
CSECT
XSAVE

PRI NT GEN

OPEN THE | NPUT DATA SET AND THE OUTPUT DATA SET. | N TIALIZE
REG STER 8, 9, AND 7. REGQ STER 8 HAS MAX KEY VALUE, REG STER
9 HAS THE M N KEY VALUE, AND REG STER 7 HAS ADDRESS OF

THE COVPARE | NSTRUCTI ON,

OPEN (I NPT, | NPUT, OTPT, QUTPUT)

PRI NT NOGEN

LA R7, COMPARE

LA R8, 1020 SET R8 TO LAST KEY VAUUE
LA R9, 1001 SET R9 TO M N KEY VALUE

READ | N THE CARD AND CONVERT THE KEY TO BI NARY FORM I N
REG STER 10. THEN CHECK TO SEE IF TH'S | S THE NEXT KEY I N
THE LI ST OF KEYS.

GET I NPT, AREA

COVPARE

L T S

L B R R

EE R T L R S

L R T . S

XDECI R10, AREA
CR R9, R10 CHECK FOR KEY
BNE DUMWY I F NOT GO TO QUTPTT DUMWY RECORD

AT THI'S PO NT VE KNOW THAT THI S IS THE NEXT KEY TO BE WRI TTEN
SO WRI TE THE | NPUT TO KI SK, AND THE CHECK THE DECB W TH A
CHECK MACRO. THEN | NCREASE THE M N KEY VALUE AND RETURN FCR
NEXT | NPUT.

SPACE 5

FOR THE WRI TE STATEMENT THE DCEB1 |S THE NAME OF THE DATA
EVENT CONTROL BLOCK, THE SECOND PARAMITE SF | NDI CATES NORMAL
VWRI TE CONDI TION, OTPT IS THE DCB NAME,, AREA IS THE ADDRESS
VWHERE THE OUTPUT DATA | S STORED.

THE PARAMETER TO THE CHECK MACRO | S THE DECB NAME FOR THE
WRI TE STATEMENT.

VWRI TE DECB1, SF, OTPT, AREA

SPACE 5

CHECK DECB1

PRI NT NOGEN

LA R9, 1(R9) ADD ONE TO KEY COUNT
B LOOP RETURN FOR NEXT | NPUT

AT THI'S PO NT THE KEY JUST READ | S GREATER THAN THE M N VALUE
IN REG STER 9. NOW CHECK THE EXPECTED KEY VALUE TO SEE | F
I T I'S GREATER THAN THE MAX KEY VALUE | N REGI STER 8.

CR R9, R8 CHECK TO SEE | F LAST | NPUT
BH EQJ | F H GH THEN DONE
PRI NT GEN

AT THI'S PO NT THE LAST KEY READ | N WASA GREATER THAN M N KEY
VALUE BUT LWBS THAN MAX KEY VALUE, THEREFORE, WRI TE A DUMMY
RECORD TO THE DATA SET.

SPACE 5

THE FI RST POSI TI ONAL PARAMETER |S THE DECB NAME TO BE
CREATED. THE SD | NDI CATES THAT THIS I S A DUMW RECORD.

OTPT IS THE DCB NAME. DUMAREA | S ADDRESS OF 5 BYTES OF CORE
FOR USE I N DUMW QUTPUT.

I NCREASE THE M N KEY VALUE AND RETURN TO CHECK THE CURRENT
KEY VALUE.

AGAIN CHECK | S USED TO CHECK THE DECB.

VRl TE DECB2, SD, OTPT, DUMAREA

SPACE 5

CHECK DECB2

PRI NT NOGEN

LA R9, 1(R9) | NCREASE R9 BY ONE
BR R7 GO TO DO NEXT COVPARE

AT THI'S PO NT WE HAVE JUST READ I N THE LAST | NPUT SO GO TO
FI NI SH OUTPUTTI NG DUMMY RECORDS UNTI L THE DATA SET IS FULL.

* ok X * X X

ECDADD LA R7, DUMWY
BR R7 RETURN TO CONTI NUE DUMWY QUTPUT
PRI NT GEN
SPACE 5

NOW WE HAVE FI LLED THE DATA SET SO CLOSE THE DATA SETS AND RE
NOW WE HAVE FI LLED THE DATA SET SO CLOSE THE DATA SETS AND
RETURN TO OPERATI NG SYSTEM

* ok X X 3k X X

EQJ CLOSE (I NPT, , OTPT,)
PRI NT NOGEN
XRETURN SA=*
PRI NT GEN
SPACE 5

VWHEN AN UNCCORRECTABLE ERROR HAS OCCURED IN THE WRI TE STATEMEN
THI'S ROUTINE IS G VEN COOTROL BY THE CONTROL PROGRAM

SYNADAF RETURNS | N REG STER 1 THE ADDRESS OF AN AREA THAT
CONTAI NES DEBUGGNNG | NFORMVATI ON SO PRINT I T AND RETURN

THE SYNADRLS MACRO RESTORES THE REGQ STERS THAT EXI STED

VWHEN CHECKER RECEI VED CONTRCL | T RESTORES THEM FOR YQOU.

THE SYNAD ROUTI NE CAN NOT SAVE | N CALLI NG PROGRAM SAVEAREA.

L B T R I T

CHECKER SYNADAF ACSMETH=BDAM
PRI NT NOGEN
XPRNT 0(1)
PRI NT GEN
SPACE 5
SYNADRLS
BR 14
AREA DC 10F O
DC 10F O
DS CL5

2
=
i

THIS 1S DCB FOR BDAM OUTPUT TO CREATE BDAM DATA SET.

WHEN CREATI NG THE DATA SET THE DSORG MUST BE PS.

THE MACRF MUST BE (W)

DEVD MUST BE DA.

DDNAME | S STANDARD.

SYNAD | S ADDRESS OF ROUTI NE TO BE G VEN CONTROL WHEN ERROR
BURI NG EXECUTI ON OF THE |/ O OCCURS.

L S B

OrPT DCB DSORG=PS, MVACRF=(W) , DDNAME=DAQUTPUT, DEVD=DA,
SYNAD=CHECKER
PRI NT NOGEN
I NPT DCB DSORG=PS, MACRF=GM LRECL=80, BLKSI ZE=80, RECFM=F,
DDNAME=I NPUT, EROPT=ACC, EGDAD=ECDADD
LTORG
PRI NT GEN

/*

END

/ | DATA. DAOUTPUT DD DSNANME=&&TEMP, UNI T=SYSDA, DI SP=(NEW PASS)
/| DCB=(DSORG=DA, BLKSI ZE=40, KEYLEN=4, RECFM=F) , SPACE=(44, (21))
/ | DATA. SYSUDUMP DD SYSOUT=A

/ | DATA. XSNAPOUT DD SYSOUT=A

/ / DATA. | NPUT DD *

1001FI RST RECORD

1003THI RD RECORD

1005RECORD FI VE

1007SEVENTH RECORD

1009NI NETH RECORD

1011ELEVENTH RECORD

1013THI RTEENTH RECORD

1015FI FTEENTH RECORD

1017SEVENTEENTH RECORD

1019NI NETEENTH RECORD

/*

/] EXEC ASGCG
/ / SOURCE. SYSGO DD DI SP=(OLD, PASS, DELETE)
/ / SOURCE. | NPUT DD *

* ok X F

SECOND

* ok X X * X X

L I R T T

NEXTREC

* ok X X * X *

THI S CSECT ADDS RECORD TO THE DATA SET THAT ALREADY EXI STS.

PRI NT NOGEN
EQUREGS
CSECT

XSAVE

FI RST OPERN THE | NPUT AND OUTPUT DATA SETS. THEN SET REGSTER
11 TO 1000 WHI CH | S USED TO RELATI VE BLOACK ADDRESS FOR
THE RECORDS TO BE ADDED TO THE DATA SET.

OPEN (I NPT, | NPUT, DI RECT, QUTPUT)
LA R11, 1000

READ THE | NPUT AND CONVERT THE DEY TO BI NARY FROM | N REGI STER
2 THEN COVPUTE THE RELATIVE BLOCK ADDRESS AND STORE THI S AT
REF.

THEN WRI TE THE NEW RECORD | N THE PROPER PLACE ON DI SK.

GET I NPT, KEY
XDECI R2, KEY
SR R2, R11
ST R2, REF
PRI NT GEN
SPACE 5

THE POSI TI ONAL PARAMVETER ARE

1 NAMVE OF THE DATA EVENT CONTROL BLOCK TO BE CREATED
BY THE WRI TE MACRO.
2 TYPE DA ADD A NEW BLOCK WHEREEVER THERE | S SPACE;

THE SEARCH FOR AVAI LBBLE SPACE STARTS ATTHE DEVI CE ADDRESS

ADDRESS | N THE BLOCK ADDRESS OPERAND.. TYPE SEARC IS
IN THE OPTCD PARAMETER | N DCB MACRO
3 DCB NAME HERE | T DI RECT.

BLOCK TO BE WRI TTEN.

5 LENGTH - NUMBER OF BYTE TO BE WRITTEN, 'S
CATES THAT THI S | S OBTAI NED FROM BLKSI ZE | N DCB.

THAT CONTAI N THE RELATI VE BLOCK ADDRESS.

WAI T MACRO HALTS TASK TILL I/O DONE.
THEN RETURN FOR NEXT | NPUT.

L B S T R N T I I B

VWRI TE DECB, DA, DI RECT, DATA, ' S', KEY, REF+1

PRI NT NOGEN

PRI NT GEN

SPACE 5

WAI T ECB=DECB

PRI NT NOGEN

B NEXTREC RETURN FOR NEXT | NPUT

b T

EQJ CLOSE (| NPT, , DI RECT,)
XRETURN SA=*
PRI NT GEN
SPACE 5

TH'S I'S THE ERROR REUTI NE FOR DEBUGG NG,

* ok X F ok

CHECKER SYNADAF ACSMETH=BDAM
PRI NT NOGEN
XPRNT 0(1)
PRI NT GEN
SYNADRLS
BR 14
KEY DS F
DATA DS CL40
DC CL100' '
REF DS F
PRI NT NOGEN
| NPT DCB DSORG=PS, MACRF=GM LRECL=80, RECFM=F, BLKSI ZE=80,
EROPT=ACC, EODAD=EQJ, DDNAVE=I NPUT
PRI NT GEN
SPACE 5

THE KEYWORD PARAMETERS FOR DCB ARE

DSORG | S DA SPECI FYI NG DI RECT ACCESS.

RECFM | S FI XED

KEYLEN - KEY LENGTH IS 4 BYTES.

BLKSI ZE 1S 40 BYTES.

MACRF - WRI TE BLOCKS ARE TO BE ADDED TO THE DATA SET.

L B R

4 AREA ADDRESS ADDRESS OF MAI N CORE CONTAI NI NG THE

6 KEY ADDRESS | S ADDRESS OF MAI N CORE AREA CONTAI N-
I NG THE KEY.
7 BLOCK ADDRESS ADDRESS OF THREE BYTES IN AM N CORE

CLOSE | NPUT FILE CLOSE OUTPUT FILE AND RETURN TO SYSTEM

OPTCD - E EXTENDED SEARCH R RELATI VE BLOCK ADDRESSI NG

* X X %k F

DI RECT

/*

LI MCT NUMBER OF BLOCKS TO BE SERRCHED FOR EKY.
DDNAME - STANDARD.
SYNAD - ADDRESS COF ROUTI NE FOR ERROR DURI NG WRI TE.

DCB DSORG=DA, RECFM-F, KEYLEN=4, BLKSI ZE=40, MACRF=(WA) ,
OPTCD=ER, LI MCT=3, DDNAME=DI RADD, SYNAD=CHECKER

LTORG

END

/ | DATA. DI RADD DD DSNANME=&STEMP, UNI T=SYSDA, DI SP=(OLD, PASS)
/| SPACE=(44, (21))

/ | DATA. SYSUDUMP DD SYSOUT=A
/ | DATA. XSNAPOUT DD SYSOUT=A
/ | DATA. | NPUT DD *
1002SEDOND RECORD
1004FOURTH RECORD

1006S| XTH RECORD

1008EI GHT RECORD

1010TENTH RECORD
1012TWELTH RECORD
1014FOURTEENTH RECORD
1016S| XTEENTH RECORD

1018El GHTEENTH RECORD
1020TVENTI ETH RECORD

/*

/| EXEC ASGCG
/1 SOQURCE. SYSGO DD DI SP=(CLD, PASS)
/1 SOQURCE. | NPUT DD *

L T . S

THI RD

¥ 0% % %k Ok X X X F

:

TH' S CSECT UPDATES THE DATA SET.

OPEN THE DATA SET AND SET REG STER 11 TO 1001 WHI CH IS USED
TO COMPUTE THE RELATI VE BLOCK ADDRESS.

PRI NT NOGEN

EQUREGS

CSECT

XSAVE

OPEN (I NPT, I NPUT, DI RECT, OUTPUT)
LA RI11,1001

READ I N TEH | NPUT AND CONVDRT THE KEY TO A RELATI VE
BLOCK ADDRESS. THEN STORE RELATI VE BLOCK ADDRESS | N REF.
READ THE RECORD W TH THI S RELATI VE ALOCK ADDRESS.

THE WRITE THE NEW I NPUT I N I TS PLACE THEN RETURN FOR NEXT
I NPUT.

GET I NPT, KEY
XDECI Rz, KEY
SR R2, R11
ST R2, REF
PRI NT GEN
SPACE 5

L I T S R R .

E o I

L T S T R I N N N B N

THE POSI TI ONAL PARAMVETER FOR READ MACRO ARE:

1 DECB NAME TO BE CREATED BY READ STATEMENT.

2 TYPE - DI - SEARCH FOR RECORD USES BLOCK

| DENTI FI CATI ON.

3 DCB ADDRESS DI RECT.

4 AREA ADDRESS - 'S' | NDI CATES THAT DYNAM C BUFFERI NG
'S TO BE USED.

5 LENGHT - 'S NUMBER OF BYTES COMES FROM DCB.

6 KEY ADDRESS - 0 | NDI CATES KEY NOT TO BE READ.

7 BLOCK ADDRESS - ADDRESS OF THREE BYTES CONTAI NI NG

RELATI VE BLOCK ADDRESS.

READ DECB, D ,DIRECT,'S ,'S , 0, REF+1
SPACE 5
CHECK DECB

LOAD REG STER 3 W TH BUFFER ADDRESS. THEN MOVE NEW DATA TO
BUFFER AND STORE BUFFER ADDRESS | N DCEB OF WRI TE STATEMETN.

L R3, DECB+12
M/C 0(30, 3), DATA
ST R3, DECBW12
SPACE 5

POSI TI ONAL PARAVETERS OF WRI TE MACRO ARE:

1 DECB NAME TO BE CREATED BY WRI TRE MACRO.

2 TYPE - DI - WRITE THE BLOCK AT THE DEVI CE ADDRESS
PROVI DED AT THE BLOCK ADDRESS OPERAND. DATA AND KEYS ARE
VARl TTEN.

3 DCB ADDRESS - DI RECT.

4 AREA ADDRESS - 'S' | NDI CATES DYNAM C BUFFERI NG
ADDRESS PROVI DED | N DECB +12 PREVI OQUSLY BY READ AND STCRE.
5 LENGTH - - 'S | NDI CATES LENGIH CMVES FROM BLKSI ZE
I N DCB.

6 KEY ADDRESS - 0 | NDI CATES KEY NOT WRI TTEM

7 BLOCK ADDRESS ADDRESS OF THREE BYTES OF MAIN CORE

CONTI ANI NG RELATI VE BLOCK ADDRESS.

WRI TE DECBW DI, DIRECT,'S' ,' S, 0, REF+1
SPACE 5

CHECK DECBW

B LOCP

PRI NT NOGEN

CLOSE DATA SETS AND RETURN TO OS.

CLOSE (1 NPT, , DI RECT,)
XRETURN SA=*

ERROR ROUTI NE PROVI DED BY SYNAD PARM | N DCB.

*

*

CHECKER SYNADAF ACSMETH=BDAM

KEY
DATA

REF
I NPT

EE T R N I T N R I T B T R

DI RECT

/*

XPRNT 0(1)
SYNADRLS

BR 14

DC FO

DC 10F O
DC CL100' '
DC FO

DCB DSORG=PS, MVACRF=GM LRECL=80, BLKSI ZE=80, RECFMF-F,
DDNAME=I NPUT, EROPT=ACC, EODAD=EQJ

PRI NT GEN

SPACE 5

THE KEYWORD PARAMETERS FOR DCB ARE
DSORG DA DI RECT ACCESS.
DDNAME STANDARD DI RECTDD
MACRF
R READ
| SEARCH TO BE MADE BY BLOCK | DENTI FI CATI ON.
S DYNAM C BUFFERI NG
C CHECK ABSENCE DENOTES WAI T.
W WRITE
| SEARCH TO BE MADE BY BLOCK | DENTI FI CATI ON.
C HCECK ABSECCE DENTCES WAIT.
BUFL BUFFER LENGTH 40
OPTCD - R - SEARCH TO BE MADE BY BLOCK | DENTI FI CATI ON.
BUFNO - NUMBER OF BUFFERS.
SYNAD - ERROR ROUTI NE ADDRESS.

DCB DSORG=DA, DDNAME=DI RECTDD, MACRF=(RI SC, W C) , BUFL=40,
OPTCD=R, BUFNC=1, SYNAD=CHECKER

LTORG

END

/ | DATA. XSNAPOUT DD SYSOUT=A

/ | DATA. SYSUDUVP DD SYSOUT=A

/ | DATA. DI RECTDD DD DSNAVE=&&TEMP, DI SP=(OLD, PASS) , SPACE=(44, (21)),
/1 UNI T=SYSDA

/ | DATA. | NPUT DD *

1020CGANGE RECORD TVENTY

1002CHANGE RECORD TWO

1010CHANGE RECORD TEN

/*

/| EXEC ASGCG
/1 SOQURCE. SYSGO DD DI SP=(CLD, PASS)
/ / SOURCE. | NPUT DD *

* ok X X F

FOUR

TH'S JOB STEP READS | N THE CURRENT RECORDS AND PRI NTS THEM

QuT.

PRI NT NOGEN
EQUREGS
CSECT

XSAVE

X

* ok X * X X

OPEN | NPUT AND OUTPUT DATA SETS.

SET R11 TO NUMBER OF BLOCKS

SET R3 TO 0 THE RELATWE ADDRESS OF FI RST BLOCK.
STORE R3 AT REF.

OPEN (I NPT, | NPUT, OTPT, OUTPUT)

LA R11, 20
SR R3, R3
ST R3, REF
PRI NT GEN

SPACE 5

THE PCSI TI ONAL PARAMETERS FOR THE READ MACRO ARE

DECB NAME TO BE CREATED BY READ MACRO.

TYPE DI RECT ADDRESS | NG BY RELATI VE BLOCK.

DCB ADDRESS NNPT

AREA ADDRESS AREA WHERE RETRI EVED DATA TO BE PUT.
LENGTH - 'S TO BE TAKEN FROM DCB.

KEY ADDRESS - 0 | NDI CATES KEY NOT TO BE READ.
BLOCK ADDRESS ADDRESS OF THREE BYTES OF CORE
CONTAI NI NG THE RLLATI VE KEY ADDRESS.

R R I R I R
. ~NOoO O~ WN R

3

READ DECB, DI, | NPT, | NPTT, ' S', 0, REF+1
SPACE 5
CHECK DECB

| NCREASE RELATI VE BLOCK ADDRESS, THEN OUTPUT THE RECORD
RETURN FOR NEXT | NPUT.

* ok X F X *

L R3, REF
LA RS, 1(R3)

ST R3,REF

PRI NT NOGEN

PUT OTPT, | NPTT-1
BCT RIL1, LOOP

CLOSE DATA SETS AND RETURN TO OS.

b T

CLOSE (I NPT, , OTPT,)
XRETURN SA=*

ERROR REOUTI NE FOR USE VHEN ERROR OCCURS.

L T

CHECKER SYNADAF ACSMETH=BDAM

XPRNT 0(1)
SYNADRLS
BR 14
REF DC FoO
DC X 00'
INPTT DC 10F O
OTPT DCB DSORG=PS, MACRF=PM LRECL=40, BLKSI ZE=40, RECFM=FA,
DDNAVE=FT06F001, EROPT=ACC
PRI NT GEN
SPACE 5
| NPT DCB DSORG=DA, MACRF=(Rl C) , RECFMEF, BLKSI ZE=40,
OPTCD=ER, LI MCT=3, DDNAVE=DI RECTDD, SYNAD=CHECKER
LTORG
END

/ *

/ | DATA. FTO6F001 DD SYSOUT=A

/ | DATA. DI RECTDD DD DSNAVE=&&TEMP, DI SP=(OLD, DELETE) , SPACE=(44, (21)),
/1 UNI T=SYSDA

/ | DATA. SYSUDUMP DD SYSOUT=A

X

[1*
[1* THI' S PROGRAM | S AN EXAVMPLE OF THE BPAM ACCESS METHOD

/1> I T USES THE BLDL MACRO AND THE TWO KI NDS OF FI ND MACROS
[+ TI M NG AND RECORD CONSI DERATI ONS: 40 SECONDS, 2500 RECORDS
[1*
/| EXEC ASGCG, PARM=" NOXREF'
//SYSIN DD *
* THI' S PROGRAM | S DESI GNED TO | LLUSTRATE THE USE OF THE
PARTI TI ONED ACCESS METHOD. | T HAS TWO SECTI ONS;
SECTI ON 1,

USES THE BLDL MACRO | NSTRUCTI ON TO BUILD A LI ST THAT
CONTAI NS A RELATI VE TRACK ADDRESS FOR EACH USER CREATED
ENTRY. THE LI ST MJUST BEG N ON A HALF- WORD BOUNDRY W TH
A USER SUPPLI ED FULL-WORD OF CONTROL | NFORMATI ON
HALF-WORD 1 -- CONTAINS THE COUNT OF LI ST ENTRIES (MAX.
12)
HALF-WORD 2 -- CONTAINS THE LENGTH (I N BYTES, MAX. 76)
OF EACH ENTRY
THE USER SUPPLI ES AT LEAST 14 CONTI GUOUS BYTES FOLLOW
ING THE LI ST DI SCRI PTOR FULL- WORD FOR EACH LI ST ENTRY.
BYTES 0-7 CONTAIN THE MEMBER NAME LEFT JUSTI FI ED AND
RI GHT PADDED W TH BLANKS | F NECESSARY. BYTES 8- 13 ARE
LEFT UNALTERED. THE BLDL MACRO | NSTRUCTI ON COVPLETES
EACH LI ST ENTRY AND SUPPLI ES THE RELATI VE TRACK ADDRESS
AND BLOCK NUMBER ON THAT TRACK OF THE MEMBER NAME, THE
CONCATENATI ON NUMBER, WHERE FOUND (PRI VATE, LI NK, OR JOB
LI BRARI ES), WHETHER ENTRY NAME | S A MEMBER NAME OR AN
ALI AS, AMOUNT AND TYPE OF USER DATA I N THE PDS DI RECTORY
ENTRY. THI'S | NFORVATI ON |'S PLACED | N BYTES 8-13 OF EACH
LI ST ENTRY. A FIND MACRO | NSTRUCTI ON | S | SSUED WHI CH
CONVERTS THE RELATI VE ADDRESSES | N THE BLDL LI ST I NTO
ABSOLUTE ADDRESSES AND | NSERTS THEM | NTO THE DCB (THI S
ALLOAS SUBSEQUENT READS/ WRI TES OR GETS/ PUTS TO DEAL
W TH THE DESI RED MEMBER) .

NOTE ALL MEMBER ENTRIES MUST BE | N ALPHAMERI C CRDER
SECTI ON 2,

| SSUES A FIND MACRO | NSTRUCTI ON ONLY THI' S TI ME THE FI ND

I'S DI RECTED TO DO THE PDS DI RECTORY SEARCH | TSELF. THE

RELATI VE ADDRESS | S CONVERTED AS I N SECTION 1 AND

| NSERTED | NTO THE DCB.

TH S PROGRAM USES MACROS
XSAVE
XRETURN
XPRNT
READ
BLDL
FI ND
CHECK
LI STHD (PROGRAM LOCAL)
LI ST (PROGRAM LOCAL)
DCB
DCBD
EACH OCCURRANCE | S EXPLAI NED | N THE PROGRAM TEXT.
REG STER USAGE | S EXPLAI NED | N THE EQUATE SECTI ON

PROGRAM LOG C:

L I S S R T R T N N B . N N N R S A S R T N N . S R EE S R T B N B N N N R S

THI S PROGRAM RECOVERS FROM THE SYS1. MACLI B AND THE

CVACLI B PROGRAM LI BRARI ES THE DEFI NI TI ONS FOR FOUR
SYSTEM MACROS: CALL, RETURN, SAVE, AND DCB.

MACROS CALL, RETURN, AND SAVE ARE RECOVERED

USI NG THE BLDL- FI ND MACRO COMBI NATI ON. THE DCB MACRO
'S RECOVERED USI NG THE ' D TYPE FI ND MACRO | NSTRUCTI ON.
THE PROGRAM BUI LDS THE BLDL LI ST FOR CALL, RETURN,

AND SAVE, AND DCES THE BLDL ON THAT LIST. A LOCP

| S ENTERED THAT DOES A FIND (' C TYPE) ON THE FI RST

LI ST ENTRY. AN I NNER LOOP STARTS UP THAT READS A
BLOCK OF DATA AND DCES DE- BLOCKI NG AND PRI NTS THE
DATA. ON E-OF, THE LOOP FOOT (AECDAD) | S ACTI VATED
VWHI CH TESTS TO SEE | F THE BLDL LI ST HAS BEEN PROCESSED
| F YES, THE PROGRAM DOES THE 'D TYPE FIND FOR THE

DCB MACRO LI STI NG AND READS, DE-BLOCKS, AND PRI NTS
UNTIL IT I'S FI Nl SHED, THE PROGRAM THEN TERM NATES.

PROCRAM BY: RI CHARD FORD
JULY, 1972

L T S IS T N R T S . T

EJECT

MACRO

LI STHD &NAME, &NUM &LNGTH
GBLA &LEN

SPACE 2

* *x % % * *x * * *x % *x * *x * * *x * *x * *x *x * *x * *x * *x * * *x * *x * *x

THI' S MACRO EXPANSI ON W LL CREATE THE LI ST DI SCRI PTOR FI ELD
AS REQUI RED BY THE BLDL MACRO | NSTRUCTI ON

L
L

* * % % * *x *x * *x % *x * *x *x * *x * *x * *x *x * *x * *x * *x * * * * *x * *x

SPACE 2
* ROUND GLOBAL VARI ABLE &LNGTH TO EVEN NUMVBER | F NECESSARY
&LEN SETA (((&LNGTH+1)/2) *2)
*

X ATTACH BLDL LI ST TO &NAME
&NANVE DS OH . ALI GN TO HALF- WORD BOUNDRY AND
* STI CK TO &NAME
DC H &NUM . NUMBER OF BLDL LI ST ENTRI ES
DC H &LNGTH . DEFI NE LENGTH | N BYTES OF EACH
X ENTRY
MEND
SPACE 10
MACRO
LI ST &ENTRY
GBLA &LEN
LCLA &T1
SPACE 2
* x % *x * *x * % *x * *x * *x * * *x % *x * *x * * *x * *x * *x * * *x * *x * *
THI' S MACRO CAUSES EACH LI ST ENTRY TO BE PLACED | NTO THE BLDL
LI ST AND TO ALLOCATE STORAGE FOR EACH ENTRY | NTO WHI CH THE
CONTROL PROGRAM W LL PLACE ANY DI RECTORY | NFORVATION | T CAN
FI ND ABOUT EACH ENTRY. EACH ENTRY IS &L.NGTH BYTES LONG
* x % *x * %X * % *x % *x * *x * * *x * *x * *x * * *x * *x * *x * * *x * *x * *
SPACE 2
X SET &T1 TO &LNGTH- 8 FOR CORRECT FI LL LENGTH AFTER ENTRY NAME
X DEFI NI TI ON
&T1 SETA (&LEN-8) GET LENGTH -8
*

E o T
E R T

DC CL8' &ENTRY" . ENTRY NAME | N CHARACTER, LEFT-
* JUSTI FI ED AND RI GHT PADDED WI'H BLANK
DC XL&T1' FF' . GENERATE CORRECT ENTRY LENGTH

MEND
TITLE ' BPAM |/ O EXAMPLE

* THE DCB DSECT | HADCB FOLLOWS
SPACE 2
DCBD DSORG=PO, DEVD=DA
SPACE 2
BPAM O CSECT
SPACE 2
PRI NT NOGEN
BPAM XSAVE TR=' BPAM | / O EXAMPLE'
PRI NT GEN
SPACE 5
* MNEMONI C REGI STER EQUATES FOLLOW
SPACE 2
RL EQU 1 WORK REG STER
DCBADD EQU 2 DCB ADDRESS PO NTER
FNDADD EQU 3 TRACK ADDRESS POl NTER
DECB EQU 4 ALWAYS PO NTS TO THE DECB
AREA EQU 5 ALWAYS HAS | NTERNAL BUFFER ADDRESS
ONE EQU 6 USEFUL CONSTANT 1
HEADING EQU 7 EACH PRI NT HEADI NG ADDRESS
NEXTHD EQU 8 OFFSET TO NEXT HEADI NG
BLDLCNT EQU 9 COUNTI NG REG STER FOR PROGRAM CNTRL
RCRDPT EQU 10 RECORD POl NTER REG STER
END EQU 11 BUFFER END POl NTER
BASE EQU 12 BASE REG STER
SAVE EQU 13 SAVE AREA POl NTER
RETADD EQU 14 RETURN ADDRESS PO NTER
ENTRY EQU 15 ENTRY PO NT ADDRESS POl NTER
SPACE 5
* I NI TI ALl ZE REG STERS WHERE POSSI BLE
SPACE 2
LA DCBADD, BPAMDCB GET DCB ADDRESS
LA FNDADD, BLDLLI ST+12 GET BLDL RELATI VE ADDRESS
LA DECB, MAC GET DECB ADDRESS
LA AREA BUFFER GET | NTERNAL BUFFER AREA ADDRESS
LA ONE 1 USEFULL CONSTANT
LA HEADI NG CALLHD FI RST PAGE HEADI NG ADDRESS
LA NEXTHD, 81 OFFSET TO NEXT HEADI NG
LA BLDLCNT, 0 I NI TI ALl ZE COUNT
B OPDCB SKI P BLDL LI ST SPACE
SPACE 5
* NEXT, USE OUR MACROS TO GENERATE BLDL LI ST SPACE
SPACE 2
* GENERATE LI ST HEAD(DI SCRI PTOR WORD)
LI STHD BLDLLI ST, 3, 76
* GENERATE EACH LI ST ENTRY
LIST CALL
SPACE 5
LI ST RETURN
SPACE 5
LI ST SAVE
SPACE 5
* OPEN SYS1. MACLI B AND CVACLI B DATA SETS
SPACE 2
OPDCB OPEN ((DCBADD), (| NPUT))
TM BPAMDCB+48, X' 10' DID DCB GET OPEN OK
BNO EXIT IF NOT OPEN QUI T
SPACE 5
* CONSTRUCT BLDL LIST WTH THE BLDL MACRO | NSTRUCTI ON

SPACE 2

CFI ND

BREAD

DPRI NT
*

AEODAD

BLDL (DCBADD), BLDLLI ST

SPACE 5

ALL | NI TI ALl ZATI ON AND PROGRAM SETUP |'S DONE

BEG N BY PRI NTI NG THE FI RST HEADI NG TO LABEL OUR OUTPUT
SPACE 2

PRI NT NOGEN

XPRNT O(HEADI NG) , 81 PRI NT THE HEADI NG

XPRNT THRESKP, 3 SKI P SOME LI NES

SPACE 5

PRI NT GEN

DO FIND ON EACH LI ST ENTRY TO RECOVER THE ACTUAL TRACK
ADDRESS OF THE MEMBER | NTO THE DCB SO THAT I T CAN BE
ACCESSED BY QSAM GET/ PUT) OR BSAM READ WRI TE)

SPACE 2

FIND (DCBADD), (FNDADD), C

SPACE 2

THE ' C PARAMETER | NDI CATES TO THE FI ND MACRO THAT IT IS
DEALI NG W TH THE LI ST PRODUCT OF THE BLDL MACRO | NSTRUCTI ON
EXECUTI ON

SPACE 5

NOW READ THE FI RST BLOCK OF THE RETRI EVED DATA | NTO SOMVE
| NTERNAL BUFFER AREA SO THAT | T CAN BE HANDLED | N SOVE
USEFULL FASHI ON

SPACE 2

READ MAC, SF, (DCBADD), (AREA),' S

SPACE 5

NOW CHECK THE COVPLETI ON OF THE 1/ 0O I NI TI ATED BY THE
READ AS NO DE- BLOCKI NG OF THE RECOVERED DATA CAN BE DONE
UNTI L THE TRANSFER | S COVPLETE

SPACE 2

CHECK (DECB)

SPACE 2

THE READ RETURNS THE BLOCK SI ZE | NTO THE DCB FOR USE

I N RECORD DEBLOCKI NG AND OTHER DATA MANAGENENT

SPACE 5

USI NG | HADCB, DCBADD NOTE USI NG ON DCB DSECT

SPACE 5

NEXT FOUR | NSTRUCTI ONS ALLOW THE PROGRAM TO CORRECTLY
ACCESS NEXT BUFFER FULL OF | NFORMATI ON ALSO TO DETECT
SHORT BLOCKS AT END OF THE CURRENT MEMBER

SPACE 2

LH END, DCBBLKSI GET BLOCK SI ZE FROM DCB

L ENTRY, 16(DECB) GET | OB ADDRESS

SH END, 14(ENTRY) GET RELATI VE END OF NEW BUFFER
AR END, AREA GET ABSOLUTE ENDI NG ADDRESS
SPACE 2

LR RCRDPT, AREA COPY AREA PO NTER | NTO RECORD

PO NTER REG STER
M/C PRNTAREA+1(80), O(RCRDPT) DE- BLOCK RECORDS | NTO
81 BYTE PRI NTI NG BUFFER

PRI NT NOGEN

XPRNT PRNTAREA, 81 PRI NT THE LOG CAL RECORD

PRI NT GEN

SPACE 5

LA RCRDPT, 80(RCRDPT) UPDATE PO NTER BY 80 BYTE LRECL

CR RCRDPT, END FIND QUT | F BUFFER I S EMPTY

BNL BREAD | F AT END READ NEW BLOCK

B DPRI NT OTHERW SE- CONTI NUE PRI NTI NG
OQUT OF BUFFER AREA

SPACE 10

AR BLDLCNT, ONE | NCREMENT MEMBER COUNTER

C BLDLCNT, =F" 3'
BL UPDATE

™ TERMFLAG, X' FF'
BNO DRECTSCH

SPACE 2

'S BLDL SECTI ON COVPLETE

YES- GO TO UPDATE FI ND MACRO
PO NTER

OTHERW SE- 1 S TERM NATI ON FLAG
SET

NOT SET- GO FOR DI RECTORY
SEARCH EXAMPLE

OTHERWSE IT IS TIME TO END EXECUTI ON SO CLOSE THE
* OPEN DATA SET AND RETURN TO THE SYSTEM

SPACE 2
EXIT CLOSE (DCBADD)
SPACE 2
* TERM NATE NORMALLY
SPACE 2
PRI NT NOGEN
XRETURN ~ SA=*
PRI NT GEN
SPACE 10
UPDATE LA
*

AR HEADI NG, NEXTHD

B CFI ND
SPACE 5

* X X %k F

SPACE 5
DRECTSCH O TERMFLAG, X' FF'
SPACE 5

FIND (DCBADD), NAME, D

SPACE 2

L T

SPACE 2
PRI NT NOGEN
XPRNT DI SRCH, 81
XPRNT THRESKP, 3
PRI NT GEN
B BREAD
SPACE 2
LTORG
SPACE 2
DS 0D

NAVE DC CL8' GET

SPACE 5
BPAMDCB DCB DSCRG=PO,
DDNAME=MACLI B,

FNDADD, 76(FNDADD)

DI RECTORY | MVEDI ATELY.

HAS CHANGED TO A 'D .

UPDATE PO NTER TO NEXT LI ST
ENTRY

UPDATE HEADI NG PO NTER REG
TO NEXT HEADI NG

DO NEXT FIND, ETC.

FOLLOW NG SECTI ON DCES A DI FFERENT TYPE OF FI ND MACRO
| NSTRUCTI ON VWHI CH FORCES A SEARCH OF THE DATA SETS

I T TENDS TO BE SOVEWHAT LESS
LESS EFFI Cl ENT(SLONER) THAN A BLDL- FI ND COVBI NATI ON,
BUT MAY BE EASI ER TO ORGANI ZE AND CCODE.

SET TERM FLAG TO STOP

NOTE THAT THE ' C PARAMETER I N THE FI ND MACRO

THI'S | NDI CATES TO THE SYSTEM
THAT THE MEMBER NAME EXI STS ON A DOUBLE- WORD
BOUNDRY AND |'S A DOUBLE- WORD, LEFT-JUSTI FI ED AND

Rl GHT PADDED W TH BLANKS | F NECESSARY.

PRI NT NEW HEADI NG
SKI P SOVE LI NES

GO BACK TO PROCESS AS BEFORE

START LI TERAL POCL HERE

GET DOUBLE- WORD ALI GNVENT
DEFI NE NAME FOR FI ND

| NDI CATE PARTI TI ONED DATA SET
LOA CALLY CONNECT TO DD CARD

EODAD=AECDAD, ON END- OF- DATA GO HERE
MACRF=R | NDI CATE MACRO TYPE
ALL OTHER REQUI RED | NFORVATI ON W LL BE TAKEN FROM
* El THER THE DD CARD OR THE DATA SET LABEL.
SPACE 5
CALLHD DC CL81" 3r***xx*x*xxx CALL MACRO LI STI NG

m 0_81' 1**********

RETURN MACRO LI STI NG

X X X

DC CL8L" 1x****x*x*xx SAVE MACRO LI STI NG

SPACE 2
DI SRCH DC CL81" 1***x**x*x* GET MACRO LI STI NG USI NG DI RECT FI ND
PRNTAREA DC c1 PRI NTI NG BUFFER

DS 80C RECORD SPACE
TERMFLAG DC X 00 I NI TI ALI ZE TERM FLAG TO OFF
THRESKP DC cL3'3 LI NE SKI PPER

CNOP 0,8 BUFFER ALI GNVENT AND SPACE

BUFFER DS 500D
END BPAM O
/ *
/ / DATA. MACLI B DD DSN=SYS1. MACLI B, DI SP=SHR, UNI T=2314, VOL=SER=PSU01
/1 DD DSN=CMVACLI B, DI SP=SHR, UNI T=2314, VOL=SER=PSU02
[*LOG
/ * DUMP
/ / DATA. SYSUDUMP DD SYSQUT=A
/ *

11*
11*
/1*
[1*
11*
11
11
/1*
/1*
11*
11*
11*
/1*
/1*
11
11
11*

TH S PROGRAM DEMONSTRATES THE BSAM |/ O TECHNI QUES.
1. USES MACROS READ, WRI TE, CHECK, PO NT, DCB, OPEN,
CLOSE, AND A READ- PO NT READ FORM
2. VE WLL READ A CARD FROM THE READER, THEN ECHO
PRINT I T TO THE PRINTER. THE CARD | MACE IS THEN
VWRI TTEN TO DI SK USI NG THE READ- PO NT FORM .
AT EOD, A PO NT MACRO I S | SSUED TO REPGCSI TI ON THE
DI SK SO THAT THE FI RST RECORD CAN BE RECOVERED.
AT ECD FROM THE DI SK, THE DCBS ARE CLOSED AND
CONTROL |'S RETURNED TO THE CALLI NG PROGRAM
3. Tl MEI NG CONSI DERATI ONS: 50 SECONDS, 1000 RECCORDS

/1 EXEC ASGCG, PARM DATA=NAP

/ | SOURCE.

BSAM O

* % F

OPENDCBS

READ

| NPUT DD *
TI TLE ' BSAM |/ O EXAVPLE'
CSECT

SET STANDARD OS LI NKAGE
XSAVE TR=NO
SPACE 5
OPEN ALL DCBS, CARDCB TO READ DATA, PRNTDCB TO ALLOW WRI TE
TO THE PRI NTER AND THE | NTERVEDI ATE DI SK STORAGE. OUTI N
OPTI ON | N OPEN MACRO ALLOAS A W\RI TE OPERATI ON FOLLOWED BY
A READ OPERATI ON W THOUT AN ADDI TI ONAL OPEN- CLOSE SET.
SPACE 5
OPEN (CARDCB, (| NPUT) , PRNTDCB, (OUTPUT) , DI SKDCB, (OUTI N))
SPACE 5
TEST THE OPEN, |F OPENS DID NOT GO, TERM NATE W TH ABEND
G VI NG USER 500 COVPLETI ON CODE

SPACE 5
TM CARDCB+48, X' 10' DI D THE CARD READER OPEN GO
BNO ABTERM ABNORMALLY TERM NATE

TM PRNTDCB+48, X' 10' DI D PRI NTER OPEN GO

BNO ABTERM ABNORMALLY TERM NATE

TM DI SKDCB+48, X' 10' DI D DI SK OPEN GO

BNO ABTERM ABNORMALLY TERM NATE

SPACE 5

READ A CARD ON THE READER

SPACE 5

LA 5,0 SET UP CARD COUNTER

READ CARDECB, SF, CARDCB, BLOCK READ A CARD | MAGE | NTO BLOC
SPACE 5

| SSUE CHECK TO TEST COVPLETI ON OF |/ O OPERATI ON

SPACE 5

CHECK CARDECB CHECK FOR |/ O COVPLETI ON
SPACE 5

LA 5, 1(5) COUNT CARDS COWM NG | N

DO A WRI TE TO PRI NTER FOR ECHO PRI NT

SPACE 5

WRI TE DI SKDECB, SF, DI SKDCB, BLOCK ~ WRI TE TO DI SK FROM BLOCK
SPACE 5

| SSUE CHECK AS ABOVE

SPACE 5

CHECK DI SKDECB I'S 1/ O OPERATOON COMPLETE
SPACE 5

SAVE CARD | MAGE ON DI SK
SPACE 5

VWRI TE PRNTDECB, SF, PRNTDCB, BLOCK-1 WRI TE TO THE PRI NTER

SPACE 5
* CHECK AS BEFORE
SPACE 5
CHECK PRNTDECB I'S 1/ O OPERATI ON COVPLETE
SPACE 5
B READ LOOP TO GET ALL DATA
SPACE 5
PRI NT A LI TERAL | NDI CATI NG ECD ON CARD READER, BEG N
* READI NG FROM THE DI SK
SPACE 5
ENDATA WRI TE PRNTDEC1, SF, PRNTDCB, LI TERAL
SPACE 5
* | SSUE CHECK AS ABOVE
SPACE 5
CHECK PRNTDEC1
SPACE 5
* SINCE DI SK DCB WAS NOT CLOSED AT ECD A PO NT MACRO MUST
* BE | SSUED TO REPOSI TION THE THE DI SK AT THE FI RST RECORD
SPACE 5
PO NT DI SKDCB, PO NT REPCSI TI ON DI SK TO GET 1ST REC.
SPACE 5

NOW READ FROM DI SK AND WRI TE TO PRI NTER USI NG SAME DATA

SPACE 5
DI SKRD READ DI SKDEC1, SF, DI SKDCB, BLOCK
SPACE 5
* CHECK FOR END CF |/ O OPERATI ON
SPACE 5
CHECK DI SKDEC1 CHECK |/ O COVPLETI ON
SPACE 5
* WRI TE TO PRI NTER AS CARDS COMVE COFF DI SK
SPACE 5
VWRI TE PRNTDEC2, SF, PRNTDCB, BLOCK- 1
SPACE 5
* CHECK |/ O DONE
SPACE 5
CHECK PRNTDEC2 I/ O COWPLETI ON CHECK
SPACE 5
BCT 5, Dl SKRD VWRI TE ONLY THE CARDS THERE
SPACE 5
END CLOSE (CARDCB, , PRNTDCB, , DI SKDCB) CLOSE ALL ACTI VE DCBS
* SET UP RETURN TO CALLER (OS)
XRETURN SA=*, TR=NO
SPACE 5
ABTERM ABEND 500, DUMP GET ABEND DUMP I N CASE OF TROUBL
DC OF' 0O
PO NT DC X' 00000100' CONTROL WORD FOR PO NT MACRO
DC c ASA CARRI AGE CONTROL CHAR
BLOCK DC 8ocC ' BUFFER AREA
LI TERAL DC C - REPEAT READ DATA FROM DI SK', 80C '
SPACE 5
CARDCB DCB RECFME=F, DATA FORMAT | S FI XED
BLKSI ZE=80, PHYSI CAL BLOCK SIZE 1S 80 BYTES
LRECL=80, LOG CAL RECORD SIZE 1S 80 BYTES
DDNAME=I NPUT, LOG CALLY CONNECT TO | NPUT DATA
ECDAD=ENDATA, ON EOD GO TO ENDATA
SYNAD=ABTERM I/ O ERROR GO TO ABTERM
MACRF=(R), BSAM |/ O USES READ/ \RI TE MACRCS

DSCRG=PS DATA SET ORGANI ZATI ON

XX XWX XX

PHYSI CAL SEQUENTI AL.

SPACE 5
PRNTDCB DCB RECFMEFA, RECORD FORMAT FOR OUTPUT X
BLKSI ZE=80, PHYSI CAL BLOCK SI ZE X
LRECL=80, LOG CAL RECORD S| ZE X
DDNAME=FTO6F001, CONNECT TO OUTPUT DEVI CE X
SYNAD=ABTERM I/ O ERROR GO TO ABTERM X
DSORG=PS, DATA SET ORGAN. |S PHYS. SEQU. X
MACRF=(W END PRI NTER DCB
SPACE 5
DI SKDCB DCB RECFMEF, RECORD FORMAT FOR DI SK I/ 0O X
BLKSI ZE=80, PHYSI CAL BLOCK 80 BYTES X
LRECL=80, LOG CAL RECORD LENGTH X
DDNAME=FTO9F001, LOG CALLY CONNECT TO DEVI CE X
EODAD=END, ON ECF GO TO END X
SYNAD=ABTERM PERVANENT |/ O ERROR GO TO ABTERMX
DSORG=PS, DATA ORGAN. |'S PHYS. SEQU. X
MACRF=(RP, W READ WRI TE COVBI NATI ON
SPACE 5
* END OF DCBS FOR |/ O OPERATI ON
END BSAM O
/ *
/ | DATA. FTO9F001 DD UNI T=SYSDA, SPACE=(CYL, 1) , DSN=E&TENP, X
/1 DI SP=(NEW DELETE)
/ *LOG

/ / DATA. XSNAPOUT DD SYSQUT=A

/ / DATA. SYSUDUWP DD SYSQUT=A

[/ DATA. | NPUT DD *

| AM THE FI RST CARD TO BE READ

| AM THE SECOND CARD TO BE READ

| AM THE THI RD CARD TO BE READ
CARDS ARE ECHO PRI NTED AND WRI TEN TO DI SK

THEN ARE READ FROM THE DI SK AND PRI NTED AGAI N
THIS | S THE LAST CARD

/*

CS102AS1 - 01

COVPUTER SCI ENCE 102 - ASSI GNMVENT 1
DE
Thi s assignnent covers sinple input/output, binary arithnetic for
ful lwrd and hal fword nunbers, and basic data novenent and testing codes
for handling such nunbers.

Al . BASI C PROGRAM
The basi c program should do the foll ow ng:

A. Read a card (XREAD), and print it out imrediately (called an ECHO
CHECK - standard practice). The card contains 5 nunbers punched on it,
which are to be scanned and converted (XDECI) to binary form and placed
in 5 consecutive fullwords in nmenory. Print the hexadeci nal val ues of
these 5 words (20 bytes), using XDUWP.

B. Performthe follow ng conputations in a straightforward way,
storing each result in name given, using RX instructions where you can):

1. F=A+B+C

2. G=-A-B-C (LCR useful)

3. H=A* B* E

4. | = A/ B (be careful, watch for negative #'s)
5. J = MOD(A B) (i.e., remainder fron¥# 4.)

6. K=((A+E *(B- Q) / D

C. Print all of the above values (F - K) in hexadeci mal (XDUMP), then
also print themin decimal, using XDECO and XPRNT (print their val ues
an headings all on one |ine.

D. According to the sign of result H, print one of the 3 nessages:
H 1S LESS THAN ZERO, H IS GREATER THAN ZERO, H I S ZERO

1. EXTENDED VERSI ON OF PREVI QUS PROGRAM

Modi fy the previous program (which only had to read 1 card), to
read cards and follow the actions above for each card, until there are
no nore cards (END-OF-FILE). Keep a count of the nunber of cards read,
and print out this total nunber before ending the program

[11. HALFWORD VERSI ON OF PROGRAM I | .

Modi fy program Il to use hal fwords wherever possible (i.e., store
A - K as halfwords, use AH instead of A etc. Wtch out for divides,
since no DH instruction exists). How nuch storage is saved?

V. REG STER VERSI ON OF PROGRAM I 1.

Change program Il by saving all values A - F in registers, then
use RR instructions rather than RX instructions. Do XDECI commands
directly into registers where the values are saved. A useful trick may
be to NAMVE the registers synbolicly:

RA EQU 3 REG STER WHERE VALUE A KEPT
XDECI RA, CARD CONVERT VALUE A I NTO REG RA
This technique will make it clear which value you are using (note

that any register reference can be synbolic to an EQU synbol).

CS102AS1 - 02

V. WHAT TO HAND I N

By using the BATCH feature in ASSI ST, you can run several prograns
in one run. Turn in one run, with each of the progranms II, Ill, and IV
shown in execution, with results and output as requested. The run
will use control cards |ike:

/| EXEC ASACG, PARM=BATCH

/1 SYSIN DD *

$JOB ASSI ST PROGRAM VERSI ON | |

..... program I |

$ENTRY

..... test data

*** repeat above, starting at $JOB, for prograns |1l and IV.
/*

The follow ng test data should be used for each program

A B C D E
5 2 -4 -2 2
-2 -1 10 1 -1
4096 1 1 -1 -1

Note that the columms they are punched in should not nmatter.

CS102AS1 -

COVPUTER SCI ENCE 102- ASSI GNVENT 2

Thi s assi gnnent uses the concept of indexing into an
array of elenents.

l. BASI C PROGRAM

A. Read a card (and echo print) containing a nmaxi mum of 20
nunbers. Convert the nunbers to hex(XDECI) and store themin
successive fullwords in nmenory. Use a loop to elimnate redundant
codi ng. Then, for each card, find the maxi mum val ue and t he
m ni mum val ue, printing out these nunbers with appropriate
| abel s.

B. Form of data
1. Each card contains a maxi mum of 21 nunbers, where
the first nunber =the nunber of nunbers on the card. You will
need the first number for a counter in the loop in part A
2. There are an unspecified # of data cards. i.e.
make your program general to accept any # of data cards.

. DATA FOR YOUR PROGRAM

56 76 -76
11 123 432 -123 748 -9087 -0
33 33 45 10 6 90
145 1024 6698 -1024 345

HFhrhoONW

03

##

CS102FP1-01
COVPUTER SCI ENCE 102 FI NAL PRQJECT

| NTRODUCTI ON

One of the concerns of a programrer is to design conputer
systens, |anguages, and translators for the |anguages. The nonitor
is that part of the systemwhich controls the running of the
translators and interpreters.It exam nes the JCL to determ ne the
begi nni ng and end of a job.

The function of the translator, or assenbler, is to accept as
i nput a source | anguage(e.g. |BM 360 Assenbl er Language) and
generate equi val ent code in sone target |anguage (e.g. machine
| anguage). This code is called object code. In addition to
transl ating, the assenbler should have the capability of detecting
syntactic errors in the source listing. The interpreter however
executes the intructions of the target |anguage.

LANGUAGE FORVAT

A. Control Cards

1. Control cards will be used in TRIVIAL. These cards direct the
noni t or about how to process a job. On the IBM s/ 360 these cards are

call ed Job Control Language cards(JCL). Al so included with the JCL
cards will be control cards used by the assenbler.

2. These cards indicate the start of a program end of assenbly
and start and end of data.

B. Assenbly Language

There are two types of instructions:

1. Machine instructions-can be executed by the conputer hardware
The instruction consists of a menoni c opcode foll owed by one or
nore operands. A label field is optional. Al are in free format,
i.e. one or nore blanks in between.

ex- LABEL OPCODE OPERAND(S) COMVENT
separ at ed by
commas

2. Assenbl er Instructions-or pseudo-instructions, or pseudo-ops.
These are instructions to the assenbl er. Exanples are reserving
storage(DS), reserving storage with initial value(DC), setting the

| ocation counter (ORG and START instruction).

##

CS102FP1- 02
C. Machine Code (or Object Code)

1. Machine code is the output of the assenbler. The fornmat of the
code varies fromnmachi ne to machi ne, but in general consists of the
fol | owi ng:

OPCODE- coded form of the operation to be perforned.
REQ STER- part of an operand
ADDRESS- part of the operand. It can consist of

a. base and di spl acenent 10(2)
b. an actual address 100

c. an indirect address

d. an indexed register form 0(11,12) reg 11 index
e. shift counter SLA 2,4

f. immedi ate operand CLI 2,x'FO'

| MPLEMENTATI ON

A. Moni tor

1. The npnitor exam nes the control cards to determ ne the start
and end of a job.

2. The nonitor usually exam nes switches to determ ne what to do.
e.g. If the assenbler sets the switch for valid assenbly done
the monitor then calls for execution of the program

3. The nonitor skips to the next job if the current job can not
be executed as shown by flags.(nmay skip data cards)

B. Assenbl er

Assenbl ers vary as to the number of passes it perforns. The numnber
is a function of the size of the machi ne, the speed(wanted) and the
conplexity if the source |anguage. W will be interested in a 2-pass
assenbly, which is nost conmmon.

1. The first pass
a. Inthe first pass, the opcodes are checked for validity
(e.g. an opcode may not exist or may not be inplenented on a

certai n machine).

b. Synbols (statenent |abels,variable nanmes) are entered in the
synbol table.

c. Storage is reserved for constants. Note that some storage
requested nust be on a specified boundary as in the 360(fullword,..)

CS102FP1- 03

d. The location counter is incremented according to the |length
of the instruction or storage(allocated). Note instructions may
vary in length for sone conputers (like the 360).

e. The source statenments are saved so that a listing may be
printed at a later pass. Information added to each source statenent
woul d be the opcode type, statenment nunber, the | ocation counter
val ue, or anything el se.

f. Assenbler instructions are recognized and appropriate
action is taken.

g. A copy of these source statements nmay reside in core if there
i s enough space, or may be put on disk or nagnetic tape.

2. The second pass-first it nust retreive the source statenments fo
further processing.
a. The operands are then processed according to their type &
and type of op-code they are with.
b. Object code is then created for the instructions and data
definitions; It then resides in core or is put on disk or tape.

c. Alisting is printed. It contains the |ocation counter,
generated code, and source statment for each source statenent.
Error messages are also printed on the listing.

d. The errors to check for (assenbly time errors)

mul tiply defined synbols

undefined synbol s

i nval i d opcode

invalid values e.g. if a machine has 16 registers and
program uses register 17

5. invalid labels-in Fortran, a | abel of 9 letters

PR

3. During assenbly a table (which will remain fixed) will contain
all of the legal opcodes. Information included could be the nane
of the opcode (mmenonic) and type (nachi ne or pseudo-op).

4. A synbol table is also formed. It contains the synbol, the
| ocation counter value, and maybe other flags. Each synbol is entere
when it appears and when a reference is made in an operand the
synbol is | ooked up and the val ue obtai ned.
#it

CS 102FP1-04

C. Interpreter/Execution nonitor

1. If the target |anguage is executable of the 360, then nerely
branch to the program

2. Oherwise, initialize the programcounter (location counter)
to BEA N and execute the object code using pseudo registers and
pseudo storage. You will also need a Program Status Wrd(PSW
contai ni ng necessary flags. Execution is as foll ows:

1. Fetch the next instruction & increnment |ocation counter
according to the length of the instruction

2. Decode the instruction & eval uates address(es).

3. Execute the instruction

4. Go to 1.

3. During execution there is to be error checking for:
a. reading beyond end of file
b. executing too many instructions (alimt will be set on
the job card)
c. invalid op-code (by branching into data area)

d. address out of range of program

4. A dunmp shoul d be provided at the end of each job. Information
included will be the value of the programcounter, the contents of th
regi sters, and the storage.
Hit

CS 102FP- 05

V. FLONCHARTS

A. General Flow of Nbnitor

TRI VI AL
MONI TOR

read a card

(flush)

is it /* &%, ----------- >$* or anything el se
or job card

2

A L >print end of
processi ng nessage
job card STOP
PASS 1

assenbl e opcode, res,
create synmbol table

call TRI VI AL assenbl er

PASS 2
assenbl e operands

EXECUTE
execut e assenbl ed call TRIVIAL interpreter
program
#it

CS102FP1- 06

B. TRIVIAL assenbler-Initialization and Pass 1

TRI VI AL ASSEMBLER

initialize synbol

tabl e to bl anks

set flag that prog
i s executabl e

read next card <------------------ B
END card ---------- >yes ------- > Pass 2
no
is there a
a | abel ?
------ > yes ---> LOOK UP --->in ---->no0 exec
symbol set flag
not in
enter synbol & set flag
di spl acement in print err
t abl e. Not e whet her nmessage
an RES. PASS 2.
determ ne type RES?
of stnt;create convert operand to binary
partial obj. code
update | oc. update | ocation counter fo
count er illegal opcode proper boundary(if necessar
B st ore nunber
set flag for update | oc counter
.false. for
execution B
B

##

CS102FP1- 07

TRI VI AL Assenbl er Pass 2

PASS 2

E -----co--- > get next card inmage

end stnt? -------- > yes ---->return to Mnitor

no

process operands
usi ng LOOK UP

illegal operand? ------- > yes ----- > set flag
also flag=.fa
no for execute

finish object code
for stnt D

...... > print card i mage&
error message(s)

update | oc counter

LOCK UP

find synbol
intable? ----- > yes ----> return displacenent return
& flag

no

RETURN

CS102FP1- 08

EXEC
NO <-------mmommmmmm execute=.false.? --->yes ---> print termnatio
message

set up psedo-reg

& storage flush cards unti

$~k
execute instructions
wait stm? ------ > no TRI VI AL
yes
Print dunp

Return to nonitor

#i#

CS102FP2 - 01

V. SPECI FI C LANGUAGE DETAILS FOR THE TRI VI AL SYSTEM

This section describes the exact details for the various parts of
the TRIVIAL system The nonitor (main program processes various
control cards, which direct further processing. The TRIVIAL assenbly
| anguage is converted by the assenbler into nmachi ne code for a conputer
systemcalled the SIGVA 4.5 . The interpreter portion then simulates
the operation of the SIGVA 4.5, using S/ 360 instructions.

A. CONTROL CARDS
1. JOB CARD - SHOWAS BEG NNI NG OF TRI VI AL PROGRAM
This card has the following format (starting in colum 1):

$$JOB jobname nunber

$$I0B identifies this as a JOB card

j obnane is a sequence of up to 20 nonbl ank characters which identify
this JOB

nunber gives a maximumlimt on the nunmber of instructions which can

be executed by the user programon the simulated SIGVA 4.5

There may be any nunber of bl anks before and after jobnane, i.e.,
t hese cards are FREE FORVAT.

2. $* CARD - | NDI CATES END OF A JOB

This card is of following format, beginning in colum 1:
$* rest of card is ignored.

3. OVERALL DECK SETUP

The input to TRIVIAL is made up of 1 or nore JOBS, each as foll ows:
$$JOB jobname#l # instructions linmt for job 1
..... TRI VI AL assenbly program

END card (show ng end of assenbly progran)
..... 0 or nore data cards to be read by program

Not e that any user program cannot be allowed to read beyond a $*
or $3JOB card into the next user's program Test decks will be
supplied to the students.

CS102FP2 - 02
B. TRI VI AL ASSEMBLY LANGUAGE

The foll owi ng describes the format of a TRIVI AL assenbly program
giving in detail the fornms of mmenonic opcodes, operands, and | abels.
NOTE: the reader should probably first consult Part C, since it gives
t he machi ne code formats used by the SIGVA 4.5

1. MACHI NE | NSTRUCTI ONS

There are essentially two formats for nachine instructions:
RX format, which is simliar to S/360 RX format, and Rl format, which
operates on a register and an i mredi ate operand fi el d.

a. Rl I NSTRUCTI ONS

These instructions follow the format bel ow

| abel opcode regi ster,i mmedi at e
| abel is an optional statenent |abe
opcode is one of the immedi ate operand instructions (like Al)

register is a decimal number fromO - 15 (no | eading zeroes.
i Mmediate is a signed or unsigned decimal nunber from -1048576
to +1048575 to be used as an i medi ate val ue.

b. RX | NSTRUCTI ONS

This format is basically like S/360 RX format, with sone
restrictions plus an addition for indirect addressing.

| abel opcode regi st er, address
| abel is optional statnent |abe
opcode is one of the RX opcodes, |ike AW

register is decimal nunber fromO - 15 (like register in Rl above).

addr ess represents an address in nmenory, and may have any of the forns
given below. Note that synbol represents any |egal |abel
n represents any unsigned nunber representable in 17 bits,
and i ndex represents any decimal nunber fromO to 7, giving
an index register. The formats are then:

symbol i mplyi ng direct addressing, index =0

synbol +n " " " " " " "

symbol - n " " " " " " "

n " " " " " " "

any of the above followed by (index), i.e, synbol +n(index)

i mpl yi ng i ndex register of given val ue.
any of the above preceded by *, indicating | NDI RECT ADDRESS.

Any place synbol appears above, the character $ can appear,
which refers to the location counter value (like S/ 360 *).

EXAMPLES: Al 0,1000 ; AW AREA+12(7) ; BCs 8,L00P1
BDR 2,LOOP ; LW 1,*VECTOR+5(2) , BCS 15, $+2

CS102FP2 - 03
2. ASSEMBLER | NSTRUCTI ONS (PSEUDO OPS)
a. ORG - sets location counter to value specified in operand,
whi ch may be any of the forns synbol, synbol +n, synbol-n, n, $, $+n
$-n allowed by first section of RX operand format.

EXAMPLES: ORG LABEL+2

NOTE: may not have a LABEL field specified, and any synbols used nust
be previously defined.

b. END - signifies end of TRIVIAL program may have no | abel.

c. RES (REServe) - simliar to S/ 360 DC and DS, reserves storage

and may fill in constants. It may have any r of the follow ng
forns:
| abel RES nunber

The statenent above reserves nunber words of storage, nunber being
a positive integer fromO to 1023 .

| abel RES W nunber"

This statenent causes the deci mal nunber (signed/unsigned) to be
converted to binary and assenbl ed at the given location. (corresponds
to S/ 360 DC F nunber').

| abel RES nunber W number'

The first number gives a duplication factor from1 - 1023, and
causes that nmany copies of the constant to be assenbled (like S/ 360
DC nunber F nunber').

3. M SCELLANEQUS

The | abel field may contain any |abel usable on S/ 360, except that

$. @ # are excluded , i.e., a label begins with a letter, and then

containues with 0-7 letters/digits.

NOTE THAT ALL STATEMENTS ARE FREE FORMAT: they may have 1 or nore
bl anks between fields, but no bl anks inside each field.

CS102FP2 - 04
C. DESCRIPTION OF THE SI GVA 4.5 COWUTER SYSTEM
1. MEMORY, REG STERS, AND PROGRAM STATUS BI TS

The MEMORY of the SIGVA 4.5 (nodel W2), is conposed of 1024 WORDS,
(addressed at locations 0, 1, 2, 1023). Each is 32 BITS | ong.

The SIGVA 4.5 contains 16 REG STERS, each 32 bits |ong, nunbered
fromO to 15. O These, all may be used for hol ding operands and doi ng
arithmetic, while registers 1-7 only may be used as | NDEX REG STERS i n
address cal cul ati ons.

A PROGRAM STATUS WORD is used to keep the current status of the
SIGVA 4.5 conputer. O the 32 bits in this word, the follow ng uses
are made of:

BI TS NAME USAGE

0-1 CONDI TI ON CODE exactly like S/ 360 condition code.

2-14 UNUSED

15-31 PROGRAM COUNTER 17-bit address of the next instruction in

menory to be executed.

NOTE: all nunbers are encoded as 32-bit signed nunbers, using
two's conpl enent notation.

2. | NSTRUCTI ON FORNMATS, ENCODI NG, ACTI ONS
The SIGVA 4.5 has two basic instruction formats:
RX (Register to Storage, |ndexed, alnpst exactly like S/ 360 RX).

Rl (Register Imediate - uses Inmedi ate operand in instruction).

The layout of the RX-format instruction is as foll ows:

0000000O0O0OOO0O1111111111222222222233
BIT#01234567890123456789012345678901
NAME | oP R X M
SIZE 1 7 4 3 17 bits

The various fields above are used as foll ows:
I | NDI RECT ADDRESS: 0 => direct addressing, 1 => indirect (see bel ow)
OP OPCODE: nunber fromO to 127 noting which operation to be done.

R REG STER: nunber fromO - 15 specifying a register (usually), or
sonetimes a Branch Mask or other val ue.

X | NDEX REA STER: nunber from 0-7 specifying an index register, with
0 speci fying NO i ndexi ng.

M MEMORY ADDRESS: nunber from O - 128K, specifying the actual
location in menory of an operand.

CS102FP2 - 05
EFFECTI VE ADDRESS CALCULATI ON: RX | NSTRUCTI ONS

In general, the SIGVA 4.5 cal cul ates an EFFECTI VE ADDRESS (EA)
using the I, X, and Mfields in the procedure bel ow, then operates in
some way on the word at the EA and the word in register R

The EA is determned by the foll owi ng steps:

First, the Mfield is taken either as the address of a word in
nmenory, or the address of an address of a word in nenory, depending on
the | bit, as foll ows:

If 1=0, then EAL = M (Di rect addressing)

If I=1, then EA1L = loworder 17 bits of word at |ocation M
(This is called | NDI RECT ADDRESSI NG).

Now, EAl is either taken as the EA, or is nodified by adding to
it the contents of an index register X, as follows:

If X=0, EA = EAl (no indexing).

If X =0, EA = EAL + contents of register X. NOIE EAl is a
positive 17 bit nunber, while value in register X nay be either positive
or negative. Thus, if M=100, X=1, and register 1 contains -10, the
| ocation referenced should be 90 = 100 + -10 .

NOTES AND GENERAL | NFORMVATION: The SIGVA 4.5 stops at doing only 1

i ndirect address step, and thus uses ONE- LEVEL | NDI RECT ADDRESSI NG Sone
ot her machi nes would extend this by testing the | bit in a word, and if
on, perform another indirect addressing step, until a word was found
witlout I=1, in which case that word woul d have the address of the word
finally used as an operand. This type is called MILTILEVEL or CASCADED
| NDI RECT ADDRESSI NG

Al so, since SIGVA 4.5 adds the index register X AFTER any indirect
addressing is done, it is called POST-INDEXING Sone nachi nes perform
i ndexi ng before indirect addressing, and are thus call ed PRE-1NDEXl NG
syst ens.

The RI (Register Immediate format) instructions are basically
simliar to the RX, except:

The | bit is ignored.

The X and Mfields together forma two' s-conpl ement, signed, 20-bit
nunber, which is extended to 32 bits, then used as the operand in
conbination with the register R This allows nunbers from -1048576 to
+1048575 to be specified in the instruction

CS102FP2 - 06
3. OPCODE TABLE

The following table |ists the menoni ¢ opcode for each nmachi ne
i nstruction, the machine code for each operation (hexadeciml, 7-bits),
the instruction format (RX, RI), whether or not the instruction sets the
condition code, and finally, exactly what the instruction does. |If
an instruction corresponds to an S/ 360 instruction, it sets the CCin
t he sane way, unless otherw se specified.

NAME CODE TYPE CC SET ACTI ON

Al 20 RI YES ADD | MVEDI ATE : add Inmediate field to reg R

LI 22 LI NO LOAD | MVEDI ATE : extend imredaite field to 32
bits, |load that value into register R

M 23 RI YES MULTI PLY | MVEDI ATE : extend i medaite field,

multiply with register R truncate to botain
|l oworder 32 bits in R setting CC for result.

WAIT 2E RX NO WAI T: execution ternminates, EA placed into
specified register as a conpl eti on code.

AW 30 RX YES ADD WORD: |ike S/360 A

cw 31 RX YES COVPARE WORD : |ike S/360 C

LW 32 RX NO LOAD WORD : |ike S/ 360 L.

MW 33 RX YES MODI FY AND TEST WORD: the R field does not
refer to a register; instead, it is taken as
a signed, 4-bit nunber (-8 to +7), extended
to 32 bits, and added to word at EA, setting CC

STW 35 RX NO STORE WORD : |ike S/360 ST.

MV 37 RX YES MULTI PLY WORD: |ike M, except operand taken
fromEA | ocation instead of immediate field.

sSw 38 RX YES SUBTRACT WORD : like S/ 360 S.

BDR 64 RX YES BRANCH ON DECREMENTI NG REG STER: Modify reg
R by subtracting 1. Set CC according to result
and branch to EA location if result > 0.

AWM 66 RX YES ADD WORD TO MEMORY : add contents of register
R to word at | ocation EA.

BCS 69 RX NO BRANCH CONDI TI ONS SET : uses R as a Mask field

to branch or not : sane as S/ 360 BC

RD 6C RX YES READ DI RECT : read a card (set CC = 0), if no
nore remain, CC = 1. A single signed number
anywhere on the card is converted to binary and
placed in the register specified by R EAis
totally ignored, and nmay have any val ue.

VD 6D RX NO WRI TE DI RECT : the nunber in register Ris
converted to deci mal and printed.

$$JOB LEGALOPS1 O

EE R R R R S I I I R R A R S I R S S R I R R I R S R R S R R I S O I

*rakkkxkkx ATTENTI ON: USE LARGE PARAMETER | F YOU ARE GETTI NG AS999,

*rxkkkxkkx S| M LI AR MESSAGE ABOUT EXCEEDI NG SPACE - SEE ASSI ST MANUAL.

*Frxkxxxkk NOTE EXTENSI ON EXTENSI ON EXTENSI ON: FI NAL PRQIECTS DUE AT *

Frxkxxxkx 11AM WEDNESDAY, NOT MONDAY. *

EE R R I b I S I S R R I S R R S S R I R R S R I I S R R S R S R I S I I

* TH S PROGRAM CONTAINS NO ERRORS. |IT IS A TEWST FOR THE

* RECOGNI TI ON OF ALL LEGAL OPCODES. THE PROGRAM W LL NOT

* BE EXECUTED

Al 1,-2
AW 1,3(2)
LI 1,2

cw 1,2

LABEL M 1,2
LW 1,3(2)
MIW 1, 3(2)
STW 1,2
ORG LABEL
MV 1,2
swW 1,2
BDR 1,3(2)
AWM 1,3(2)
BCS 1,3(2)
RD 1,3(2)
VD 1,3(2)
VWAIT 2,2
WORD RES 2
RES w2'
RES 2W 2"
END
$*

$$JOB LEGALOPS2 O
* TH' S PROGRAM TEST THE RECOGNI TI ON OF LEGAL OPERANDS

M 1,2
M 1,-2
M 1, +2
AW 1,2
AW 1,*2
AW 1,2(3)
AW 1, *2(3)
AW 1,%
AW 1,*$
AW 1, $(3)
AW 1, *$(3)
AW 1, $+2
AW 1, *$+2

AW 1, *$+2(3)

AW 1, $+2(3)

AW 1, SYMBOL

AW 1, *SYMBOL

AW 1, SYMBOL+7

AW 1, *SYMBOL+7
AW 1, SYMBOL+1(2)
AW 1, *SYMBOL+1(2)
AW 1, *SYMBOL-1(2)

SYMBOL RES 5
END
$~k
$$J0B PASSIERR 0
* TH S PROGRAM CONTAI NS ERRORS | N LABELS AND ASSEBLER OPS
LI 5,0
LI 3,0
SWR 3,0(2) | LLEGAL OPCODE
Al 2,4
LOOP M 2, CONST
7LAB SW 2, CONST+1 | LLEGAL LABEL
STW 2, SAVE UNDEFI ND SYMBOL
ORGLI NE ORG LOOP NO LABEL ALLOWED
RD 3, AREAL UNDEFI NED LABEL

STW 3, SUM
aJt WD 3, AREA
AWM 3, SUM
BRANCH BDR 2, LOoP

READ 2, AREA | LLEGAL OPCCDE
BADLABEL Lw 5, SUM LABEL TOO LONG
aJt WD 5, SUM MULTI PLY DEFI NED LABELS
* NOTE- BLANK CARD FOLLOWS

MIw 0, OUT
ORG $-100 ORG TO NEGATI VE ADDRESS
SUM RES 1
RES W -9999'
* THE FOLLOWN NG RES STMI'S ARE | N ERROR
AREA RES 1100 TOO LARGE

RES ow 1’
RES 10w
RES w10 '
RES W
RES W 12345A

RES -10W

THI SLABELI STOOLONG ANDSO TTHI SOPCODE
MIw 0,0

ENDLABEL END | LLEGAL LABEL FI ELD

$~k
$$J0B PASS2ERR 0
* TH S PROGRAM CONTAI' NS ERRORS I N THE OPERANDS
* Rl FORMATS
* OwW TTED OPERAND FOLLOWS
Al
LI 16,0 REG STER TOO LARGE
LI 15 OPERAND OM TTED
LI 15, OPERAND OW TTED
LI , 0 OM TTED REGQ STER
LI 15, 524288 TOO BI G
LI 15, - 524289
LI 15, 524287 LEGAL
LI 15, -524288 LEGAL
LI 15, 0, | NVALI D DI SPLACEMENT

*

RX FORMAT
AW 16,0 REG STER TOO LARGE
AW 15
AW 15, OM TTED OPERAND
AW 15, * OM TTED OPERAND
AW 15, * (1) OM TTED SYMBOL

X AW 15, 5+X WRONG ORDER
AW 15, 5+1

AW 15, X+ | LLEGAL OPERAND

AW 15, X+(3)
AW 15, *X- (3)
AW 15, X- (3,

AW L X- X OM TTED REG STER
AW 15, 0(8)

AW 15, X+5(8) | NDEX ERG TOO LARGE
AW 15, $(8) | NDEX REG TOO LARGE
AW 15, $- 2,

AW 15, 0(7) +

AW 15, $- 20000 BAD ADDRESS

AW -1,0 | LLEGAL REG SPECI FI CATI ON
AW 0, -1
AW 0, 1(-1)
AW 0, 131071 LEGAL

AW 0,131072 TOO BI G

END

$*

$$J0B READBEYONDEND 100

LOOP RD 0,0 READ A CARD
Ww 0,0 WRITE | T BACK OUT
BCS 15,LOCP LOOP FOREVER, OR UNI TL CARDS RUN OUT
END

1 THIS I'S THE ONLY DATA CARD

$*

$$J0B PROGRAMLOCOPS 10
BCS 15, % SAME AS B *
END

$~k

$$J0B BRANCHTOBADOPCCDE 5
BCS 15, $+1 BRANCH TO NEXT STMI
RES WO NOT A LEGAL OPCODE
END

$~k

$$J0B ADDRESSCUTSI DE 5

LI 1, 100000 BI G NUMBER
SW 0, $(1) TOO BI G - ADDRESSI NG ERROR

END

$~k

$$JOB ADDRESSI NGTEST 20
L 1,1 FOR | NDEXI NG
L 2,-1 FOR | NDEXI NG
LW 8, X(1) LOAD AN 8 | NTO RS
LW 7, X(2) LOAD A 7 I NTO R7
LW 6, *X LOAD A 6 | NTO R6
LW 5,*X(1) LOAD A 5 INTO R5
LI 3,512 ANOTHER | NDEX VALUE
AW 1,*Y(2) BOVB OUT OF RANGE
VWAIT 0,0 NEVER REACH HERE

*
RES W7

X WAI T 0, X6 FOR | NDI RECT ADDRESSI NG
RES W8

X6 RES W6'
RES W5

Y RES W 10000000 BIG
END

$~k

$$JOB COVPUTEXCUBED 100
RD 0,0 GET NUBMER | N
STW 0, X SAVE THE VALUE

LooP MV 0, X MULI TPLY 1 TI ME
MIW 15, CNT ~ DECREMENT CNT TO CNT- 1
BCS 7,LO0P BRANCH | F NOT ZERO
W 0,0 WRI TE RESULT OUT

X RES 1

CNT RES W2'
END

$*

csi102mL - 01
COVPUTER SCI ENCE 102 - RUN ASSI GNVENT

1. Punch up the foll owi ng program and run:

/1 YOUR JOB CARD

/| EXEC ASACG

/1 SYSIN DD *

MAI' N CSECT

* TH' S PROGRAM | LLUSTRATES XDUMP AND PROGRAM | NTERUPTI ON
BALR 12,0 THESE TWO STMIS ARE FOR
USI NG *, 12 COVMMON LI NKAGE CONVENTI ONS
LA 3, CARD PTR TO CARD | MAGE READ I N
XREAD CARD, 80 READ DATA CARD
XPRNT CARD, 80 ECHO PRI NT
XDECI 4, 0(3) CONVERT DECI MAL TO | NTERNAL HEX
XDECI 5, 0(1) CONVERT NEXT # ON CARD

* THE NEXT STMI' PRI NTS CONTENTS OF USERS REG STERS.
* NOTE REG 4,5

XDUMP

B 4000 ABEND- BRANCH OUT OF PROGRAM
CARD DS 80C

END

/*

/ / DATA. | NPUT DD *
100 -1024

/*

2. This next programis a batch run of 5 jobs, each term nating
abnormal ly. The programis stored on RJE file. Punch up the

fol | woi ng cards EXACTLY to run the program

/1 YOUR JOB CARD

/| EXEC ASACG PARM=BATCH

/1 SYSIN DD *

/*1 NCLUDE RABO1. BATCH

/ *

3. To nmerely get a listing of the prog in 2., use the follow ng cards:
/1 YOUR JOB CARD

/ *1 NCLUDE RABO1. PRI NT

/ *1 NCLUDE RABO1. BATCH

/-k

cs102ML - 02
A GUIDE TO S/ 360 MNEMONI C OPERATI ON CODES
. I NTRODUCTI ON

The begi nning programrer facing the variety of operations avail abl e
on a nodern | arge conputer is often overwhel ned by the |arge nunmber of
operations and conplexity thereof. 1In sone cases, a few hints can be
hel pful in | earning and renenbering the nanes, purposes, and usage of
the various operations. |In particular, certain properties of S/ 360
nmenenoni cs can help the | earner a great deal. Sone of them are:

A. REGULAR SCHEME FOR NAM NG OPCODES

In general, a fairly coherent and regul ar nethod has been used in
nam ng operations. In sonme cases, it is possible to deternmine the bit
pattern and operation of a menonic just fromlooking at it. Related
operations usually have rel ated menoni cs.

B. COWONLY USED MNEMONI CS

The designers apparently went to sone effort to nake the nost often
used mmenoni cs the shortest and easiest to renmenber. Mst of these have
1 or 2 letter mMmenonics.

1. NAM NG OF MNEMONI C OPCODES
A. VERB (MODI FI ER) (DATA TYPE) (MACH NE FORMAT)

The mmenonics generally follow the format given above, with the
VERB al ways present, while the others may be onmtted. The genera
nmeani ngs of the fields are given bel ow.

1. VERB: specifies a general type of action perfornmed, such as
addi ti on, subtraction, conparison, data novenent.

2. MODIFIER specifies a nodification of the general action given
by the verb, such as logical addition (rather than al gebraic), noving
nmultiple registers rather than single ones, and perform ng different
actions while | oading one register into another.

3. DATA TYPE: specifies the type of data being operated on, and is
usual ly the same letter as that used to define a constant of the given
type, such as H (halfword), P (packed decinal), etc.

4. MACHI NE FORMAT: gives the type of machine instruction being
used. This is nost typically done by adding Ror | to an RX mmenonic to
obtain a simliar RR or Sl instruction.

In general, the RX instructions, which are the heavi est used, have
t he shortest menonics, and nost of the other instructions can be built
fromthem by adding nore letters.

Cs102ML - 03
B. EXAMPLES OF COVMMONLY USED MNEMONI C ELEMENTS
The foll owi ng sections explain the cormbn mMmenoni c el enents.
1. VERBS

VERB MEANI NG, COMVENTS

Add two nunbers (which may be binary, decimal, or floating)
Branch to another instruction (like GOTO

Conpare two fields (nunbers or character strings)

ConVert a number from one base to anot her

Di vi de one nunber by anot her

Load a quantity into a register fromanother or from storage
Mul tiply one nunber by anot her

MoVe information fromone area in storage to another.

aNd i nformation together (I ogical AND)

O information together (logical OR

Subtract one nunber from another

STore a register (or part of one) into storage

eXclusive or information together (logical exclusive OR

>:g}0)c>z s;gl—(jng)UJ>

For exanple, note that a given VERB may begin nmany instructions,
whi ch i medi ately shows they are related to each other. For exanple,
the followi ng are all conparison operations: C, CD, CE, CH CL, CP
CR, CDR, CER, CLC, CLR

2. MODI FI ERS
The following lists verbs and their conmon nodifiers.

VERBS MODI FI ERS MEANI NG, EXAMPLES

ACS L Logi cal addition, conparison, or subtract is used
rather than algebraic. EX: AL, CL, CLC, SLR

B AL And Link - form of branch for doing |linkage to
subroutine so it can return. EX: BAL, BALR
C Condition - branch or not depending on a previously
set condtion (IF(--) GOTO --). EX BC, BCR
CT Count - branch formused to decrenent a register and
branch i f value not zero (DO LOOP). EX: BCT, BCTR
X i ndeX - branch formfor incrementing and testing

i ndex quantities. (DO LOOP). EX BXH, BXLE

L C Conpl erent - used to set a register to conpl enent
itself or other (Y = -ABS(X)). EX: LNR, LNDR
P Positive - set register to positive value fromself
or other (Y = ABS(X)). EX LPR LPER
T Test - set register to value fromself or other,
L, ST M Mul tiple - several registers are | oaded or stored

in one operation. EX: LM STM

CS102ML - 04

3. DATA TYPES

As noted previously, a data type character is usually the sane as
that used in a DC or DS statenent to obtain a given type of data.
If a type character is onmtted, it usually inplies that the instruction
operates on 32-bit, fullword, binary quantities (such as A, C, S, etc).

DATA TYPE MEANI NG, COMVENTS

C Character - usually a contiguous string of bytes in nenory,
treated as printable characters or a string of bits.
(FORTRAN LOG CAL*1). EX: MC, CLC, CC, IC, STC
USUALLY | MPLI ES SS | NSTRUCTI ON FORMAT (all except I1C, STQ).

D Doubl e precision floating point (Doublewrd, 64 bit)
(FORTRAN REAL*8). EX: AD, SD, LTDR, LD.
| MPLI ES RR OR RX | NSTRUCTI ON FORVAT.

E Exponent - single precision floating point (fullword, 32 bit,
FORTRAN REAL*4). EX: AE, LER, M
| MPLI ES RR OR RX | NSTRUCTI ON FORIVAT.

H Hal fword - 16 bit binary nunber (FORTRAN | NTEGER*2)
EX: AH, MH, STH, CH
| MPLI ES RX FORMNAT.

P Packed decimal format (2 decinal digits per byte).
EX: AP, SP, CP.
| MPLI ES SS | NSTRUCTI ON FORMAT OF TWO- LENGTH TYPE.

4. MACHI NE FORMATS

Several characters are used to denote the specific type of
operand format being used (note that the data types can also inply
specific formats. If they inmply one of several, the |ast character
di stingui shes anong thenj.

FORVAT MEANI NG, EXAMPLES

I | mredi ate - I MPLIES SI FORMAT. EX: W, CLI, O.

R Regi ster - | MPLIES RR FORVAT. EX: AR, BCR DDR

CS102ML - 05
[11. EXAVPLE OF FAM LY OF RELATED OPCODES

This section lists all the nenbers of the 'Conpare' famly of
nmenenoni cs, showi ng their rel ationships adn the el enents present in each
nane. The letters V MD F stand for Verb, Mdifier, Data type, and
machi ne Format.

OP-CODE VMDF TYPE COMVENTS

C C RX fullword al gebraic conpare, the basic one.

CL CL RX fullword | ogical comparison (logical nodifier)

CcD C D RX conpare doubl e precision floating nunbers

CE C E RX conpare single precision floating nunbers

CH C H RX conpare a register algebraicly with hal fword
fromstorage (with sign extension)

cP c P SS conpare two packed deci mal numnbers

CR C R RR conmpare two fullword val ues al gebriacly, gotten
fromC by adding R

CLC cLC SS conpare logically character strings

CLI CL I Sl conpare |logical immediate (a byte in nenory
with the one inside the instruction)

CDR CD R RR conpare double precision (in registers)

CER CE R RR conpare single precision (in registers)

The Sytem 370 conputers have sone additional opocdes:
CLM CL M RS compare |ogical masked (fromregister to nen
CLCL cLCL RR conpare |ogical character strings long (up to

16 mllion bytes in one conpare)

Consi der the problemof witing a FORTRAN program whi ch woul d
simul ate the operation of the instructions above (i.e., nmaintain
vari abl es representing PSW Menory, GP Registers, etc, and go through
the Fetch-Instruction, Decode, Fetch-Qperands, Execute cycle). The
arrangenent of the opcodes would nake it easy to share code, i.e., it
woul d not be necessary to code each instruction separately. As an
exanpl e, consider the followi ng related instructions:

MNEMONI C HEX CODE Bl NARY CODE SAMPLE | NSTRUCTI ON/ ASSEMBLED

CR 19 0001 1001 CR 0,1 1901
CH 49 1000 1001 CH 0,2(3,4) 49034002
C 59 1001 1001 C 0, 4(5,6) 59056004

Exam ne the bit patterns above. The first teo bits give the
Machi ne Format (00-RR, 10-RX), the third and fourth give a Data Type
(01- Ful Il word, 00-Hal fword in this case). The fifth-eighth bits give the
Verb (1001 - al gebraic Conpare). In essence, there is only 1 Conpare,
which is branched to after the operands are obtained.

CS102TPA - 01

COVPUTER SCI ENCE 102 - TOPI CS COVERED, HANDQOUTS
W NTER TERM 1972 - MASHEY

The handouts given are described in file CS102HN

DATE TOPI CS, HANDOUTS, READI NG ASSI GNVENTS
- R A B & B T
1 01/ 07 introduction to course. prerequistites (101, 401, equivV)

listed text materials for course
1) STRUBLE: ASSEMBLER LANGUAGE PROGRAMM NG | BM SYSTEM 360

2) | BM SYSTEM 360 PRI NCl PLES OF OPERATI ON (POP)
3) | BM S/ 360 OS ASSEMBLER LANGUAGE
4) PSU ASSI ST | NTRODUCTORY ASSEMBLER USER S MANUAL
(25 cents, at 426 McAllister)
5) | BM S/ 360 REFERENCE CARD (GREEN CARD- BRI NG TO CLASS)

introduction to information representation in conputer.
nmenory, addressing, simliarity to FORTRAN vector witl index
beginning at 0 rather than 1. elenments of nmenory in S/ 360:
byte, hal fword, fullword, doubl eword.

positional notation. nunber systens (binary, octal, decinal
hexadeci mal). conversion between them uses.

representations of binary nunbers: Two's conpl enent, One's
conpl ement, Sign-nmagni tude. advantages and di sadvant ages:

(TC - 1 zero, but harder for people; OC - 2 zeroes, but easier
to handle; SM - easiest to handle, but slower circuitry)

READI NG STRUBLE CHAPTER 1. Look at ASSI ST PART I11.

2 01/10 nore on information representation; introduction to
machi ne structure.

neani ngs of bit patterns: 1,2,4-byte binary nunbers; charcters
packed deci mal (good for people, but wastes space); floating
point (sign, characterisitc, and fraction).

structure of a very sinple nmachine: nenory of 16-bit words;

1 register; 1 programcoiunter. a few instructions, each with
opcode and address. expl anati on of basic instruction cycle:
1) Fetch instruction from where program counter points.

2) Increment program counter.

3) Decode instruction into its parts.

4) Execute instruction.

5) Loop back to 1.

S/ 360 machi ne structure: nenory (note abbrev. K), GP and
floating point registers, PSW refer to GREEN CARD.

Begi n instruction types:

1) RR (nanes with -R exanpl es)

2) RX (give first explanation of base-di splacenent)
3) RS

READI NGS: STRUBLE - CHAPTER 2; POP - pp. 7-15.
HANDOUTS: CS102ML - page 01 (run some ASSI ST progranms for dunps)

CS102TPA - 02
3 01/12 finish operands formats and introduce assenbly | anguage.

4) Sl instructions (exanples: WI, CLI)

5) SS instructions (exanples: MWC, CLC

machi ne | anguage - easy for nachine to execute, hard to wite
assenbly | anguage converted by assenbler to machi ne code.

format of assenbly | anguage: | abel opcode operand coments
machi ne instructions - actual operations to be executed
assenbl er instructions (pseudo ops) - give information to
the assenbl er (ex: CSECT, DS, DC)
some basic functions of the assenbler:
1) location counter
2) convert menoni c opcodes
a) machine ops - translate to codes, incremlocation cntr
b) assenbler ops - take actions specified, incremloc cnt
3) operands - convert to internal binary, base-displacenent
4) print out a listing
5) make programready for execution and pass control to it

st epped through conpl ete test program (XREAD, XPRNT, XDEC
XDUWP) and explained listing and contents of dunp.

READI NGS: STRUBLE: Chapter 3; ASSI ST MANUAL: PARTS Il and 1V,
ASSEMBLER LANGUAGE: pp. 1-18.
HANDOUTS: DOCUMENT (document ati on techni ques for assenbl er)

4 01/ 14 go over sonme dunps and errors; discuss operand fields.

go through various dunps, show ng 0Cl, 0C4, and 0C6 errors.
cover STRUBLE cahpter 3, pp.50-56: synbols, self-defining
terns, literals, |ocation counter reference, absolute and
rel ocatabl e terns, expressions.

READI NGS: STRUBLE: Chapter 4 to page 78.

ASSI GNVENT: STRUBLE: Chapter 1: problems 5,6,7,8,9. Chapter 2:
problems 2,3. Chapter 3: problens 1,2, 3,4,6.

| NFORMAL ASSN. nodi fy dunp programto use XDECO and DUMP st or age;
use programw th START to check rel ocatabl e vs absol utes.
nodi fy one of batch prograns to get 0C6 rather than 0CA4.

5 01/ 17 introduction to arithnetic and data novenment instructions
i ntroduce idea of instruction famlies and regularity of
mmenoni cs. Go thru followi ng instructions: LR LPR LCR, LNR
LTR, L, LH LA AR ALR A AL, AH SR SLR S, SL, SH
mention Mand D, also briefly note existence of Condition Code
and show how to test it, w thout worrying about encoding.

20-m nut e question answer and review. questions occurred on
di fferences between literals and sel f-defining terms, and on
use of synbolic register equates.

READI NGS: STRUBLE: Chapter 5.
HANDOUTS: CS102AS1 (pages 01 - 02) first assignnent - input,
out put of nunbers, calculations in binary.
Cs102ML (pages 02 - 05) S/360 mmenoni c construction.

6

10

CS102TPA - 03

01/19 qui z and finish up data novenent and binary arithenetic.
Twenty-m nute quiz (diagnostic mainly): base conversions (2,
8, 10, 16); negative nunbers, base-index-di splacenment addrs,
rel ocat abl e vs absol ute.
Instructions: LM STM WC, WI. M MR, D, DR M and hints
on what to watch for.
Programm ng techni ques: review input/output & conversions
(XREAD, XPRNT, XDECI, XDECO ; nethod for buil ding messages
and obtaining length for XPRNT via MG EQU *-NSG .

ASSI GNVENT: i ndexi ng and conpari son assi gnnent, CS102AS1 - 03,
due 02/02/72.

HANDOUTS: CS102AS1 - 03 (labeled CS 102 AS2 al so) - indexing.

READI NGS: STRUBLE CHAPTER 5, start on STRUBLE CHAPTER 7.

01/ 21 condition code, branching instructions, |oops.
condition code values and encodi ng. BCR, BC, Extended
Mhenoni cs (recomrended for use over BC #). BALR BAL and
subroutines, BCT, BCTR usage, including decrenenting regs.
exanpl e of basic loop to sumarray of nunbers.
fl owcharti ng and good desi gn versus kludge programm ng.

READI NGS: STRUBLE Chapters 7,8, 5.

01/ 24 finish | oop control, begin on USING DROP, |inkage
Expl ai n BXH, BXLE instructions, give typical setups:
forward BXLE | oop, backwards BXH | oop, BXH scan | oop.
show need for USING conmand. give rules for conputation of
base di spl acenents: ninimum base di spl acenent for those which
are avail able, higher nunberred register if several have sane.
begi n conventions: exaplin registers 15, 14 usage on entry.

HANDOUTS: LI NKAGE OS/ 360 |inkage conventions
READI NGS: STRUBLE: Chapter 5, LI NKAGE HANDOUT

01/ 26 savearea |inkage ans one review
Describe 18-fullword save area. go through the standard code
used at begi nning and end of a routine, calling nmethods. Do
not work on argument passing, just normal code
M sc. instructions: IC, STC, start on Shifts.
Various review for problens.
Not e general usage of registers: get students into good habits

READI NGS: STRUBLE: Chapter 11.

01/ 28 | ogi cal /al gebraic arithnetic, shifts
20-mi nute quiz on previous instructions.
di fferences between condition code setting, aroverflowin
al gebraic arithnetic and logical arithnetic. exanples.
shift instructions and how they are used.

READI NGS: STRUBLE: Chapter 11, begin on chapter 10.

11

12

13

14

15

16

CS102TPA - 04

01/ 31 bit mani pul ati on and uses. review on branching
bit manipulation instructions: NR, XR OR N, X, O N, X,
A, NC, XC, OC, plus T™M what they do, and how to use them
EQU trick for SI instructions and how to use it.
review. prototypes on |oop control, advantages/di sadvant ages.

READI NGS: STRUBLE: Chapter 10, first 3 sections.

02/ 02 assenbl er housekeepi ng, m sc areas.
go over all of DC, DS operand formats in detail, show ng
what can exist as duplication factor-type-I|ength-constant,
including nultiple operands and constants, expressions as
duplication factors and length nodifiers. also cover
TI TLE, EJECT, SPACE

READI NGS: STRUBLE: CHAPTER 6, pp 110-121, problens 7,9, 10
ASM LANG 3, 7-9, 10-18 (except variable synmbol s/ sequence
synbol s, 19-21, 29-33. section 5: EQU, DC (all except Bit
Length Modifier, Scale Mdifier, Exponent Mdifier. all types
except E, DL L, P, Z, Y, S, Q conplex relocatability). DS
ORG LTORG END. SPACE, EJECT, TITLE
POP: pp 24-34 except CVB, CVD. Logical instructions except
TR, TRT, ED, EDMK. Branchi ng except EX

02/ 04 give out final project, discuss assenbler/interpreters
concepts of assenblers: 2 pass assenblers, how to set up
opcode and synbol tables (indexed junp methods), output
desired.
go over structure of SIGVA 4.5 conputer and its interpreter
noting indirect addressing in particular.

HANDOUTS: CS102FP1 (01 -08) general assenbler/interpreter descr
CS102FP2 (01 -06) specific nmaterial for final project

ASSI G\ Final project, due 13 March (described in CS102FPx)

02/ 07 deci mal nunbers and conversi ons
zoned/ packed decimal to and from binary. PACK, UNPK, CvB, CVD
equi val ent codes using M D |l oops for decinal -binary-deci mal .
exanpl es of various formats/conversions.

READI NGS: STRUBLE: Chapter 5: 106-110, Chapter 218-228, 228-233.

02/ 09 m sc review, nmisc instructions, program nask.
SPMinstruction, use of program mask, review BXLE, BXH, etc.

02/ 11 M DTERM
covered data representations, nost standard instructions,
hand assenbly, etc

17

18

19

20

21

CS102TPA - 05

02/ 14 on midtermand final project
review of mdtermresults and problemareas. final project:
overall structure, useful nodules and how to set them up:
deci mal scan and out put conversions, synbol scan, synbol table
manager, opcode | ookup, hexadeci mal output, etc.
revi ew of BXLE | oop control

HANDOUT: CS102PX1 (01 - 03) progranmi ng exercises: hand assenbly,
interrupts.

02/ 16 nore on assenbly process, location counter control
use of ORGto set up tables, tinetable for gettting fina
proj ect done, program design process and debuggi ng.

02/ 18 qui z, TR, TRT
30-m nute quiz: hand assenbly, BXLE | oop setup.
TR uses, setup, worKkings.
TRT uses, setup, exanples.

READI NGS: STRUBLE CH 15: pp 342-345, 350-352. prob 1, 3, 4.
ASSI GN: wite TRT table for scanning over hex digits.

02/ 21 programm ng techni ques, use of TR, TRT, conversions
use of global table pointer, exanples on TR TRIT.
deci mal input conversion, using two TRT's, EX, PACK, CVB
hexadeci mal out put conversion, using UNPK, TR

ASSIGN: wite code to performconversions, also to read in
nanes, place in table, then search table for |ater names.
READI NGS: STRUBLE CH 15: ED, EDMWK start.

02/ 23 conversi ons - hexadeci mal input, deciml output, ED
go through hexadeci mal input, but not in detail (TRT, TRT,
EX of MWC right-justified, TR, PACK 9 into 5, ignoring extra
byt e)
decimal output: CVD, UNPK, O for plus nunber, with |eading
zer oes.
deci mal output: begin on ED, EDMWK, doing parts with basic
wor ki ngs of ED, and standard pattern for integer nunbers.

CS411AS1 - 01
CMPSC 411 - ASSI GNVENT 1
LI NKAGE HANDLI NG FORTRAN ASSEMBLER AND OBJECT DECKS
DUE
This witeup: pages 01 - 02.

. MAXI M FUNCTI ON SUBPROGRAM

Wite a function in assenbl er | anguage, consisting of 1 CSECT
nanmed MAXI M which acconplishes the foll ow ng:

A. Follows standard OS/ 360 calling conventions, receiving the address
of an argunment list in register 1. There may be a variabl e nunber of
argunents in the list. Each address in the argument list points to a
ful l word sonewhere in storage.

B. The program shoul d al gebraicly conpare the fullwords addressed by
the argument list, and place the value of the maxi mumone in register 0O
as a result, then return control to the caller.

C. Inwiting this program DO NOT USE XSAVE OR XRETURN nacr os.

1. VWRITE FORTRAN TEST PROGRAM TO TEST MAXI M

This program should test MAXIM by using it as a function, i.e.,
it will have statenents of the form | = MAXIM1,2,-5,-10,4,5) in
it. It should have at least two tests of this form Print out the

results to show they are correct. Use the above set of data plus
anot her of you own choosi ng.

[11. WRITE ASSEMBLER MAI N PROGRAM TO TEST MAXI M

Wite an assenbl er main program which has the sanme | ogic and test
val ues as does the previous FORTRAN program It should use standard
0S/ 360 |inkage, its own save area (of course), and utilize the |BM
macros SAVE and RETURN. It should do the follow ng:

A. As given by the LINKAGE witeup, obtain the PARMfield (see if
any exists by testing for zero length). Either print the PARMfield,
or the nessage NO PARM EXI STS. Assune first character of PARMis a
| egitamate carriage control.

B. Make same two calls on MAXIM The first must be hand coded (no
macros), while the second uses the IBM macro CALL.

V. JOB CONTROL LANGUACE

Do not punch an object deck until you are sure the MAXI M program
is correct. Wile testing, you can use the follow ng JCL:

I/ EXEC ASCC

/ / SOURCE. | NPUT DD *

..... MAXI M program

/| EXEC FGCG, PARM DATA=NMAP

/ / SOURCE. | NPUT DD *

..... mai n program

..... should do a CALL LETDWP before using MAXIM

/ | DATA. SYSUDUMP DD SYSOUT=A (may need XSNAPQUT card foll ow ng al so)

CS411AS1 - 02

An alternate formof the preceding is to use:
/' EXEC FGC
/ / SOURCE. | NPUT DD *
..... FORTRAN nai n program
/| EXEC ASGCG, PARM DATA=' VAP
/ / SOURCE. | NPUT DD *
..... MAXI M
/ / DATA. SYSUDUWP DD SYSQUT=A

VWhen testing MMAXIMwi th the assenbl er program you may either
run it and MAXIM as one assenbly (1 ASGCG, or as two (1 ASGC and
1 ASGCG) .

V. VWHAT TO HAND I N

A. Run a job which produces the object deck for MAXIM and al so does
the test using the assenbler main program (note that the END card in
t he second assenbly should specify the name of the main programon it
so that execution will start there.) Use the follow ng deck setup:

/| EXEC ASGC, PARM=DECK

/ / SOURCE. | NPUT DD *

..... MAXI M

/| EXEC ASGCG, PARM DATA=' MAP/ 0l AM A PARM FI ELD
/ / SOURCE. | NPUT DD *

..... mai n program

*** gysudunmp and xsnhapout cards, if needed

B. Using the object deck produced by the previous program run this
test of MAXIM wi th FORTRAN:

/| EXEC FGCG, PARM DATA=' MAFP'

/ / SOURCE. | NPUT DD *

..... FORTRAN mai n program

/ | DATA. DECK DD *

..... obj ect deck from MAXIM

*** sysudunp and xsnapout cards as needed.

V. THOUGHT QUESTI ONS

A. Suppose that you also wote MAXIM as a FORTRAN function. What
woul d you do to obtain an object deck of it and use it as a subprogram
of your assenbler test progranf

B. Does MAXIM need to have its own save area? |f so, why? |If not,
why not ?

C. How does the object deck of MAXIM conpare with its source deck?
Does the answer tell you why peopl e use object decks?

D. What reasons can you think of for using a m xture of FORTRAN
programs an assenbl er programs? What does FORTRAN do wel |l that
assenbl er does not, and vice-versa?

Cs411Gd1 - 01
01/09/73: date of |ast revision

COVPUTER SCI ENCE 411 - GENERAL | NFORMATI ON

This witeup provides general infornmation regarding CVWPSC 411 -
SYSTEMS ORGANI ZATI ON AND PROGRAMM NG, as currently taught at PSU. It
notes the prerequisites, text materials, handouts, assignnents, and
general | y describes what is taught in this course, and what is expected
of the students taking it.

I NDEX
I PREREQUI SI TES e 1- 01
[1. TEXTBOOKS AND MANUALS i 1- 02
1T, VRITEUPS .. e 1- 05
V. BAT FILES 1 - 08
V. ASSI GNVENTS/ DUE DATES 1- 10

VI. COURSE QUTLINE/READINGSt
VI1. MSCELLANEQUS I NFORMATION i

| . PREREQUI SI TES

A. CMPSC 102 (or 410) or equivalent: effectively, a fairly conplete
i ntroduction to much of System 360 computer structure and assenbl er
| anguage programm ng. The follow ng should have been cover ed:

S/ 360 structure: registers, PSW nenory organi zati on, common
interrrupts, two's conplenment arithmetic. Programing experience with
nost of standard instruction set, possibly some with deci mal opcodes
and conversions. Privileged operations are not expected to be well-
known, and floating point operations will not be used in the course

S/ 360 Assenbl er Language: fanmiliarity with nost of the things
covered in the first half of the OS Assenbl er Language manual (sections
1-5). Mdst of the following terns or operations should be famliar
sel f-defining terns, location counter, literals, absolute versus
rel ocat abl e expressi ons; USING DROP, START, CSECT, ENTRY; various
instruction formats; EQU, DC, DS, TITLE, EJECT, SPACE, PRI NT, ORG
LTORG CNOP, END. Sone students may have done sonething with DSECTs,
MACRGs, and |inkage of FORTRAN and Assenbl er nodul es, but this is not
necessarily required. It is expected that nost i ncom ng students have
done nost of their progranm ng under ASSI ST, and are thus not yet
proficient in debuggi ng progranms and readi ng conpl eti on dunps under
05/ 360 directly. Students are expected to have witten at | east half
a dozen or nore prograns in Assenbler, including typically a snall
t wo- pass assenbler for a sinple assenbly |anguage

B. CMPSC 404 or equivalent: data structures: arrays, linked lists;
tree structures, queues, stacks; perhaps a little on searching and
sorting nmethods: hash tables, etc.

Anyone who has taken equival ent courses el sewhere or wi shes to
substitute other programm ng experience for the above should contact the
instructor imediately, to make sure their background is adequate for
the course.

Cs411d1 - 02
1. TEXTBOOKS AND MANUALS

The text naterials for the course are listed below. Mny of the
text itenms are | BM manuals, which are often in a continual state of
change. Particularly, each tine I1BMoffers an updated version of
0S/ 360, many manual s are nodified sonewhat. It is generally desirable
to have the manuals appropriate for the current version of OS/ 360
(which is Release __ at this tinme). However, this is not necessary,
as there are often only mnor changes between one version of a manual
and the next. In addition, there are conbinations of differently-named
manual s which are equivalent to others. In the list below the nost
desirabl e manual s are given, but equival ents are noted where possible.

Itens coded R are definitely required, itens coded D are desirabl e,
whil e the renmi ning ones are useful, but can be done wi thout, and may
not even be avail able. Abbreviations to be used later are given in
in brackets for each one. NOTE: for IBM manuals, first six digits show
the specific manual, while the remining one(s) indicate the version.
Normal Iy, (but not always), manual s having cl ose versi on nunbers are
not very different.

D <STRUBLE> 1. STRUBLE: ASSEMBLER LANGUAGE PROGRAMM NG THE SYSTEM 360

This text will be referenced at nobst occasionally, but contains
sonme nore readabl e expl anati ons than sone of the manuals below. It is
al so good for review of CMPSC 102(410).

R <ASw> 2. (GC28-6514-8 |1 BM S/ 360 OS ASSEMBLER LANGUAGE
This is heavily used throughout the course. By the 5th week of
term students will be expected to understand al nost everything in this

manual , whil e knowi ng of fhand nmuch of it. Besides the few sections in
the first half not already known to the students, the entire second
hal f (MACRGs) will be covered.

R <POP> 3. (GC28-6821-8 1 BM S/ 360 PRI NCI PLES OF OPERATI ON

This also will be used heavily. The students should be famliar
with much of the material, but it nay be needed for review of some
operations (such as TR, TRT, ED, EDMK). It will also be needed for the
follow ng topics: systemstructure: protection features, |1/Q status
swi tching: program states, protection, PSW instructions;
interruptions: all in this section; input/output operations: npbst of
this material: CAW CSW CCW basic operation of channels.

R <I NTRO> 4. (GC28-6534-3 I BM S/ 360 OS | NTRODUCTI ON
OR
R <C&F> GC28-6535-7 1 BM S/ 360 OS CONCEPTS AND FACI LI TI ES
These manual s (INTRO is effectively a reworking of the ol der
C&F) , give an overall view of operating system services, using OS/ 360
ternms in particular.They do not explain things in detail, but give
general concepts and vocabul ary. The student nust be famliar wth nost
of the concepts and terns in these manuals by the end of the course.

Cs411Gd1 - 03

The following group of manuals is continually changed around by
IBM with various parts shuffled anong manual s of same or changi ng nanes
or nunbers. There are effectively 4 distinct nodul es of information:
a) Supervi sor Services - description of general concepts.
b) Supervi sor Macro Instructions - coding details for these nmacros.
c) Dat a Management Services - description of general concepts.
d) Dat a Management Macro Instructions - coding fornms for these.

Al 4 of the above nodul es are definitely necessary, but they are
conbined in various ways, with any conbination providing all parts
bei ng generally acceptabl e, although the first conbination is preferred.
Each manual notes which information (a,b,c,d) it contains. Later
references may refer to <S&M>(x), where x is a,b,c, or d. In such
cases, the information can be found in any of the manuals whi ch have
that section of information.

R <S&Dwv> 5. XXXX- XXXX- X SUPERVI SOR AND DATA MANAGEMENT SERVI CES
AND MACRO | NSTRUCTI ONS
R <SS&w> GC28- 6646-6 | BM S/ 360 OS SUPERVI SOR SERVI CES AND
MACRO | NSTRUCTI ONS
(a, b) This is recomrended version, and contains the general

net hods used for managenent of prograns (including |inkage conventions),
tasks, and main storage allocation, with the nmacros for these.

R <DVBG> GC26- 3746-1 OS DATA MANAGEMENT SERVI CES GUI DE

(c) This is recommrended form and gives the general nethods
and many exanpl es of processing each of the different types of datasets
in different ways. Good explanatory material is given on various
characteristics of data sets (record formats, control characters, etc),
di rect -access devices, magnetic tapes, and general procedures of data
management (OPEN, CLOSE, DCB, GET, PUT, READ, WRITE, etc).

R <Dwvv> GC26- 3794- 0 OS DATA MANAGEMENT MACRO | NSTRUCTI ONS

(d) This is recommended form and describes in detail the
various ways of coding the data nanagement macros. The manual j ust
previous is read for understanding; this one is needed for actually
witing such prograns.

R <SS> GC28- 6646-5 S/ 360 OS SUPERVI SOR SERVI CES
(a) This is explanatory part of <SS&W, ol der versi on.
R <DwVs> GC26-3746-1 S/ 360 OS DATA MANAGEMENT SERVI CES
(c) This is explanatory part of <DVSG>, ol der version, and

not as well witten as <DVBG.

R <S&DM> GC28-6647-4 | BM S/ 360 OS SUPERVI SOR AND DATA
MANAGEMENT MACRO | NSTRUCTI ONS
(b, d) QO der version of material in <SS&W and <DMwb.
R <S&DVS> (GC28- 6646-3 | BM S/ 360 OS SUPERVI SOR AND DATA

MANAGEMENT SERVI CES
(a, c) A der version: sane as <SS> and <DMS> put together.

CS411G1 - 04

D <LE&L> 6. GC28-6538-9 | BM OS LI NKAGE EDI TOR AND LOADER

Thi s describes how to use the naned progranms, and is particularly
useful and necessary for anyone witing overlay programs or concerned
wi t h managenent of programlibraries. The beginning contains fair
descriptions of object and | oad nmodul es and their processing.

D <JCLR> 7. GC28-6704-2 1BM S/ 360 OS JOB CONTROL LANGUAGE
REFERENCE
Thi s manual conpletely defines JCL, gives various coding forns and
exanpl es of JCL usage. It is somewhat difficult to read as a text, but

is valuable as a reference. This nmanual is a rewmitten version of the
conbi nati on of the two foll owi ng nanual s (which together contain nuch
redundant information). Therefore, any one of these three manuals are
accept abl e, although this is the best.

OR
D <JCLR1> GC28-6704-1 I BM S/ 360 OS JOB CONTROL LANGUAGE
REFERENCE
Al t hough nostly like <JCLR>, this contains fewer exanples.
OR
D <JCLUG GC28-6703- |BM S/ 360 OS JOB CONTROL LANGUAGE

USER S GU DE
This version | eans nore towards exanpl es rather than a reference.

R <GREEN> 8. GX20-1703-9 |1 BM S/ 360 REFERENCE DATA

This is the GREEN CARD, and contains nuch useful information in
a conpact form including information on EDY EDWK patterns, contants,
assenbl er instructions, condition code setting, interrupt codes,
radi x conversions, formats of PSW CAW CCW CSW pernmanent storage
assi gnments, nost conmon CCW opcodes, instructions and EBCDI C bytes.

R <ASSI ST> 9. ASSI ST | NTRODUCTORY ASSEMBLER USER S GUI DE

Thi s describes usage of the ASSI ST assenbler. A slightly outdated
version (1.0) is available in the CVWPSC office (426 McAlister), while
an updated version nmay be avail able on BAT files (ask instructor).

CS411G 1 - 05

[11. VRI TEUPS

This section provides an al phabetic Iist of various explanatory
writeups and assi gnnent handouts which are available for use in CMPSC
411 or other courses. Sone of these may be handed out, while others
can be accessed by anyone who is interested. Names, nunber of pages,
source, and description are given for each.

The foll owi ng notations may appear for the SOURCE of each witeup:

BAT The witeup exists as as PSU CC BAT file, accessible fromRJE or
batch termnals. An otherwi se blank card with a comma in col um
1 indicates the beginning of each page, including the first. Note
that these normally contain both upper and | ower case letters.

DTO The witeup exists only as a dittoed handout.

TAP The writeup exists on a tape, in which case the tape nane, file
nunber, and file nanme are given

CRD The witeup is in a punched card deck.
MIS The witeup is on an MI/ ST tape.
If the description of a BAT file begins with (userid), that is the

userid under which the file is saved. If not nmentioned, the file is
saved under the follow ng userid:

JRMD2

Several utility programs are available for printing or punching
any BAT file(s). JRWMD2.PRINT prints any input, converting | ower case
letters to upper case, while JRWMD2. PUNCH punches its input. Both wll
run in any category, including category W The deck setup is:

11 JOB CARD

/*1 NCLUDE JRMD2. PRI NT substitute PUNCH i f desired
@ NCLUDE userid.fil ename 1 or nore cards like this
@ to term nate input

The BAT files generally have about 50 |ines per page, with a limt
of 500 lines in any one file. Sone witeups consist of several BAT
files together, while other BAT files contain several distinct witeups.

NAME PAGES SOURCE

ASBROPS2

ASPRGTC1

ASREPLGD

CS411A81

Cs4114G 1
Cs41143 2

Cs411MC1

CS411MC2

CS411FP1
CS411FP2
CS411GP3
CS411FP4
CS411FP5

DOCUNMENT

DSECT

DUMPSJ CL

3

11

10
##

o N 00 00 0

N

BAT

BAT

BAT

BAT

BAT
BAT

BAT

BAT

BAT
BAT
BAT
BAT
DTO

BAT

BAT

BAT

CS411G 1 - 06

DESCRI PTI ON

assi gnment using the ASSI ST REpl ace Mnitor: each
student replaces the base register table portion
of ASSI ST: exercies in table search or linked |ist
mani pul ation; USING DROP, address conversions.

gi ves S/ 360 Assenbl er progranm ng hints: how to
use nodul es, macros, and conbined forms; how to set
up safe, nondestructive |inkage to a nodul e.

ASS| ST REPLACEMENT USER S GUIDE : describes in
general terns how to use the ASSI ST Repl ace Mnitor.

assignment: |inkage between FORTRAN and Assenbl er
I i nkage conventions, argument passing, PARMfield
access.

the witeup you are | ooking at.

two assignnents on nmacro-witing: pages 01-03 have
one to wite own version of CALL, SAVE, RETURN
nmacros and test them pages 04-08 have conbi ned
macr o/ modul e writing: hexadeci mal conversions and
dunpi ng; various macro features illustrated.

assignment: wite package of nmacros to manipul ate
one-way linked lists. each nacro is fairly easy.

assignment: wite simulation of typical batch

mul tiprogramm ng conputer system Many possible
conbi nati ons of scheduling/allocation/resources are
avail able. Uses alnost all features in BAL.
exanpl e flowcharts for this project.

S/ 360 Assenbl er
good practi ces.

Language docunentati on hints and

exanpl e of use of dsects to trace save areas, also
showi ng assenbly listing of program
gi ves basic Job Control Language cards for running

nost typical assenbl er prograns; gives severa
useful hints on special JCL avail able at PSU; gives
programs to be run to obtain representative system
conpl eti on dunps.

Cs411d 1 - 07

NAME PAGES SOURCE DESCRI PTI ON
DUMP1 8 DTO debuggi ng and dunp-readi ng hints for assenbl er
DUMP2 7 DTO progranmers; concentrates nore on use with Link

Editor, but has sone material with Loader. @G ves
exanpl es of hunting down causes of errors.
(shoul d be upgraded and rewitten)

HARDWARL 5 BAT describes nost devices currently part of PSU CC
360/ 67 systenm gives device addresses, speeds,
capacities; channel priorities. Page 5is only
DTO, and it contains di agram of 360/67 | ayout.

LINKAGE 5 BAT explanation of OS/ 360 standard |inkage conventions
used by FORTRAN, Assenbler, etc programs for entry,
exit, argument passing.

OSHASP 9 BAT s/ 360 with HASP: explains how OS/ 360 is | oaded
into nmenory (IPL-NIP), how it runs, and howit is
nodi fi ed by the use of HASP

XDUMP 5 BAT describes use of XDUWP and XSNAP debuggi ng
nmacros (XDUMP is sinple formused in ASSI ST,
XSNAP is nore conplex). (JRVD4. XDUMP)

XGET 2 BAT describes use of generalized XGET/ XPUT I/ O macros

XHEXI 3 BAT describes use of XHEXI & XHEXO hexadeci mal
conversion macros (available in ASSIST).
(JRVD4. XHEXI)

XREAD 3 BAT descri bes XREAD, XPRNT, XPNCH |/ O nmcros.
avai l able in ASSIST. (JRWMD4. XREAD)

XSAVE 7 BAT describes XSAVE and XRETURN | i nkage macr os.
available in ASSIST only if using the nmacro
library. (JRMVD4. XSAVE)

In addition to the above witeups, the students will normally
purchase a copy of the ASSIST Introductory Assenbler User's Guide.
The very latest copy of this manual is available in the follow ng
JRVD4. BAT files:

ASS| ST1

ASSI ST1A 14 BAT Part |: describes | anguage avail abel in ASSIST
ASSI ST2 8 BAT Part I1: describes debug and 1/O instructions.
ASSI ST2A BAT

ASS| ST3

ASSI ST3A 9 BAT Part I1l: control cards, paraneter options.
ASS| ST4

ASSI ST4A 17 BAT Part IV: output format, error nessages, | oader

CS411Gd 1 - 08
I'V. BAT FILES

The following |ists BAT files which are NOT text material,
i.e., sanple prograns, test data for sone projects, etc.

NAME CARDS SOURCE DESCRI PTI ON

$BRTEST 178 BAT test data for the ASSI ST base-regi ster nodul e
repl acenent assi gnnent (see assi gnnent ASBROPS2)

ATTACH ??? BAT multi-tasking exanple: shows ATTACH, CHAP, DETACH, etc
BDAML, BDAM2 ? BAT run ot illustrate Basic Direct Access Mthod

BPAM 322 BAT an entire run, with JCL, to illustrate use of
BPAM nacros for accessing pPartitioned Data Sets.
Reads sel ected macros frommacro |ibraries and
prints them Shows FIND, BLDL, READ, CHECK, etc.

BSAM 157 BAT entire run to illustrate BASM nmacros. shows
READ, WRI TE, CHECK, etc. reads cards, wites on
di sk, reads fromdisk, prints.

CS411FPJ 74 BAT test deck of $$JOB cards for Final Project (see
assi gnment CS411FP1, 2, 3, 4, 5)

CS411FPK 110 BAT sane as CS411FPJ, but with different $$JOB cards.

DUMPTEST 84 BAT contains 4 runs, set up to produce dunps for
students to |l ook at. (see DUMPSICL witeup). note
that each run is preceded by BAT file conma card,
so that they may be extracted by listing with the
PAGE= option to find their starting sequence #'s.

EXCP 102 BAT contains conplete run, set up to read cards and
print them using EXCP macro and CCW stri ngs.

FLOTLI NK 152 BAT contains a conplete run, set up to show various
conbi nati ons of FORTRAN and assenbl er |i nkage.
illustrates nost floating point instructions, by
conputing a function in FORTRAN, then using sone
equi val ent assenbl er code.

GETMAIN ??? BAT programto illustrate use of GETMAI N FREEMVAI N

LI NKLOAD ??? BAT programto illustrate | oad nodul e managenent:
LI NK, LOAD, XCTL, DELETE macros, etc.

NAME CARDS
OvLY1 276
PTPCHMAC 22
QSAM 126
RECURASM ?7?7?
SPI ESTAE 7?77??
TI ME ??7?
WTONTL ??7?

Cs411d1 - 09

SOQURCE DESCRI PTI ON

BAT OVERLAY exanple: conplete run, uses link-editor to
edit a single object nodul e several different ways,
showi ng t he amount of storage which can be saved by
usi ng overlay methods. includes rmultiple REG ONs.

BAT wuses the IBMutility programto print 3 nmacros
from SYS1. MACLIB. illustrates use of | EBPTPCH,
all ows students to |l ook at macros if they want to.
entire run setup. shows SAVE, RETURN, CALL.

BAT Queued Sequential Access Method: reads from cards,
wites to disk blocked (illustrating use of DCB from
JCL DD card), reads fromdisk, prints. shows
GET, PUT, OPEN, CLOSE, DCB. shows all sources of
i nformation for DCB.

BAT illustrates recursive assenbl er program using
GETMAI N/ FREEMAI N macr os

BAT shows use of error-interception nmacros SPlI E/ STAE

BAT test programto show use of timng nacros:
TI ME, STIMER, TTI MER

BAT test run to show use of WO, WIL macros for

conmuni cating with conputer operator

Cs411Gd1 - 10

V. ASSI GNMENTS/ DUE DATES

#

The following |ists the assignnents given, approxi mate due date
of each (in terns of day nunber within the 30 class days per tern), plus
coments on each.

DUE

12

15

18

27

NAME/ DESCRI PTI O COMVENTS

DUVMPS - run dunp prograns as described by DUMPSICL,
bring to class: fanmliarizes students with dunp reading.

LI NK - assignnent CS411AS1 : gives students practice with
I i nkage, including FORTRAN aseenbl er |inkage, dunps. gets
t hem programm ng agai n qui ckly.

SAVE/ RETURN - CS411MC1 (pages 01-03) - wite own versions
of extended SAVE, RETURN, CALL nmmcros: starts students
on macr os.

HEX: CS411MC1 (pages 04-08) - wite hexadeci nal
conversion macros & nodul es, |ike XHEXI, XHEXO.
covers nmacro/ nodul e |inkage, TR, TRT, PACK, UNPK instrs.

BASEREG - ASSI ST base regi ster replacenment - ASBROPS2,
$BRTEST, ASREPLGD . covers base registers well in short
program hel ps w th understandi ng of DSECTS.

LI NKED- LI ST: CS411MC2 - linked-1ist macro package -
nore practice on macros, needed for final project.

FI NAL PRQIECT: CS411FP1, 2, 3, 4,5, CS411FPJ, CS411FPK -
operating system simulation.

C411G32 - 01
VI . COURSE QOUTLI NE/ READI NGS
A. OVERALL OUTLI NE
This section gives a very brief outline of |ecture topics by day.

Several enpty days are left for exams, problens, and possibl e expansion
of any of the topic areas.

DAY TOPI CS
1 I ntroduction to Course; Prerequisistes; Review X-Mcros
2 0S/ 360 Li nkage Conventi ons
3 Dunp-readi ng; Debuggi ng & good programm ng techngi ues; Conmmon
4 interrupts and interpretation of dunps.
5 Overall macro concepts & structure; FORTRAN anal ogi es.
6 Detail s on macros; exanples; npbst statenent types.
7 Fi ni sh macros; Aspecial argunent handling; character scanning.
8 M scel | aneous cl eanup on S/ 360 Assenbler. (CNOP, V-cons ,etc)
9 Addressibility; DSECTS;, Miltiple USINGS; Useful techniques.
*** at this point, S/ 360 Assenbl er Language is finished ***
10 Assenbl er Comparison: 1,2,4 pass (SPASM ASSI ST, Assenbler G
11 I ntroduction to operating systenms: history, basic types.
12 Architecture sumary: CPU, Menory, Devices, Channels; Menory
13 structure and comuni cation; nmenory protection
14 I/ O devices: sequential, DASD, capacities, characteristics.
15 Finish I/O devices; |I/0O Channels: types and programm ng; S/ 360
16 Channel -1 evel progranm ng; Interrupt handling; show exanpl es.
17 Final Project: explain sinulation concepts; system overview.
18 Modul e managenent; types of nodul es (REENTRANT, etc); | oader
19 Li nk-editor; Program Fetch; Overl ays.
20 User overview of OS/ 360 services.
21 I/ O concepts: buffering, record formats, blocking, etc.
22 Survey of common OS/ 360 macros (except data nmanagenent)
23 JCL
24 JCL
25 0S/ 360 and HASP internal structure; IPL, NIP, etc. ASP
26 Assorted topics: mcroprogramm ng; cache and virtual nenories.
27 Assorted topics: pipeline and array conputers; non-|BM systens

28,29,30 |left for exans, problens, expansion, etc.

COWENTS: the schedul e above is fairly tight. It has been useful
especially in the first several weeks, to give 'help sessions' once a
week in the evenings, to go over problens, review, etc. This has been
useful especially to even out differences anong 102/ 410 courses taken
at different tines and/or different campuses. Note that the order of
topi cs above seems to work out fairly well, since it gives the students
the material needed for the assignments fairly early.

Not e that sonme explanation of JCL should be given thoughout the
term when relevant to specific assignnents, etc, so that the two days
allotted to JCL contain a unified explanation, but assuming that the
students should have sonme famliarity with it by then

Cs411d 2 - 02
B. DETAI LED QOUTLI NE, REFERENCES

DAY TOPI CS

1 Qutline of course; administrative details; grading; exans;
course prerequsisites; review X-Micros: XREAD, XPRNT, XPNCH,
XDUMP, XSNAP, XDECI, XDECO XHEXI, XHEXO, XSET. Note that
a few of these nay NOT be review, but new nmaterial.
REFS: X- MACRO Wit eups.

2 0S/ 360 Li nkage Conventions: go over in detail;

CS411FP1 - 01

COVPUTER SCI ENCE 411 - FI NAL PRQJECT
DUE

[. 1 NTRODUCTI ON
A. PURPOSE OF ASSI GNMVENT

Thi s assignnent requires the student to design, code, debug, and
test a program which sinulates the execution of a fairly genera
operating system (0S/411) under a variety of circunmstances. It requires
the student to becone famliar with a nunber of different strategies for
i npl enenting operating system conponents, and provi des experience in
working with prograns of nontrivial size and conplexity.

Thi s project provides experience with the follow ng operating
systemtechnqgi ues: job scheduling, storage allocation, processor
di spatching, 1/0O request handling, and general job processing.

The foll owi ng programm ng techni ques can be included in this
program |inked list manipul ati on, queuei ng nmet hods, and random number
applications.

In particular, the assignnment generally requires the use of the
S/ 360 Assenbl er Language itens: nultiple CSECTS, DSECTS, heavy use of
macro definitions, and use of SET variabl es anong macros and i n open
code.

B. PROCEDURES FOR WRI TI NG AND RUNNI NG THI S ASSI GNVENT

1. This witeup describes many alternate ways of performng the
actions needed in an operating system Although students shoul d study
the various options perfornmed, they will NOT wite the code to inplenent
all of the options. One option (or several, to be conpared), wll be
chosen by the instructor to be coded by the students. THE STUDENTS W LL
DEFI NI TELY NOT BE REQUI RED TO WRI TE EVERYTHI NG DESCRI BED HERE, ALTHOUGH
THEY SHOULD ATTEMPT TO BECOVE FAM LI AR W TH THE VARI QUS OPTI ONS

2. In sone cases, there are variables which are to be given certain
val ues for test purposes, but which are to be represented by GLOBAL SET
VARI ABLES in the student program These SET VARI ABLES may be referrred
to in various parts of this witeup. The values to be used will be
given by the instructor(to fill in chart on page CS411FP4 - 06).

3. The student will wite ONLY ONE source programto cover all of
the different options desired. Alternate versions of a particul ar
method will be selected or del eted using conditional assenbly in open
code (i.e., using GBLA, GBLB SET VARI ABLES and Al F, AGO comuands).

4. The instructor will supply test decks, and request that they be
run, given 1 or nmore sets of options/paraneters. The student will then
generate the required version(s) of his program by changing ONLY a few
SETA, SETB, SETC statenents at the beginning of his program which wll
create the specific version needed. This process of using SET variabl es
to generate the systemis referred to as a SYSGEN

CS411FP1 - 02

5. It should be noted that some of the termi nol ogy enployed in this
witeup is not exactly standard, in particular the word QUEUE i s used
quite often. This usually is taken to mean a list (usually ordered on
sonme key), fromwhich only the first itemcan be renpbved, and new itens
only added to the end. Although this nmay be the nbst common case, for
this witeup the items in some queues may be inspected, nodified, added
and deleted in any position. For exanple, it nay be necessary to scan
a queue in order for the first itemneeting a specified test, then
renoving that item

C. A BRI EF DESCRI PTI ON OF THE PROGRAM AND WHAT I T DOES

The programto be witten will read an | NPUT STREAM which is made
of one or nore BATCHes of JOB cards. Each JOB card desci bes the needs
and characteristics of a single JOB. The programw ||l then sinulate the
handling of this job by a typical operating system

0OS/ 411 handl es each BATCH of one or nore JOB cards as foll ows:

First, OS/411 initializes itself to a status in which there are no
JOBS at all in the system and all counters, flags, etc are set to
their desired beginning values. The JOB cards will then be read (either
i mediately or at various intervals during the run), until the BATCH of
JOBS is finished executing.

Reading a JOB card begins a | ong sequence of actions which nust be
perfornmed to sinulate the actions needed to run a JOB

First, the JOB card is scanned, and all information is recorded
fromit. The JOB is entered on a queue of JOBS which are not yet able
to obtain use of a Central Processing Unit (CPU). Basically, this step
represents the process of reading in a conplete JOB and storing it on
magnetic disk before it can be executed

VWhenever it might be possible that sone JOB be | oaded into menory
and EXECUTED, the queue of waiting JOBS is scanned, and a JOB is perhaps
sel ected (according to one of nmany possible rules). This JOBis then
I NI TIATED, i.e., allocated MEMORY, and made ready for EXECUTION. It is
thus free to conpete with other such ACTIVE JOBS for the use of the CPU
(or one of several, if such exist).

The list of ACTIVE JOBS (ones in nmenory), is periodically scanned
(according to one of several algorithns) and a JOB is selected to
receive control of a CPU for sone period of tinme, i.e., the JOBis
DI SPATCHED.

After sone length of time during which the JOB has use of the CPU
it may make an I nput/Qutput Request, in which case it relinquishes
control of the CPU (so that another ACTIVE JOB, if any, may get it).
The | O REQUEST needs the use of an | O CHANNEL, of which there are one
or nore. Depending on the needs of the JOB, it either gains control of
a CHANNEL, and uses it to performits IO imediately, or else it enters
a queue of JOBS competing for the use of CHANNELS. 1In the latter case,
it my have to wait a while until it is selected to use the CHANNEL it
needs. It is said to be in WAIT STATE at any time during which it is
READY to use a CPU or CHANNEL, but cannot obtain what it needs.

CS411FP1 - 03

VWhen a JOB is finished using a CHANNEL, an 1O I NTERRUPT is said to
occur. This means that the JOB relinqui shes control of the CHANNEL
becones READY to use a CPU, and thus enters the list of such JOBS, once
nore conpeting with the others. The CHANNEL thus rel eased of course
becones avail able for use by other JOBS again, and may be used to fil
a request from sone previous JOB, which is WAITING for the CHANNEL.

Among the values found on the JOB card is atine limt for the
execution of the JOB. Wen this |limt is reached, the JOB is considered
to be finished. It is then JOBTERVED, i.e., it is renoved fromthe 0
list of JOBS conpeting for CPU usage, the nenory it occupies is freed
for possible allocation to other JOB(S) (i.e., the ones waiting on
di sk to obtain nenory).

At various times, calculations are nade to deterni ne some val ues
i ndi cating the performance and nature of the particular operating system
versi on being generated. Typical times are the end of a JOB and the
end of a BATCH of JOBS.

The process described above occurs for every JOB in a BATCH Each
BATCH i s processed, until none remain. CS411FP5-01 has job flow chart).

The remai ning portions of the witeup describe: the configuration
of the conputer system begin run by OS/ 411, the major options possible,
SET VARI ABLES whi ch nay be needed, and many hints on the inplenentation
of this program The last includes general methods, ideas on good ways
to divide the programinto nodul es, sanple data structures and DSECTS,
and overall flowharts which m ght be useful

Every option is given a mmenoni c name of some sort, and SET
VARI ABLES are of course naned as they might be inside OS/411

* * % % * *x * * *x % *x * *x * * *x * *x * *x * * *x * *x * *x * * * * *x * *x

NOTE: HI NTS, DSECTS, AND FLOACHARTS G VEN I N THI S WRI TEUP
ARE ONLY SUGCESTI ONS. THE STUDENT MAY BE ABLE TO DO THEM MJUCH
BETTER THAN THE WAYS OUTLI NED. | N PARTI CULAR, THESE THI NGS ARE
USUALLY WRI TTEN TO COVER ALMOST ALL OF THE PGSSI BLE OPTI ONS G VE
IN TH'S WRITEUP. AS A RESULT, THEY ARE MJUCH MORE GENERAL THAN
W LL EVER BE NEEDED TO COVER ONLY ONE- TWO OPTI ONS FROM EACH
GROUP OF OPTIONS. THUS THESE TABLES AND FLOWCHARTS ARE USUALLY
MORE COVPLEX THAN NEEDED FOR THE VERSI ONS REQUI RED TO BE TURNED
IN FOR GRADE, LEAVI NG MJUCH ROOM FOR CHANCES

* * *x K% * *x % * *x * * *x * * * *x * * *x * * *x * * *x * * * *x * * *x * *

>(->(‘>(‘>(‘>(->(-Z>F>(->(‘>(->(->(-

E O T T T S T R

CS411FP1 - 04
1. COVPUTER CONFI GURATI ON

The OS/ 411 operating systemis to be designed for use with a
paticul ar nodel of the fampus (or infanmous, depending on vi ewpoint)
System 411 series of conputers. This section |ists the various sizes
and nature of systems which nay occur.

A, MEMORY SI ZE

&VEMBI ZE : gives the size of the S/ 411 conputer, in K (1024)
bytes. &MEMSIZE may range from 1l to 1024, and CS/ 411 may or may hot
be required to run on different-sized machines. Sonme versions of 0S/411
may be witten to run only with one nenory size, thus allowing for nore
efficient special-case progranm ng techni ques.

B. NUMBER OF CENTRAL PROCESSI NG UNI TS (CPU)

A CPU is one of the nost inportant resources to be needed for the
execution of a JOB. A basic S/411 systemcontains only 1 CPU, while the
bi gger nodel s may contain nore than one. The possible options are:

cPU1 Only 1 CPU exi sts.

CPW &NUMCPUS gives the nunber of CPU S in the system &NUMCPUS
may range from 1 to an upper limt to be given.

C. NUMBER OF | NPUT/ QUTPUT CHANNELS

Perform ng i nput/output for a user JOB requires the use of an IO
CHANNEL. The followi ng are the possible options:

CHN1 the systemis a small one with only 1 10 channel, which all
user jobs nust use when they need IO

CHNx the nunber of |I/O channels is fixed at the nunber x. Channels
are nunmbered from1l to x.

CHNv &NUMCHNS gi ves the nunber of channels, w th &UMCHNS varyi ng
froml to sone given upper limt, and OS/ 411 nust be witten
to handl e any possible value. Channels are nunbered 1 to
&NUMCHNS in this case. No system has nmore than 15 channel s.

CS411FP1 - 05
[11. I NPUT JOB STREAM

0S/ 411 reads a deck of input cards, which contain cards which
descri be JOBS, and may contain other kinds of cards also. The kinds of
cards possible are as foll ows:

A. JOB CARD - DESCRI BES CHARACTERI STICS OF ONE JOB

Each BATCH of JOBS consists of fromO - to some nmaxi mum nunber of
JOBS. This maxi mum nunber nay be a constant or be given by &VAXJOBS .
Each card is of the following format (starting in colum 1):

$$IOB j obname T=x, SP=x, | O N=x, | ORL=X, PRI O=x, CHAN=x, CAT=X

j obnane is a 1-8 character nane, separated fromother itens by
1 or nore blanks on each side. It is a unique name which
is used to identify the specific job in any nessages.

The rest of the JOB card consists of the paraneters shown, WH CH
MAY OCCUR I N ANY ORDER. The foll owing options are possi bl e:

PARML all of the paraneters will exist on any JOB card, and no
errors need be tested for in them

PARM2 sone paraneters may be omtted or in error, in which case
DEFAULT values are to be set at SYSGEN tine and used instead.
The correspondi ng SET variabl es are then naned by & the nane
of the paraneter, and DFT, i.e., default T= value is given by
&TDFT, etc. So value of &PRICDFT is used if PRIO=is omtted.

PARM3 Thi s includes PARM2 above, except that the defaults are done
by JOB CATEGORY (the CAT= value), so that omitted options from
JOBS in different categories will have different defaults.

Al the values of x above are unsigned deci mal nunbers, and the
speci fic neani ng of each paraneter is given bel ow

T= a nunber from1l to 32767, giving the nunber of mlliseconds
which is atine limt on the execution of the JOB. As will be
given in a later section, this always counts use of the CPU, but
may or may not count use of a CHANNEL.

SP= (SPace) - a nunmber from1 - 1024, giving the nunber of K-byte
bl ocks of storage required to execute a JOB.

I O N= (I/OINterval) - a number from1l - 32767, which describes the
i nterval between I/O requests froma job. value is in mllisecs.

| ORL= (110 Request Length) - nunber from1l - 32767 describing the

duration in mlliseconds for one I/O request by the JOB.

PRI O= (PRIOrity) - a nunber fromO - 255 specifying the relative
priority of this job, with O highest and 255 lowest (i.e., if all
other things are equal, prioirty O gets preference over 255).

CS411FP1 - 06

CHAN= (CHANNnel) _ specifies a nunmber from 1l to the maxi um nunber of
channels in the system This specifies a particular channel which
the JOB needs to use to performl/QO
=0 specifes that the JOB nay use ANY avail abl e channel in the
system when it needs to performlI/Q.

O course, if option CHN1 is used, this paraneter can be ignored.
I f CHAN= specifies a channel nunber higher than the nmaxi mum one,
&NUMCHNS, CHAN=0 shoul d be assumed instead, i.e., this is NOT an
error, but allows use of any avail abl e channel

CAT= (CATegory) - is a nunber from1l to a maxi mum of 15(alt hough
some OS5/411's may allow a snmaller maximun). Specifies in some way
the type of processing a JOB is to receive. Sone versions of 0OS/411
may not utilize this option at all.

The above options include many things often found on JOB cards for
various systens. Qhers MGHT be required, such as a date or tine by
which a JOB nust be finished, or limts on output (lines printed, cards
punched, or limt on the sumof these).

B. $$CLEAR CARD - | NDI CATES END OF A BATCH
When this card is found, it requests the follow ng actions:

1. The sinmulation is continued until all JOBS currently executing
or waiting for execution are conpletely processed. However, no nore
$$JOB cards are read during this period of tine.

2. If required, print out a report giving statistics describing the
entire previous BATCH of JOBS (watch out for case where there were 0
JOBS in the BATCH, as when $$CLEAR card is first one in deck.

3. Reset all necessary counters, lists, work queues to such status
as to all ow acceptance and sinul ati on of another BATCH of cards. |.e.
0s/ 411 nust be SERI ALLY REUSABLE

C. $SQUIT CARD - FI NI SH ENTI RE RUN
This card indicates that no nmore BATCHes of JOBS follow, i.e., so
that this functions like the $$CLEAR, except that no nore BATCHes are
processed. NOTE: an END FILE | NDI CATI ON SHOULD BE TREATED AS A $$QUI T
CARD, i.e., if aread finds nothing there, it should take this action.
D. $$DEBUG CARD - DEBUG ACTI ON CARD
This card has the follow ng fornat:

$$DEBUG numnber, nunber.

This card is mainly for debuggi ng use, and supplies the various
nunbers to whatever debug counters/flags you may wi sh to use. This may
be particularly useful to turn on/off trace and debug output.

CS411FP1 - 07

V. JOB | NPUT AND SCHEDULI NG TECHNI QUES

Briefly, when OS/411 reads a $$JOB card, it scans it, evaluates the
various paraneters on it, and nakes up an entry for it on the list of
JOBS waiting on disk until they can be executed. The list is generally
kept in the order in which the JOBS should be executed if possible.

The options foll owi ng describe HON OFTEN a new JOB arrives (i.e., how
often new JOB cards should be read), IN WHAT ORDER the |ist of WAITING
JOBS shoul d be kept, and WHAT STRATEG ES coul d be foll owed to decide
which (if any JOB) should selected fromthis Iist and I NI TI ATED (| oaded
into nmenory and execut ed).

A. JOB READI NG OPTI ONS

These options describe the intervals between successive arrivals of
JOBS into the OS/ 411 system and are:

RDR1 A $$JOB card is read at an interval fixed at SYSCGEN, arriving
every &RDRINT mlliseconds.
RDRR A $$J0B card is read at intervals which are random accordi ng
to sone probability distribution. Anmong the possibilities:
RDRRU &RDRINT is the mean of a UNIFORM di stribution, i.e.,
intervals vary between 0 and 2*&RDRRI NT.
RDRRE the interval s between successive JOBS are obtained from

an EXPONENTI AL distribution, with &RDRRINT as a nean (this is
call ed a PO SSON ARRI VAL PROCESS, and is actually the nost
realistic of the arrivals given here).

B. JOB ORDERI NG OPTI ONS

After the parameters of a JOB have been scanned, it joins a |ist
of JOBS (which nay of course be enpty) which are waiting for execution
In general, the position of a JOB on the list usually deternines how
soon it can be executed; the first one on the list should be the next
one executed (if possible, according to which set of scheduling rules
is being used). Conbinations of the various options may be used, wth
the foll owi ng general philosophy:

If all other things are equal between two jobs, then the one placed
earlier on the list should be the one :

which arrived in the systemearlier and has thus waited | onger.
havi ng the higher priority (lower PRI O= val ue).

smal | est storage requirenment (smaller value of SP=)

smal l er running tinme requirement (T= val ue)

snal | er category nunber (CAT=)

JO1

Jo2

JG3

JA

JOb

JO6

JOr

J8

CS411FP1 - 08

The foll owi ng order options can be considered:

JA4S
JAAL

JGBS
JOBL

Jol
JG6C

FIFO (First In, First Qut) or FCFS (First Cone, First Served)
A new JOB is always added to the end of the list, so that the
earliest arriving JOB is listed earliest.

STRAIGHT PRIORITY : JOBS are kept in order from highest to
| owest (low PRIO values to HHGH PRIO values). If tw JOBS
have equal priority, then the earlier-arriving one is first.

CATEGORY PROGRESSION : JOBS are kept in order by CATEGORY
fromlowest CAT= to highest. Wthin each category, JOBS are
listed either FIFO or by PRIORITY, or both.

LENGTH OF TI ME REQUI RED BY JOB, either:

(SJF - SHORTEST JOB FIRST) : in order by T=, snall to big.
(LJF - LONGEST JOB FIRST) : in opposite order fromJOXS

SPACE REQUI RED BY JOB, either:

smal l est job first
| argest job first

I NPUT/ QUTPUT REQUI REMENT SELECTI ON
Di stinguish between |/ O BOUND JOBS (IORL large relative to
O N) and CPU BOUND JOBS (I ORL snall relative to ION)

/O BOUND JOBS earlier (small values of ITONIORL).
CPU BOUND JOBS earlier (small values of IORL/ION).

STATI C ORDERI NG COVPUTATI ON

When the JOB enters the system a single nunber is calcul ated
fromsonme subset of the JOB'S paraneters, thus weighting the
various factors according to whatever the designer of 0OS/411
desires. (Note that all of the JO options above are really
speci al cases of this). The JOB is then ordered according
to this nunber, which is thus a generalized priority. For
exanple: ORDER = (PRIO + T/256 + SP/4 + IONIORL) * CAT
favors high priority jobs, shorter jobs, snaller jobs, I1/0O
BOUND j obs, and especially jobs in | ower-nunmbered categories,
assum ng jobs are ordered from| ow ORDER to hi gh ORDER

DYNAM C ORDER CALCULATI ON

This case includes all JO options as special cases, and all ows
the ordering of the JOBS to be varied dynam cally, according
to any systemconditions. For exanple, it mght be basically
a priority system but check the list of JOBS at intervals,
and occasionally raise the priority of a JOBif it has been
waiting a long tinme. It could also take into account the
other jobs in a system such as trying to give equal service
to each category of jobs, or deciding to select an 1/ O BOUND
JOB if CPU BOUND ones are in menory, oOr Vice-versa

CS411FP2 - 01
C. JOB SELECTI ON RANGE AND METHCDS

Briefly, a job is to be selected fromthe Iist of waiting jobs by
scanning down the list until the first one neeting desired criteriais
found. If no such job is found within the range of the |ist scanned,
then no job is initiated at this tine. The followi ng options are a few
of the ways in which this range can be specifi ed.

JSR1 Initiate the first job if it fits in nenory (according to the
menory allocation rules given below). If it does not fit,
do not initiate any other job, even though it may fit.

JSRT Initiate the first job on the entire list which fits.
JSRv Initiate the first job which fits, scanning up to & SRANGE

Note the effects of the above rules: JSRl1 ensures that the jobs
are initiated in the order given by the JO option. JSRT does the best
in keeping menory full, but it may al so keep a | arge nmenory job
waiting for a relatively long time. JSRv is then a conprom se between
t he ot hers.

D. MVEMORY ALLOCATI ON FOR JOB | NI TI ATI ON

Many di fferent ways exist for allocating storage to jobs, the ways
used depend strongly on the purposes of the system and also on the
conput er hardware being used. For exanple, the S/ 411 computer series
i ncludes conmputers with a wide range of addressing/relocation circuits.
The snmall er ones require that a program be | oaded as one conti guous
bl ock in menory, and never noved fromthat area. The medi um systens
use bounds-registers, so that although a program nust be | oaded in one
contiguous block, it may be noved around in nenory. The large S/411's
may contain special page-translation hardware, which permits the program
to be | oaded as many nonconti guous pi eces, and nmoved around as desired.

It should be noted that OS/ 411 uses a STATIC allocation schene,
i.e., a JOB requests nenory only 1 time, when it is initiated. It does
NOT request and return nenory areas while executing. Sone systens use
a DYNAM C al | ocation schene, in which a program can request an area of
a given size, and be supplied with the address of such an area, use it,
then return it to the operating systemlater. Sone systens conbi ne both
of these nethods, i.e., they allocate an area of nenory when the JOB
is INITIATED, but allow prograns to allocate/de-allocate space within
that area. 0OS/ 360 is an exanple of such a nethod.

Finally, various methods exist for determ ning which of several
bl ocks of unused menmory should be allocated to a requestor. Each of the
net hods has advant ages and di sadvant ages, both in inplenmentation
difficulties and in statistical properties.

The next pages descri be SOVE of the possible options.

CS411FP2 - 02
1. MEMORY DESCRI PTI ON VALUES

The foll owing SET vari abl es describe the various paraneters of
nmenory al |l ocati on:

&VEMBI ZE = # 1K bl ocks of nmenory available for entire system up to
1024 (al so nmenti oned previously)

&VEMOS = # 1K bl ocks allocated to operating system and thus not
avail able to be allocated for user prograns.

&VEMPGR = page sized round value,i.e., all requests are to be rounded
up to this size. EX: if = 1, every 1K block of nmenory can be
al l ocated separately, if = 128, then each job is allocated at
| east 128K, i.e., jobs occupy 128K, 256K, 348K, ..

This unit will be referred to as a PAGE

&JOBLIML = an arbitrary Iimt on the maxi mum nunber of jobs in nenory
at any one tinme. Note that the special case &OBLIML = 1
i mpl i es UNI PROGRAMM NG, while &IOBLIML > 1 inplies that
MULTI PROGRAMM NG i s at | east possible.

&JOBLIM2 = a calculated Iimt on the nunber of jobs possible in nenory,
assum ng that each job nust be allocated at |east &EMPGR K
bytes of storage. This can be cal culated as foll ows:

&JOBLI M2 = (&VEMSI ZE- &VEMOS) / &MEMPCGR

&JOBLIMB = final limt on number of jobs, = M N &OBLI M, & OBLI M2) .
This variable would be the one used to actually control code
generati on.

2. MEMORY ALLOCATI ON ALGORI THVS

The foll owing are comon techniques for determ ning WH CH bl ock of
menory will be used to satisfy a request. In each case, a block is
given to a job for the duration of its execution, and then returned to
unused status when the job terminates. In every case, this block just
returned nmust be MERGED with any contiguous free bl ock(s), so that they
can together be used to satisfy a larger request. If this is not done,
menory becomes FRAGVENTED into small free bl ocks

MAAL (FIRST FIT) - a table of free blocks is usually kept in order
by address. The request is satisfied fromthe first area of
size >= request size, with the unneeded portion remaining
inthe free table. This is usually the easiest to inplenent,
and has the best statistical properties for nmost applications.

MAA2 (BEST FIT) - like FIRST FIT, except that storage is allocated
fromthe smallest free area of size >= request size, thus
trying to maintain large free areas. May be best under sone
condi tions, although not usually as good as FIRST FIT.

MAA3 (BUDDY SYSTEM - see KNUTH, Chapter 2 for this nethod.

CS411FP2 - 03
3. MEMORY ALLOCATI ON - CONTI GUI TY OF ALLOCATI ON

MACL (CONTI GUQUS, NO MOVEMENT) - the nmenory for a job nust be
al l ocated in one contiguous unit, and a job may never be
noved from that area.

MAC2 (CONTI GUQUS, MOVEMENT) - the job nust be allocated contiguous
nmenory, but may be noved around in nenory if necessary. (NOTE:
a system nust use bounds registers or nore sophisticated
setup in order to use this nethod).

MAC3 (NONCONTI GUOUS) - the required nunber of pages are all ocated
anywhere at all in nmenory. This nmethod definitely requires
speci al hardware, is nmost commonly used for Time-Sharing
systens, and exists in one formor another on: XDS SI GVA 7
RCA SPECTRA 70/ 46, BURROUGHS B5500, B6500, etc., GE 645, and
| BM 360/ 67 (used as 67 not as 65 |ike PSU does).

This type of system may be used to allow prograns to be
witten which are not totally in nmenory, and which can
appear to the user to be nmuch l|arger than the actual physica
menory avail able on the conputer system

4. MEMORY MERGE FOR ALLOCATED MEMORY

These options are only neaningful with option MAC2 above (why?).

MAML (AUTOVATI C COMPACTION) - nenory is allocated from one end
of storage, and whenever a job term nates, any jobs above
it are noved down to fill the enpty space. Thus at any

point in time, the nmenory consists of 1 region of contiguous
jobs, and 1 contiguous region of free space

MAMR (COVPACTI ON WHEN NECESSARY) - rather than conpacting
al ways, this nmethod only noves the jobs around when
necessary to initiate sonme desired job which is |arger
than any 'hole' currently existing, but smaller than
the total avail abl e space.

Wth either option, all CPU(s) rmust be stopped while the prograns
are being noved around, since they cannot execute a job while in notion
In this case, ALL CPU s are stopped from executing any jobs for the
followi ng length of tine:

tine used = (&VAMOVE * # K BYTES MOVED)/ &MIMCPUS

i.e., the CPU s share the task of noving the jobs around as needed. Note
that the decision on whether to nove jobs or not is heavily dependent
on the size of the &VAMOVE factor, which is essentially a nove cost.

5. I NI TI ATI ON DELAY FACTOR
& NI TDEL (INITiation DELay) - give the number of milliseconds required

to load a job into nenory, once it has been chosen, i.e., it
cannot begin execution until time NOM& N TDEL

CS411FP2 - 04
V. JOB SCHEDULI NG DURI NG EXECUTI ON

VWen a JOB is INITIATED, it is added to a list of jobs in nenory.
This list may be called a Ready Job Queue (RJIQ, since it is a list of
jobs which are in nenory, ready to execute, but not currently being
serviced by a CPU. The order of this list determ nes which jobs may
gai n control of a CPU when one becones available. Naturally, the Iist
itself can be ordered in any way desired, and generally includes all of
t he nethods described in IV.B. (the JO options), plus sone additional
ot hers comonly used only for CPU allocation.

Briefly, the process of allocating CPUs is as follows: at any
time when a JOB enters or |eaves nenory, or when the RIQ changes for
any reason, the RIQis examned. If CPU(s) are IDLE (i.e. not being
used for ANY job), then the first job(s) on the RIQ are given control
of the idle CPU(s). If PREEMPTION is all owed (described below), a job
whi ch woul d appear earlier on the RIQ than a job which currently has
a CPUis allowed to seize control of the CPU fromthe other job, which
is then returned to the RIQ A table is also kept of the JOB(Ss)
currently in control of CPU(s). Wenever a JOB is first given control
of a CPU, it keeps control of it for AT MOST the length of tinme
until it rmust performinput/output (which can be calculated fromthe
IO N paranmeter, as described in the O N options).

VWen a JOB requires I/O it must then conpete with other jobs for
the use of I/O CHANNEL(s). If it cannot obtain the desired CHANNEL
i Mmediately, it must WAIT until it becones avail abl e.

VWhen a JOB obtains control of a CHANNEL, it keeps control of it
for the length of time calculated fromthe IO N paraneter. As soon as
its /O operation is conplete , it releases the channel so that other
JOBs may use it, and then reenters the RIQ so that it may conpete for
use of the CPU(s) again. If PREEMPTION is allowed, it may i mediately
PREEMPT a JOB=CURRENTLY HAVI NG CONTROL OF A CPU, if it ranks earlier
by whatever ordering schenme is being used.

VWen a job first enters the RIQ it is allowed a total time from
the T=paraneter. Wenever a JOB uses the CPU, it is charged the
nunber of mlliseconds used, and depending on the option, it may be
al so charged for use of a CHANNEL.

A EXECUTI ON CHARG NG METHOD

The foll owi ng option determ nes whether a JOB is charged for the
use of CPU only or for both CPU and CHANNEL.

&ECCH = 0 The user is charged only for CPU usage. Thus, whenever the
JOB is given control of the CPU, the tinme until the next 1/0
request is determned, and an interrupt scheduled to occur at
that time. However, if the tine remaining to be used for the
job <= time until 1/Q it is used instead, and the job

term nated rather than perfornming I/O at that tinme.

&ECCH

1
-

In addition to the above charging, there is a charge for the
use of a CHANNEL, and the |/O duration is then:

time until 1/0 done = MN(time left,I/O duration).

A job never gets to use anything if it has O nmilliseconds |eft

CS411FP2 - 05
B. EXECUTI ON ORDERI NG METHODS

These nethods of course are sinmliar to the JO options for
deci di ng which JOB(s) are to be initiated. For further explanation on
simliar ones, refer back to CS411FP1-07. Note that one difference is
that the JOB(s) are generally serviced in the order they are on the
list, without having to worrying about whether they fit in menory or not
(naturally, since they already ARE in nmenory).

ECL (FIFO) - the JOBs are ordered on the list according to their
arrival there. In this case, they are order according to
the FIRST time they entered the RIQ i.e., just after they
were | NI TIATED, and thus this order does not change.
This method favors those jobs which were | oaded earliest, and
thus tends to mnimze the longest tine a job nust renmain in
menory.

EC2 STRAIGHT PRIORITY - JOBS are ordered from highest priority to
| owest (| owest PRI O=t o hi ghest val ues).

EC3 CATEGORY PROGRESSI ON - ordered by CATEGORY numbers, this of
course favors the | owest nunbered categori es.

EX4 LENGTH OF TI ME REQUI RED BY JOB, either:

EO4S (SJF - SHORTEST JOB FI RST), or
EX4L (LJF - LONCEST JOB FI RST).

Note EO4S tends to expedite the short jobs, and thus nove jobs in
and out faster, while EO4L tends to nminimze the |ongest tine anything
ever has to remain in nenory.

ECS MVEMORY REQUI RED BY JOB

ECGS (SMF - SMALLEST MEMORY FI RST)
EOGBL (LMF - LARCGEST MEMORY FI RST)

Note that of these two, ECBL is usually desirable since it wll
attenpt to get rid of |arge-nenory jobs quicker.

EC6 I NPUT/ QUTPUT REQUI REMENT

These orderings are conputed according to ION and IORL from JOB
cards, and remmin constant, regardl ess of what JOB(s) actually do.

EGGI 1/ O BOUND JOBS FI RST
ECGC CPU BOUND JOBS FI RST

O these EOC6l is usually desirable, since it allows JOBs performng
much 1/Oto get what little CPU they need, then let others use CPU.

CS411FP2 - 06
EC7 STATI C ORDERI NG COVPUTATI ON

An order nunber can be calculated for each job at the time it is
initiated, and that nunber used to deternmine its relative priority for
using a CPU. Note that the relative priority of two jobs does NOT
change while the two jobs are in nenory. Note that all options EOL -
EC6 are examples of this type of schene.

EC8 DYNAM C ORDERI NG COVPUTATI ON

In this case, the relative ordering of jobs is obtained dynam cally
and can thus change during execution, according to whatever criteria are
desired. The conputation of order nunbers is typically done either:

ECBF at fixed intervals, such as every 2 mlliseconds. Al jobs
in menory have order nunbers conputed for them

ECBV at variable intervals, or whenever a decision nmust be made
to give a job control of a CPU

The dynam ¢ ordering nmethods thus include the static ones. They
i nvol ve nore overhead, but can also give inproved performance, since
t hey can respond better to the changing state of the system

A nunber of typical dynam c ordering nethods follow, including
sonme counterparts of the previous static ordering ones.

EC1 FI FO - jobs are ordered not according to FIRST tine jobs
entered RIQ but last, i.e., the RIQis indeed a queue, and
a job only enters it at the end, such as when it finishes
doing I/O it rejoins the queue at the end, rather than in
possi bly the niddle. Conpared to EOL, this nmethod is sonewhat
nore 'fair' to all jobs in menory, rather than giving the
earlier ones nore advantage.

ECB84 LENGTH OF TI ME FOR JOB
These net hods conpare actual times, rather than the T= form
JOB cards.
EC84S SET - SHORTEST ELAPSED TI ME - order jobs according to the

amount of tinme a job has had control of CPU, and give CPU to
JOB(s) having lesser tinme. This is very 'fair'.

ECB4R SRT - SHORTEST REMAINING TIME - order jobs according to
the tinme estimated to be remaining (i.e., T= - el apsed), and
give CPU to jobs having least tinme left. This favors getting
jobs out of menory quickly, but may result in |ong-running
jobs sitting there forever.

ECB6 | / O REQUI REMENTS
For each job, maintain totals of the ampbunt of tine used for
CPU and 1/0O (necessary only if 1/O activity is non-constant,
as in randomgeneration systenms). Use this ratio to order.

EC86I favors 1/ 0O bound j obs.
ECB6C favors CPU bound j obs.

ECB6l is preferred, since it utilizes CPU and CHANNELS better

ECO0

qui ¢

Thi s
kly,

CS411FP2 - 07
TI ME SLI CI NG

famly of methods attenpts to allow short requests to finish

wi t hout having to know what the actual tinme needed is before

the job is run. It also attenpts to allocate CPU tine to ALL of the
jobs in nmenory in a 'fair' way. It is nost often used for interactive
and Ti me- Shari ng systems, where many users all wish to obtain very fast
or short conputations, but occasionaly have | onger requests.

EO90RR ROUND- ROBI N - when a job reaches the head of the RIQ it

Many
C

When

is given control of a CPU for a maxi num of &TIMSLIC millisec,
or until it waits for I/QO |In either case, the next job in
the list is given control of the CPU, and the job just
renoved fromcontrol of it enters the RIQ at the end. Wen a
job conpletes, it is renoved from nmenory. Each slice of tine
is called a QUANTUM Note that a job requiring only 1 QUANTUM
will enter, execute, and be conpleted quickly, while those
needi ng nore nust stay longer. This is very comonly used,
paticularly in Tinme-Sharing operating systens, is sinple,

but can be catastrophically bad if many jobs want to use the
CPU, and if the jobs are only partially core-resident.

ot her variations exist on this schene.
PREEMPTI ON

a job first enters the RIQ or when it conpletes I/Q and thus

beconmes eligible again for use of a CPU, it enters the RIQin the
appropriate place. If the job enters the RIQin the earliest place,

ei ther one of two actions may occur:

1. The job may wait until a currently executing job rel eases

a CPU by either requesting I/O or termnating execution entirely.

2. If the job has effective priority or order such that it would
rank ahead of a currently executing job (if that job were in the RIQ,
the new job may seize control of the CPU, i.e., PEEEMPT it. In this

case

, the

old job is removed fromthe CPU, and placed back in the RIQ

with the follow ng information conputed: elapsed time in CPU nust be
subtracted fromboth the job tinme renmaining, and the tine interva

unt i

| the

next 1/Ofor it, and the fact that this job has been preenpted

nust be noted, so that a newinterval until I/Ois NOT conputed when
job regains control of the CPU Il ater.

&EOP

&ECP

Two options are thus possible:

= 0 NO PREEMPTI ON

1 PREEMPTI ON ALLOWED (nore conplicated to program but usually

better for utilizing CPU and CHANNELS, since it avoids having
CPU BOUND prograns tying up CPU for |ong periods of tine).

CS411FP2 - 08
VI. I NPUT/ QUTPUT SCHEDULI NG

Normal |y, when a job receives control of a CPU on a REAL conputer
system it keeps control of that CPU until it either requests |I/0O and
nmust WAIT, or a higher-priority job's I/O conpletes and is allowed to

preenpt it.

Since the jobs in a sinulated systemare not actually perform ng
I/ O, whenever a job is scheduled to receive control of a CPU by OS/411,
the tinme until an I/O request occurs nust be COWUTED, and an |I/O
request scheduled to occur at that time. In general, the interval
until the job relinquishes the CPU is always the M N MUM of :

an /O INTERVAL (fromJOB card 1O N=, or conputed fromit).
JOB tine renaining.
QUANTUM (i f using Tine-Slicing nmethods).

When the job actually gives up the CPU, it either TERM NATES and
is renoved frommenory (if the time remaining = 0), or else nakes an
I/ O REQUEST, in which case it nmust obtain a channel for this action.

VWhen the 1/ O REQUEST occurs, the job either uses a channel right
away, if it is free. or else nust enter a queue if requests waiting
for a desired channel. Sooner or later, it will be able to use the
channel, at which time an I/O I NTERRUPT nmust be scheduled, i.e., this
is the time at which the I/Ois conpleted. In general, no PREEMPTI ON
is ever allowed for use of a CHANNEL, as it would be disastrous
to interrupt the use of a CHANNEL.

When an I/ O | NTERRUPT occurs, the I/O operation is conpleted, the
job rel eases the CHANNEL being used, and it returns to the RIQto once
nore conpete with other jobs for use of a CPU.

A |/ O | NTERVAL CALCULATI ONS

The length of time until a job gives up the CPU is always found
just before the CPUis given to the job, as follows:

lacC Constant interval from SYSGEN. For all jobs, & O NTVL gives
the nunber of mlliseconds until an I/ O REQUEST.
1aJ Fi xed interval fromJOB card. For EACH job, the time until
the next 1/O REQUEST is taken fromthe | O N= paraneter on
the JOB card.
IOR Random I nterval s, using Job Card information. For exanple:
| O RU UNI FORM - the actual interval is computed froma UN FORM

di stribution, using the | ON= paraneter as the MEAN, i.e.,
any value fromO to 2*IAONis equally likely.

CS411FP3 - 01
B. 1/0 REQUEST QUEUE SCHEDULI NG

When |/ O request occur for channels currently in use, the
j obs nmaking the requests nmust enter queue(s) to obtain channel use.
These queue(s) can of course be ordered in various ways, corresponding
to the JO and EO options given previously. However, for this type,
usual ly only several of the possibilities are actually done:

| 001 FIFO - the first job requesting a channel gets it first.

| OO2 PRIORITY - the highest priority (lowest PRIO=) job waiting
for a channel obtains it, even if others arrived earlier.

| 061 I/ O BOUND JOBS are favored over CPU bound jobs, with this
cal cul ati on nade either statically or dynamically.

NOTE: FIFO is the nbst comonly used, but sonetimes PRIORITY is
used, especially if there are one or nore jobs in the system which
absolutely require fast 1/O service (usually in Real-Time or Process
Control systens al so containing batched jobs).

C. 1/ 0O REQUEST LENGTH CALCULATI ONS

Whenever a JOB gains control of a CHANNEL, the tinme it will use it
must be cal cul ated, and an I/ O I NTERRUPT schedul ed to occur at that
time, when the job will give up control of the channel. This length
of time using the channel may be found in ways anal ogous to the IOR
options for determning the intervals between requests:

| ORC Constant interval from SYSGEN. For ALL jobs, & OREQ gives
the nunber of milliseconds a job uses a channel.
| ORJ Fi xed interval fromJOB card. For each job, the length of tim

a channel is used is constant, and taken fromthe | ORL=
paranmeter on the JOB card.

| ORR Random | engt hs, using JOB card information. For exanple:
| ORRU UNI FORM - the actual length is computed froma UNI FORM

di stribution, using IORL= from JOB card as the MEAN. Thus,
any value fromO to 2*IORL is equally likely.

CS411FP3 - 02
VIl. REPORTS

At various tines during a simulation run, various reports may be
printed. In sone cases, these nmay be useful for debuggi ng, and others
are nost useful for obtaining statistics for conparison of different
versions of OS/411. Unlike nost of the other option groups, the ones
in this set are NOT nutual ly exclusive.

R1 SYSGEN report. This report is printed 1 tine only at the
begi nning of an entire run, even if nultiple batches of jobs
are run. It describes which options are being used, and al so

prints the val ues of various SET variables used to generate
the particular version of OS/ 411 bei ng used.

R2 CURRENT STATUS REPORT. Every &RDRINTV milliseconds, this
report is printed, for the prupose of showi ng the overall
status of the system It mght include:

R2T The current tinme (0, 1*&RDRINTV, 2*&RDRINTV, etc).

R2N The current number of jobs waiting on disk for execution and
the current nunber in nmenory.

R2SM The current status of each job in nenory, with followi ng codes
(and other information if applicable):
R (Ready) (ready to execute, but does not have CPU).

C (Cpu) (executing now. add nunber of CPU used in
mul ti pl e- CPU systens).

W (Wait) (wai ting for channel to becone free).

I (1710 (performng I/O add channel number being

used in multiple channel systens).

R2MJ The current nmenory status for each job, i.e., which bl ocks
of menory are currently allocated to the jobs.

R2MM Menory Map - a map of memory, showi ng which jobs are | ocated
in which areas.

R2MI The total ampbunts of nenory in use and unused.

R3 JOB READ REPORT - printed whenever a JOB card is read, and
JOB thus enters system |Is essentially an ECHO of JOB card,
preceded by the tine it enters system

R4 JOB I NI TI ATI ON REPORT - printed whenever a job is selected to
be | oaded into nenory. Gves tinme and the name of the job
fromthe JOB card. An additional feature m ght be:

RAM nenory locations in which job is | oaded.

****NOTE**** the nenory allocation algorithns may be affected by the
requi renent of reports RRMJ, RRMM R2MI, and RAM i.e., it nay be the
case that it is NOT actually necessary to inplenment the algorithns in
MAA, MAC, and MAM | F it is NOT required that menory maps be printed.
Thus, it may only be necessary to know it there is enough space to | oad
a job, NOT where it actually is.

R5

R7

CS411FP3 - 03

TERM NATI ON REPORT - whenever a job has consuned all of its 0

allotted time, it is termnated (removed fromnenory). This

report shoul d show

Job nane

Current tinme.

JOB turnaround tine (= current time - time job was read into
the systeny.

Menory residence time (= current tine - tinme when the JOB
first entered the AJL).

Dependi ng on the version of OS/ 411 used, these m ght be useful:

R5R (especially for Randomtype systens) - total tine spent using
a CPU, total I/Otinme, total time WAITING for CPU, and total
time WVAITING for a channel, ratio of CPU tinme used to total
tinme (showi ng CPU-1/O BOUNDEDNESS TYPE).

DI SPATCH REPORT (each tinme a job gets control of a CPU it
is said to be DI SPATCHED) . This is done whenever a job gets
control of a CPU, and displays tine, jobname, and CPU nunber
for multiple-CPU systems. M ght show | ength of time the job
is to be given control of the CPU.

I/ O REQUEST REPORT - gives tine, jobname whenever an executing
job stops to do I/Q

CHANNEL ALLOCATI ON REPORT - done every tine a job actually
recei ves control of a channel, and gives tine, jobnane, and
channel nunber. It mght optionally show the length of tine
the job will use the channel.

BATCH REPORT - this report occurs at the end of a conplete
BATCH of jobs, when all jobs in the BATCH have been | N Tl ATED,
EXECUTED, and term nated, and the systemis conpletely enpty. O
At this tinme, statistics can be printed about the BATCH.

Needl ess to say, the appropriate counters nust have been kept
during the simulation.

The following itens are to be printed:

Total time for entire BATCH (TOTAL = time |last job term nated).
Total number of jobs run (called NJOBS).

For each CPU or CHANNEL in the system
Total time during which CPU (CHANNEL) was bei ng used to EXECUTE (DO
1/10. (called TIMEUSED).
Percentage of time each CPU (CHANNEL) used: 100*TI MEUSEDY TOTAL .

Degree of Miltiprogranmng: gives the average nunber of jobs
in menory over entire batch. Needs an accumulator (MIULTI) and a
job counter (#I NCORE), both initially = 0. Each time a job is
initiated or term nated, set:

MULTI = MULTI + #INCORE * (interval since last INNT or TERM.
and increnent/decrement #I NCORE as is appropriate.
Finally, at the end of a batch, MILTI/TOTAL gi ves the average
nunber of jobs in nenmory (usually >1.0 under multiprogranmm ng).

CS411FP3 - 04

The followi ng other report itens mght be printed at the end of a
bat ch under some circunst ances:

ROTU Average TURNARCUND tine for all jobs in a batch.

This option could usefully be generalized to show turnaround by
groups of jobs (for exanple by category CAT=, or by splitting jobs into
several groups according to T=, SP= etc). The reason for this is to
determ ne just which types of jobs are being favored, and if so, how
nmuch.

RDBG DEBUGG NG REPORTS - these may be added as desired. Things
whi ch m ght be useful debug output to build in are:

RDW A dunp of the list of jobs waitng on disk.
RDMJ A DUMP OF THE LI ST IF JOBS IN MEMORY (AJL plus others).

RDST a dunmp of all the inportant system variables, such as the
"clock' or current tinme, the status of CPU(s) and CHANNEL(s),
i nportant flags, etc, etc.

Note these reports are not neant to be pretty, but they are
probably the MOST | MPORTANT itens for getting the program running.

Note that an excellent technique is to enmbed such debuggi ng
reports in a programfromthe beginning, allowing themto be renpved
in one of two ways:

ASSEMBLY TIME: if absolute sure that a given section of code is
correct, debug output can be tenporarily cancel ed using SET vari abl es.
VWen the inevitable bugs then creep out of hiding, they can be caught
by changi ng the SET variables again, i.e., XSNAP-XSET process.

EXECUTI ON TI ME: suppose that a programruns a reasonable |ength
of time, appears to be running correctly, then bonbs in a given
situation. |f debug output is produced for the earlier part of the run,
record limts are exceeded. Therefore a convenient way is needed to
det erm ne whet her debug output is needed during execution. One such
way is to:

1) Read counters/flags, etc into a global area of the program
fromthe $$DEBUG card.

2) Use XSNAP |F= option to test these counters/flags, etc and
either print debug output or skip it.

In particular, the above approach is of considerable nerit when
OBJECT DECKS are being used, since this way, it is possible to get
an obj ect deck which is | oaded with debug out put code, but never
actually prints such output unless requested frominput cards.

Note that $$DEBUG cards can then be inserted in the input stream
in position just BEFORE trouble occurs, and renoved when debugged.

CS411FP3 - 05
VI1I. GENERAL | MPLEMENTATI ON METHODS

This section presents general nethods hel pful not only for this
project, but for any other assenbl er | anguage program of nore than
trivial size. Sonme of these nethods have anal ogues in high-Ileve
| anguages. These hints may save much time and effort.

A. MODULAR PROGRAMM NG

The program shoul d be constructed of a nunmber of different CSECTs.
For OS/ 411, the appropriate nunmber is approximately 6-12 CSECTS. At
| east SOVE of them can be assenbl ed and debugged fairly quickly, object
decks obtained for them and included with the other nodul es yet to
be debugged.

I nsi de each CSECT there nmay be | NTERNAL SUBROUTI NES wher e usef ul
rather than conplex flag testing/setting code

B. PROGRAM DESI GN, FLOMCHARTI NG DATA STRUCTURI NG

The program should be fairly well laid out before MICH code is
witten for it. |In some cases, it is definitely possible to wite a
conpl ete section of code wi thout having designed the next one. This
can be a good procedure, since it allows the programrer to be running
and debuggi ng one section while witing the next. However, it is a good
idea to be SURE that the current section's design does NOT depend very
ncuh on what the next one does, since this will require unnecessary
changes: AVO D CONTI NUALLY CHANG NG CCODE AROUND.

Fl owcharting is useful because it hel ps elimnate unnecesaary or
redundant code, aids deterni nging the dependence/i ndependence of code
segnents, and hel ps in the designing of good data structures. Heavy
use shoul d be nade of various forms of subroutines and nacros. Big
assenbl er prograns are totally unreasonable w thout them

C. NAM NG CONVENTI ONS

Very early in the design process (and definitely BEFORE any code
is witten), the prograner should nake up sone sinple and consi stent
conventions for names. Typical rules are:

1. Every register EQU begins with R and synbolic registers are used
EVERYWHERE

2. EAch CSECT and DSECT will have a nane such that every label in
the section begins with the first 1, 2, or 3 (choice) letters of that
secti on.

3. Inportant synbols used across nmany CSECTS m ght be assigned to
begin with particular characters. O these, $ is a often chosen to
mar k such symnbol s.

CS411FP3 - 06

VWhy bother with rules such as are given on the previous page?
Briefly, it is because such rules cost little effort, but save much
time and trouble. Anpbng other things:

1. It is EXTREMELY annoying to lose a run, with 1 STATEMENT FLAGGED
because a statenent |abel is duplicated, very easy to do in a |arge
programif no rules are followed.

2. Wien |l ooking for an error or at a listing for any reason, the
NAME of sonething shows i mediately where it is | ocated, what section
it belongs to, and perhaps what its purpose is. This is particularly
useful for dsect symbols bel onging to specific control bl ocks.

3. The nane nethods given cause rel ated synbols to appear close
together in the CROSS- REFERENCE |isting, which also saves tine.

D. SYMBOLI C CODI NG, DUMWY SECTI ONS

DSECTS are an absolute necessity. Flag values and switches are
al so easier set and tested if they have menoni c EQU val ues rather than
usi ng actual values. For exanple:
$SACTIVE EQU X 01' (AJLSTATS) => job using CPU
MVI AJLSTATS, $ACTI VE show this job now active

CLI AJLSTATS, $ACTI VE is this job active?

The above is much clearer than MWI AJLSTATS, X' 01', etc. Even
MORE | MPORTANT is the fact that it is infinitely safer and |l ess error-
prone.

A useful method is to have 1 different DSECT for each distinct
type of control block, list elenent, table, etc, plus perhaps 1 DSECT
for a global control table. A TYPICAL METHOD IS THEN TO LOAD AN
address constant of a table CSECT into a specified register very early
in the main program connect it to the DSECT with a USING then NEVER
nodi fy that register during the program Registers 10, 11, 12 seemto
be the nost favored for this type of use.

CS411FP3 - 07
| X. SPECI FI C | MPLEMENTATI ON TECHNI QUES

This section discusses the specific project, covering specific
nodul es, data structures, and techni ques which may be of use in witing
this project. ***xxxxxkx NOTE ****xx*x%%% TH S | NFORMATION IS ONLY TO
HELP GETTI NG STARTED. IT IS NOT REQUI RED THAT THE PRQIECT BE STRUCTURED
IN THE WAY DESCRI BED HERE, ALTHOUGH THE PRQJECT MUST BE CAPABLE OF
THE REQUI RED ACTI ONS, REGARDLESS OF HOW I T IS WRI TTEN

Pl ease note that the data structures and nodul es described are
designed in such a way as to handl e any of the conbinati ons of options
given previously. As a result, they may be extrenely inefficient for
a particular set of options. |In this case, you should throw out code
or variables which are not at all needed. However, be careful about
departing too far fromthe nmethods shown in the direction of | NCREASED
COVWPLEXI TY, because you will NOT get the project finished if you go
out of your way to make it extra conplicated.

A. PROGRAM MODULES

The required functions nmust be perforned by sections of 0S/411
some of which may be inplenmented as CSECTs or perhaps as interna
subroutines of CSECTs. The functions described will are not generally
suitable to be witten as MACRCS, although it nmay be useful to wite
macr os wherever necessary for support of their functions.

1. JOB CARD SCANNER (al so cal | ed READER- | NTERPRETER) (abbrev RDR)
When this nodule is called, it:

a) Determines the type of conmand on the next input card (if any),
and then branches to code sections to handle the individual types of
cards possible.

b) If command was a $$JOB, it decodes the various paraneters,
obtains a free UJL elenent (block for job waiting on disk), places it
it inthe WL (Un-initiated Job List) in the appropriate position.

Lookup of parameter options should be done using clean, table-
driven code, i.e., for parameters, scan to an = sign, pad paraneter nane
to a standard | ength, then use a CLC - BXLE loop to find the position
of the paraneter in a paraneter table, which may al so contain flags or
junp codes to control further processing of the paraneter val ues.

VWhen finished processing a card, this nodule may request that it
be called at sone tinme in the future, and nay al so set various gl oba
fl ags.

This nodul e essentially inplenments the follow ng option groups:
RDR, JO

CS411FP3 - 08
2. JOB INITIATOR - (JBINT)

This nodule is called whenever it M GHT be possible to nmove JOB(S)
fromthe queue of jobs waiting on disk (UIL) to the queue ready in
menory (AJL). This possiblity occurs normally imediately after:

a) A new JOB has just arrived and been placed in the UIL by RDR

b) AJOB in the AJL has just been conpleted and renpbved by the
JOBTERM r out i ne.

In either case, it may be possible to I NI TIATE a job which was
not previously present or could not fit in nmenory.

It renoves the selected UIL el ement fromthe UIL, obtains an enpty
AJL element fromthe list of such elenents, fills it in with required
times and values fromthe UJL, marks the el ement READY, then either
adds the AJL elenent to the AJL immedi ately, or takes care of requesting
it to be added at a later tine (i.e., NOW+ & N TDEL).

The initiator then | oops through the above until it can no | onger
initiate any nore jobs, for any reason what soever.

This nodul e i nmpl enents the followi ng groups: JSR, M\, and
probably needs EO al so.

JBINIT probably nmust request that DI SP be call ed whenever
there may be a change in the AJL.

3. DI SPATCHER (Dl SP)

Whenever a CPU becones avail abl e (either because of an I/ O request
or atermination), this nodul e determ nes which, if any, job should
be assigned the free CPU. |If PREEMPTION is allowed, this nodul e should
determ ne whether to switch a READY job for an EXECUTI NG one, which
can occur either when a new job is finished being | oaded, or when an old
one conpletes I/0O and is thus READY agai n

It may call 1O LENG to determ ne how |long a job bei ng D SPATCHED
(given control of the CPU for some tine) will execute until it nakes
an |/ 0O request.

The DI SPATCHER probabl y mani pul ates various clock values in the
AJL el ements, decrenents tine-remning counters, etc, and generally
performs bookkeepi ng operati ons needed to generate statistics.

| f PREEMPTION is allowed, the DI SPATCHER nust take care of it, and
nodi fy clock el ements accordingly, so that a preenpted job is treated
fairly, does not lose tinme, and generates an I/ O request after the
appropriate amunt of time.

Thi s nodul e contains code for option group : EO

CS411FP4 - 01
4. |/ O I NTERVAL LENGTH ROUTI NE (I O LENG

Thi s nodul e deternines how long a job will be allowed to execute,
before being halted for an I/O request. This mght reasonably be an
i nternal subroutine of DI SPATCHER

Thi s nmodul e i nmpl enents option group: 10, and may be invol ved
with &EOP vari abl e.

5. CHANNEL REQUEST PROCESSOR (CRPROC)

This nodule is called whenever a job is to relinquish control of
a CPU and attenpt to performlI/O It renoves the job fromcontrol of
the CPU, and markes the CPU idle, also requesting that the DI SPATCHER
be called immediately to try to schedule a job into the CPU. If the
required CHANNEL is currently idle, CHANALC can be called to allocate
the channel to the job (and the job marked as in I/O status). If the
channel is not available, it nust enter a queue of jobs waiting for
channels, (IOR), and wait here until the needed channel becones free.
In this case, the job is marked as in WAIT state.

This nodul e typically inplenents the option group : 10O

6. CHANNEL ALLOCATOR (CHANALC)

This routine is supplied with a job and a channel, and essentially
gi ves the channel to the job, determines howlong it will be until the
I/O interrupt occurs which ends the I/O and al so takes are of checking
against tinme remaining (if user being charged for channel time also,i.e.
if the SYSGEN specified &CCH = 1)

CHANALC must make sure that CINTR is call ed whenever the 1/0O
interrupt is to occur. (possibly to call JOBTERMif there is no nore O
time left and channel tine is being charged).

This nodul e i nmpl enents: | OR options.

7. CHANNEL | NTERRUPT HANDLER (CI NTR)

This nodule is called whenever a job finishes with a channel
The channel is freed, narked idle, and if any other job is waiting for
that channel, it calls CHANALC to give the channel to the job needing
it.

The job's status is changed from|l/Oto READY, it is placed back in
the AJL, and a request nmde that the DI SPATCHER be called, so that the
job may effectively conpete for a CPU again

CS411FP4 - 02
8. JOB TERM NATOR (JOBTERM

This nmodule is called when a job finally consunes the tine allotted
toit on the JOB card. It renoves the job from nenory, returns any
control elenents to free list of such, and also notes that the JBINIT
routine be called, since it may now be possible to initiate another job.

9. EVENT EVNQUEUER (EVNQ)

This nodul e (or possibly just a macro) is called whenever it is
necessary to schedul e some type of event to occur at a certain tine.
It inserts (or constructs and inserts) an EQ node into the EQ |i st
according to time of event.

10. REPORT MODULE (RPORT)

This nodul e may be called to produce the various types of reports
possi ble at various tinmes. In sone cases, the R options nay be incl uded
as sections of code in other routines (like R3in RDR, R4 in JBINT).
This nmodule m ght be witten in FORTRAN, at |east partially.

11. MAIN PROGRAM

This nodule first prints the SYSGEN report Rl, if required. It
then consists of two nested | oops.

The outer loop is executed once for each BATCH of jobs, and is

made of the follow ng steps: |N TIALIZATION (reset flags, counters,
put all list nodes into the respective free lists, and al so request
that the RDR be called at time 0, set clock GNON= 0, etc); |NNER LOCP

(the actual simulation); and COVPLETION (print report R9, if exists).
If it is discovered at the end of this loop that a $$QUI T card has been
found (or end-file), the | oop ends and the entire programtern nates.

The inner loop is executed one time for each EVENT which occurs,
and thus traces the system actions at those tines during which the
system actual |y changes status, ignoring tinmes in between. Each |oop
perforns the foll owi ng actions:

a) POP's the first node fromthe Event Queue (EQ, renoves the
data item(s) fromthe node, and returns the node to the free list of
such nodes.

b) Sets the global clock GNOW = tine fromthe node, i.e., the
current tinme is now whatever tine the event is to occur

c) Uses a code value fromthe node to determ ne which of severa
routines (RDR, JBINIT, etc) to call to do required action

d) Loops through a) until the EQis enpty, i.e., nothing nore is
to occur.

THE ABOVE LOCP |'S AN EXCELLENT CANDI DATE FOR EMBEDDED DUMPI NG CCODE
VWHI CH CAN BE TURNED ON OR OFF ACCORDI NG TO VARI ABLE SW TCHES.

CS411FP4 - 03
B. DATA STRUCTURES AND TABLES

This programis essentially a huge |ist-processing program which
of course makes a set of |ist-processing nmacros very useful. 1t is also
useful to wite sinple nmacros, then conbine calls to themin nore
power ful and easi er-to-use macros.

There are two basically different ways of allocating the storage
for this program static, and dynamc

The static nethod is the easiest to program \Wenever the system
is initialized, all of the nodes in an active list for a specific kind
of node can be pushed onto the free list for that kind of node, and thus
they will be ready for the next BATCH (al though they may not be in
exactly the same ORDER as they were before). Since there are upper
[imts on the nunber of any type of node, this nethod should work and
be easy to do.

The dynami c method inplies maintaining a single FREELI ST of all
unused nenory, then allocating a node of given size whenever anyone
needs one, then returning the node when finished with it. This may
use less total space, but is slower and nore conplex to program

In addition to the list elenents, the following are tables and
vari abl es which m ght be useful/necessary. AS USUAL, THESE ARE ONLY
HI NTS ON PCSSI BLE WAYS TO DO THI NGS. ACTUAL | MPLEMENTATI ON METHODS ARE
YOUR CHO CE. THE FOLLOW NG ARE JUST TO HELP YOU CET STARTED.

1) GLOBAL CONTROL TABLE (GCTB)

This CSECT effectively acts |ike FORTRAN COVWON, and is used
to hold variabl es and useful constants to be addressed by any section of
the entire OS/411, and |l ets them communi cate easily with each other.
Typically, the main programwould do the follow ng:

L RGCTB, =V(GCTB) address of the csect
USI NG GCTB, RGCTB not e pointer

Then each ot her csect would include the USING stnmt, and no one
woul d ever nodify register RGCIB, so that it woul d al ways point at GCTB
and make its vari abl es avail abl e.

Anmong the typical itens contained in this comobn CSECT woul d
be:

USEFUL CONSTANTS (such as big bl ocks of zeroes, blanks, Edit
patterns for conversion routines, Translate tables if needed severa
pl aces, useful Mask words, etc, etc).

HEADER CELLS and FREELI ST HEADER CELLS for all global lists, since
several different routines nmay nodi fy/inspect the same lists. It may
al so be desirable to include the actual |ist nodes thenselves, near the
end of the CSECT, in order to get all inportant itens in one area.

CS411FP4 - 04

In addition to the above, the follow ng are GLOBAL VARl ABLES whi ch
m ght be included in the GCIB :

GNow DS F (clock) current time, initialized to O

G#l NCORE DS F nunber of jobs currently in nmenory, init =0

GLASTIT DS F time last initiation or term nation occurred, useful

GFLAGS DS C flag byte, for such itenms as whether $$CLEAR found,
$SQUIT, etc.

GDEBUGS DS C debug control byte: could be used with XSNAP | F= to

control debug output frominput $$DEBUG cards
GMULTI P DS F mul ti programm ng statistic (see report R9)

HI NTS: group inportant variables so they can be dunped with a single
XSNAP. Consi der bracketing themw th character DC constants so that
they are quickly located in a dunp.

2) EVENT QUEUE

This is the npost inportant single queue, having header cell EQHD,
free list header of enmpty nodes EQFREE, and of which &EQ# total nodes
shoul d be generated (use &EQ# = 100 unl ess ot herw se necessary). A
dsect for each node might | ook Iike:

EQSECT DSECT

EQLI NK DS A link to next node

EQTI ME DS F time this event to occur

EQDATA DS F data for event type (might be addr of control bl ock)
EQTYPE DS F address of routine, or code giving index to it

.......... anyt hi ng el se which m ght be useful.
3) UN-INITIATED JOB LI ST (UJL)

A UJL elenment is needed for each job waiting on disk for execution.
There m ght be up to &VAXJIOBS of these needed. EAch node nust contain
all useful information froma $$JOB card, plus anything el se desired.

A typical dsect night be:

UJLNODE DSECT

UWILLINK DS A addr of next node

UJILORDR DS F order field, conpute according to JO option
UILNAM DS CL8 nane of job from $$JOB card

UJL# DS H nunber of job (showi ng order in which read)
UJLENTR DS F time at which job was read

....... appropriate entries for T= SP=,10 N= | ORL=, PRI O=, CHAN=, CAT=

CS411FP4 - 05
4) ACTIVE JOB LI ST (AJL)

One AJLNCDE is used for each job currently in nenory, and woul d
typically include all itens present in the UILNODE (or a pointer to a
UJLNCDE having then). There are a nmaxi num of &JOBLI MB of these, and
a typical setup mght be:

AJLNODE DSECT

....... set of areas |ike those of UJLNODE

AJLLOAD DS F time when job first | oaded into nenory (initiated)

AJLTLAST DS F ti me when status of job last changed (useful for
statistics handling)

AJLTREM DS F time remaining until job is conpleted: this is
decrenmented, and job termnated when it = 0

AJLTI NTR DS F time until a job either requests I/O or is schedul ed
to be term nated. wuseful in I/O handling.

AJLCH DS A address of CPU el enment or channel el ement show ng
which one this job is using, if any.

AJLSTATS DS B status byte: shows condition of job: ready, but not
executing, executing, waiting for 1/0O doing I/Q.

5) | NPUT/ QUTPUT QUEUE

Each node represents a request for a channel which cannot be filled
until job using it releases it. Maxi mum of &IOBLIM3-1 of these needed

| ORNODE DSECT

| ORLINK DS A addr of next one in |ist

| ORORDER DS F possi bl e ordering field, depending on | OO option
| ORAJL DS A address of AJLNODE showi ng job maki ng request

6) CHANNEL/ CPU ELEMENTS

Two lists (or tables, depending on convenience) mght exist, with
one node for each CPU CHANNEL, mainly used for keeping statistics for
usage of each one. O course, they m ght just be variables in systens
having either 1 CPU or 1 CHANNEL only. Typical dsect for CHANNEL (CPU
node woul d | ook the sane):

CHNNODE DSECT

CHNAJL DS A addr of AJL of job using this device, = 0 if IDLE
CHNTLAST DS F last tine status of this device changed

CHNUSE DS F total accunul ated usage tinme during run.

CS411FP4 - 06
X. SYSTEM GENERATI ON OPTI ONS LI ST

The following |ists the various options possible for a SYSGEN of
0S/411. This chart nay be filled in when the instructor goes over the
project requirenents in class. Note that all options are listed, with
underlines where things must be filled in. A so note that not all
options may be applicable, since some are needed only if sone particul ar
previ ous choice was made. The headi ng nunbers correspond to the nunbers
of sections in this witeup. Space is left for comments.

&MVEMSI ZE = K bytes

CPU__ &NUMCPUS = (only if variable #)
CHN &NUMCHNS = (only if variable #)
[,

&VAXJOBS = jobs at npbst in system

PARM (if PARMZ2, then need val ues for follow ng)
&TDFT, &SPDFT, & O NDFT, &I ORLDFT, &PRICDFT, &CHANDFT, &CATDFT

I V.

RDR__ &RDRINT = mllisec (if RDR1)
JOo

JSR &JSRANGE = (if variable)
&VEMBI ZE = K bytes (repeated fromll)

&VEMOS = K bytes

&VEMPGR = K bytes

&JOBLIML = _ j obs

&JOBLI M2, &JOBLIMB cal cul ated by SETA arithnetic

MAA
MAC
MAM GVMAMOVE = (if MAC2, etc)

& NI TDEL = mlliseconds

CS411FP4 - 07

V.

&ECCH = (1 = charge for channel use, 0 = don't)
EO

&EOP = (1 = all ow preenption of CPU)

A/

la__ & O NTVL = (if 10LC

00

IOR___ &OREQL = (if 10RO

A/

Since reports are not nutually exclusive, just |ist ones required
bel ow.

&RDRINTV = nillisec (if report R2 is required)

*kkkkkk*k l\D‘l’ES *kkkkkk*k

CS411MC1 - 01

COVPUTER SCI ENCE 411 - MACRO ASSI GNVENT
DuE
This witeup: pages 01 - 03.

| . LINKAGE MACRCS - QSAVE, QRETURN, QCALL

This set of macros covers the following itens: 0s/ 360 1inkage
conventions, and sone basic items of nmacro programm ng: referencing
macro argunents, obtaining itens in sublists, use of local (and sone
gl obal) set variables, concatenation of set variables and other itens,
&SYSNDX, and &SYSECT.

A. (QSAVE - nmacro for entering subroutine

Your macro will be simliar to XSAVE or SAVE, and will accept the
foll owi ng operands: REGS=, BASE=, SA=, as foll ows:

REGS=(r egl, reg2) will store registers regl-reg2 at appropriate
locations , will be specified as nunbers, and default to REGS=(14, 12)

BASE=nunber will set up register number as a program base
register. Defaults to BASE=12. VAlues 13,14,15 are illegal, should be
flagged by an MNOTE, and then use 12 instead.

SA=val ue controls save area linkage and save area nane.

SA=NO nmeans the subroutine has no save area, so that R13
should not be nodified, and no inter-save area |inkage created.

SA=nane save area |linkage will be done, and the address of
nane will be placed in register 13 as the save area.

SA=* the macro will make up a uni que name conposed of the
first 3 characters of the current CSECT nanme, followed by a unique
nunber, followed by 'S, and will refer to this when setting up the

usual save area linkage. This name will be saved in a GBLC variable for
| ater use by QRETURN. Defaults to SA=*

The QSAVE macro will also automatically generate an identification
field (as described in the LINKAGE WRITEUP). This identification field
will use either the label on the QSAVE statenent, or wll wuse the
current CSECT nane, if there is no label on the QSAVE. It will generate
t he mi ni mum storage needed i.e., it cannot just generate:

B 14(, 15)

DC X 9',CL9 nane'
B. QRETURN - return from a subroutine

This macro is simliar to XRETURN or RETURN, and wll accept as
argunents: REGS=(regl,reg2), SA=val ue.

REGS=(r egl, reg2) registers to be restored. Default:REGS=(14, 12)
SA=val ue control s save area |linkage and generation of

a save area, and works exactly as does XRETURN. Thus, it accepts
SA=NO, SA=*, SA=name, and omitted operand

Cs411MCl - 02

C. QCALL - call a subroutine

This nmacro can be witten in any of the followng forns:
1. | abel QCALL , (argl,arg2,....)

2. | abel QCALL entryname

3. | abel QCALL entryname, address |ist nane

4. | abel QCALL entry nane, (argl,arg2,...)

addresses of each of the
show that fact.

Version 1 nerely generates a list of
argunents, with the |ast one flagged appropirately to

Version 2 |oads the address of the entry name (=V(entrynanme)) into
R15, and BALR s there, assuming Rl is already set correctly.

Version 3 is |like version 2, but also does a LA to get the address
of the address |list into register 1 before calling the routine.
Version 4 conbines versions 1 and 3, with the address |ist created

i nside the macro expansion (like the CALL macro does). (see CNOP instr)
D. SAMPLE EXPANSI ONS OF THE MACROS

These expansions are exanples: I T IS NOT NECESSARY TO GENERATE TH S

EXACT CODE, AS LONG AS THE CODE MEETS THE REQUI REMENTS G VEN.
MAI N CSECT
QSAVE
+ USI NG *, 15 . TEMPORARY US| NG
+ B 10(, 15) . BRANCH AROUND | DENT
+ DC AL1(5), CL5' MAIN
+ STM 14,12, 12(13) SAVE REG STERS
+ LA 12, MAI 0002S . GET SAVE AREA ADDRESS
+ ST 12,8(13) PO NTER TO NEW SAVE AREA
+ ST 13,4(12) PO NTER TO OLD SAVE
+ LR 13,12 . GET IN RI GHT SAVE AREA
+ BALR 12,0 SET UP NEW BASE
+ DROP 15 . DELETE TEMPORARY
+ USI NG *, 12 . NEW US| NG
CALL QCALL SUBX, ADDRX
+CALL DS OH . DEFI NE LABEL
+ LA 1, ADDRX . ADDRESS OF ADDRESS LI ST
+ L 15, =V(SUBX) SUBROUTI NE ADDRESS
+ BALR 14,15 . CALL ROUTI NE
GOBACK QRETURN SA=*
+GOBACK DS OH . DEFI NE LABEL
L 13, 4(13) . RESTORE PREVI OUS SA PTR
LM 14,12, 12(13) RESTORE REGS
BR 14 . RETURN
+MAI 0002S DC 18F O' . SAVE AREA
ADDRX QCALL , (MAI N, GOBACK)
+ADDRX DS OF . DEFI NE LABEL

=+
=+

DC A(MAIN)
DC X 80', AL3(GOBACK)

CS411MC1 - 03
E. ADDI TI ONAL FEATURES

If desired, additional features nmay be added to these nmacros,
whi ch may receive extra credit. Do not however, spend too nuch tine
on this assignment, and especilly do not spend a great deal of tine
addi ng exotic features unless they really seem useful.

F. VHAT TO HAND I N

Hand in one run with all the macro |listings, well-comented, and
showi ng conplete nmacro-expansions and execution of AT LEAST the
foll owi ng program (you may add nore if you want, and should do so to
make sure all reasonably different cases are tested)

MAI NPRG CSECT
QSAVE
QCALL SUBX, ADDRX
QCALL SUBY
GOBACK QRETURN SA=*
ADDRX QCALL , (MAI NPRG, GOBACK)
LTORG

SUBXCS CSECT
ENTRY SUBX, SUBY

SUBX SAVE SA=SUBXSA, BASE=11, REGS=(14, 11)
cnop 2,4 cnop for nastiness
QCALL SUB1, (SUBX)
QCALL SuB2

SUBRET QRETURN SA=SUBXSA, REGS=(14, 11)

SUBY QSAVE SA=NO
XPRNT =CL50' 0*** AT SUBY *****' 50
QRETURN SA=NO

LTORG
SUB1 CSECT
QSAVE BASE=13
QRETURN SA=*
SUB2 CSECT

QSAVE BASE=15, REGS=(2, 12)
QRETURN SA=*, REGS=(2, 12)

END

Cs411MC1 - 04
COVPUTER SCI ENCE 411 - MACRO ASSI GNVENT
DUE
Thi s assignnent: pages 04 - 08.
1. HEXADECI MAL CONVERSI ON, DUWMPI NG MACROS: QHEXI, QHEXO Q@UWMPO
These macros cover the follow ng topics: macr o/ modul e |i nkage,
some nmacro processing techniques, and hexadeciml conversions. The
followi ng instructions may be useful: TRT, PACK, TR, UNPK
A. QHEXI - MACRO TO SCAN AND CONVERT HEXADECI MAL NUMBERS TO BI NARY
1. REQUI RED FUNCTI ON OF MACRO

HEXI is to function sonmewhat |ike XDECI, but for hexadeci mal i nput

rather than decimal. It is to be called as foll ows:
| abel HEXI reg, addr ess
| abel is an optional statenent |abe
reg is the name or number of a register
addr ess is an RX-type address, i.e., anything legal in an LA instr.

Calling QHEXI should cause the following actions to be done:

a. The address should be evaluated and used as a scan pointer to
some character string in nenory. A scan will be made starting at that
address, until the first character is found which is a hexadecimal
digit (0-9, AF).

b. Starting at the first hex digit found, a hexadeci mal nunber of
1-8 digits (followed by any character NOT a hex digit) is to be scanned,
and converted to a 32-bit binary value, right-justified, and filled on
the left with | eading zeroes.

c. Register 1 is set to contain the address of the first non-hex
digit follow ng the hexadeci mal nunber.

d. The register specified in the nacro call is loaded wth the
val ue given by the hex nunber just converted (this nmay be any register).

e. The condition code nust end up being set according to the sign
of the nunber placed into the register (=0 => 0, <0 => 1, >0 => 2).

2. ASSUVPTI ONS PERM TTED

The inplenentation of this macro depends strongly on the what
assunptions are nade about error condtions, nodifications of registers,
etc. The foll ow ng assunptions mght be nade. Consider their effects
on the code to be generated:

CS411MC1 - 05

a. Assune registers 0,1,14,15 may be conpletely destroyed by the
execution of the macro.

b. Assune that registers 0,14,15 may be changed by the macro, but
nust be restored to their original values by the nacro.

c. Assune that neither register 14 nor 15 is the current base reg,
but that registers 0,14,15 nust all be restored by the macro if changed.

d. Assune that input hexadecimal nunbers definitely contain no
nore than 8 digits.

e. Assune that errors may exist in the input (i.e., nore than 8
digits). Then either set the condition code to 3 to show error, (el),
convert the first 8 hex digits normally (e2).

f. Assume that R13 contains the address of a usable s/360 savearea.
(Al ways assune the macro nmay not create code changing regs 2-13).

FOR THI S ASSI GNMVENT, THE ASSUMPTI ONS FROM ABOVE TO BE USED ARE

a, el, and f

3. USEFUL HI NTS ON | NSTRUCTI ONS TO BE USED

a. SCANNING. the TRT instruction can usefully be enployed to do
fast general scanning. Also, several tricks exist for setting up the
256-byte table needed to use a TRT instr. The following is an exanple
of code which scans until it finds the first instance of any letter
fROMA to Rin a string:

LA 1, STRI NG init address of string
LOOP TRT 0(256, 1), TAB1 scan

BNz *+12 skip if any found

LA 1, 256(, 1) i ncrenment

B LOOP go back for next

..... at this pt, RL => 1st letter
..... remai ni ng code

TAB1 DC 256X 00 define whole table
ORG TAB1+C A back up | ocation counter to
position of Ain table
DC oX 04 nonzero: stop on AlJ
ORG TAB1+C J' now to position J
DC 9X' 04' nonzero: stop on J-R
oRG set loccntr to end again
The above table is used to STOP on any letter A - R The table
bel ow stops on any character EXCEPT letters A - R
TAB2 DC (CA)XO01 stop on anything before A
DC 9X' 00’ skip over A-l
DC (CJ-Cl'-1)Xx 01 stop on ones between [|-J
DC 9X' 00’ skip over J-R
DC (255-C R)X o1 stop on everything after R

CS411MC1 - 06
b. HEX CONVERSI ON - USING TR, PACK

A sinple trick exists for obtaining conversion fromhexadeciml to
bi nary, as |ong as the hexadeci nal nunber ahas no nore than 14 digits.
As an exanple, the code bel ow can be used to convert hex nunbers of up
to 8 digits.

Assume first, that the 1-8 digit hexadeci mal nunber has been noved
to an 8-byte work area, right-justified (NOT LEFT, which is easier), and

filled on the left with character 0's (hexadecimal X FO'). Thus, this
8-byte field is the hexadeci mal nunber with | eading zeroes. The bytes'
val ues then can be: A-F, 0-9, or XCl'-XC6, XFO0-XF9. Then:
TR WORK, TAB3 convert Cl-C6 to FA - FF
PACK FULL5(5), WORK(9) do funny pack
WORK DS CL8, C area with nunber, right justfd
FULLS DS F, C ful lword plus w ped-out byte
TAB3A DC X' FAFBFCFDFEFF' for converting CA => X FA' ,etc
TAB3 EQU TAB3-C A put theoretical table origin
ORG TAB3+C O’ to position for character O
TAB4 DC C 0123456789" | eave digits al one

Not e what'S OCCURRI NG ABOVE: since UNPK generally converts each
pair of bytes into one byte, it is likely we would want to use it for
a conversion in this direction. Unfortunately, it also reverses the
| ast two nibbles fromthe source field. But, if we pack 9 bytes into 5,
the extra ninth byte is reversed and placed into the extra fifth byte,
then each of the other bytes has the first nibble (X F) renoved, and
t he second ni bbl es packed together into a 4-byte area, as desired.
NOTE if the ORG & EQU ganmes above make little sense, try punching the
statenents, running themw th ASSI ST, and checking the |ocation val ues .

B. QHEXO - CONVERT VALUE I N REQ STER TO HEXADECI MAL
1. REQUI RED FUNCTI ON OF MACRO
This is like XDECO, but for hexadecimal instead of decinal:
| abel HEXO regi ster, addr ess
| abel, register, and address are as described above under QHEXI
Cal l'ing QHEXO shoul d cause the following to occur:

a. The value in the register should be converted to printable
hexadeci mal format, and placed in the 8-byte area at the address given.

b. The condition code is unchanged by the execution of this nacro.

Cs411MC1 - 07
2. ASSUMPTI ONS PERM TTED
a. Assune registers 0,1,14,15 nmay be conpletely destroyed.
b.Regs 0,1, 14,15 can safely be destroyed, but restored by the end.
c. Assune that the current base register nmay be ANY register 1-15.

(Always assune that registers 2-13 nmay not be changed in the code
generated by the nacro).

FOR THI S ASSI GNMENT, MAKE THE FOLLOW NG ASSUMPTIONS FROM ABOVE
c (consider using this macro in |owest-level routinme with br=15)
3. USEFUL HI NTS ON | NSTRUCTI ONS TO BE USED

a. CONVERSI ON: the output conversion is nmuch easier than the
i nput one. Briefly, consider the effects of storing a register into
a fullword in nmenory, then unpacking 5 (FIVE) bytes fromthat area into
a 9-byte workarea, translating the first 8 bytes of that area, then
nmovi ng 8 bytes where desired:

Assune the data areas fromthe previous exanple, that the value
to be converted is in first 4 bytes of FULL5, and that the follow ng
has been added i mredi ately after statenment |abeled TAB4:

TAB4A DC C ABCDEF convert X FA'* => C A ,etc
Then:
UNPK WORK(9), FULL5(5) convert
TR WORK, TAB3 nmake printable

C. QDUMPO - PRINT LABELED REG STER VALUE | N DECI MAL OR HEX
1. REQUI RED FUNCTI ON OF MACRO
| abel Q@UVPO regi st er, mnessage, type
| abel is optional statement |abe

register is nane or nunber of register to be printed

nmessage is an OPTI ONAL nmessage to be used to identify output
type Dor H D=>print in decimal, H => hexadeci nal.
if omtted, default to D. |If anything el se used, issue

severity 4 warni ng nessage, then default to D anyway.
Calling QQUWO shoul d request the follow ng actions:

a. |If a GBLB set variable named &QPUMPO currently has the value
1, NOTHI NG |S GENERATED, EXCEPT PGCSSIBLY | abel DS OH .

CS411MC1 - 08

b. If &DUMPO has the value 0, then code is generated to convert
the desired register to decimal or hexadecinmal, and print it out, wth
an identifying nessage preceding it.(Add blank carriage control).

c. The identifying nmessage noted in b is either the nessage operand
(which is always enclosed in quotes), or the message:
REA STER register AT LABEL | abel

d. Neither registers nor condition code may be changed by the
nmacr o expansi on, and nust be usabl e under any USI NG base from 2 to 13.

D. WHAT TO HAND I N
Add PRINT NOGEN S to delete X-MACROS, and run program wth data:

GBLB &QDUVPO
CSECT CSECT
XSAVE
LA 11, AREA3
LOooP XREAD CARD+1
XPRNT CARD, 81
BM DONE
QHEXI 2, CARD+1
BALR 3,0
QHEXO 2, AREA2
QHEXO 3, 0(, 11)
QHEXI 4, 0(, 1)
QHEXO 4, AREA3+10
XPRNT AREA, AREASL

CALL SuBl
B LOOP
DONE XRETURN SA=*
CARD DC cL81' o', 20CL100"
AREA DC C 0 VALUES OF REG STERS 2, 3,4: '

AREA2 DC CL10'
AREA3 DC 2CL10'
AREASL EQU *- AREA LENGTH
SUB1 CSECT
XSAVE SA=NO, BR=15 WATCH OUT FOR THI S BASE REG STER
QDUMPO 2, ' HEX VALUE OF 2', H
QDUMPO 2, ' DEC VALUE OF 2'
QDUMPO 4, ' DEC VALUE OF 4' ,C H
SUBIH QDUMPO 4
QDUMPO 1, , H
L 0, =F' &QDUVPO
QDUMPO 0, ' VALUE OF &&QDUMPO='
&QDUMPO SETB 1
QDUMPO 4, ' ERROR ERROR ERROR ERROR
XPRNT =CL30' VALUE OF &8&QDUMPO=&QDUMPO , 30
XRETURN SA=NO

LTORG

END
DATA CARDS AS FOLLOAS (BEG NNING | N COLUWN 1):
00001234 FFFFFFFF
OlABCDEF,,,,,,,,,,,,,,’,”,”,”,’1234567

12345678. <(+x&$*); -/, >: #@ =ABCDEFf
ONLY 1 #

Cs411M22 - 01

COVPUTER SCI ENCE 411 MACRO ASSI GNVENT
DUE

I11. LINKED LI ST MACROS: QDEFL, QHED, QNEXT, QPOP, QPUSH, QSRCH, QSNAP

Thi s assignnent covers the followi ng: one-way linked Iist handling
techniques and sone macro instruction character-scan and oper and
nmet hods.

Thi s assignnent involves witing and testing a group of nmcros to
handl e one-way |inked lists, to be used heavily in the final project.
Each LIST to be processed is of the following form

A HEADER WORD (or HEADER CELL, or just HEADER) is a fullword in
| ength, and contains the address of the first NODE in the |ist. Each
NCDE is a bl ock of storage, aligned on a fullword boundary, with a tota
length a multiple of 4, with 3 basic subfields:

LINK: the first fullword of the NODE (offset 0). It contains
either the address of the next following NODE, if any exist, or else
a fullword binary zero to indicate that no nore NODES follow, i.e., that

this NODE is the LAST NODE in the LIST.

KEY : 0 or nore bytes (nmpst commonly 4 bytes at offset 0, i.e. the
second fullword of the NODE). |If present, this is used to ORDER a LIST
for insertion and retrieval of NODES. |In this assignnment, any ORDERED
LI ST is kept in ASCENDI NG LOG CAL ORDER by the KEY field. For exanple,
a NODE having a key val ue of AAAA woul d precede that having KEY BBBB
and so forth.

DATA: 0 or nore bytes (most conmonly at offset 8), divided into
as many subfiel ds as needed and convenient to store the various values
associated with the KEY (if it exists).

An exanpl e of such a list is an al phabetical synbol table wused in
an assenbler, in which the KEY of each NODE is the synbol itself, and
t he DATA bytes contain such things as: |ocation counter value, Ilength
attribute, section identifier number, and any other useful itens |ike
ENTRY/ EXTRN/ CSECT f | ags, etc.

G ven the setup described above, note that an EMPTY LIST (one
cont ai ning NO NODES), is just a HEADER CELL containi ng O.

The following exanple illustrates an al phabetical LIST. Each NODE
contains a fullword LINK and KEY, plus 8 bytes of DATA, resulting in a
NCDE | ength of 16:

LOCATI ON LI NK KEY DATA | TEMS
(HEX) (HEX) (CHAR) (CHAR)

001000 00004000 (this is the header cell)

002000 00000000 CCCC 3RD | TEM

004000 00006000 AAAA 1ST | TEM

006000 00002000 BBBB 2ND | TEM

Cs411mMc2 - 02

The macros are to be witten to handle the type of list just
descri bed. The exact functions and formats are given bel ow Briefly,
QDEFL creates a LIST of enpty NODES |linked together, QHED creates a
HEADER, QNEXT obtains the address of the NEXT NODE in a LIST, given
a HEADER or address of a current NODE. QPOP POPS the first NODE from
a LIST (i.e., obtains the address of it and nodifies the HEADER to
renove it formthe list). QPUSH is the opposite of QPOP, it adds a
NCDE to the beginning of a LIST, nodifying the HEADER to do so. QSRCH
perfornms a LI ST SEARCH AND I NSERT, i.e., it searches an ORDERED LIST
for the correct position for a NODE according to KEY val ue, then | NSERTS
the NODE in that position, altering the LINK of a NODE already there.
SNAP is a debuggi ng macro which DUWS a |i st.

The foll owi ng sections give exanple prototype statements for each
of the macros. NOTE: |IN SOVE CASES, DEFAULT VALUES ARE G VEN FOR
KEYWORD OPERANDS. THESE ARE SUGGESTED AS BEI NG CONVENI ENT, BUT THEY
ARE NOT, REPEAT NOT REQUI RED. YQU MAY SUBSTI TUTE OTHER VALUES |F YQU
THI NK THEY W LL BE MORE CONVENI ENT DEFAULTS.

For the exanples given, assune that the following EQJ S are
coded. YOU DO NOT HAVE TO USE THESE, THEY ARE ONLY | NCLUDED AS EXAMPLES
OF MNEMONI C AND ERROR- STOPPI NG WAYS TO DO CERTAI N THI NGS.

LI NK EQU 0 offset of the LINK field in a NODE
KEYO EQU 4 conmon offset to key field.

KEYL EQU 4 nost comon KEY | ength

RVK1 EQU 5 temporary work reg, cannot be reg O
RWK2 EQU 6 2nd tenporary work reg, cannot be O
NCODE1 DSECT

NCDELI NK DS A link to next node

NODEKEY DS F KEY ordering field

NODEDAT1 DS CL8 first data item

NODEDAT2 DS H second data item

NODELEN EQU ((*-NODE1+3)/4)*4 node length, to 4-multiple

Unl ess otherwise specified, the label &.ABEL is an optional
statenent |abel, to be generated either on or before the first byte of
execut abl e code in a nmacro expansion, or usually on the first byte of
data generated. POSSIBLE (BUT NOT NECESSARILY THE BEST) CODE is given
for at | east one sanple of each nacro.

Cs411MC2 - 03
A. QDEFL - DEFINE A LI ST
&L ABEL QDEFL &NUMBER, &LENGTH, &VESSAGE

This macro generates &NUMBER nodes, each of total Ilength &LENGTH
bytes (including 4-byte link), linked together, wth key/data areas
initialized to bl anks, and preceded by an optional nmessage.

&NUMBER is a self-defining termof value >0, giving the nunber of
nodes to be generated.

& ENGTH is any absolute expression giving a length for each node.
Code generated nust allow for rounding this to 4-nultiple.

&VESSAGE is a string enclosed in quotes. |If omtted, the list only is
created, but if present, the nessage string is generated as
a C-type constant, rounded up to a 4-multiple, and placed on

a fullword boundary preceding the list. It is used for
debugging (i.e., to locate a list in menmory in a dunp).
&L ABEL is generated on or before the first node gener at ed.
LAVS1 QDEFL 2, NCDELEN, ' LI ST OF FREE NODES FOR NODEL'
+ DC OF 0', CL28' LI ST OF FREE NCDES FOR NODE1'
+LAVS1 DC A(*+((NODELEN+3) / 4) *4) , CL(NODELEN-4) ' '
+ DC A(0), CL(NCDELEN-4)" '

B. QHED - DEFI NE LI ST HEADER
&L ABEL QHED &L1 STNAM

If &ISTNAM is coded, this macro defines a HEADER containing the
address of this list, otherwise it is a header cell having a value of
0, i.e., defining an enpty list.

For debug purposes, it may be very wuseful to let this nacro
generate nessage '& . ABEL LIST HEADER or simliar thing imrediately
precedi ng the header word.

HDR1 QHED LAVS1
+ DC OF 0', CL16' HDRL HEADER
+HDRL DC A(LAVS1)

LISTL QHED
+LI ST1 DC A(0)

C. QNEXT - GET ADDRESS OF NEXT NODE IN LI ST
&L ABEL QNEXT &RND, &ADDR, &RLK=, &END=

This macro sets register &RND to the address of the next NODE in
alist, given that &ADDR indicates the address of a NODE whose LINK
field points to the NEXT NODE. |If desired, the value in &RND nmay be
saved into register &LK before &RND i s changed (useful for |ist search
and insert operations). If &ND is specified, a test is nmde and
branch taken if there are NO MORE NODES in the Iist.

CS411MC2 - 04

The operands for QNEXT are described as foll ows:

&RND is a register EQU synbol or nunber, into which will be | oaded
the address of the next NODE.

&ADDR if specified at all, is an RX-type address of the LINK field
whi ch addresses the next NODE. The word at this address is to
be I oaded into &RND. If onitted entirely, it is to be assumed
that &RND contains the address of the LINK already.

&RLK if specified, gives the nane or nunber of a register into
whi ch &RND shoul d be saved before it is changed.

&END if specified, gives a statement |abel, in which case the val ue

newy |loaded into &RND is to be tested, and if found = 0, a
branch taken to the given statenent |abel.

LOoOP QNEXT 5, RGL=RWK1, END=ENDLOOP
+LOOP LR RWK1, 5
+ L 5, LI NK(, 5)
+ LTR 55
+ BZ ENDLOOP

D. QPOP - POP FI RST ELEMENT OF LIST
&L ABEL QoP &RND, &HDR, &END=
QPOP sets register &RND to the address of the first NODE in the

LI ST begun by HEADER at address &HDR, taking branch to &END= if the
list is enpty. (1T SHOULD BE OBVI QUS TO USE QNEXT AS AN | NNER MACRO .

&RND specifies register to be set to address of NODE.
&HDR usual |y specifies the name or other RX-address of the header
cell of alist.
&END if specified, requests code to test the LINK just |oaded into
&RND, and branch to the | abel specified if it = 0.
LOOPA QOoP R6, HDR1, END=ENDA
+LOOPA L R6, HDR1
+ LTR R6, R6
+ Bz END
+ MC LI NK+HDR1(4) , LI NK(R6)

E. QPUSH - PUSH NODE ONTO BEG NNI NG OF LI ST
&L ABEL QPUSH &RND, &HDR

&RND contai ns the address of a NODE, which is pushed onto the 1list
begun at &HDR

&RND specifies a regi ster nane or nunber.
&HDR is a nane of a header cell.

PUSHX QPUSH R8, HDR1
+PUSHX MVC LI NK(4, R8) , HDRL
+ ST RS, HDR1

CS411MC2 - 05
F. QSRCH - LI ST SEARCH AND | NSERT
&L ABEL QSRCH &RND, &HDR, &RGW(RVK1, RWK2) , &KO=4, &KL=KEYL

This macro searches the |ist begun by header &HDR, which is |[|inked
in ascending order by KEY fields, for the correct place to insert the
NCDE addressed by register &ND. The KEY fields are at offset &0, and
are &L bytes long. &RGWgives two registers which may be used if
needed for tenporary work registers wthout disturbing anyt hi ng.

&RND gi ves address of the NODE to be inserted.

&HDR is the name of the |ist HEADER CELL.

&RGW gi ves the nanes/nunbers of 2 registers which can safely be
used as tenporary work registers, and destroyed by the nacro.

&KO gives a nunber (or EQU synbol) of the offset in bytes fromthe
begi nning of the NODE to the KEY field in the NODE.

&KL is the length (number or EQU value) of the KEY field.

Note that the NODE to be inserted is inserted AFTER any NODES which
have the SAME KEY val ue.

SEARCH QSRCH R10, HDRL
+SEARCH LA RVK1, HDR1
+QQ002AA LR RVK2, RVK1
+ L RWKL, LI NK(, RWK1)

+ LTR RVK1, RWK1

+ BZ *+14

+ cLC 4(KEYL, RWK1) , 4(R10)
+ BNH QQV002AA

+ ST RWKL, LI NK(, RLO)

+ ST R10, LI NK(, RIK2)

G (QSNAP - PRI NT CONTENTS OF LIST
&L ABEL QBNAP &HDR, &VBG, &RGWM(RVK1, RWK2) , &COUNT=4095, &LEN=20
This macro dunps the list beginning at the HEADER &HDR, usi ng XSNAP

if desired with a nessage &SG printed. The work registers needed are
gi ven by &RGW and up to & COUNT NODES are printed.

&HDR is name of LIST HEADER.
&NVBG is quoted string used as title for list output.
&RGW speci fi es names/ nunbers of 2 registers which nmay be erased.
&COUNT specifies the maximum nunber of nodes to be print ed.
&LEN is an absolute expression giving node length in bytes.
DUMP SNAP HDR1, ' LI ST 1', COUNT=4, LEN=NODELEN
+DUMP LA RVK1, 4
+ LA RWK2, HDR1
+QQO008AA QNEXT RVWK2, END=QQ&SYSNDX. BB (not expanded)
+ XSNAP LABEL=&MSG, T=NO, STORAGE=(* 0(RWK2) , * &LEN. (R\K2))
+ BCT RVK1, QQO008AA

+QQ0008BB EQU *

CS411MC2 - 06

H. OTHER USEFUL MACROS (OPTI ONAL) : LREWMV, LNMVBR

The following nmacros may be found to be wuseful, but are not
required:
&L ABEL LREW &RND, &RLK

LREMV renpves the NODE addressed by &RND froma LI ST, assum ng that
regi ster &RLK addresses the LINK field of the NODE which points to the
NODE addressed by &ND, i.e., the value in &ND and the value in the
LINK field addressed by &RLK are the sane.

&L ABEL LNVBR &HDR, &MSG, &RGM(RVKL, RVWK2)

LNMBR counts the nunber of NODES present in the list headed by
&HDR, placing result in first register given by &RGN and using second
one as a work register. If &WG is specified also, the nunber is
printed with &G as a headi ng.

. TESTING THE MACROS: WHAT TO HAND I N
Wite a programto test your nacros as foll ows:

1. Define a list of 15 enpty nodes <called FREE Ilist, each wth
8-byte KEY and 12-byte DATA areas. Also define two enmpty |lists, LISTA
and LI STB. (i.e. these are names of headers).

2. Read in 10 data cards, each of which contains KEY and DATA for
a single NODE in colums 1-20. After each card is read, obtain an enpty
NODE fromthe FREE list, fill it with the KEY and DATA just read (and
you must use a DSECT to refer to these fields at this point), then enter
it in LISTA

3. Dunp lists FREE, LISTA, and LI STB.

4. Read in 5 cards, each with a KEY value on colums 1-8. Sear ch
LI STA for the same KEY value. |If not found, print a nessage. |f found,
first remove the node from LI STA, then push it onto begi nning of LISTB.

5. POP each node of LISTA, print each as it is obtained, then place
t he NODE back onto the FREE list, until LISTA is enpty.

6. Peform same action as in 5, but for LI STB.

7. Show nmacro expansions for any other special cases you may Ww sh
to display. Dempnstrate that they work only if vyou feel like it.

USE THE FOLLOW NG SEQUENCE OF KEY VALUES AS TEST DATA:

CCCCCCCC, AAAAAAAA, DDDDDDDD, FFFFFFFF, BBBBBBBB,
22777777, XXXXXXXX, GCEEEEGEGE, KKKKKKKK, EEEEEEEE

(set to be nmoved fromLISTAto LISTB if found)
NOTFQUND, ZZZ777777Z, AAAAAAAA, AAAAAAAA, KKKKKKKK

CS411TPA - 01

COVPUTER SCI ENCE 411 - TOPI CS COVERED, HANDQUTS
W NTER TERM 1972 - MASHEY

The handouts given out are are described in file CS411HN

DATE t opi cs, handouts
R B B e R T R
01/ 06 i ntroduction to course, covering:

prerequi sistes (101, 102, 404, or equival ent)

outline of topics to be covered later (macros, operating
systens, input/output, |arge machi nes, assenblers,

| oaders, nmenory organi zation, JCL, OS/ 360, etc)

useful macros (some review): XSNAP, XDUMP, XSTOP, XSET,
XREAD, XPRNT, XPNCH, XDECI, XDECO

HANDOUTS: | NFOR411 (basic information & what to expect)
01/ 08 (OM TTED)
01/11 admi ni strative details; |inkage conventions and macros.

Regi sters on entry to subroutine (1,13, 14, 15).

Paranmeter list format; PARMfield setup as special case.

Li nkage actions expected of subroutine: save area fornmat.
Code for return fromsubroutine; function return, return code.
XSAVE: RGS, SA, BR, TR operands.

XRETURN: RGS, SA, TR operands. use of XSET with them

ASSI GNVENT: run prograns as described by witeup DUMPSICL, bring
dunps to next cl ass.
READI NG ASM LANGUAGE MANUAL: Sections 1,2; 3 (except on External
Dumry Sections, CXD, DXD, COM; 4, 5 (except OPSYN, CCW
| CTL, | SEQ PUNCH, REPRO) .
HANDOUTS: LINKAGE (Ilinkage conventions for S/ 360)
DOCUMENT (docunentation techni ques)

I NST (hints on machi ne and assenbl er instructions)
XREAD (XREAD/ XPRNT/ XPNCH macr o descri ptions)

XSNAP (XSNAP/ XSTOP/ XSET macro descri ptions)

XSAVE (XSAVE/ XRETURN nacro descri ptions)

DUMPSIJCL (sinple JCL, sanple runs to get dunps)

01/ 13 i nterpreting output, dunps, debug techniques.
go through entire run of ASGCG using MSGLEVEL=1l, /*LOG
Systemlog information - times, addresses, conpletion code.
listing of JCL cards supplied, note manual Messages/ Codes.
Assenmbly listing: External Synbol Dictionary, listing,
Cross- Ref erence, and uses of each. follow linkage code.
OS/ 360 Loader MAP - addresses.
information in the dunp - howto find where error occurred.
COVPLETI ON CODE, APSW SA TRACE, REG STERS, STORAGE (SP 000)

HANDOUTS: CS411AS1 (pages 01-02) - 1st assignment, |inkage, decks
DUE | N ONE VEEK

READI NGS: ASSEMBLER LANGUAGE: Sections VI to end.

REFERENCE: Conputing Surveys 1, 4(Dec 1969), 183-196.

CS411TPA - 02

01/ 13 conpl ete dump readi ng
foll ow step-by-step procedure for locating errors in dunp.
system conpl etions (precise and i nprecise), user conpletion,
di fferences between |ink-editor and | oader dunps.
interrupts: 1,2,3,4,5,6. and their neanings.

01/ 18 begin macro-instruction witing.
basi ¢ concepts of nmacros - conparison with FORTRAN subrouti ne.

HANDOUTS: CS411MCl (pages 01-03) - MCALL, MSAVE, NMRETURN ASSI GNVEN

01/ 18 details on macro statenents
nost of macro statement types (with FORTRAN counterparts),
various exanples. MACRO, PROTOTYPE, LCLx, GBLx, SETx, SET
VARI ABLES, Al F, AGO, CONCATENATI ON, SUBSTRI NG, &SYSECT,
&SYSNDX

01/ 20 conpl etion of S/ 360 macro | anguage
Qperand processi ng, postional/keyword, sublists, attributes,
accessi ng of suboperands, usage of &SYSLIST. nmany exanpl es.
Program design (5 m nutes worth): inportance of good design,
fl owcharting, debuggi ng techniques.

01/ 25 macro problems, multiple entry, CNOP, external synbols.
answer questions on nacros, note problens with k' &YSECT.
gi ve exanpl es of ENTRY usage, nmultiple entry points, and the
usual ways to use them go over CNOP and how to use it.
note differences between external synbols, which exist as
synmbol s after assenbly, and internal ones, which do not.
note USING across CSECTS, and fact that CSECTS nay not be
in sane order as in assenbly.

HANDOUTS: ASPRGTC1 (01 - 08) - mmcros, internal subroutines, and
extenal s, and when to use them
ASBROPS2 (01 - 03) - ASSI ST base register assignnent
ASREPLGD (01 - 11) - ASSI ST REPLACEMENT USER S GUI DE
ASSI GNVENT: write base regi ster routine (ASBROPS2), using either
method A (worth 5 points) or nmethod B (worth 10 points), due
02/ 18.

01/ 25 addressbility, USING DROP, DSECTS
Met hods for addressing |arge data areas using A-type adcons.
Typi cal setup of 1-2 local bases plus one for global table
DSECTS: wite a sinmple DSECT, then reference in code, show ng
that each reference neerely requests a base-displ acenent to
be conputed. Show equivalent code witten explicitly, and
show why DSECTS are better for readability and ease of
nodi fication. also show method of computing | ength of DSECT
using NL EQU *-NAME , and how this can be used in DC and
other instructions for real ease of change.
note inportance of DROP, especially with different registers
and over what BROPS2 does.

CS411TPA - 03

11 01/ 27 types of assenblers, |arge 4-pass assenblers
answer questions about assignments, base registers, etc
assenbl er classification by nunber of passes: 2,4,1, etc
Two- pass:
Pass 1: opcodes, l|location counter, allocate storage, synbol
table, literal table, ORG START, EQU#
Pass 2: produces object code for machine ops, DCs, etc
base register table, listing, PRINT, TITLE
Four - Pass: (differences between Assenblers F and G
NOTE/ PO NT operation; phases versus passes.
F1: initialization, hash opcodes into global dictionary
F2(Pass 1): source program scan, build nmacro dictionaries,
get systemmacros fromlibraries.
F3(pass 2): macro expansi on, use of NOTE/ PO NT stack
F7(pass 3): location counter, etc.
FI: ESD witten out
F8(pass 4): final assenbly, TXT cards (object code)
FPP (post processor): XREF
A obal Dictionary: opcodes, nacro nanes(NOTE addrs), GBLx
Local Dictionary: 1 for each macro/open code, sequence
synmbol s (NOTE addrs), ordinary symbols, LCLx, synbolic
paranmeters for macros. only in core when needed.
Val ues: set variables: pass 2; ordinary synbols: pass 3, 4.
One- Pass: FORWARD REFERENCE PROBLEM

HANDOUTS: ASMIUT1 tutorial on assenblers
CS411MCL: macro assignnent: hex conversions and dunps
ASSI GN: wite macros for CS411MCL, due in 3 weeks+day.
12 02/ 01 TRT usage, types of operating systens, history.
TRT tabl e mani pul ation (reference to handout CS411MC1 - HEX
conversions). wusing ORGinstructions in tables. how TRT
wor ks, including code equival ent.
OPERATI NG SYSTEM TYPES (BY HI STORY)
1) HANDS ON
2) BATCH PROCESSI NG (uni programi ng)
3) MULTI PROGRAMM NG SYSTEMS (w th SPOCOLI ng)
4) TI MESHARI NG SYSTEMS

Q her classifications: A UN PROCESSI NG and B) MJLTI PROCESSI NG

HANDOUTS: CS411MC2 (pages 01 - 06) Linked List assignnent
ASSI GN: assi gnment given by CS411M22, due 02/ 22.

13 02/ 01 operating systemtypes, prograns, begin hardware.
gi ve conparison table for OS types.
program attri butes: non-reusable, serially resusable, reent.
REAL- TI ME SYSTEMS.
COWPUTER ARCHI TECTURE: CPU(S), PRI MARY MEMORY, CHANNELS, 1O
menory fetch/store; access/witeback/cycle tines.
physi cal word versus logical word. interleaving.

READI NGS: POP: pages 5-7, 15-22, 68-83 (1O etc).

14 02/ 03

CS411TPA - 04

menory protection; input/output devices (DASDS)
this lecture continues preparation for general concepts of
operating systens and I/ O system operation.
CPU. note Mdde bit for supervisor/problemstates
types of menory protection:
1) NONE use in HANDSON systems only
2) PROTECT BIT IN WORD cheap, but inconvenient
3) BASE-LIMT REG STERS - 1 pair: novabl e prograns
but no reentrant code easily.
4) 2 PAIRS OF BOUNDS REG STERS - rrentrant code K
5) LOCK AND KEY (S/360) - in detai
to be continued: under virtual nenories
I/ O DEVICES: beginning with DASD s
Drums, fixed-head di sks, novabl e head di sks, data cells.

HANDOUTS: HARDWARL (01 - 04, A) PSU 360/67 configuration+

i nformati on on devi ces.
CS411FP1 (01 - 08) 1st part of final project.

ASSI GN: final project, due 03/09.

READI

15 02/ 08

NG read on privileged operations in POP

I/ O devices conpleted, |I/0O processing begi nni ng.
m scel | aneous questions on current addi gnnents.
Magneti ¢ TApes: physical records vs |ogical records, blocking
factors, tape gaps, parity bits (EVEN, ODD), conparison of
t ape usage bl ocked 80-80 or 80-8000.
Printers: bar, drum train/chain.
/O channels: control between CPU and CHANNELS
CYCLE STEAL.
Types of channels: selector (burst node only)
mul ti pl exor (burst and nultipl ex nodes both)
S/ 360 actions: interrrupts: old and new PSWs, usage.
Masks: masking off interrupts, using 1st 4K of nenory.

HANDOUTS: CS411FP2 (01 - 08) 2nd part of final project

16 02/08

NOTE

NOTE:

CS411FP3 (01 - 08) 3rd part of final project

debuggi ng, machi ne-1evel 1/0O overvi ew of operating systm
debug technique: XSNAP | F= option, simlair methods.
[/Ointerrupts adn handling.
CHANNEL cicuitry - shared or separate.
CCWs, CAW CSW and how they interact. Expand I/O process,
note command and data chani ni ng, SCATTER READ, GATHE WRI TE.
use of protection keys |ike main nenory.
OPERATI NG SYSTEM (FI NAL PRQJECT) overview. - RDR/INT, INT,
Dl SPATCHER, |/ OHADNLI NG

hal f-period quiz next time on hardware, general concepts,
especially for final project.

XREAD and XPRNT wi Il not be used on final project.

17

18

19

20

21

CS411TPA - 05

02/ 10 simul ati on concepts and inpl emrentati on
conti nuous versus discrete simulations; clocks, event queues.
follow entire process of final project simulation, outlining
lists nodified and progranms whi hc nanage them w th overal
schedul i ng structure.
options to be done for this project: 1024K bytes nenory,
CPU. 1, CHANv (3-15). JOB card: PARML (sinple one), etc
through all options desired.

HANDOUT: CS411FP4 (01 - 08) specific inplenentation on FP

02/ 15 nmodul e managenent
(final project discussion): inplenentation of global table
csect/dsect.
source program -> translator -> object program

obj ect nodul es -> LOADER -> execut abl e program
obj ect nodules -> LINK EDI TOR- > | oad nodul e
| oad nodul e -> fetch -> execut abl e program

obj ect nodule parts: ESD, TXT, RLD, END, and purposes of
each. wusage of |oader and waht it does.

HANDOUTS: CS411FP5 (01 - 04) FP flowcharts.
MODULES (01 - 09, 19) object/load nodul e managenent

02/ 15 link editor, |oad nodul es, overlays
di fferences between | oader and link editor, object nodul es and
| oad nodul es, advantages and di sadvant ages.
overl ays: concepts, trees, commands to set themup. briefly
on inplenentation of them
options to be used on | oader and |ink editor.

02/ 17 user overvi ew of OS/ 360 services.
program managnent and design, data managment, job managenent,
task managenent.
program structures: sinple, planned overlay, dynamic serial &
dynam ¢ parallel.
management of resources: job, task, and data.
dat a managenent: types of data sets (SDS, Direct, PDS, |S)
and what they are used for.

02/ 22 over| ay net hods, input/output concepts and record fornmats
go over OVLY1l and OVLY2 prograns, pointing out size reductions
possi bl e and the control cards used, note PROC on OVLY2.

I/ O concepts: buffer groups, flip-flop buffers.

record formats: F, FB, V, VB, VBS, U and conparisons of
LRECL, BLKSIZE, # records/block, efficiency, ease of use.
outline of rest of term

READI NGS: first 10 pages in DATA MANAGEMENT SERVI CES
ASS| GN: run QSAM and EXCP files for next tine.

CS411TPA - 06

22 02/ 22 0S/ 360 nacros: all except data managenent
two types: with SVC calls (regs 0, 1, 15 destroyed often)
and without (0, 1, 14, 15 usually w ped, need save area).
JOB MANAGEMENT: communi cation with operator.

WL - wite to |og

WO - wite to operator

WO - ROUTCDE=11 (wite to programmer)

WOR - wite to operator, and get reply

PROGRAM TASK MANAGEMENT
Pr ogram Li nkage i nsi de one | oad nodul e.
CALL, RETURN, SAVE
Li nkage inside | oad nmodul e for overlay nodul es.
SEG.D - begin | oading a segnent
SEGM - nmke sure segnent in.
Pr ogram Li nkage between | oad nodul es.
(note responsibility count = # TASKS currently using a
| oad nodule. if = 0, not needed any nore).

LOAD - bring to nmenory, CNT = CNT + 1.

DELETE - CNT = CNT - 1, renove if desired.

LINK - bring to menoy, CNT = CNT + 1, pass control
(CALL between | oad nodul es)

XCTL - ONT (calling nmodule) = CNT - 1, bring called
nodul e to nenory if needed, its CNT = CNT + 1.
pass control to it, no return, BRANCH between
nodul es.

Task Creation and Managenent

Task is basic resource allocation unit, each has a Task
Control Block, and can conpete for resources. EAch job has
1 JOB STEP TASK, and O or noreSUBTASKS, in tree structure.

ATTACH - create a task.

DETACH - destroy task, term nate processing.

ABEND - abnormal end of task.

CHAP - change priority of a task.

EXTRACT - get data from TCB.

St or age Managenent
EAch job is given REA ON, but space is left in it to be used.

GETMAIN - obtain main storage dynamically, supply length
and get back address of area(s).

FREEMAIN - return storage to the system

Synchr oni zati on
(needed for both TASKs and 1/0

WAIT for an event to occur

POST occurrence of event (ECB' Ss)

ENQ DEQ (less inportant to user)

Ti m ng

TIME - get time and date

STIMER - set tiner, get interrupt, REAL or TASK

TTIMER - tests tiner, gets anmount left.

hardware types of tiners.

Error Handling
SPIE - get programinterrupts.
STAE - get all ABEND s of any kind
Debug
SNAP - dunp storage and registers.

DOCUMENT- 1

S/ 360 Assenbl er Language
Docurent ati on and Listing Techni ques

by John R Mashey and Andrea Rhodes

CGoal s of Good Documentation :

1. A d in designing good prograns

2. Aid in debuggi ng prograns

3. Make prograns cl ear and understandable once witten
4. Make structure of program well -organized

Good docunentation is a great aid to producing clear, well-witten,
and under st andabl e prograns, and can save mnmuch progranm ng and conputing
time. Good docunentation is especially necessary for pr ogr amm ng
projects requiring either a long period of time by one programrer,
any period of tinme by nore than one programmer, or nodifications to any
code by anyone other than the original author. Good docunmentation
techni ques can be hel pful in the foll owi ng ways:

PROGRAM DESI GN

Many begi nning progranmers seem to wite prograns in haphazard
and unpl anned ways, and often add conments only after the program is
running. This nethod not only leads to poorly-structured prograns,
but usually results in wasted time, and is not feasible except for
relatively trivial problemns.

A much better method is to wite npst of the overall coments with
a flowchart first, specifying the structure and conventions of the
program and then witing the programto fit. This usually leads to
cl eaner-coded, well-structured prograns which are produced in |ess
time than those witten by nost novice programrers.

PROGRAM DEBUGGE NG

Pr ogram debuggi ng is aided by docunenting a program before and
during its creation, rather than afterward. Many mistakes can be
avoi ded by havi ng progranmm ng conventions well-specified before witing
the code. The very act of adding a conment to a statenent often helps
identify errors in the statenent, because it forces the programmer to
t hi nk about the function of the statement. Finally, good docunentation
is useful if help is required fromsomeone else, since it aids one in
under st andi ng the program quickly. (It also makes other people mnuch
nore willing to | ook at a program)

PROGRAM MODI FI CATI ONS

Cl ear and conpl ete docunentation is absolutely invaluable when a
program rmust be nodified, especially if anyone but the origina
programmer is nmaking the changes. It may be noted that useful prograns
tend to be nodified often.

DOCUMENT- 2

ASSEMBLY LANGUAGE DOCUMENTATI ON

The followi ng advantages apply to any conput er | anguage.
However, they are nobst inportant for assenbly |anguage, for the
fol |l owi ng reasons:

1. Assenmbly |anguage programs typically require many nor e
statenments than do high-level |anguage programs for the same task.

2. Assenbly | anguage prograns are not wusually self docunenting.
Wt hout good docunentation, not even the programer who wote the code
will be able to understand it several nonths |ater

3. Assenbly | anguage prograns are often very sensitive to mnor
changes, nmuch nmore so than higher-1evel |anguages.

The renmai nder of this paper describes a well-docunmented assenbly
program and notes the various techni ques which can be used to achieve
this result. Briefly, a well-documented program has the follow ng
characteristics:

1. The docunentation structure mrrors the programstructure, and

it leads fromthe general to the specific. Thus, the program begins
with a block of coments which describes the overall purpose of the
program and gives sone indication of the general structure. Each

maj or section has a block of coments describing it, as does each
of the section's subsets.
2. At least 95% of nmachine-instruction statenents have coments.
3. The programis easy to read, and blocked off into 1ogica
sections, so that anyone may look at it and wunderstand it easily.
4. Good prograns typically have 15-25% of the total statenents
as comment cards, in addition to the comments on the individua
st at enent s.

S/ 360 ASSEMBLER DOCUMENTATI ON HI NTS--DO S and DON TS

DON' T

punch statements in random col ums. This nakes a program very
unreadable. Use a drumcard, and if you do not know how, ask your
assistant. The following is a defacto standard for S/ 360 Assenbler
statenents:

Col. 1 : LABELS

Col . 10: OPERATI ON CODES

Col . 16: OPERAND FI ELD

Col. 36: COWMENTS (col. 40 is preferred by sone peopl e)

Col . 72: CONTI NUATI ON COLUWN

Col. 73-80: SEQUENCE NUMBERS (very wuseful--ask your assistant
how to sequence a deck if you are unsure)

This layout can be obtained by the use of the following drum card:
Cols. 1,10,16,36,73: punch '1" (gives tab stops at these cols.)
Col. 72: punch '-'" (skips col. 72 automatically, wunless AUTO
DUP/ SKIP is off)
Al'l other columms: punch 'A
If for sone reason these colums are not wanted, a standard set should
be deci ded upon, and then held to conpletely.

DOCUMENT- 3

DON' T

Pl ace a comrent card before every statenent. This bad habit makes
prograns absol utely unreadable. Enbedded coments should be used to
bl ock programs into logical sections, not to explain the function
of individual statenents.

DON' T

bury code with too many interspersed comments. If so nmany
conmments are necessary, place them in blocks ahead of the program
segnents and not in the mddle.

DO

put a comment on nearly every machine instruction. Conmments are
al so hel pful for explanations of variables and flags. Each conment
shoul d describe the function of its statement, and generally, it al one.
If a coment is needed to describe the function of a block of
hal f - a-dozen cards, it probably should be placed on a coment card
precedi ng the block of code. These conmments should be punched when
the programis originally punched. A good technique is to add these

conments while keypunching the program Oten, this results in
cat chi ng many m stakes at that point. It is noted that few novice
programers do this, while npbst experts do. It is also noted that

many progranmmers who do this wish they had started doing so earlier
since they realize how nuch tine they had wasted by not commenting
the original deck.

DO
use TITLE, SPACE, and EJECT commands. The command
TI TLE ' A HEADI NG MESSAGE'
skips the listing to a new page, and prints the heading nessage at the
top of every page until another TITLE comrand is issued. This not only
clearly labels your listing, but it saves time in looking through a
listing which is nore than a few pages |ong. The command

EJECT
skips the listing to a new page, and is useful in blocking off mgjor
parts of a program The command

SPACE n
inserts n blank lines into the listing at that point. This is wusefu

for blocking off smaller sections of a program particularly snall
| oops, register equates, etc.

Not only do listing control instructions aid to the readability
of a program but they also save the progranmmer tine in debugging.

DON' T
nerely restate an instruction when you place a coment on it.
O the followi ng two exanples, which is nore expl anatory?

A 1, VAR ADD VAR TO REG STER 1
A 1, VAR R1=SUMVATI ON OF ODD PRI ME NUMBERS
DON T
put several single comments between statenents in an unreadable
manner. |t is often useful to indent a single coment to columm 16.

This keeps it frominterfering with the reading of Iabels and opcodes,
and thus distinguishes it fromthe machi ne instructions.

DOCUMENT- 4

DO

use conment card blocks which [list wuseful infornmation. For
exanple, a list of register allocation and usage is extremel y
hel pful, not only in debugging, but also in revising a program
Such a list should appear as part of the preface to the appropriate
section of code. Another exanple is a list of calling conventions for
subroutines. For extensive progranms, lists of the following mght be
kept at the beginning of each subroutine: MACROS USED, SUBROUTI NES
CALLED BY THIS SUBROUTI NE, SUBROUTINES WHI CH CALL THI'S SUBROUTI NE
VARI ABLES USED BY THI S SUBROUTI NE, VARI ABLES CHANGED BY THI S
SUBROUTI NE, etc.

DO

bl ock off large sections of coment cards. Large blocks of
conments can begin in whatever colum is appropriate, but in general,
shoul d use nost of the card, since they will otherwi se add a great dea
of length to a program For the sake of appearance, coments should
be blocked off by blank lines (SPACE n) or lines of continuous
characters. The nbst comon characters used for this purpose are
asterisks (in colums 1-71, or in just the odd colums). An esthetic

appear ance can be obtained by placing an asterisk in colum 71 of each
conment card in a major block, with Iines of asterisks before and after
the entire block of documentation.

DO

flag instructions which will be nodified during execution in order
to make progranm ng | ogic obvious. This may be acconplished by using
"*.*' or '$', the latter EQU ed to zero, for any nodified field. For
exampl e,

$ EQU O $ => INST. MODIFIED I N EX
.......... other statenents

STC 2, WC+1 SET BUFFER LEN. FOR LATER
* USE.

.......... other statenents

M/C MWC OUTPUT($), 0(5) MOVE VAR ABLE # BYTES [|NTO
* OUTPUT BUFFER.

.......... other statenents

The above met hods have been derived both from the exam nation of
many professionally-witten prograns and from the aut hor s' own
experiences. Thus, they are not arbitrary rules but techniques which
have been wi dely used and proven to be effective aids in progranmmng
assenbl er | anguage.

CVMPSC 411 -

PRI NT NOGEN
EQUREGS

MAI N CSECT
XSAVE .
CALL NEXT
XRETURN ~ SA=*
LTORG

NEXT CSECT
XSAVE .
CALL LAST
XRETURN ~ SA=*
LTORG

LAST CSECT
XSAVE .
CALL TRACE
XRETURN ~ SA=*
LTORG

THROUGH THE SAVE AREAS

CSECTS OF ACTIVE S. A.'S.

L T I R T T

DSECT Exampl e

ESTABLI SH STANDARD LI NKAGE
CALL LOVNER ROUTI NE
ESTABLI SH SAVE AREA

ESTABLI SH STANDARD LI NKAGE
CALL LOVWEST ROUTI NE
ESTABLI SH SAVE AREA

ESTABLI SH STANDARD LI NKAGE
CALL TRACE RTN TO PRNT S. A
GENERATE SAVE AREA

THE ABOVE ROUTI NES DO NOTHI NG BUT ESTABLI SH LI NKS TO TRACE

ROUTI NE TRACE PROVI DES A PRI NTED TRACE OF THE NAMES OF THE
| T USES DSECTS SAVEAREA AND NAMECONV
TO FORVAT THE SAVEAREA AND FI RST FEW BYTES OF THE PROGRAM

TRACE CSECT
XSAVE SA=TRACESA ESTABLI SH LI NKS
USI NG SAVEAREA, R13
USI NG NAMVECONV, R15
XPRNT =CL25' OBACK TRACE OF SAVE AREAS--', 25
L R13, 4(R13) CONNECT TO FI RST ACTI VE S. A
LOCP LTR R13,R13 CHECK | F END OF CHAI N
BZ DONE IF YES, EXIT
L R15, REGL5SAV GET PTR. TO BEG N. OF CSECT
CLC BRANCH, =X 47F0' CHECK TO SEE | F VALI D BRANCH
BNE ERRCR | F NOT, ABCRT
IC R7, LENGTH Pl CK UP LENGTH OF NAME
BCTR R7, RO SET UP FOR EXECUTE
EX R7, MOVE MOVE CHARS. OF NAME TO QUTPUT
XPRNT QOUT, 40 PRI NT NAME OF ROUTI NE
WwC QUT+1(39), OUT BLANK OUT OUTPUT AREA
LM R14, R11, REGL4SAV RELOAD REGS. (FOR RETURN)
L R13, BACKLI NK FOLLOW LAST LI NK
B LOCP
DONE XPRNT =CL25' OBACK TRACE COWPLETED , 25

LA R13, TRACESA
XRETURN SA=TRACESA

ERRCOR XPRNT =CL25" OERROR I N TRACE- BACK' , 25

ABEND 999
MOVE wC
aJt DC

LTORG

cL40" '

OUT+1(*-*), NAME

ABCRT

I NSTR. FOR EXECUTE

DSECT - 2

*

* THE FOLLOW NG DSECT FORVATS THE SAVE AREA

*

SAVEAREA DSECT

UNUSED DS F

BACKLI NK DS F PTER TO H GHER S. A.

FORELI NK DS F PTER TO LOAER S. A

REGL4SAV DS F SAVE AREA FOR REG 14
REGL5SAV DS F START OF S. A FOR REG 15-12
*

* THE FOLLOW NG DSECT FORVATS THE BEGA NNI NG OF A CSECT. | F THE
* NAME CONVENTION IS FOLLOWED, THE FI RST | NSTR MUST BE A BR. ON
* R15 AS A BASE REG FOLLOWED BY A LENGIH AND A NAME.

*

NAMECONV DSECT

BRANCH DS XL2, XL2 SPACE FOR BSC | NSTR(4 byt es)
LENGTH DS C
NAVE DS C SPACE FOR NAME (MARK BEG NNI NG
* ADDR ONLY)

END MAIN

/*

Following is the output fromthis exanple--

*** MAIN ENTERED ***
*** NEXT ENTERED ***
*** LAST ENTERED ***
*** TRACE ENTERED ***
BACK TRACE OF SAVE AREAS
TRACE

LAST

NEXT

MAI' N

| EWLCTRL

BACK TRACE COVPLETED
*** TRACE EXI TED ***
*** LAST EXI TED ***
*** NEXT EXI TED ***
*** MAIN EXI TED ***

DSECT - 3

Following is the actual assenbler listing of the TRACE csect.
Noti ce those instructions which reference | abels fromthe SAVEAREA and
NAMECONV dsects. Look at the object code and see what the base register
and di spl acenent by which they were assenbl ed is.

LOC OBJECT CODE ADDR1 ADDR2 STMI SOURCE STATEMENT

000300 192 TRACE CSECT
193 XSAVE SA=TRACESA
000000 220 USI NG SAVEAREA, R13
000000 221 USI NG NAMECONV, R15
222 XPRNT =CL15" BACK TRACE
000386 58DD 0004 00004 232 L R13, 4(R13)
00038A 12DD 233 LOOP LTR R13,R13
00038C 4780 COVE 003EO0 234 BZ DONE
000390 58F0 D010 00010 235 L R15, REGL5SAV
000394 D503 FOOO C1C6 00000 00528 236 CLC BRANCH(2), =X 47F0
00039A 4770 C13A 0049C 237 BNE ERROR
00039E 4370 F004 00004 238 IC R7, LENGTH
0003A2 0670 239 BCTR R7,0
0003A4 4470 C170 004D2 240 EX R7, MOVE
241 XPRNT QOUT, 40
0003CE D226 Ci177 Cl176 004D9 004D8 251 WwC QUT+1(39), OUT
0003D4 98EB DOOC 0000C 252 LM R14, R11, REGL4SAV
0003D8 58D0 D004 00004 253 L R13, BACKLI NK
0003DC 47F0 C028 0038A 254 B LOCP
255 DONE XPRNT =CL20' TRACE COVPL
000406 41D0 COF2 00454 265 LA R13, TRACESA
266 XRETURN SA=TRACESA
285 ERROR XPRNT =CL20' ERROR I N TR
295 ABEND 999, DUMP
0004D2 D200 C177 FOO5 004D9 00005 303 MOVE MWC OQUT+1(*-*), NAME
0004D8 4040404040404040 304 OQUT DC CL40"
000500 305 LTORG
310 *
000000 311 SAVEAREA DSECT
000000 312 UNUSED DS F
000004 313 BACKLI NK DS F
000008 314 FORELI NK DS F
00000C 315 REGIL4SAV DS F
000010 316 REGL5SAV DS F
317 *
000000 318 NAMECONV DSECT
000000 47F0 FOOO 00000 319 BRANCH B 0(, 15)
000004 320 LENGTH DS C
000005 321 NAME DS C
322 *

000000 323 END MAIN

DUMPSJCL - 01
ASSI GNVENT A - DUMPS AND JCL | NTRCDUCTI ON

The first assignnment (not to be turned in) is essentially to use
the Job Control Language and deck setups to be used nost often during
term and also to becone famliar with the conpletion dunps issued by
s/ 360.

. JCL AND DECK SETUPS - 0OS/ 360
A. LOADER CATALOCGED PROCEDURE - ASGCG

The followi ng is the RECOWENDED PROCEDURE for any assenbl er run
whi ch cannot be run under ASSI ST, and whi ch does not require sone of the
special facilities available using the LINK EDI TOR. The procedure ASGCG
stands for ASSEMBLER G COWPI LE AND GO, and it has two JOB STEPS, SOURCE,
and DATA. The typical deck setup is:

/| EXEC ASGCG, PARM DATA=' MAP'
/ / SOURCE. | NPUT DD *
..... 360 assenbly | anguage source deck

/*
/ | DATA. SYSUDUMP DD SYSOUT=A (required for a dunp)
/ | DATA. XSNAPOUT DD SYSQUT=A (required if XSNAPs are used)

The above procedure is the nost efficient way to assenble and run
an assenbl er program whi ch cannot be run by ASSI ST.

B. LINK EDI TOR CATALOGED PROCEDURE - ASCCLG

This procedure is somewhat slower than the above, but can be used
to run sonewhat | arge programs, and offers additional features. It
stands for ASSEMBLER G COWPILE, LINK, and GO, and contains three JOB
STEPS, SOURCE, OBJECT, and DATA.

/| EXEC ASGCLG, PARM OBJECT=' MAP'
/ / SOURCE. | NPUT DD *
..... 360 assenbly | anguage source deck

/*
/ | DATA. SYSUDUMP DD SYSQUT=A (required for a dump)
/ | DATA. XSNAPQUT DD SYSOUT=A (required if XSNAPs are used)

C. EXECUTI ON ONLY CATALOGED PROCEDURE - ASGG

In sone cases, the user nay have an OBJECT DECK rather than a
SOQURCE DECK, in which case he does not need the assenbler at all. The
procedure ASGG has only 1 step, DATA, and just executes the program

!/ EXEC ASGG, PARM DATA=' VAP
/ | DATA. DECK DD *
..... i nput object deck.....

/ / DATA. SYSUDUWP DD SYSQUT=A
/ / DATA. XSNAPOQUT DD SYSQUT=A

FrEXENOTEF**** YOU MUST | NCLUDE SYSUDUMP CARD TO GET ANY DUMP AT ALL.
ALSO, USI NG XSNAP W THOUT XSNAPOUT W LL RESULT IN ABEND U0300.

DUMPSJCL - 02
D. ADDI TI ONAL USEFUL JCL

1. MSGLEVEL=1 . If is often useful to see the JCL of catal oged
procedures used. Punch a comm after the programmer nane on your JOB
card, punch anything in columm 72 of you JOB card, then follow the JOB
card with the foll ow ng:

/!l NMBSGLEVEL=1
or for even nore information, use:
/1 MSGLEVEL=(1, 1)

2. | *LOG CARDS. A card having /*LOG in colums 1-5 can be put
anywhere in your deck except in the mddle of continued cards or in
data or source decks. It causes additional infornmation to be printed
in the systemlog, which is the very beginning of your output. This is
strongly recommended for multi-step jobs, since it shows how far a
a program progressed, and how nuch time each step needed.

3. /*I NCLUDE CARDS. Your instructor nmay sonetinmes place cards on
magneti c disk (such as test prograns), and nake them accessible to you
Each FILE on di sk has a FILENAME, and you can essentially copy each
such file by using a /*I NCLUDE card referencing that file. Files may
contain both data and JCL. Your instructor has an identification which
must be used to refererence the files. The formis

/*1 NCLUDE ident.fil ename
for exanpl e:
/*1 NCLUDE JRMD2. TESTDECK

4. [*DUMP CARDS. |f your programruns out of tine or records, you
do not normally receive a conpletion dunp. Inserting a card with /*DUWP
in colums 1-6 anywhere in your deck (like /*LOG w Il allow you to get
a dunp, assum ng you have a SYSUDUWP card also in the correct place

4. PARM FIELDS. PARM fields can be used to pass information to a

processing program with up to 1 PARMfor each STEP in a catal oged
procedure. The followi ng options may be useful to you:

SOURCE STEP (ASSEMBLER G

NCESD Del etes 1st page - External Synbol Dictionary, which is
often not too useful.

NCLI ST Del etes entire source listing - especially good for a
debugged program when you want to save records.

NOXREF Del etes the Cross-Reference fromend of |isting, saves
time and records.

DECK Requests that an OBJECT DECK be punched. You can then

run the program (or include it with another one) without
having to assenble it again, saving tine.

OBJECT STEP (LINK EDI TOR)

MAP Requests a MAP of the nodules in your program
DATA STEP (LOADER)

MAP Requests a MAP of where nodul es are | oaded into nenory.
EXAMPLES

/1 EXEC ASGCG, PARM SOURCE="' NCESD, NOXREF, DECK' , PARM DATA=NAP
/| EXEC ASGCLG, PARM SOURCE=NOL| ST, PARM OBJECT=" MAP* (mi ssing 's ok)

DUMPSJCL - 03

1. OS/ 360 DUVMP ASSI GNVENT

Thi s assignnent should help famliarize you with the typical cards
used to run an assenbl er program using Assenbl er G and show several of
t he nost common causes of error term nation, with the effects they have
on the conpletion dunps printed by OS/ 360.

Run each of the foll ow ng prograns, using appropriate JCL cards.
Use MSGLEVEL=1 and /*LOG cards for all of them Use procedure ASGCG
for all prograns, and ASGCLG for part C. in addition. (total 4 runs)

A. TYPI CAL | NTERRUPT DUMP - PRECI SE | NTERRUPT - 0C6

DUMP1 CSECT

XSAVE | D=NO

SPACE 2

L 0,2 cause 0C6

XRETURN SA=* return, create save area
END DUMP1

B. ABEND DUMP - CAUSED BY USER PROGRAM ABEND

DUMP2 CSECT

XSAVE TR=NO

SPACE 2

ABEND 400, DUMP U0400 conpl etion code
XRETURN TR=NO, SA=* no trace, generate save area
END

C. I NTERRUPT DUWMP W TH MULTI PLE CSECTS, | MPRECI SE | NTERRUPT - 0C4

DUMP3 CSECT

XSAVE
SR 0,0 0 for main program
CALL SuBi CALL SUBROUTI NE
XRETURN SA=*
SUB1 CSECT
XSAVE
LA 0,1 set to 1 for 1st level sub
CALL SuB2
CNOP 0,8 line up for max overrun
ST 0, 20 0C4 - store into protected core
AR 0,0 get value of 2
AR 0,0 get value of 4
XRETURN SA=*
SUB2 CSECT
XSAVE
LA 0,2 set to another val ue
XSNAP

XRETURN SA=*
END DUMP3

//**
11*
/1> EXCP PROGRAM
[+
[1* CWPSC 411 - 12/7/71
//**
/| EXEC ASGCG, PARM DATA=' VAP
/1 SOURCE. | NPUT DD *

TITLE 'EXCP - EXECUTE CHANNEL PROCRAM - TEST PROGRAM
CHANPROG CSECT

PRINT NOGEN
XSAVE
PRINT GEN
OPEN (I NDCB, (| NPUT) , OUTDCB, (OUTPUT)) OPEN DCBS
* | .E. CONNECT BLOCKS TO
* ALLOW | O TO TAKE PLACE
SPACE 3
EXCP OUTI OB EXEC. THE CHANNEL PROG
* BEG NNI NG AT LOC. OUTI OB
M/ OUTCOW X' 11' CHANGE FROM SPACI NG TO TOP
SPACE 3
* OF NEW PAGE TO SI NGLE SPACI NG
READ EXCP | NI OB EXEC. CHAN. PGM TO READ A Pl ECE
* OF DATA AS SPECI FIED IN | NI OB
SPACE 3
WAI T ECB=I NECB GO | NTO WAI T STATE AND DO NOT
PROCESS ANY MORE UNTIL THI'S 10
* HAS POSTED COVPLETI ON | N | NECB
CLI I NECB, X 41' CHECK FOR GOOD TERM NATI ON
BE EOF |F TERM CODE =X 41', EOF READ
SPACE 3
EXCP QUTI OB EXEC. CH PGM AT OUTI OB
WAI T ECB=OUTECB WAI T FOR TERM NATI ON OF | O,
B READ LOoOP
SPACE 5
EOF CLOSE (| NDCB, , QUTDCB) CLOSE OPEN DATA SETS
PRINT NOGEN
XRETURN ~ SA=*
SPACE 5
INAREA DC CL80' AREA FOR | NPUT
INDCB DCB MACRF=E, USI NG EXCP MACROS
DDNAME=I N UNDER THE DDNAME FOR JCL '[N
INECB DC FO BLOCK TO POST STATUS OF | O
SPACE 3
INNOB DC B 01000010', X 000000' | NFORMATI ON ON FORM OF
* 1O ACTIVI TY
DC A(l NECB) LOCATI ON TO POST STATUS
DC 2F O ** MAG C** USED FOR STATUS
DC A(l NCoW ADDR. OF CHANNEL COMVANDS
DC A(l NDCB) PTR TO DCB ASSOCI ATED W TH
* THI'S 10 TASK
DC 2F 0O ** MAG C**USED FOR STATUS
SPACE 3
* COMMAND WORD FOR READ FOLLOWS- -
INCCGW DC 0D O MUST BE DOUBLE WORD ALI GNED
DC X 02 COVMAND = READ
DC AL3(| NAREA) WHERE TO PLACE DATA
DC B 00100000' FLAGS = SUPPRESS | NCORRECT LEN.
DC X 00' UNUSED (BUT MUST BE | NCLUDED)
DC H 80' LENGTH OF DATA FI ELD TO READ

* EVERYTHI NG DOWN TO HERE HAS BEEN ONE COVIVAND WORD FOR ONE | O

* ACTIVITY (A READ)

SPACE 5
OUTDCB DCB MACRF=E, DDNAVE=OUT
OUTECB DC F 0O EVENT CONTROL BLOCK FOR OUTPUT
SPACE 3
* COMMAND BLOCK FOR OUTPUT FOLLOWS- -
QUTIOB DC X 42000000 | NFORMATI ON FOR CHANNEL .
DC A OUTECB) ADDR. OF ECB FOR OUTPUT
DC 2F O MAG C STATUS
DC A(OUTCOW ADDR OF CHAN. COMM WORD(S)
DC A(OUTDCB) ADDR OF ASSOCI ATED DCB
DC 2F O MAG C STATUS AGAI N
SPACE 5
* OUTPUT CHANNEL COVMAND WORD FOLLOWS- -
DS 0D
QUTCCW DC X 8B SKI P TO NEW PAGE
DC AL3(I NAREA) AREA FROM WH CH TO TRANSFER
DC B 00100000’ STATUS FLAGS
DC X 00' UNUSED
DC H 80 LENGTH OF DATA TRANSFER
SPACE 5
* JCL USED -
* || EXEC ASGOG, PARM DATA=' MAP'
* [/SYSIN DD *
* SOURCE DECK
* / *
* |/ DATA. OUT DD SYSOUT=A FOR THE DATA SET ' OUT' CREATED AT THE
* DATA LEVEL, TO BE ROUTED TO A PRI NTER
* |/ DATA. SYSUDUMP DD SYSOUT=A JUST | N CASE
* |/ DATA. I N DD * THE DATA SET 'IN CREATED AT THE
* DATA STEP, WLL FOLLOW DI RECTLY
* DATA CARDS
* / *
SPACE 5

END CHANPROG
/ / DATA. QUT DD SYSQUT=A
/ / DATA. SYSUDUWP DD SYSQUT=A
/1 DATA. I N DD *
TH S | S DATA CARD #1
THIS I S THE SECOND DATA CARD
THIS IS THE LAST DATA CARD--AFTER IT THE DCB'S WLL BE CLOSED

/*LOG
11*

/1> PROGRAM FLOTLI NK: THI S PROGRAM | LLUSTRATES THE FOLLOW NG
[+ 1. JOB CONTROL LANGUAGE FOR LI NKI NG FORTRAN ASSEMBLER

[1* 2. CALLI NG LI NKAGE AMONG FORTRAN ASSEMBLER MODULES

[1* 3. FLOATI NG PO NT | NSTRUCTI ONS.

[1*

I+ FLOTLI NK CONSI STS OF A FORTRAN MAI N PROGRAM A FORTRAN

/1> FUNCTI ON (F2A), AND A FORTRAN SUBROUTI NE (F3A), PLUS SEVERAL
[1* ASSEMBLER LANGUAGE SUBROUTI NES (A1, A2).

[1*

[1* THE EXEC FGC REQUESTS A FORTRAN G COWVPI LATI ON.

[+

/1l EXEC FGC

/ / SOURCE. | NPUT DD *

C MAI N PROGRAM - READS VALUES, CALLS Al.

VRl TE(6, 9000)
1000 READ(5, 9020, END=8000) A, B, C, |
WRI TE(6, 9040) A B, C, |

C EXAVMPLE: CALL ASSEMBLER SUBROUTI NE FROM FORTRAN.
CALL A1(A B, C 1)
GO TO 1000

8000 WRI TE(6, 9060)
STOP 20

9000 FORMAT(' 1***** FLOTLINK - FORTRAN ASSEMBLER FLOATI NG PT/ LI NKAGE')
9020 FORMAT(3F10. 0, | 10)

9040 FORMAT(' O***** | NPUT VALUES: A B, C | = ', 3F20.10,110)
9060 FORMAT(' O***** END EXECUTI ON OF FLOTLI NK')
END

FUNCTI ON F2A(A, B, C, I)
THI S FORTRAN FUNCTI ON COMPUTES THE FOLLOW NG VALUES:
F2A = (A/2.) * B + (C*1)/10. - 2.
| T GENERATES CODE RETURNI NG RESULT | N FLOATI NG PT REG STER 0.
| F RESULT WERE FI XED PT, |T WOULD BE IN GP REG STER 0.
VR TE(6, 9000)
F2A = (A/2.) * B + (C**1)/10. - 2.
WRI TE(6, 9020) F2A
RETURN
9000 FORMAT(' *** FUNCTI ON F2A ENTERED ***')
9020 FORMAT(' *** RETURN FROM F2A, RESULT = ', E15.8)
END
SUBROUTI NE F3A(VALUE, TI TLE, NTI TLE)
C THI'S SUBROUTI NE | S USED TO PRI NT THE SI NGLE PRECI SI ON FLOATI NG
C PO NT VALUE, FOLLOAED BY TITLE HAVI NG NTI TLE CHARACTERS.
LOG CAL*1 TI TLE(NTI TLE)
WRI TE(6, 9000) VALUE, TI TLE
RETURN
9000 FORMAT(E15. 8, 60A1)
END

O000

[1*
[1* THE EXEC ASGCG REQESUTS FI RST AN ASSEMBLY AND THEN EXECUTI ON.
[1* EXECUTI ON W LL BEG N AT ROUTI NE NAMED ' MAI N .
[+
/| STEP2 EXEC ASGCG, PARM SOURCE=NOXREF, PARM DATA=' MAP, EP=NMAI N
/ / SOURCE. | NPUT DD *
TITLE ' MODULE A2 OF FLOTLI NK

A2 CSECT

* W TH ARGUMENTS (A, B, C 1), A2 COMPUTES SAME AS F2A:
* F2A = (A/2.) * B + (C*1)/10. - 2.

*

RESULT |'S RETURNED I N FLOATI NG PO NT REGQ STER 0.
PRI NT NOGEN

EQUREGS
EQUREGS L=F, DO=(0, 6, 2) FLOATI NG POl NT EQUATES

SPACE
XSAVE
* RL CONTAI NS ADDRESS OF ADDRESS LI ST OF ARGUVENTS.
LM R2,R5, O(Rl) GET ADDRESSES OF A B, C, |
LE FO,0(, R2) LOAD VALUE OF A
HER FO, FO = A/2. USING HALVE SHORT | NSTR
ME FO,0(, R3) = (A/2.) * B, MULTIPLY SHORT
* NOW COVPUTE C**1 / 10. PART
LD F2,=D1' I NI TIALI ZE, WLL MULI TPLEY | N HERE
LE F4,0(, R4) F4 = C, WLL SAVE | N REG STER
L R6, 0(, R5) R6 = |, FOR LOOP COUNTER
XSNAP T=FL, LABEL=' REG STERS | N A2'
LPR RO, R6 RO = ABS(I)
BZ A2NOMUL IE 1 =0, C-*I = 1.0 ALWAYS
MER F2, F4 F2 * C, LOOPING
BCT RO, *-2 LOOP, MULTI PLYING TO GET C ** ABS(1)
SPACE
LTR R6,R6 WAS | POSI TI VE
BP A2NOMUL YES, SO CAN SKIP, F2 IS OK
LD F4,=D1' GET VALUE OF 1 FOR DI VI DE
DER F4, F2 DIVIDE TO GET 1.0 / (C ** ABS(I))
LER F2, F4 GET CORRECT VALVE OF C ** |
A2NOMUL DE F2, =F' 10' F2 = (C** 1) / 10.
AER FO, F2 FO = (A2.)*B + (C ** 1)/10.
SE FO,=E 2 FO = (AN2.)*B + (C** 1)/10. - 2

RESULT HAS BEEN COWPUTED AT THI' S PO NT.
SAVE ACROSS CALL (FLOAT REGS NOT PROTECTED), AND PRI NT.

STE FO, A2RESULT SAVE THE RESULT
PRI NT GEN

SPACE 2

CALL F3A, (A2RESULT, A2MSG, A2LEN)

SPACE 2

PRI NT NOGEN

LE FO, A2RESULT RELOAD RESULT
XRETURN SA=*, TR=NO RETURN, NO TRACE

A2RESULT DS E
MA2MSG DC C COWPUTED BY A2 AT EXIT'
A2LEN DC A(L' A2MSG)
LTORG
TI TLE ' MODULE Al OF FLOTLI NK'
Al CSECT
* THI'S MODULE | LLUSTRATES THE CALLI NG SETUPS FOR CALLI NG
* BOTH FORTRAN AND ASSEMBLER ROUTINES. | T CALLS A2, F2A.
SPACE
ON ENTRY, Rl CONTAI NS THE ADDRESS OF AN ADDRESS LI ST, FOR
ARGUMENTS A, B, C, |, AS FOLLOAB:
RL ==> (O(RLl), ADDRESS OF A) ==> VALUE OF A
(4(RLl), ADDRESS OF B) ==> VALUE OF B
(8(RL), ADDRESS OF C) ==> VALUE OF C
(12(R1), ADDRESS OF 1) ==> VALUE OF |
XSAVE
* DUVP THE ADDRESS LI ST FOUND ON ENTRY.
XSNAP STORAGE=(*O(R1), *16(R1)),
LABEL=' Rl ==> 4 FULLWORDS OF ADDRESS LI ST'
MOVE THE ARGUMENTS OVER. THI'S I'S NOT REALLY NECESSARY,

* ok Xk X *

* IT 1'S JUST DONE TO SHOW ACCESSI NG OF ARGUEMNTS.
LM R2, R5, O(Rl) LOAD PTRS TO VALUES OF A B, C, |
MWC A O(R2) GET LOCAL COPY OF A

MWC B, O(R3) GET LOCAL COPY OF B

wC
wC

LA

L
BALR
XSNAP

PRI NT

SPACE 2

CALL

SPACE 2

PRI NT
XSNAP

C, O(R4) GET LOCAL COPY OF C

I, O(R5) GET LOCAL COPY OF |

AT THI'S PO NT, LOCAL A B, C,1 HAVE SAVE VALUES AS THOSE
SUPPLI ED I N ORI G NAL PROGRAM

NOW MAKE CALLS TO ROUTI NES AND SEE HOW THEY RETURN VALS.

R1, ADCONS GET ADDRESS OF ADCON LI ST
R15, =V(F2A) ADDRESS OF FORTRAN ROUTI NE
R14, R15 CALL THE ROUTI NE

T=FL, LABEL=" FO CONTAI NS RESULT OF FUNCTI ON F2A'
NOW CALL EQUI VALENT ASM ROUTI NE, USI NG CALL MACRO
GEN

A2, (A B,C 1), VL

NOGEN
T=FL, LABEL="FO CONTAI NS RESULT OF FUNCTI ON A2

XRETURN SA=*

DS
DS
DS
DS
ADCONS DC

—0Ol>

LTORG

END

E
E
E
F
A(A B, O, X 80", AL3(1) ADCON LI ST

/ / DATA. XSNAPOQUT DD UNI T=AFF=FT06FO001 XSNAPS ON FTO6F001
/ / DATA. SYSUDUMP DD SYSQUT=A
/ /| DATA. FTO5F001 DD *

10.
1.
/*

5. 10. 2
10. .1 -1

11*
11*
/1*
[1*

THIS JOB WLL RUN WTH TI ME = 25 SECONDS
RECORD = 600

/'l EXEC ASGCG
//SYSIN DD *

L T

MAI N

* % X X 3k X X Xk

PRI NT NOGEN
EQUREGS
THE PURPOSE OF THI'S PROGRAM | S TO DEMONSTRATE THE GETMAI N AND
FREEMAI N MACRO USI NG THE REG STER CONVENTI ON
FI RST READ I N THE NO OF BYTES TO BE OBTAI NED FROM THE OS THEN
READ | N NUVMBER TO FILL THESE BYTES AND PLACE THEM | N THE AREA
OBTAI NED NEXT SNAP THESE NUMBERS AND FREE THE AREA W TH A
W TH A FREEMAI N MACRO
CSECT
XSAVE
THE FI RST SECTI ON PREPARES FOR THE GETMAI N MACRO
FI RST READ | N THE NUVMBER OF BYTES TO BE OBTAI NED FROM THE OPERATI NG
SYSTEM THEN ECHO PRI NT THE NUMBER
MOVE THE NUMBER OF BYTES TO BE OBTAI NED | NTO REG 0 AND MAKE A
COPY OF THI'S NUMBER I N R9
DI VIDE R4 BY 4 TO GET THE NUMBER OF NUMBERS TO BE READ I N
THEN PLACE THE SUBPOOL NUMBER | N RO ALONG W TH THE NUMBER OF BYTES
REQUESTED
XREAD \WORD READ | N THE NUMBER OF BYTES TO BE
OBTAI NED FROM THE OPERATI NG SYSTEM

XPRNT WORD- 1, 81 ECHO PRI NT THE NO OF NUMBERS TO BE R

XDECI R4, WORD CONVERT TO | NTERNAL FORM
LR RO, R4 MAKE A COPY OF R4 FOR GETMAIN
LR RO, R4 MAKE A COPY OF THE NUMBER OF BYTES
SRL R4, 2 DI VI DE THE NUMBER OF BYTES BY 4 TO
* GET THE NUMBER OF WORDS TO BE READ
LA R3,1 PLACE A 1 INBIT 31 OF R3
SLL R3,24 MOVE THE BIT TOBIT 7 OF R3
R RO, R3 PLACE SUBPOCL | N RO
PRI NT GEN
*
* USING A GETMAIN MACRO OBTAIN THE NUVMBER OF BYTES REQUESTED
* THE REG STER CONVENTI ON REQUI RES THAT THE SUBPOOL NUMBER BE PLACED
* IN THE FIRST BYTE OF REG 0
*
GETMAI N R, LV=(0)
PRI NT NOGEN
*
* MAKE TWO COPI ES OF THE ADDRESS OF THE AREA OBTAI NED FROM THE
* OPERATI NG SYSTEM THEN USI NG R4 FOR LOOP READ | N THOSE NUMBERS
* AND PLACE THEM I N THE AREA OBTAI NED
*
LR R6,RL MAKE A COPY OF ADD OF NEW STCRAGE
LR R7,RL MAKE A COPY OF ADD OF NEW STORAGE
LooP XREAD WORD READ | N THE NUMBERS

XPRNT WORD- 1, 81
XDEC! R5, WORD
ST R5,0(R6)
LA R6, 4(R6)
BCT R4, LOOP

ECHO PRI NT THE NUMBERS

CONVERT THE NUMBERS TO | NTERNAL FORM
PUT NEW NUMBER | N STORACE

I NCREASE PO NTER TO NEXT NEW WORD

I F NOT LAST NUMBER RETURN FOR NEXT

FINALLY SNAP THE AREA OBTAI NED AND THEN FREE THE AREA OBTAI NED

* PLACE THE SUBPOOL NUMBER AND THE NUMBER OF BYTES TO BE FREED I N
* RO AND THEN USI NG THE REG STER CONVENTI ON FREE THE AREA OBTAI NED
* W TH THE REG STER CONVENTI ON PUT THE ADDRESS OF THE AREA TO BE
* FREED IN A REG STER
*
XSNAP STORAGE=(*0(7), *4(6)), T=NOREGS, X
LABEL='"THIS IS A SNAP OF THE AREA OBTAI NED FROM GETMAI N
R R9,R3 PLACE SUBPOOL NUMBER I N FI RST BYTE
LR RO, R9 PUT THE PS NUVBER AND LENGTH I N RO
* FOR THE MACRO CALL
PRI NT GEN
*
* USING A FREEM AN MACRO FREE THE AREA OBTAI NED W TH THE REG STER
* CONVENTI ON THE SUBPOOL NUMBER |'S PLACED I N THE FI RST BYTE OF RO
* THE ADDRESS OF THE AREA TO BE FREED IS PLACED I N A REG STER
* DESI GNATED BY THE A= PARAMETER
*
FREEMAI N R, LV=(0), A=(7)
PRI NT NOGEN
XRETURN SA=*
DC FoO
W\ORD DC 20F O
END
/ *
/ *LOG

/ / DATA. XSNAPOQUT DD UNI T=AFF=FT06FO001
/ / DATA. SYSUDUWP DD SYSQUT=A

[/ DATA. | NPUT DD *

40

TS OO ~NOOUA~AWNEO

HARDWARL - 01
FEB 1972
PENN STATE UNI VERSI TY COMPUTATI ON CENTER
360/ 67 CONFI GURATI ON
this witeup: pages 01 - 04, plus Diagram A (separate).

| NTRODUCTI ON

This witeup briefly describes the devices included in the PSU
360/ 67 system and shows how they are connected together. Each device
i s described bel ow, and di agram A shows the connections.

Ref erences are nade to DEVI CE ADDRESSES. Each i ndividually
addressabl e device (such as a single disk drive, card reader, etc) has
a 3 digit (hexadecimal) nunber which uniquely identifies it to the
system and is used in all input/output operations. The DEVI CE ADDRESS
is of the follow ng form

abc where:

a gi ves the CHANNEL NUMBER (from O up)

b specifies a CONTROL UNIT attached to that channe

c not es which device attached to a given control unit.

Since each digit can have the value 0-F, theoretically it would be
possible to attach 16 devices to each of 16 control units attached to
16 channels, for a maxi mum of 4096 separate devices. |In practice, this
nunber is nmuch |ess, since nost S/360's allow a MAXIMUM of 7 channel s or
| ess.

The devices follow, nbore or less in order fromthe CPU outward.
CENTRAL PROCESSI NG UNI' T

2067-1 (a single 360/67 CPU). wuses 200 nanosec (.2 microsec) cycle
Read Only Storage (ROS) of 88 bits/word to inplenment S/ 360
instruction set (Universal plus special nodel 67 instructions)
i ncludes a H GH RESCLUTI ON TI MER (13 microsec cycle).

i ncludes a BCU (Bus Control Unit), which is connected to al
menory nodul es, and determ nes which channel or CPU gets to
use a given nenory nodul e.

PRI MARY STORAGE

2365 111 (4 units) each unit contains 256K bytes. Physically each
2365 contains 2 arrays of 128K bytes, with physical word size
of doublewords, i.e., each has 2 arrays of 16K doubl ewords,
and is thus 2-way interleaved at this level. Each 2365 is

i ndependent of the others.
CYCLE TIME: 750 nanosec / ACCESS TI ME: 375 nanosec

2361 11 (1 unit) - Large Core Storage (LCS) - 2048K bytes, organized
physically of 2-way interleaved doubl ewords.
CYCLE TI ME: 8000 nanosec (8 microsec) / ACCESS TIME 3.2 mic

O the two types of storage, the first contains user prograns, and
heavily used parts of system prograns, while the LCS contains | ess-used
system prograns, tables, and buffer areas.

HARDWARL - 02
CHANNELS

2870 MULTI PLEXOR CHANNEL - includes 2 SELECTOR SUBCHANNELS (used
for magnetic tape drives). generally handl es LOW SPEED
devices (card readers, printers, etc)

MAXI MUM TOTAL TRANSFER RATE: 426 KB (kil obytes) per second

2860 SELECTOR CHANNELS - 5 total (2 in 2860 11, 3 in 2860 II1).
used for HI GH SPEED devices (di sk, drum etc)
MAXI MUM DATA TRANSFER UNI T, EACH SELECTOR: 1250KB

Al'l CHANNELS and the CPU contend for use of nenory nodul es. The
BCU arbitrates anmong themusing a sinple priority schenme in follow ng
order:

SERVED EARLIER ---> SERVED LATER
CHANNEL # : 1 2 0 3 4 5 CPU
drums disk mx disk disk ADAGE

The above order is used since the drums cannot wait very | ong and
have t he highest transfer rate, the nultiplexor channel (0) is fairly
early because it may have a | arge nunber of things to do, and the CPU
is always | ast because it never hurts it to wait.

CONTROL UNI TS

Each control unit can attach to a nunber of devices, and it is used
to control greatly different devices in a such a way as to nmake them
appear nore alike, as far as the channels are concerned. Each device
must be attached to a particular type of control unit, and each contro
unit normally can control a group of related devices.

2820 STORAGE CONTROL UNIT - controls the 2301 drumunits, attached
to channel 1 .

2821 CONTROL UNIT - controls UNIT RECORD devi ces (card readers,
printers, punches). attached to multiplexor channel

2848 DI SPLAY CONTROL - controls the 8 2260 scopes which displ ay
system status to the operators.

2701 DATA ADAPTOR - controls a snmall nunber of high-speed
transm ssion lines, i.e. high speed termnals (4800 bits/sec

transmt rate), such as 360/20's at various |locations.

2703 TRANSM SSI ON CONTROL - controls a | arger nunber of | ower-
speed termnals, including typewiter/teletype termnals and
read/ print/punch term nals at Commpnweal th Canpuses (such as
| BM 2780, DCS CP-4, etc).

HARDWARL - 03

DI SPLAY DEVI CES

1052

2260

SECONDARY

2301

231x

CONSOLE TYPEWRI TER - nessages are printed here requiring
action by conputer operators, and they can enter comuands
to the systemat this |ocation.

ALPHAMERI C DI SPLAY SCOPES (8 units) - these display current
system status (jobs, disk usage, etc), and also are used to
di spl ay requests for nmagnetic tapes to be nounted, etc.

STORACGE - DI RECT ACCESS STORAGE DEVI CES (DASDs)

MAGNETI C DRUMS (2 druns) - attached to channel 1 via 2820.
Each hol ds 4.09 nmegabytes (mllion bytes) of data, rotates
once each 17.5 nilliseconds, with average rotational del ay
(latency time) of 8.6 mlliseconds. Records data 4 bits in
paral l el (for high transfer rate). Has 200 conceptual TRACKS,
each of 20,483 bytes maxi num si ze. EACH DRUM | S UNREMOVABLE
MAXI MUM TRANSFER RATE: 1.2 negabytes/second (FASTEST DEVI CES
USED ON THI S SYSTEM).

These hol d npst heavil y-used conpilers and system prograns.

(2314, 2319) MAGNETI C DI SK STORAGE FACILITIES - total of 22
di sk drives (including 2 spare ones). Each DRI VE hol ds one
2316 DI SK PACK: 29. 17 negabytes nmaxi mum on 20 disk surfaces
(11 plates - outside ones not used). Uses MOVABLE HEADS

to access information. Each CYLI NDER (of which there are 200
usabl e at any one tine) contains the 20 TRACKS accessi bl e at
one time wi thout noving the READ WRI TE HEADS. Each track can
record at nost 7294 bytes of information.

NOTE: unlike drums, each DI SK PACK can be renoved, and another
one nounted in is place if desired.

ROTATION TIME: 25 millisec, AVERAGE LATENCY: 12.5 milli sec.
SEEK TIMES (tinme to nove HEADS to correct cylinder):

M N = 25, AVERAGE = 60 or 75, MAX = 130 or 135 mllisec.

MAXI MUM DATA TRANSFER RATE: 312, 000 bytes/sec.

NOTE: each of the three storage facilities contains its own
control unit, and each drive is nunbered accordingly, i.e.
230-237, 330-337, 430-433, on channels 2, 3, 4.

TOTAL DASD STORAGE IS AS FOLLOWS
2314 (8 drv) 233 negabyt es
2319 (8 drv) 233 negabyt es
2314 (4 drv) 116 megabytes
2301 (2 drums) 8 negabytes

590 negabytes (approx)

HARDWARL - 04
SECONDARY STORAGE - SEQUENTI AL DEVI CES

240x (2402 111, 2403 111) MAGNETIC TAPE DRIVES - read/wite tape
at maxi num density of 800 BPI (bits/inch), 9 tracks per tape
(2 of the drives also read/wite 7-track tapes). Each group
of 4 drives is connected to one SELECTOR SUBCHANNEL of the
MULTI PLEXOR CHANNEL. The control units for these drives are
contained in the 2403 units.
MAXI MUM TRANSFER RATE: 90, 000 bytes/sec (90KB), using tape
speed of 112.5 inches per second, tape gaps of .6 inch between
bl ocks of data.

UNI T RECORD DEVI CES

1403 LI NE PRI NTERS (of various nodels), printing with maxi mumrated
speed of 1100 I pm (lines/mnute) for 1403 N1, 600 | pm for
others. Use renovable TRAINs, so that different character
sets can be obtained (upper case only: QN, upper/lower: TN)
Attached to 2821 control units (on nultiplexor).

2540 CARD READ/ PUNCH - one unit contains a card reader and card
punch (treated logically as separate addresses: for exanple:
00C for reader, 00D for attached punch).

READS cards (optically) at 1000 cpm (cards/ m nute) maxi num
PUNCHES cards at 300 cpm maxi num
Attached to 2821 control unit.

2671 PAPER TAPE READER - reads punched paper tape at up to 1000 cps
(characters per second). attached also to 2821 control unit.

SUMVARY OF DEVI CE CHARACTERI STI CS

DEVI CE CAPACI TY PER UNIT TRANSFER RATE AVERAGE DELAY

TYPE (megabyt es) (KB/ second) (seek) (latency) ms.
2301 DRUM 4.09 1200 0 8.6
2319 DI sSK 29. 17 per pack 312 60 12.5
2314 DI SK 29. 17 per pack 312 75 12.5
2400 TAPE DRI VE varies, 20 per 90 - -
2400-ft tape K
1403 PRI NTER 132 bytes/line 2.4 - -
2540 READER 80 bytes/card 1.3 - -
2540 PUNCH 80 bytes/card 0.4 - -
2671 PAPER TAPE -- 1.0 - -
REFERENCES: GA22- 6810 | BM S/ 360 SYSTEM SUMVARY

GA27-2719 | BM S/ 360 MODEL 67 FUNCTI ONAL CHARACTERI STI CS

01/ 08/ 73: date of |ast update | NDEX102 - 01
CMPSC 102 - | NDEX OF BAT FILES - J R MASHEY

The followi ng provides a brief index to BAT files avail able for

CWVPSC 102. Unl ess ot herwi se specified, these files are kept under
the foll owi ng RIE I D: JRMD2.

CS102AS1 - first assignment, mainly for arithnetic operations
CS102FP1 - final project witeup - wite assenbler/interpreter for
CS102FP2 - what is basically an XDS SI GVA 5 subset conputer
Cs102ML - two writeups: beginning run setup; explanation of the

conventions used to nake up S/ 360 opcode mmenopni cs
CS102TPA - day- by-day outline of nost of CS 102 course

FLOTLI NK - sampl e programillustrati ng FORTRAN ASSEMBLER LI NKAGE
and fl oating-point instructions.

A nunber of files used in CMPSC 411 may al so be suitable for
CMPSC 102(410). See also file JRMD2. CS411d 1.
Sorre of the files nentioned in CS411d 1 i ncl ude:

DOCUMENT - hi nts on good docunentation for assenbler
DSECT - sanpl e DSECT usage
DUMPSJCL - typical dunmp setups; commobn ASM G JCL setups

LI NKAGE - expl anati on of OGS/ 360 |inkage conventions

01/ 09/ 73 | NDEX411 - 01
CWMPSC 411 - I NDEX OF BAT FILES - J R MASHEY

The followi ng provides a brief index to materials useful for
CWMPSC 411 (11).

C+411d1 - contai ns general information about CWMPSC 411, text
C+411d 2 - materials, and also has further index to BAT files
contained in CS411G 1. Approximately 45 files of
sanpl e prograns, assignnents, witeups, etc are listed

here.
CS411TPA - contai ns detail ed descriptons of day-by-day |ectures
| NDEX102 - contains index to CMPSC 102 files, which in sone cases

may overlap with 11 or 411.

** % % * NOTE: above files are held under RIJE | D JRWD2.

LI NKAGE- 1

STANDARD LI NKAGE CONVENTI ONS
Charl es Pfl eeger

Under OS/ 360, certain conventions have been established regarding

the use of registers. These conventions will have been followed when
you, the problem programmer, receive control from the system they
shoul d be followed for any routines which you <call, or for communi-
cating with the system (e.g. system macro calls, SVCs, returning
control, etc.). Foll owing these conventions wll make your code
easi er for someone else to follow Certain debugging aids are also
avail abl e for those who adhere to standard conventi ons. In general

unl ess there is a strong reason to deviate, these conventions should
be enpl oyed.

REA STER 14 is called the return register and contains the address
to which this routine is to return upon exit.

REA STER 15 is called the entry point register, and contains the
address through which this routine was entered. Note that tenpor-
ary addressability may be established by

USI NG entrypoi nt name, 15
If this routine calls no other routines, register 15 may be used as
a permanent base register. |If this routine calls any other routines,
however, register 15 will be changed, and should not be used as a
per manent base register. In this latter case, the sequence

LR BASEREG, 15

USI NG ent rypoi nt name, BASEREG

(where BASEREG is any of registers 2-12) nay be used to establish
per manent addressability.

On return, register 15 may be used to return a code to indicate
normal or error return. One frequently-used technique is to set RI15
zero on a normal return and set it non-zero if some error condition
occurred prior to return.

REA STER 0 is used to return the single result from some process

(as in a Fortran function subprogran. Note: although vyou wll
probably not use this convention nuch, it is heavily used by the
operating system Register 0 cannot be guaranteed to be intact
after executing some call to the system as a system nacro, or
an SVC.

REG STER 1 is the pointer to an argunent |ist. It contains the
address of the first of one or nore full word entries (on con-

secutive f.w. boundaries). These entries are the addresses of arg-
uments to be used by the calling routine.

If there may be an indefinite nunber of argunents, (as wth a
routi ne which would accept one, two, or any nunber of argunents--
c.f. Fortran MAXO0), the first bit of the last address is set to
al (This bit wll not interfere with ordinary S/ 360 addresses,
since an address can be fully specified in 3 bytes; byte 1 is ig-
nored on an address constant.)

L1 NKAGE- 2

The following exanple illustrates how to use the address |ist
passed through register 1

LA 1, ARGI ST get argunent |ist address
L 15, =V(CALLRTN) get entry address
BALR 14, 15 call routine

ARGLIST DC A(ARGL)
DC A(AR®)

DC X 80',AL3(ARGY) Note the length factor
does not provi de auto-
matic alignment.

CALLRTN CSECT

L 2,001 get addr. of next arg.

LTR 1,1 last arg. in list?

BM RETURN if yes, return

LA 1,4(1) el se get addr. of next arg.

When a programmer receives control from the system information
fromthe PARM field of his EXEC card is passed via register 1.
Register 1 points to a fullword of storage. Bit 0 of this fullword
isset to 1 (to indicate the last--only--argunment of the list).
This fullwrd contains the address of a hal fword. The halfword is a

count of the nunmber of <characters in the parm field nessage, and
these characters follow inmediately after the halfword count field.
The contents of the halfword may be picked up to use as a length
count in an execute instruction, and the address of the halfword may
be used as a base to nove the information characters of the PARM
field.

REA STER 13 is called the save area register. It contains the add-
ress of an 18 fullword area (on a f.w boundary) wthin the <calling
routine. The routine called will use this area to save the contents

of registers, to be able to return the registers intact to the
calling program This save area has a set fornat:

word 1 Used by PL/1 and FORTRAN

word 2 address of the save area used by the calling
program

word 3 address of the save area set up by the called
program

Wor d address to which to return (reg. 14).

4
word 5 address of entry point (reg. 15).
Wword 6 contents of register O.

Wword 18 contents of register 12.

Save areas are chained in a doubly-linked 1|ist. At any |ow
| evel routine, by tracing back through a chain of save area I|inks,
one can eventually return to the system at the original point of
call.

L1 NKAGE- 3

VWhen your routine is entered, first you should save registers
and then establish and |ink your own save area.

STM 14, 12,12(13) save regs. 14, 15, and 0-12 in
calling program s save area.

LA 5, MYSAVE get addr. of my save area
ST 5,8(13) link calling pgm s.a. to mne
ST 13, 4(5) link ny s.a. to calling pgns
LR 13,5 transfer pointer to s.a

On return:
L 13, 4(13) retrieve addr. of calling pgms

save area

LM 14,12,12(13) restore registers as they were
BR 14

MYSAVE DC 18F 0O

A calling programis known as a "higher routine", and the routine
called is the "lower routine". Register 13 is always to point to an
area whose contents nay be destroyed

An exception to the requirenent that a routine nust always
establish a save area is that the | owest-level routine (the one which
calls no others) need not set up a save area. The reason for this is
the save area is for the use of any called routines, but that the
| owest -1 evel routine will have no called routines.

It is inmportant to know the conventions on save areas, but the
use of XSAVE AND XRETURN (consult appropriate docunentation) can
reduce the problens in coding and |inking save areas.

THE NAME CONVENTION is a neans of having the EBCDIC form of the name
of a routine appear at certain key places on dunps. To wuse this
convention, the first four bytes of a routine nust be a branch, on
15 as a base register, which passes over a series of bytes.

These bytes contain the EBCDIC form of the nane of a routine, and
also a length count for this name area. This exanple shows how to
code a nane field.

nane CSECT
B m+1+4(, 15)
DC X ni

DC CLm nane'
next instruction

The value of mmust be odd, in order to have the next instruction
properly aligned. An alternate approach uses the convention on
regi ster 15:
name CSECT

USI NG nane, 15

B NEXTI NST

DC X m

DC CLmM nane’

NEXTI NST next instruction

LI NKAGE- 4
Not es:

QS follows these conventions strongly. In particular, the
system often destroys the contents of registers 0, 1, 14, and 15 when
it returns control froma system nmacro, an SVC, or another system
function. One must SAVE THE CONTENTS of these registers BEFORE exec-
uting one of these functions; hard-to-locate errors wll frequently
occur after failure to do so.

It is a good idea to nmark a save area upon exit. This is wusually
done be moving X FF' into the first byte of the fourth word of the
save area (the place register 14 was stored). Although this technique
does not seriously affect the contents of the save area for reading
in a dunp, this technique quickly shows what save areas are active and
whi ch are not active when reading a dunp.

Regi ster 13 must be kept as the save area pointer; however, by
careful programmng, it can also double as a base register. Consul t
the appropriate section from XSAVE and XRETURN docunentation for the
codi ng sequence using these nacros. You nay set up your own save area
for this purpose by setting it high in a program and following it by
a USING on register 13, referencing the name of the save area.

For reserving the 18 fullwords of storage for a save area, use DC
instead of DS. A constant of FF0O', or FF-1' wll quickly show in a
dunp if the save area was ever used.

SAVE and RETURN are two system macros which will elimnate nuch of the
coding for saving and returning conventions. SAVE generates the code

necessary to save a specified series of registers. The registers are
specified as they would be for a STM instruction. In addition, the
operand T will cause registers 14 and 15 to be stored, regardless of
what other registers may al so be saved from the pair specified. The
foll owi ng exanple will cause registers 5, 6, ... 10 and 14 and 15 to
be saved.

SAVE (5,10), T
The RETURN macro will generate code to restore registers, insert a ret-

urn code in register 15, flag the save area (X FF in wd. 4), and
branch back via register 14. The registers to be restored are coded
as with SAVE. If 15 already has a return code in it and should not
be restored, it is coded as RC=(15); else RC=n nmay be coded, where n
is sone value to insert into register 15. The operand T causes the
flag X FF' to be inserted in the save area. The following code wll
restore registers 5, 6, ... 10 to be reloaded, the save area to be

flagged, and 15 to be | oaded with a val ue 16.

RETURN (5, 10), T, RC=16
NOTE Both of these nmamcros expect that register 13 wll already be
| oaded with the address of the appropriate save area.

LI NKAGE- 5

The use of the PSU nacros XSAVE and XRETURN can provide added
flexibility in saving and restoring registers. Both can generate
code to print a trace nessage showing entry and exit from a nodule;
XSAVE can be used to establish and |oad a base register or to print a
snap of the registers saved; XRETURN can create a save area. NOTE
that as with RETURN, XRETURN assumes that register 13 still points to
t he rel evant save area

For nmost uses, the code XSAVE al one can be wused to save regis-
ters. For a routine with only one return point, XRETURN SA=* will suf-
fice; if aroutine has nore than one return point, however, XRETURN
al one should be coded at all return points except one, and at that one
XRETURN SA=* shoul d be coded. The reason for this is that SA=* wll
cause a save area to be created; only one should be created per nodule.
For further details on the paraneters involved in these two nacros, see
t he appropriate PSU docunent ati on.

The foll owi ng exanpl e causes register 12 to be established as a
base register, causes all registers to be saved on entry, cuases no
trace nessages to be printed on entry or on exit, and causes R15 to be
| oaded with the return code val ue 8.

MAI N CSECT
XSAVE BR=12, TRENO (Note--default is for al
regi sters to be saved)
XRETURN SA=*, TR=NO, RC=8

[1* THIS JOB WLL RUN WTH TIME = 110
[1* RECORDS = 800
/1>

/1 EXEC ASGCL

/ / SOURCE. | NPUT DD *

THE PURPOSE OF THI S PROGRAM | S TO DEMONSTRATE THE MACROS
G VEN BELOW

LOCAD

DELETE

LI NK

XCTL

THE OVERALL FLOWOF THI'S PROGRAM | S AS FOLLOWS:

1 THE FOLLOW NG CSECTS ARE ASSEMBLED AND LI NK EDI TED
SECOND, THI RD, AND FOURTH.

2 MAIN | S ASSEMBLED AND LI NKEDI TED THEN I T IS G VEN
CONTRLL AND EXECUTES.

3 DURI NG EXECUTI ON OF MAI N SECOND | S LOADED USI NG

THE LOCAD MACRO THEN SECOND IS CALLED USI NG CALL
MACRO. CONTRCL |'S THEN RETURNED TO MAI N AND
SECOND |'S DELTED USI NG THE DELTTE MACRO.
4 THI RD 1S LOADED AND CONTROL PASSED TO I T USI NG THE
LI NK MACRO. CONTROL IS RETURNED TO MAI N THROUGH
THE LI NK MACRO CONTROL PROGRAM AND THE OONTRCL
PROGRAM DELETES THI RD.
5 FOURTH IS LOADED AND G VEN OONTROL THROUGH THE XCTL
MACRO. THE XCTL MACFO DELETES MAIN AND THEN CONTRCL
'S RETURNED TO THE OPERATI NG SYSTEM USI GN
'S RETURNED TO THE OPERATI NG SYSTEM

L I B S L . S R N S N T S N S T T S N R I

EJECT
PRI NT NOGEN

THE PURPCSE OF THI'S CSECT IS TO BE LOADED USI NG THE LOAD
MACRO AND THEN TO BE CALLED USI NG CALL MACRO. THEN I T PRI NTS
A MESSAGE AND RETURNS TO MAIN. NOTE THE NORVAL SAVE AND
RETURN CONVENTI ONS.

L T

SECOND CSECT
XSAVE TRENO
OPEN (OTPT, OUTPUT)
PUT OTPT, SHEAD
CLOSE (OTPT,)
XRETURN SA=*, TR=ENO
SHEAD DC CL80' OSECOND HAS BEEN LOADED AND CALLED RETURN TO MAI N

OrPT DCB DSORG=PS, MACRF=PM LRECL=80, BLKSI ZE=80, RECFM=FA, X
DDNAVE=FTO06F001, EROPT=ACC
PRI NT GEN
END

/ *

/ | OBJECT. SYSLMOD DD DSNAVE=&&L QADMOD(SECOND)
/1 EXEC ASGCL

/ | SOURCE. SYSGO DD DI SP=(OLD, PASS)

/ / SOURCE. | NPUT DD *

*
* . . . - . . .
* THE THI RD CSECT |'S ENTERED VI A THE LI NK MACRO. THE LI NKAGE
* CONVENTI ON APPEARS STANDARD, BUT ACTUALLY REG STER 14 PO NTS
* TO AN ADDRESS I N THE CONTROL PROGRAM COF THE LI NK MACRO.
* THEREFORE, THE LI NK CONTROL PROGRAM GETS CONTROL WHEN CONTROL
* I'S PASSED FROM THI RD TO MAIN AND FROM MAIN TO THI RD.
*
*

PRI NT NOGEN
THI RD CSECT

XSAVE TR=NO

OPEN (ATPT, OUTPUT)
PUT ATPT, THEAD
CLOSE (ATPT,)
XRETURN SA=*, TR=ENO
THEAD DC CL80' OTHI RD ENTERED VI A LI NK MACRO RETURN TO MAI N

ATPT DCB DSORG=PS, MACRF=PM LRECL=80, BLKSI ZE=80, RECFM=FA, X
DDNAMVE=FTO6F001, EROPT=ACC
PRI NT GEN
END

/ *

/ 1 OBJECT. SYSLMOD DD DSNAVE=&&LOADMOD(THI RD) , DI SP=(OLD, PASS, DELETE)
/1 EXEC ASGCL

/ | SOURCE. SYSGO DD DI SP=(OLD, PASS)

/ | SOURCE. | NPUT DD *

*

*
* THE FOURTH CSECT IS G VEN CONTRLO THROUGH THE XCTL MACRO
* VWHEN CONTROL |'S PASSED VI A THE XCTL MACRO, CONTRCL IS NOT
* RETURNED TO THE STEP | SSU NG THE XCTL MACRO, AND THE STEP
* | SSU NG THE XCTL MACRO | S DELETED BY THE XCTL MACRO. THEREFOR
* | SSU NG THE XCTL MACRO IS DELETED BY THE XCTL MACRO
* THEREFORE, THE REGQ STERS ARE RELOADED I N THE | SSUI NG STEP SO
* THAT WHEN THE STEP SHICH IS XCTLED TO RETURNS I T RETURNS TO
* THE PROPER PO NT
*
*
PRI NT NOGEN
FOURTH CSECT
XSAVE TR=NO

OPEN (ETPT, OUTPUT)
PUT ETPT, FHEAD
CLOSE (ETPT,)
XRETURN SA=*, TR=NO
FHEAD DC CL80' OFOURTH LOADED AND ENTERED VI A XCTL MACRO

ETPT DCB DSORG=PS, MACRF=PM LRECL=80, RECFM=FA, BLKSI ZE=80, X
DDNAME=FTO6F001, EROPT=ACC
PRI NT GEN
END
/ *
[*LOG

/ 1 OBJECT. SYSLMOD DD DSNAVE=&&L OADMOD(FOURTH) , DI SP=(OLD, PASS, DELETE)
/| EXEC ASGCLG

/ | SOURCE. SYSGO DD DI SP=(OLD, PASS)

/ 1 SOURCE. | NPUT DD *

*

* kX

TH'S I'S THE MAIN JOB STEP. WHEN | T RECEI VES CONTROL, | T FIRST
LOADD SECOND AND CALLS SECOND, THEN WHEN CONTRO |'S RETURNED

* X F

=
z

L T I T N

b T

L T I R T T

L T I R T T

PARML
PARM

/*

I T PASSES CONTROL TO THIRD VIA THE LI NK MACRO, FINALLY IT XCTL
TO FOURTH AND CONTROL |'S NOT RETURNED.

PRI NT NOGEN
CSECT

XSAVE TR=NO
PRI NT GEN

THE LOAD MACRO I NSTRUCTION | S CODED SO THAT THE LOAD MODULE
W TH ENTRY PO NT SECOND |'S LOADED I NTO CORE. SINCE DCB | S
OW TED | T SEARCHES THE STEPLI B WHI CH IS | NCLUDED BY

/| DATA. STEPLI B DD DSNAME=&&L OADMOD, DI SP=(OLD, PASS)

THE ENTRY ADDRESS OF SECOND | S RETURNED I N REG STER 0 SO THAT
SECOND CAN BE CALLED

LOAD EP=SECOND

PRI NT NOGEN

LR 15,0 GET ADD OF SECOND CSECT IN 15

CALL (15) BRANCH TO SECOND

PRI NT GEN

NOW THAT WE HAVE FI NI SHED W TH SECOND WE DELETE LOAD MODULE.
AGAI N THE ENTRY PO NT | S SPECI FI ED. THE DELETE MACRO MUST

BE | SSUED | N THE SAME TASK AS THE LOAD MACRO.
DELETE EP=SECOND

IN THE LI NK MACRO WE CODE THE ENTRY PO NT OF THE LOAD MODULE
TO WH CH WE SISH TO LINK. THE PARAM SPECI FI ES A PARAMETER
LIST WHICH | S PASSED IN REG STER 1. THE VL = 1 | NDI CATES A
VARI ABLE NUMBER OF ARGUMENTS. THESE ARGUMENTS W LL NEVER
BE USED IN THI RD THEY ARE FOR EXAPM.E.

LI NK EP=THI RD, PARAM=(PARML, PARM?) , VL=1

BEFORE WE CAN PASS CONTROL TO FOURTH WE MUST RELOAD REG STERS
13 AND 14 TO PO NT THE WAY THEY DI D BEFORE ENTRY TO MAI N.
THEN SI NCE WE USE THE ENTRY PO NT CONVENTI ON TO FI ND THE LOAD
MODULE WE LET THE MACRO RESOTRE REG STER 2 THRU 12.

THE XRETURN | S | NCLUDED TO PROVI DE A SAVEAREA FOR THE XSAVE

L 13, 4(13) GET ADD OF SYSTEM SAVEAREA
L 14, 12(13) RESTORE REG STER 14

XCTL (2, 12), EP=FOURTH

PRI NT NOGEN

XRETURN SA=*, TR=NO

DC FO

DC F1

END

/1 OBJECT. SYSLMOD DD DSNAME=&&L OADMOD(MAI N) , DI SP=(OLD, PASS, DELETE)
/| DATA. STEPLI B DD DSNAME=&&L OADMOD, DI SP=(OLD, PASS)
/ / DATA. SYSUDUWP DD SYSQUT=A

OSHASP - 01
OVERVI EW OF OS/ 360 W TH HASP

This witeup gives a quick overview of the process by which any
0S/ 360 sytstemis initialized, how storage is used (particularly in
0s/ 360/ WT), and describes how OS/360 is nodified by the use of HASP
(Houston Automatic Spooling Priority systen). The storage |layout is
descri bed for the PSU CC 360/ 67 system

I. INITIALI ZATION - getting a system up and running

Consi der a computer with no operating systemcurrently in it. The
first necessity is to get a workable operating systemin it, so that
jobs can be run. This is NOT a trivial process: note that there is no
Program Fetch resident in the machine, no I/O Access Method routines,
and not even a correct set of PSWs in |low core for directing interrupt
actions.

For OS/ 360, the initialization process is conposed of two parts:
IPL and NIP. IPL (Initial Program Loader) initializes nenory and sone
ot her things, and brings the NUCLEUS (the core of the OS) into nenory.
NP (Nucleus Initialization Progran) perfornms the renaining actions
required to set up a specific NUCLEUS to be ready to execute.

A. IPL - Initial Program Loader

The process of getting an OS/ 360 systemrunning is called IPLing,
and includes the followi ng main steps:

1. The operator makes sure the di sk pack called SYSRES (SYStens
RESi dence) is nmounted on a disk drive. The LOAD UNIT switches are set
to show the device address of the SYSRES di sk pack, and the LOAD button
pressed. This causes the CONTROL RECORD to be read fromthe first
record on the disk pack, consisting of a PSWand two CCWs, placed at
location O in nmenory. Execution of this record causes the |PL
BOOTSTRAP record to be read into nenory. The BOOTSTRAP record consists
of a set of CCWs which are used to read the | PL programinto nenory,
begi nning at location 0. It ends with a LPSWto give control to the
I PL program

2. I PL selects which NUCLEUS will be | oaded (there may be a choice
whi ch can be given by switches on the operator console).

3. IPL clears all nmenory above itself to zeroes, also obtaining
the size of menory; i.e., it stores until addressing interrupt occurs.

4. IPL clears the floating point registers, thus finding out if
the floating point feature is installed

5. IPL brings the NUCLEUS into menory. First, it relocates the
part of itself not yet executed into high nenory (near 252K), so that
t he NUCLEUS can be placed beginning at 0. It then sinulates Program
Fetch, loading the csects of the NUCLEUS | oad nmodul e i nto nmenory. The
first csect |loaded is the NIP, |oaded just below IPL, followed by the
I/O Interrupt Handler at 0 (which thus defines all of the special PSWs
inlowcore). IPL then passes control to NIP

CSHASP - 02
B. NIP - Nucleus Initialization Program

The I PL process described above applies to all versions of OS/360.
The NIP is generated in different ways, depending on the specific type
of system and choice of options desired. Note: NIP is a csect which is
link-edited with the nucleus, so that it can refer to sections of the
nucl eus via address constants, and provide efficient and specific
initialization services. It includes the follow ng steps:

1. The CVT (Communications Vector TAble) is initialized, and its
| ocation placed at | ocation 16, so that it can be accessed from any
routi ne, whether part of the nucleus or not.

2. NI P determ nes whether the computer has Large Core Storage (LCS)
attached to it or not. This is particularly necessary for those
systenms which include H ARCHY SUPPCRT, i.e., the ability to usefully
di stingui sh between nmain core and LCS, perhaps splitting progranms into
heavi | y-used and | esser-used sections.

3. NIP checks the workability of operator console(s), and al so
checks the workability of ready direct-access devices (using TIO
instructions). It particularly checks that the SYSRES volune is nounted
and contains certain datasets needed by the system

4. NI P perfornms various housekeepi ng actions, such as checking and
setting the tiner to make sure it is working correctly, initializing
some pointers for storage managenent, initializing the SVC table (which
gives a pointer to each routine associated with a defined SVC nunber).
It also sets up to be able to obtain nbdules fromthe SYS1.LINKLIB
whi ch contains the heaviest-used | oad nodul es for the system and al so
est abl i shes comuni cations with the operator.

5. For any system having one, NIP | oads reentrant nodules into the
LI NK PACK. These nopdul es can be used during foll owing execution, and
are |located at the high end of menory. In a systemwth fast core+LCS
the LI NK PACK can be split, residing at both the high end of fast core
and the high end of LCS

6. Wth the addition of various other m scell aneous operations,
NI P prepares a REG ON which will contain the MASTER SCHEDULER, which is
t he program doi ng overall job scheduling and operator commrunication.
It then can pass control (LINK or XCTL) to the MASTER SCHEDULER, and
the systemis finally ready to run jobs

At this point, menory |ayout (fast core only) is as foll ows:

H GH ADDRESS LI NK PACK (reentrant nodul es)
M5 (MASTER SCHEDULER)
FREE AREA (dynam c for probl em prograns)

SQS (SYSTEM QUEU SPACE) (contains space for system
control blocks - TCB' s, etc)
LOW ADDRESS NUCLEUS

NOTE: in systens w th H ARCHY SUPPORT, FREE AREA, Ms, and
LI NK PACK woul d al so have areas in LCS

OSHASP - 03
[1. RUNNING JOBS I N AN OS/ 360 SYSTEM

This section describes how jobs are run in a standard OS/ 360
system wusing either OS-MFT or OS-WT. Note that OS-PCP runs jobs
one at a tinme (sequential scheduling, uniprogramrmng), with no SPOCLi ng
of jobs to and from di sk before and after execution. OS-MT and OS- WT
are generally simliar in that they both can SPOOL i nput onto DASD
execute jobs in priority order, and wite the output out later. The
main difference is in the handling of storage, in which CS-MWT is mnuch
nore dynamc. Note that all scheduling of jobs and comunication wth
the operator is effectively under the control of the MASTER SCHEDULER.

A. READI NG | NPUT STREAMS

For each existing input stream (card reader, or input on tape),
the operator can issue a START RDR command. This causes a copy of the
READER/ | NTERPRETER program (referred to herafter as a RDR) to read
cardi mages fromthe requested i nput devi ce.

During its operation, a RDR reads an input stream scans JCL cards
and converts themto a standard internal text form and al so obtains
cat al oged procedure definitions fromthe procedure |ibrary (PROCLIB)
Fromthe internal text, it builds INPUT QUEUE entries, representing
the infornation on the user JCL cards. It also wites any input data
cards onto disk, while placing pointers to the data into the | NPUT
QUEUE entries so that it can be found later. The job's | NPUT QUEUE
entry is enqueued in priority order with other jobs awaiting execution.

When all of the cards for a job have been read, it has in effect
been split up into the foll ow ng:

1. INPUT QUEUE ENTRIES, in priority order, in a special systemdata
set used only for work queue entries, referred to as SYSJIOBQUE.

2. | NPUT STREAM DATA SETS, placed on DASD, using normal OS/ 360
Direct Access Device Storage Managenent (DADSM routines. NOTE: DADSM
routines are thensel ves kept on DASD, nonresident, and allocating disk
space often requires a fair nunber of accesses to disk to |look for free
space on one, and to allocate the space appropriately. The DADSM
routines are quite general and powerful, but also create sone overhead.

B. INITIATI NG JOB STEPS

The operator may START one or nore | N Tl ATORs, each of which can
initiate jobs fromone or nore classes(categories) of jobs. Each
initiator will then attenpt to initiate the highest priority job from
the first class of jobs which has a ready job. |If there are no jobs
awai ting execution in its allowed classes, it WAITs for one to becone
available. Note that it essentially renmoves input queue entries from
SYSJOBQUE. Li ke every RDR, each INITIATOR is executed as a separate
task. (INITIATOR nmay be abbreviated INIT).

OSHASP - 04

VWhen an al |l owabl e job becones avail able, the initiator obtains
a REGON for the job (fromthe FREE area, also called the DYNAM C area),
uses the information fromthe RDR to all ocate DASD storage, tape drives,
and other 1/0O devices. It then ATTACHes the first nodul e of the program
to be executed (thus creating the JOB STEP TASK), and WAI Ts until the
job step compl etes.

When a job step is finished, the TERM NATOR (part of the I N TI ATOR
really, so that the whole unit is called an | Nl TI ATOR- TERM NATOR)
effectively cleans up, perform ng disposition of 1/0O devices (DI SP
parameter in JCL), and rel easing the REG ON whi ch had been acquired for
the job step.

During this process, job steps are essentially independent, i.e.,
they could require different sizes of regions, and m ght execute in
different Iocations. Note that the I N TI ATOR- TERM NATOR nust al so
control the skipping of steps as controlled by the JCL COND option.

Duri ng execution, SYSOUT datasets are witten to DASD, to be
printed/ punched | ater. Wen the last job step of a job conpl etes,
the INIT creates a work queue entry calling for the job's output to be
print ed/ punched.

C. VWRITI NG SYSTEM QUTPUT

A program cal l ed a SYSTEM OQUTPUT WRI TER (WIR) can be STARTed by
the operator to transcribe output fromDASD to printers or punches, or
even tapes to be printed/ punched |ater. Qutput can originally be
grouped i nto CLASSes, which can be witten according to priority or
otherwi se treated differently as desired.

COMMENTS ON THE PROCESS ABOVE

The process described above is quite flexible and general. However,
it does require a fair amount of tinme to set up any job, even a snal
one. As such, it is quite satisfactory for any installation which runs
jobs which require a fair anmount of time, since then the setup tine is
negligible. However, due to the use of OS DADSM for PSPOOLed i nput and
out put, DASD space can becone fragnented, di sk head noverment can
beconme excessive, and nmuch time can be used up allocating and
deal | ocating di sk space. Although 0OS/360 is quite reasonable in a
conmercial installation, or in one running a few large jobs, it seens
to have too much overhead for university or other installations which

often run many snmall jobs. For this reason, nost |arger S/ 360 conputers
(i.e., nodels 75,67,65, and larger 50's) typically use sone nethod to
reduce the overhead in running small jobs. Al of the nethods involve

'faking out' OS/360 in sone aspect or other. The method enphasi zed here
(whi ch happens to be the nobst popular one) is HASP (Houston Automatic
Spooling Priority) system

OSHASP - 05
[11. RUNNING AN OS/ 360 HASP SYSTEM

In any OS/ 360 system it is fairly typical to have one or nore
special jobs in the system which are | oaded before normal user jobs.
and typically remain resident fromone IPL to the next. Such jobs may
control renmpote batch terminals, timesharing typewiter termnals, or
provi de any other service which the installation desires. Such jobs
are nornally placed into the high-address sections of the FREE area
(or of the two FREE areas, if the system has both main core plus LCS)
When HASP is used, it is normally the first job submtted to OS/ 360,
and it essentially takes over the system even though it appears to
0S/ 360 as just another job.

A. HASP I NI TI ALI ZATI ON

There are two possible cases when starting HASP up after an | PL
A COLD START occurs when the systemis conpletely enmpty, i.e., there
are no jobs already enqueued on disk which can be executed. |If there
are di sk packs on the system containing previously-read jobs, the start
is called a WARM START. A WARM START nornmal |y occurs if the system was
previously taken down on purpose, such as for systems progranming, or

i f enough information had been saved previous to a 'crash'. A COLD
START only occurs when the system crashes badly, and destroys records
of jobs already SPOOLed onto disk. 1In this case, the jobs nust be read
i n again.

VWhen HASP first gains control, it issues a special SVC call, which
returns to HASP with protect key 0 and supervi sor state, also supplying
HASP wi th sonme useful pointers to control blocks in the nucl eus. NOTE
this special SVC can only be called 1 tine, since it |ocks after its
first usage after an I|PL.

UCB's (Unit Control Blocks) exist for every device connected to
the conputer system HASP now scans these, and essentially allocates to
itself:

1. All real unit-record devices (readers, punches, printers).
2. Al disk packs which have vol une | abel names begi nni ng SPOCL.

It also obtains effective control of the operator's consol e(s),
plus rempte termnals, if any.

Finally, HASP nodifies the SVC table (which contains pointers to
the routines which are called for each specific SVC nunber), so that
the following ones go into HASP, rather than to the original routines
(al so saving these addresses for later use for itself):

SVC 0 (EXCP - all input/output)
SVC 34 (WL - write to |og)
SVC 35 (WO, WIOR - wite to operator, with/w thput reply)

OSHASP - 06
B. RUNNI NG NORVAL USER JOBS UNDER OS/ 360 W TH HASP

1. Input Stage - HASP continually reads cards from whatever card
readers are active in the system It checks for JOB cards, perforns
various accounting checks on input jobs, and transcribes the jobs to
disk. 1In this stage, each job is split up into two sections: the JCL
cards (with certain nodifications), and the input data cards. It
enqueues the jobs according to a priority schene, which can be found
frommany di fferent sources of information. These include category,
time, output, storage requirenents, originating site of job, and
conmands fromthe operator to change priority of either single jobs
or entire groups of jobs. The disk allocation schene used is quite
efficient, and is described later.

2. Execution Stage - HASP has the ability to control which jobs
may execute in which portions of the OS FREE area, and using the various
priority and storage requirenments, it selects jobs fromits queue to be
executed. One OS RDR exists, permanently STARTed to a card reader
This card reader does not actually exist (i.e., it has a device address
whi ch does not correspond to a real card reader). Since SVC 0's are
i ntercepted by HASP anyway, HASP effectively selects a job and feeds it
to the OS RDR, which thinks the job is comng across a real card reader.
The OS RDR includes an EXIT LIST, which allows it to call some routine
after it has scanned each JCL Card, but before the JCL card's data is
actually recorded. HASP is entered, and takes this opportunity to
nodi fy any JCL that it wi shes to, for exanple, renoving any REG ON=
requests on JOB or EXEC cards. HASP has special treatnent for any
systeminput or output data sets, as described bel ow

[T XXXXXXXX DD * or DATA : the OS RDR would normal |y expect data
to follow such a card, and would normally thus SPOOL such to disk
itself. HASP does not want this to occur, since it has al ready SPOOLed
the data. It happens that there are |arge nunber of UCB s for pseudo
card readers already in the system HASP selects one of these UCB s
which is not being used, and effectively changes the tables for this
type of card so that it appears as:

[T XXXXXXXX DD UNI T=xxX

As a result, the OS RDR thinks that the data set will be read from

unit xxx, so that it does not try to SPOOL the input. In any case,
the input no longer follows that JCL card, because HASP feeds the RDR
only the JCL cards of a user job. During this process, HASP connects
up the device address xxx to the specific input data set which had
been previously SPOOLed.

[T XXXXXXXX DD SYSQUT=x : HASP also has a | arge nunber of UCB' s for
nonexi stent, pseudo printers/punches. 1t does the sanme thing to this
kind of card as it does to DD * cards, except that it only allocates
t he pseudo devices, and will later save the output which is witten to
t hem

As soon as the RDR finishes reading a job, an initiator can
imediately initiate it, since HASP chooses jobs appropriately.
When the initiator chooses i/o devices, it finds that it can al ways
al l ocate devices for unit-record i/o, since HASP had al ready checked
to make sure a pseudo reader/printer/punch was avail able for each
SYSI N or SYSOQUT data set.

OSHASP - 07

Finally, a job step of the user job executes. Wen it w shes
to read cards or print lines, it acts as though it were using a rea
device attached to the system and OS/ 360 accepts this. Wenever an
SVC 0 is issued to request such I/O HASP intercepts it.

HASP nmay be entered for any of the follow ng reasons:

1. WIQ WOR, WIL - HASP adds own processing as desired.

2. 1/Oto disk, drum tape, termnals, etc - HASP does not
interfere, but passes these on to the real |/O Supervisor

3. 1/Oto real unit-record devices - these have probably been
i ssued by HASP in the first place, so it passes control to the rea
I/Oroutines to let themperformthe 1/0O

4. 1/Oto a pseudo device - these nmust be caused by user program
For input, HASP fetches the cardimges fromdisk into nenory (if they
are not already present), and feeds requested cardi nage(s) to the user
program by MVCing themthere (using user protect key for safety). For
output, it blocks up output and eventually wites it to disk. In al
cases, HASP sinmulates the effect of having real card readers/printers/
punches, which are odd only in possessing great speed; i.e., the effect
on OS5/ 360 is of having issued an I/ O request and having had it conplete
i medi atel y.

Duri ng execution, HASP can al so provide extra services, such as
nonitoring tine used, output records, etc. It also reorders priorities
of executing user tasks so that |1/0O bound jobs have higher priorities
than do CPU bound ones. This action (which is unknown to OS/ 360) hel ps
mnimze time spent waiting

3. Qutput Stages - Print and Punch - after a job has been executed,
it enters the Print queue, is printed, enters the Punch queue, and
has punched output (if any) actually punched. This activity occurs
wi t hout the know edge of OS/ 360, which believes the job di sappeared
whenever it finished execution. Only when a job is finished punching
is its disk space released. This allows for jobs to be saved across
system crashes, and for such useful services as repeating output by
operator control.

C. DASD STORAGE MANAGEMENT | N HASP

HASP nanages its DASD storage quite efficiently, not only needing
NO accesses to DASD to allocate or deall ocate space, but also doing a
good job of mnimzing arm novenent on noveabl e- head devi ces. HASP
requires the use of entire volunes (normally 2311 or 2314 disks). For
exanpl e, the PSU CC s 360/67 has 3 2314 di sk packs for HASP. The
managenment of this storage works as foll ows:

A MASTER CYCLI NDER BIT-MAP is maintained in HASP. This is a
string of bytes, in which each bit represents 1 CYLINDER on the SPOOL
di sks (for exanple, 600 bits for the cylinders on 3 packs). A one-bit
represents a FREE CYLINDER, while a zero-bit shows that the given
cylinder is allocated to sonme job. HASP al so renenbers for each disk
whi ch cylinder was the |ast referenced, thus always noting the current
position of the read/wite heads.

OSHASP - 08

Two JOB BI T- MAPS exi st for each job, one for SYSIN data and t he
ot her for SYSOUT data. Whenever a cylinder is required for a job,
HASP searches for a free one in the follow ng fashion:

1. It first searches the master bit-map for a free cylinder at
the current position of any read/wite head, i.e., where it can read
or wite without even noving a head.

2. It then searches for a free cylinder at +1 from current head
positions, then -1 fromeach, followed by +2, -2, etc up to +8, -8
cylinders away from current head position.

3. If the above fail, it searches sequentially through all
cylinders in the master bit-nmap

VWhen a cylinder is found, its bit is turned off in the naster bit-
map, and turned on in the appropriate job bit-map. The overall effect
of this process is to mnimze head novenent.

When di sk storage for a job is to be released, the deallocation
schene is extremely fast and efficient: the job bit-maps are just
ORd into the master bit-map, thus returning all of the cylinders to
free storage.

V. OTHER PSEUDO- DEVI CE SYSTEMS FOR USE W TH OS/ 360

The following are other systems which are based on OS/ 360, but
use sone kind of pseudo-devices to nmake it run faster.

A. ASP - ATTACHED SUPPORT PROCESSOR

In this system 2 conputers are used. Al unit-record devices are
attached to the multiplexor channel of a nediumsized 360, along with
sonme disk. It performs all SPOOLing, control of renote ternmnals, etc.
It is connected to a larger systemvia a chnnel. 0S/360 is in the
large system and it reads its input and sends its output along the
channel - channel hookup between the two CPUs. A typical setup would
use a 360/50 hooked to a 360/ 75

An advantage over HASP is that ASP offers somewhat better setup
facilities for optim zing use of tapes and non- SPOOL di sks. A
di sadvantage is the requirement of two CPU s, either of which nmay have
probl ens, and thus stop the entire system

B. LASP (LOCAL ASP) or CLASP (CLOSELY LI NKED ASP)

These are versions of ASP in which the code fromthe snaller
conputer is noved over into a region on the larger nmachine. This allows

an ASP systemto be run on one processor. |If the systemis also run
under straight ASP, it requires switches to switch the unit-record
devices over to the bigger machine. It also requires nore nenory than

HASP, but does allow the systemto run even with one CPU down.
C. TUCC HYPERDI SK

This method uses LCS plus part of a 2314 disk pack to sinulate
the entire di sk pack containi ng heavy-used systens progranms. The nost
recently used tracks of this disk are kept in LCS, thus making the disk
effectively faster, w thout changing the internals of OS/ 360.

OSHASP - 09
V. PSU CC 360/67 SYSTEM - OS/ WT W TH HASP
The following tables gi$e the current layout (with no guarantee of

future appearance) as of 6/12/72, for the 360/67 at the PSU CC. The
system has both fast core (1024K) and Large Core Storage (2048K)

LOW H GH K LOW H GH
V5 2928 3072 144 2DC000 300000
HASP 1968 2928 960 1EC000 2DC000
FMGR 1628 1968 340 197000 1EC000
RIE 1346 1628 282 150800 197000
WATFOR 1336 1346 10 14E000 150800
RASP 1236 1336 100 135000 14E000
FREE 1024 1236 212 100000 135000
%) 964 1024 60 OF1000 100000
HASP 876 964 88 0DB000 OF1000
RDR 866 876 10 0D8800 0DB000O
FMGR 852 866 14 0D5000 0D8800
RIE 832 852 20 0D0000 0D5000
WATFOR 704 832 128 0B000O 0D0000
FREE 122 704 582 01E800 0B000O
NUC 0 122 122 000000 01E800

NOTES

M5 (Master Scheduler) includes the Link Pack areas. The fast core
section contains mainly nodules for the various 1/0O Access Mt hods,
while the LCS part contains reentrant parts of IN TIATORS, RDRS
pl us ot her routines (overlay supervisor, special tables,etc).

HASP Fast core section is npst heavily-used sections. LCS part has
| esser-used sections, plus such itens as in-core SYSJOBQUE (HASP
intercepts all RDR and INIT reads/wites to SYSIOBQUE, and keeps
such information in about 600K of LCS). Also has HASP buffers for
all devices, plus tables of tape names/l|ocations for user tapes.

FMGR Fil e Manager - nmmanages, synchroni zes RJE, BAT files.
RIE Renote Job Entry - handles typewiter termnals.

WATFOR WATFOR REgi on - RPSS - manages CAtegory W fast processors
swapped in and out of nenory (WATFOR, ASSIST, PL/C, etc).

RASP Interface between 360/67 and ADAGE AGI/ 30 gr aphics conputer.
FREE fast core - 560K for user prograns (4x140, 2x280, 1x280+2x

140, occasionally 1x560), rest for Sytem Queue Space.
LCS - currently unused, except for systens prograns.

/1JOBLI B DD UNI T=SYSDA, DSN=&&LOADMOD, SPACE=(CYL, (5, 1, 3)), DI SP=(, PASS)

//* * * % *x * % * % *x % *x * * *x * *x * *x * * *x * *x * * * * *x * *x * * *

/1*

[+ OVERLAY TEST PROGRAM

[1*

[1* THI' S PROGRAM | LLUSTRATES THE USE OF THE OVLY OPTI ON
[1* FOR THE LINKEDI TOR. | T FI RST PRODUCES AN OBJECT MODULE
I+ OF A NUMBER OF CSECTS, THEN USES THE LI NKE EDI TOR TO PUT
/1> THEM TOGETHER I N VARI QUS WAYS, USI NG

[1* ASMLI NK: ASSEMBLE, THEN LI NK MODULES 4 WAYS, PLACI NG THEM
[1* IN &l OADMOD AS MODULES MODO - MODS.

[1* THE REMAI NI NG STEPS EXECUTE THE MODULES MODO- MOD3.
[+ STEPO: NO OVERLAY WHATSOEVER

/1> STEP1: SI MPLE OVERLAY W TH THREE SEGVENTS

[1* STEP2: COWPLEX 1- REG ON OVERLAY W TH 10 SEGQVENTS

[1* STEPS: THREE REG ON OVERLAY - MOVES SUBROUTI NES OUT
[1* OF THE ROOT SEGVENT.

/1>

/1> CALLI NG H ERARCHY CHART FOR TH S PROGRAM

//* LEVEL MODULE CALLS ROUTI NES AT LEVEL SHOMN (CSECTS ONLY).
[1* 5 MAI' N

[1* 4 SUB1

[+ 2 SUB1C, SUB2
/1>

[1* 4 SUB1

[1* 3 SUB1B

[1* 2 SUB1C

/1> 1 MBUB1, MsUB2
/1> 0 MSUB3, MsSUB4, SUB1A
[1*

/1* 3 SUB1B

[1* 2 SUB1C

/1> 0 SUB1D

[+

[r* 2 SUB1C

[1* 1 MBUB2

[1* SUB2

/1> 1 MBUB1

/1> 0 SUB2A, SUB2B, SuUB2C
[1*

[r* 1 M5UB1

[1* 0 MSUB3, MsUB4
/1> MBUB2

/1> 0 MSUB3, MsSUB4

[1*
[1* 0 MSUB3, MSUB4, SUBL1A, SUBLD, SUB2A, SUB2B, SUB2C
[1*

//**********************************

/1*

[1* STEP ASML.I NK(SOURCE, OBJECT) : ASSEMBLE THE PROCGRAM
[1* THEN USE LI NKEDI TOR TO PRODUCE 4 LOAD MODULES, W TH THE
[1* MODULES LI NKED | N | NCREASI NG ORDER COF OVERLAY COVPLEXI TY.

[+

/1 ASMLI NK EXEC ASGCL, PARM SOURCE=" NOXREF' , PARM CBJECT="' MAP, LI ST, OVLY'
/ / SOURCE. SYSGO DD DSN=&&STUPI D

/ / SOURCE. | NPUT DD *

OvLY TITLE ' TEST PROGRAM FOR OVERLAY OPTI ONS'
MACRO
&L ABEL OCALL &ENTRY
. *¥--> MACRO OCALL SPECI AL VERSI ON OF CALL TO SHOW V- A- ADCONS.

&L ABEL L 15, =A(&ENTRY) . A- TYPE ADCONS

L I S S . R I N N N N N T . R R S N B N N S T B R N S

MAI' N

MAI N1

VAl N2

SUB1

SUB2

SUBLA

SUB1B

L
BALR
MEND
SPACE
XSET
CSECT
PRI NT
XSAVE
L
XSNAP
SPACE
OCALL
OCALL
OCALL
OCALL
XSNAP
SPACE

15, =V(&ENTRY) . V- TYPE ADCON
14,15 . CALL THE ROUTI NE

4
XSAVE=0OFF, XRETURN=OFF ZAP THE TONS OF MESSAGES

NOGEN

15, =V(SUB1) GET @ WHERE ENTAB 1S
T=NO, LABEL=' THI S | S ENTAB' , STORAGE=(*0(15) , *40(15))

2

SUBL

SUB2

SUBLCE ENTRY PO NT OF CSECT SUBLC

SUB2C

T=NO, LABEL=" A- V- ADCONS FOR SAME' , STORAGE=(MAI N1, MAI N2)
2

XRETURN SA=*

DS
LTORG
EQU
ORG
TI TLE
CSECT
XSAVE
SPACE
CALL
CALL
CALL
CALL
CALL
CALL
CALL
SPACE

(0]} BEG NNI NG ADDRESS FOR LI TERAL DUMP

* ENDI NG ADDRESS FOR LI TERAL DUWMP
MAI N+ X' 1000 MAKE SI ZE NI ZE
" CSECTS SUB1, SUB2, SUBLA, SUB1B

1

V5UB1 CALL LOW LEVEL ROUTI NE
MBUB2 "

MBUB3 "

VBUB4

SUBLA

SUB1B

SuB1C

1

XRETURN SA=*

ORG
SPACE
CSECT
XSAVE
SPACE
CALL
SPACE
CALL
CALL
CALL
SPACE

SUBL+X 2000
3

1
M5UB1
1
SUB2A
SUB2B
SuB2C
1

XRETURN SA=*

ORG

SPACE
CSECT
XSAVE
SPACE

SUB2+X' 3000
2

1

XRETURN SA=*

ORG
SPACE
CSECT
XSAVE
SPACE
CALL
CALL
SPACE

SUB1A+X' 4000
1

1
SuUB1C
SUB1D
1

XRETURN SA=*
ORG SuB1B+X 5000
TITLE ' CSECTS SUB1C, D SUB2A, B, C
SuB1C CSECT
ENTRY SUB1CE
XSAVE
SPACE 1
CALL MSUB2
SPACE 1
XRETURN
SUBICE XSAVE
SPACE 1
CALL MSUB2
SPACE 1
XRETURN SA=*
ORG SUB1C+X 1000
SPACE 2
SUB1D CSECT
XSAVE
XRETURN SA=*
ORG SuB1D+X 1000

SPACE 3
* SUB2A, B, C - SUBROUTI NES CALLED BY SUB2 OR MAI N.
SUBZ2A CSECT

XSAVE

XRETURN SA=*
ORG SUB2A+X 3000
SPACE 2
SUB2B CSECT
XSAVE
XRETURN SA=*
ORG SuB2B+X 2000
SPACE 2
SuB2C CSECT
XSAVE
XRETURN SA=*
ORG SuB2C+X 2000
TI TLE ' MSUBL, 2, 3,4 CSECTS - CALLED FROM ALL OVER
MBUB1 CSECT
XSAVE
SPACE 1
CALL MBUB3
CALL WMsSUB4
SPACE 1
XRETURN SA=*
ORG MBUBL1+X 3000
SPACE 2
MBUB2 CSECT
XSAVE
SPACE 1
CALL MBUB3
CALL MBUB4
SPACE 1
XRETURN SA=*
ORG MBUB2+X 4000
SPACE 2
M5UB3 CSECT
XSAVE
XRETURN SA=*
ORG MBUB3+X 1000
SPACE 2

VBUB4

11
11
/1*
/1*
11*
/1 OBJECT.

CSECT
XSAVE
XRETURN

SA=*

ORG MSUB4+X' 1000

END

THE FOLLOW NG STMIS ARE JCL KLUDGES REQUI RED TO
GET EVERYTHI NG I N THE RI GHT PLACE, d VEN THE WAY THE CAT.
PROCEDURES ARE SET UP.

SYSLIN DD *

| NCLUDE OBJ GET FOR MODO (NO OVERLAY

NAVE MCDO (OVERLAY OPT WLL BE NULLED QUT)
I NCLUDE OBJ GET ANOTHER COPY OF THE OBJECT
OVERLAY ALPHA DEFI NE BEG NNI NG

I NSERT SUB1, SUB1A, SUB1B, SUB1C, SUB1ID SUB1&l TS SUBRS
OVERLAY ALPHA BACK TO SAME PLACE AS ABOVE

I NSERT SUB2, SUB2A, SUB2B, SUB2C SUB2& | TS SUBRS
NAVE MCD1 3- SEGVENT OVERLAY MODULE

| NCLUDE OBJ COPY FOR 10- SEGVENT OVERLAY
OVERLAY ALPHA ORI G N AS BEFORE

| NSERT SuB1 POSI TI ON SUB1 AFTER ROOT
OVERLAY BETA1l ORIG N FOR SUB1A, B

I NSERT SUB1A PUT SUB1A AT END OF SUB1
OVERLAY BETAl BACK TO END OF SuBl

| NSERT SuUB1B PUT SUB1B AT END OF SUB1 ALSO
OVERLAY CHI 1 END OF SUB1B

I NSERT SUB1C PUT SUB1C AT END OF SUB1B
OVERLAY CHI 1 BACK TO END OF SUB1B

I NSERT SUB1D PUT SUB1D BEG N LI KE SUB1C
OVERLAY ALPHA BACK TO WHERE SUB1 BEGAN

| NSERT SuB2 BEG N SUB2 WHERE SUB1 DI D
OVERLAY BETA2 ORIG N FOR SUB2' S SUBROUTI NES
I NSERT SUB2A PUT SUB2A AT END OF SuUB2
OVERLAY BETA2 BACK EVEN W TH SUB2A

| NSERT SuB2B PUT SUB2B | N SAME PLACE AS SUB2A
OVERLAY BETA2 ONCE MORE

I NSERT SuB2C PUT C IN SAME AS A AND B

NAVE MCD2 10- SEGVENT SI NGLE REG ON MODULE
| NCLUDE OBJ COPY FOR 3- REG ON OVERLAY
OVERLAY ALPHA ORI G N AS BEFORE

| NSERT SuB1 POSI TI ON SUB1 AFTER ROOT
OVERLAY BETAl ORIG N FOR SUB1A, B

| NSERT SUB1A PUT SUB1A AT END OF SUB1
OVERLAY BETAl BACK TO END OF SuBl

| NSERT SuB1B PUT SUB1B AT END OF SUB1 ALSO
OVERLAY CHI 1 END OF SUB1B

I NSERT SUBL1C PUT SUB1C AT END OF SUB1B
OVERLAY CHI 1 BACK TO END OF SUB1B

I NSERT SUB1D PUT SUB1D BEG N LI KE SUB1C
OVERLAY ALPHA BACK TO WHERE SUB1 BEGAN

| NSERT SuB2 BEG N SUB2 WHERE SUB1 DI D
OVERLAY BETA2 ORIG N FOR SUB2' S SUBROUTI NES
I NSERT SUB2A PUT SUB2A AT END OF SuB2
OVERLAY BETA2 BACK EVEN W TH SUB2A

| NSERT SuB2B PUT SUB2B | N SAME PLACE AS SUB2A
OVERLAY BETA2 ONCE MORE

I NSERT SuB2C PUT C IN SAME AS A AND B
OVERLAY REGQ ON2(REG ON) NEW REG ON

| NSERT MSUBL TAKE QUT OF ROOT SEGVENT
OVERLAY REQ ON2 REPCSI TI ON (DON' T NEED (REG ON)

11
/1*
/1*
11*

| NSERT MBUB2 PUT M5UB2 SAME AS MSUB1
OVERLAY REG ON3(REG ON) NEED ANOTHER REQ ON FOR MSUBS, 4

| NSERT MSUB3 PUT IN TH S REG ON

OVERLAY REG ON3 BACK TO BEG NNI NG OF REG ON
| NSERT MsUB4 PUT MsUB4 SAME AS MSUB3
NAVE MOD3 3- REG ON, 14- SEGVENT OVERLAY

THE FOLLOW NG SECTI ONS MODI FY THE SYSLMOD CORRECTLY AND
DEFI NE &&STUPI D SO THAT | T CAN BE | NCLUDED.

/ / OBJECT. SYSLMOD DD VOL=REF=*. JOBLI B, DSN=&&L OADMOD, DI SP=(CLD, PASS)
// OBJECT. OBJ DD DSN=&&STUPI D, DI SP=(OLD, PASS)

/1*
/1*
11
11
11*
/1*

NOW EXECUTE THE LOAD MODULES PRODUCED BY ASMLI NK.
STEPS STEPO- STE3 FOR MODULES MODO- MOD3

THESE ARE I N OUR JOBLI B, SO WE CAN JUST CALL THEM OUT
W TH EXEC STMIS.

/| STEPO EXEC PGVEMODO NO OVERLAY
/| XSNAPQUT DD SYSQUT=A

11*

// STEP1 EXEC PGVEMOD1 3- SEGVENT OVERLAY
/1 XSNAPQUT DD SYSOUT=A

/1*

[/ STEP2 EXEC PGVEMOD2 10- SEGVENT, 1- REG ON OVERLAY
/| XSNAPQUT DD SYSQUT=A

11*

/| STEP3 EXEC PGVEMOD3 14- SEGVENT, 3-REG ON OVERLAY
/1 XSNAPQUT DD SYSOUT=A

11*
11*
11

END OF EXAMPLE ON OVERLAY PROGRAMS

/1%
/1* 1. SAVPLE PROGRAM - EXAMPLE OF | EBPTPCH, ON PDS, SHOW NG HOW TO
/1* PRINT SEVERAL MACROS FROM SYS1.MACLI B (CALL, SAVE, RETURN)
/1*
/1%
/1% PRI NT SEVERAL MACROS, USI NG PTPCH
/1%
/1 PRI NTMAC EXEC PGVEI EBPTPCH
/1 SYSPRINT DD SYSOUT=A
/1 SYSUT2 DD SYSOUT=A
/1 SYSUT1 DD DSN=SYS1. MACLI B, DI SP=SHR
/1% DSN=CMACLI B, DI SP=SHR FOR PSU LOCAL MACROS
/1SYSIN DD *
PRI NT TYPORG=PO, MAXFLDS=6, MAXNAVE=3
TI TLE | TEM=(' MACRO LI STI NGS' , 40)
TITLE | TEM=(' ', 40)
MEMBER NAME=CALL
RECORD FI ELD=(72, ,, 10), FI ELD=(8, 73, , 90)
MEMBER NAME=SAVE
RECORD FI ELD=(72, , , 10)
MEMBER NAME=RETURN
RECORD FI ELD=(72, , , 10)

11*
11*
/1*
[1*
11*
11

SAMPLE PROGRAM - | NPUT/ OQUTPUT - QSAM
1. READ FROM CARD READER, ECHO TO PRI NTER, WRI TE ON DI SK.
2. READ FROM DI SK, WRI TE TO PRI NTER.
| LLUSTRATES CET- MOVE, PUT MOVE, GET-LOCATE, PUT-LOCATE.

[/ STEP1 EXEC ASGCG PARM SOURCE=' NOESD, NOXREF' , PARM DATA=' MAF

/ | SOURCE.

| OTESTQS

—_ X % * *

OREAD

| OEOF1
*

| NPUT DD *
TI TLE ' QSAM SAMPLE PROGRAM
CSECT
PRI NT NOGEN
EQUREGS
XSAVE TR=NO NO TRACI NG TO BE DONE
PRI NT GEN GEN SO CAN SEE OPENS, ETC
SPACE 1
USE THE OPEN MACRO TO I NI TI ALI ZE FOR | NPUT/ OUTPUT.
SPACE 1
OPEN (1 OCRDDCB, (| NPUT) , | OPRTDCB, (OUTPUT))
THE ABOVE G VES 2 DCB NAMES AND DI RECTI ONS FOR |/ O
OPEN (1 ODSKDCB, (OUTPUT)) OPEN WHERE WE W LL PUT DATA
SPACE 1
PRINT A TI TLE BEFORE DO NG ANYTHI NG ELSE
PUT | OPRTDCB, | OTI TLEL PUT THE MESSAGE - PUT- MOVE FORM
SPACE 2
THE FOLLOW NG LOOP READS A CARD FROM CARD READER,
PRINTS | T AS AN ECHO CHECK, THEN WRI TES | T ON DI SK.
CONTROL |'S TRANSFERRED TO | OEOF1 WHENEVER THERE ARE
NO MORE CARDS LEFT.

GET | OCRDDCB, | OCARD MOVE NEXT CARD TO | OCARD#
PUT | OPRTDCB, | OCARD PRINT IT (1T HAS CARRI ACE CONTRCL)
SPACE 1

NEXT PUT | LLUSTRATES PUT- LOCATE. 0S/ 360 RETURNS I N
R1 THE ADDRESS OF NEXT BUFFER I N WH CH TO PLACE CUTPUT
CARD. WE MOVE | T THERE OURSELVES.

PUT | ODSKDCB 2ND OP OM TTED SI NCE PL

M/C 0(80, Rl), | OCARD MOVE THE CARD THERE

B | OREAD GO BACK FOR MORE

SPACE 1

EQU * BRANCH HERE - SEE EODAD=I CECF1

USE CLOSE MACRO TO CLEAN UP AT END OF PROCESSI NG
W LL ALSO WRI TE OQUT LAST BUFFER CREATED.
CLOSE (1 OCRDDCB, , | ODSKDCB) NOTE EXTRA COMVA REQUI RED.
VE NOW REOPEN | CDSKDCB FOR | NPUT THIS TIME. NOTE THAT
THE NAME ONLY IS INCLUDED. | F THE OPTION | S OM TTED,
I NPUT IS | MPLI ED.

OPEN (| ODSKDCB) OPEN I T FOR | NPUT
PUT | OPRTDCB, | OTI TLE2 PRI NT SECOND TI TLE
SPACE 1

AT THI'S PO NT, WE CLOSE PRI NT DCB, DYNAM CALLY CHANGE
LRECL AND BLKSI ZE TO 80, SO WE DON T HAVE TO PAD W TH
BLANKS THI'S TI ME, THEN RE- OPEN.

CLOSE (| OPRTDCB) CLCSE I T, FLUSH BUFFERS

M/C | OPRTDCB+X 3E' (2),=H 80' MAKE BLKSI ZE 80

M/C | OPRTDCB+X 52' (2),=H 80' MAKE LRECL 80 ALSO

OPEN (1 OPRTDCB, (OUTPUT)) REOPEN NOW
THE ABOVE KLUDGE ONLY NECESSARY BECAUSE LAZY PROGRAMVER
DOESN' T WANT TO PAD W TH BLANKS AND MOVE CARDS AROUND.

SPACE 1

SPACE 1
FOLLOW NG LOOP READS THE RECORDS BACK FROM DI SK, THEN
PRI NTS THEM OUT AGAI N.

| OREAD2 EQU *
GET | ODSKDCB

LR RO,RL

PUT | OPRTDCB, (0)
B | OREAD2
SPACE 1

| OEOF2 EQU *
CLOSE (| ODSKDCB)
LA R2, 1Ol TLE3
PUT | OPRTDCB, (2)
CLOSE (| OPRTDCB)
SPACE 1
PRI NT NOGEN
XRETURN SA=*, TR=NO
SPACE 1

|OCARD DS 0D, CL80
DC CL53'

LOOP HEAD FOR READI NG

GET- LOCATE - Rl= @ NEXT RECORD

MOVE TO PLACE BEST FOR PUT

| LLUSTRATE REGQ STER FOR FOR PUT- MOVE
LOCP UNTI L DONE

BRANCH HERE - SEE ECDAD=I OECF2
DONE WTH IT - CLCSE IT

PUT IN @ Tl TLE AREA

| LLUSTRATE REG STER FORM

MAKE SURE LAST PRI NTED - DONE

80 BYTES, D ALI GNED
PAD TO 133 BYTES FOR PRI NTI NG

| OTI TLE1 DC CL133"' 1***** ECHO CHECK OF | NPUT CARDS BELOW *****!
| OTI TLE2 DC CL133' 0***** FI RST PASS DONE, RECORDS FROM DI SK FOLLOW #

BELO/V *kkk k!
| OTI TLE3 DC CL133' 0***** END OF EXAVPLE - LAST LINE PRI NTED *****'
SPACE 1
PRI NT GEN
* DATA CONTROL BLOCKS FOLLOW
SPACE 1
* DATA CONTRCOL BLOCK FOR THE CARD READER
| OCRDDCB DCB DDNAME=CARDS, JCL DDNAME DEFI NI NG THE DATA #
DSORG=PS, PHYSI CAL SEQUENTI AL DEVI CE #
MACRF=GMV| GET- MOVE MACRO FORM USED #
EODAD=I CEOF1, END- OF- DATA EXIT ADDRESS TO GOTO #
RECFM=F, RECORD FORVAT - FI XED - NOT BLOCKED #
LRECL=80, LOG CAL RECORD LENGTH = CARD SI ZE #
BLKSI ZE=80 BLOCK SI ZE = CARD Sl ZE, UNBLOCKED
* NOTE, THE LAST 3 PARAMETERS COULD BE LEFT OFF HERE
SPACE 1
* DCB FOR THE PRI NTER, PSECI FYI NG ALL NEEDED.
| OPRTDCB DCB DDNAME=PRI NT, JCL DDNAME FOR THE PRI NTER #
DSORG=PS, DATA SET ORGANI ZATI ON- PHYS SEQ #
MACRF=PM MACRO FORVAT |'S PUT- MOVE #
RECFM=FA, RECCORD FORMA - FI XED, HAS CARR CONTRL#
LRECL=133, LOG CAL RECORD LENGTH PRINT LINE #
BLKSI ZE=133 BLOCK SI ZE SAME AS LRECL, UNBLOCKED
SPACE 1
* NOW HAVE DCB FOR DI SK, WLL SPECI FY SOVE DCB VALUES I N
* THE JCL CARDS (DD CARD FOR WORKDI SK) .

| ODSKDCB DCB DDNAVE=WORKDI SK,
DSORG=PS,
MACRF=(GL, PL),
EODAD=| OEOF2

JCL DDNAME USED #
ALSO PHYSI CAL SEQUENTI AL DATASET #
BOTH GET- AND PUT- LOCATE MACRO FORM#
FOR WHEN END- OF- DATA

END
/1*

/1* NOW EXECUTE THE PROGRAM

/1*

/ | DATA. WORKDI SK DD UNI T=SYSDA, G VE ME SPACE ON ANY DASD #
/1 SPACE=(160, (20)), SPACE FOR 20 RECORDS OF 2 CARDS #
/1 DCB=(RECFM=FB, LRECL=80, BLKS| ZE=160), SUPPLY DCB #
/1 DSNAMVE=&&TENP, G VE DATA SET A NAME (UNNEC HERE) #
/1 DI SP=(NEW DELETE) CREATE | T NOW GET R D WHEN DONE

/| DATA. PRI NT DD SYSOUT=A
/ / DATA. CARDS DD *
0 FIRST I NPUT TEST CARD

PUT THIS ON A PRI NTER SOVEWHERE
WE HAVE A SET OF CARDS FOLLOW NG

SECOND | NPUT TEST CARD - GOES IN BLOCK W TH FI RST.
0 THIRD I NPUT TEST CARD
FOURTH | NPUT TEST CARD - GOES I N BLOCK WTH THI RD
O FIFTH I NPUT TEST CARD - WLL BE I N TRUNCATED BLOCK BY | TSELF.

11*
11*
/1*
[1*

THIS JOB WLL RUN WTH TIME = 25 SECONDS
RECORDS = 600

/'l EXEC ASGCG

/1 SYSIN DD *
*
* - - - -
* THE PURPCSE OF THI'S PROGRAM | S TO DEMONSTRATE THE USE OF
* GETMAI N AND FREEMAIN W TH THE E CONVENTI ON
*
*
RCALL DSECT
SAVEAREA DS 18F
NUVBER DS F
PRI NT NOGEN
EQUREGS
*
* - - - -
* THE MAI N PROGRAM ONLY CALLS THE RECURSI VE SUBROUTI NE RECRSI VE
*
*
MAI N CSECT
XSAVE
CALL RECRSI VE, (NVBR)
XRETURN SA=*
NVBR DC F&
*
* - - - -
* THE CSECT RECRSI VE | S A RECURSI VE CSECT THE SAVEAREA | S OBTAIN
* FROM THE OPERATI NG SYSTEM BY A GETMAIN THEN THE PARM HAS 1
* SUBTRACTED FROM I T AND IF I T IS 0 THEN VE OUTPUT THE SAVEAREAS
* |F NOT 0 THEN WE CALL RECRSIVE THE LAST WORD THAT |'S OBTAI NED
* HAS THE VALUE FOR THE NEXT CALL TO RECRSI VE
*
*
RECRSI VE CSECT
USI NG *, 15
LR RL1,R15 MAKE A COPY OF ENTRY ADDRESS
*
* - - -
* FIRST WVE GET A COPY OF THE ADDRESS OF THE PARM LI ST THEN
* OBATI N THE DESI RED STORAGE FROM THE OPERATI NG SYSTEM
* NEXT SET R2 FOR A DSECT THEN DO AN XSAVE W TH SA = SAVEAREA
* NEXT TEST THE PARM TO SEE IF IT IS 0
*
*

LR R3,RL MAKE A COPY OF PARM LI ST ADDRESS
PRI NT GEN

GETMAI N EU, LV=80, A=ADDRESS, SP=1

PRI NT NOGEN

LR RI5 RL1 SET R15 FOR USI NG | N XSAVE

L R2, ADDRESS SET R2 TO BEG NNI NG OF AREA OBTAI NED
XC 0(80,R2),0(R2) CLEAN OUT THE AREA

THIS WLL BE USED W TH DSECT
USI NG RCALL, 2

STM R14,R12, 12(R13) SAVE REGS OF CALLI NG PGM

LA R5, SAVEAREA GET ADD OF CALLED PGM SAVEAREA
ST R5, 8(R13) SET LINK FOR LSA OF CALLI NG PGM
ST R13, 4(R5) SET HSA OF CALLED PGM

LR R13, R5 SET R13 TO CALLED PGM SAVEAREA

* ok X X 3k X X

E o I

QUTPUT

LOOP

* % X % X X X

HEADI NG
ADDRESS
aJt

N

I'N

NN

BALR R12, RO SET R12 FOR BASE FEG

DROP RI15

USI NG *, R12

L R4, O(R3) GET ADDRESS OF PARM

L R5, 0(R4) GET PARM

XDECO RS, N CONVERT TO OUTPUT FORM

XPRNT OUT, 52

LA R6,1 SET R6 TO 1 FOR SUBTACTI ON

SR R5R6 DECREASE RECURSI VE COUNTER BY ONE
BZ OUTPUT | F RECURSI VE COUNTER = 0 THEN OUTPUT

AT THI'S PO NT WE HAVE NOT DONE ENOUGH RECURSI VE CALLS SO CALL
RECRS| VE AGAI N W TH THE NEW PARM | N NUVBER WHI CH WAS OBTAI NED
FROM THE OPERATI NG SYSTEM

ST R5, NUMBER SET VALUE FOR NEXT CALL TO RECRSI VE
LA R9, 72(R2) PUT ADD OF NUMBER I N R9

ST R9, 76(R2) PUT ADD OF PARM I N PARM LI ST

LA R1, 76(R2) PUT ADDRESS OF PARM LI ST IN R1

CALL RECRSI VE

B DONE GO TO RETURN FROM THI S CALL

AT THI'S PO NT WE HAVE DONE 5 RECURSI VE CALLS TO RE RSI VE
SO OUTPUT THE SAVEAREAS AND AND RETURN

LA R6, 5 SET R6 TO 5 FOR COUNTER ON LOOP FOR
QUTPUTTI NG THE SAVEAREAS

LR R11, R13 GET R13 TO R11 FOR LOCP

LA R10, 80(R11) GET THE END OF THE AREA OBTAI NED

XPRNT HEADI NG, 47
XSNAP STORAGE=(*0(11), *0(10)), T=NOREGS

L RL1, 4(R11) GET ADD OF HSA

LA R10, 80(RL1) GET ADD OF END OF AREA
BCT R6, LOOP RETURN FOR NEXT SAVEAREA
PRI NT GEN

AT THI'S PO NT WE HAVE FI NI SHED W TH THI'S VERSI ON OF THE CSECT
SO FREE THE STORAGE OBTAI NED W TH A FREEMAI N AND RETURN TO
CALLI NG PROGRAM

FREEVAI N E, LV=80, A=ADDRESS, SP=1

ST R2, ADDRESS SET ADD FOR FREEMAI N
PRI NT NOGEN

LA R5, 1(R5) | NCREASE R5 FOR QUTPUT
XDECO R5, NN PLACE | N QUTPUT STREAM
XPRNT I N, 52

L R13, 4(R13) GET ADD OF HI GHER SAVE AREA
LM R14, R12, 12(R13) RESTORE THE REG STERS

BR R14 RETURN TO CALLI NG PROGRAM

DC C OTHE SAVEAREAS AND NUMBERS ARE CQUTPUTTED BELOW'
DC F 0O

DC CL40" RECURSI VE CALLED W TH VALUE

DC 3F 0O

DC C RETURNI NG FORM RECRSI VE W TH NUMBER ='

DC 3F 0

LTORG
END
/ *
[*LOG
/ / DATA. SYSUDUMP DD SYSQUT=A
/ / DATA. XSNAPOQUT DD UNI T=AFF=FT06FO001

11*

[1* THIS JOB WLL RUN WTH TIME = 35 SECONDS
/1> RECORDS = 1000
[+

[1*

/| EXEC ASGCG
/ / SOURCE. | NPUT DD *
*

THE PURPOSE OF THI' S PROGRAM | S TO DEMONSTRATE THE FOLLOW NG
MACRCS:

SPI E

STAE

THE BASI C FLON OF THI'S PROGRAM | S AS FOLLOWS:

1 FI RST | SSUE A SPI E MACRO FOR ABEND CODES 1 - 5.
THEN CAUSE AN ABEND SOC1 AND | NTERCEPT I T WTH A SPI E.

2 RETURN CONTROL TO THE NEXT | NSTRUCTI ON FROM THE
SPI E EXIT ROUTI NE.

3 CANCEL THE SPI E MACRO.

4 | SSUE A STAE MACRO. THEN CAUSE A SOC6 AND

| NTERCEPT THE ABEND W TH THE STAE EXI T ROUTI NE.
THEN ALLOW THE ABEND TO CONTI NUE.

PROGRAM | NTERRUPTI ON CONTROL AREA

L R L T S N . N N B N N N B S S S R T R T N

DI SPLACEMENT
BYTES
0 1 2 3 4 5 6
K o o o o o o o e e e o o e o *
X X X X X X X
X 0000 xPROGRAM x EXI'T ROUTI NE x| NTERRUPTI ON X
X x MASK X ADDRESS X TYPE X
X X X X X X X
K o o o o o o o e o e a2
EJECT

* PROGRAM | NTERUPTI ON ELEMENT

*

* DI SPLACENMENT

* BYTES 0O 1 2 3

* K o o o o e o e o o e e e e e e e e e e e e e e Mmoo *

* 0 xRESERVED x Pl CA ADDRESS X

* K o o e e e e e e e e e e e e e e e e m e e e e e e e e - *

* 4 xOLD PROGRAM x| NTERUPTI ON CODES x

* xSTATUS WORD L LT TP x

* X

* K o o o o o o o e o e e e e e e e e e e e e e e e e e e e Mmoo *

* 12 X REG STER 14 X

* K o o e - *

* 16 X REAQ STER 15 X

* K o o o o e o o e Mmoo *

* 20 X REAQ STER 0O X

* K o o e - *

* 24 X REG STER 1 X

* K o o o o e o e o o e e e e e e e e e e e e e e Mmoo *

*

28 X REG STER 2

X

MAI' N

* F Xk X X

L I

* 0% % 3k kX Xk

FI X

EJECT
PRI NT

NOGEN

EQUREGS

CSECT

XSAVE SA=NO

THE SPI E MACRO BELOW | NDI CATES THAT | F AN ABEND SOCL THRU
ABEND SOC5 OCCURS THAT FIX |'S TO BE G VEN CONTROL

PRI NT

GEN

SPIE FIX, ((1,5))

PRI NT
ST

DC
XPRNT
L

NOGEN
R1, HOLD
Fl Ol
MHEAD, 80
R5, HOLD

SAVE ADDRESS OF PREVI QUS PI CA

THE SPIE MECRO | S THE EXECUTE FORM I T CANCELS THE PREVI QUS
SPI E MACRO

PRI NT
SPI E

GEN
M==(E, (5))

THE STAE MACRO BELOW | NDI CATES THA THE FI XSTAE ROUTINE IS
TO BE G VEN CONTROL ON AN ABEND AND TO ALLOW THE 1/0O TO

CONTI NUE EVEN THOUGH THE ABEND HAS CCCURED. ALSO CREATE THI S

STEA AREA NOT OVERLAY ANY PREVI QUS

STAE FI XSTAE, CT, PURGE=NONE

LA R3, HALFWORD
L R2, O(R3)
PRI NT NOGEN
XPRNT MHEADL, 80
PRI NT GEN

STAE 0

PRI NT NOGEN
XRETURN SA=NO
DROP 12

USI NG *, 15

STM RO, R15, SAVE
L R2, 8(RL)
LA RI1,255
LR RIO, RL1
SLL RI1,8

OR RIO,RI1
SLL RI1,8

OR RIO,RI1
NR RIO, R2
SR R9,R9

IC R9, 0(RLO)
LA RS, 64

CR R9, RS

BM RR

GET ADDRESS OFHALFWORD
| MPROPER ALI GNEMNT CAUSE ABEND

GET IL CC AND NEXT | NSTRUCTI ON
ADDRESS

SET R11 TO HEX 00000OFF

PUT HEX FF IN R10

MOVE OVER 1 BYTE

MAKE R10 HEX OOOOFFFF

MOVE OBER 1 MORE BYTE

MAKE R10 HEX OOFFFFFF

GET | NSTRUCTI ON ADDRESS

ZERO RO FOR IC

GET OPCODE FOR NEXT | NSTRUCTI ON
SET TO HEX 40

CHECK FOR RR | NSTRUCTI ON

GO TO SET NEW PSW

LA R8, 192 SET R8 TO CHECK FOR RX OR RS

BM RX
LA R7,6
B | LCSET
RR LA R7,2
B | LCSET
RX LA R7,4
ILCSET AR R10,R7
SLL R7,29
LA RS, 63
SLL RS, 24
NR RS R2
OR RI0,R7
OR RI0,R8
ST R10, 8(R1)
PRI NT NOGEN

GO TO SET PSW

GET | NSTRUCTI ON LENGTH
&0 TO SET IL

SET ILC FOR RR

GO TO SET IL

STEIL OF 4

GET NEW ADDRESS FOR PSW
SET R7 TO I L CODE

SET R8 TO HEX 0000003F
SET R8 TO 3F00000000
GET CC AND PROGRAM NMASK
GET IL CODE I N NEW PSW
NOW VE HAVE NEW PSW
SET NEW PSW

XSNAP T=NOREGS, STORAGE=(*0(1), *36(1)),
LABEL=" PROGRAM | NTERUPT ELEMENT I N SPIE'

L R2, 0(1)

GET PI CA ADDRESS

XSNAP T=NOREGS, STORAGE=(*0(2), *6(2)),
LABEL=' PI CA FOR SPI E MACRO

LM RO, R15, SAVE
BR R14
DROP 15

FI XSTAE XSAVE SA=NO

GET ADDRESSES TO RETURN
RETURN TO CONTROL

XSNAP STORAGE=(*0(1), *104(1)), T=NOREGS,
LABEL='THI S IS THE 104 BYTE WORKAREA PROVI DED BY STAE'

LA RI5,0
MWDONE L R14, 12(13)

LM RO, R12, 20(R13)

BR R14
VHEAD1 DC
SAVE DC 18F' O’
HCOLD DC F 0
DS OF
DC H O
HALFWORD DC C NONO
MHEAD DC
END
/ *
/*LOG

/ / DATA. SYSUDUWP DD SYSQUT=A
/| DATA. XSNAPQUT DD SYSOUT=A

RESOTRE REGQ STER 14 FROM SAVEAREA
RESTORE REG 0 THRU 12
RETURN TO PPERATI NG SYSTEM

CL80' OSTAE MACRO HAS | SSUED AND RETURNED CONTRCL'

CL80' OTHE | NTERUPT HAS OCCURED AND FI X CALLED ON SPI E'

11*
11*
/1*
[1*

THIS JOB WLL RUN WTH TI Me= 35 SECONDS
RECORDS = 600

/'l EXEC ASGCG
/1 SQURCE. | NPUT DD *

[*LOG

*

L T S S T R N N . N N R . . N N N S T G

=
z

* 0% % 3k X X X F

THE PUT
THE PURPOSE OF THI' S PROGRAM | S TO DEMONSTRATE THE FOLLOW NG
MACRCS:

TI VE

TTI MER

STI MER

THE BASI C FLON OF THI'S PROGRAM | S AS FOLLOWS:

1 GET THE CURRENT TI ME AND DATA USI NG THE TI ME MACRO
THEN CONVERT IT TO OQUTPUT FORM AND PRINT I T OUT.
2 THEN DO 10, 000 CALLS TO A RANDOM NUMBER GENERATCR

VWHI CH USES THE TI ME MACRO I N BI NARY TO SET THE BASE.

THEN OUTPUT THE RESULTS OF THE CALLS TO THE RAMDOM NUMBER
GENERATOR

3 | SSUE A STI MER MACRO FOR 5 SECONDS. THEN DO

1000 BCT TO *. TO DETERM NE THE NUMBER OF M CRO SECONDS THAT
A BCT I NSTRUCTI ON TAKES. THEN OUTPUT THE RESULT.

4 THEN USE AN STI MER WTH AN EXIT ROUTI NE TO CHECK
A LOOP. THAT IS I SSUE AN STI MER FOR 1. 04 SECONDS W TH AN
EXIT ADDRESS. WHEN THE EXI T ADDRESS GETS CONTROL | T CAUSES
THE LOOP TO COVE TO A HALT AND QUTPUTS THAT THE LOOP TAKES
LONGER THAN 1. 04 SECONDS. THEN CANCEL THE STIMER WTH A
TTI MER MACR

EJECT
PRI NT NOGEN
EQUREGS
CSECT

XSAVE

VWHEN TIME IN DEC IS ISSUED I T RETURNS THE DATE I N REG 1

IN TH S FORM O00YYDDDF WHERE YY IS THE LAST TWO DIG TS OF THE
YEAR AND DDD IS THE JULI AN DATA. THEN LEFT JUSTIFY THI S
DATE AND UNPACK THE RESULT AND PLACE | N CQUTPUT FOR PRI NTI NG

PRI NT GEN

TIME DEC

PRI NT NOGEN

SLL RI,8 LEFT JUSTI FY THE DATA

ST RL,WORD PUT DAY AND YEAR | N CORE FOR UNPK
UNPK OUT(5) , VORD(3) GET OUTPUT FORM

MWC OUTPUTL(3), OUT+2 PUT YEAR | N OUTPUT

MWC OUTPUT(2), OUT PUT JULI AN DATE | N OUTPTU

WHEN TINME |'S | SSUED W TH DEC | T RETURNS IN RO THE TIME I N

E o T T R

E o I R R

:

LOOP1

L T S T N

THE FOLLON NG FORM HHWMMSSTH WHERE HH IS THE HOUR ON A 24
HOUR CLOCK, WHERE MM IS THE M NUTES, HHERE SS | S THE SECONDS
WHERE THE T | S THE TENTHS OF SECONDS, AND WHERE THE SI NGLE H
'S THE HUNDREDS OF SECONDS.

DI SCARD THE T AND SINGLE H FI ELD AND THEN PLACE THE HH MM SS
N CORE AND UNPACK I T AND THEN QUTPUT THE Tl ME AND DATE.

LA RI1,240 SET R10 TO JEX 000000FO0
OR RIL,RO PLACE F IN BITS 24 TO 27 Rl1
SRL RI1,4 RI GHT JUSTI FY THE TI ME

ST RIL1, WORD PLACE TIME I N CORE FOR UNPK
UNPK OUT(6) , WORD(4) CHANGE TO OUTPUT FORM

M/C OUTPUT2(2), OUT PLACE HR | N OUTPUT

M/C QUTPUT3(2), OUT+2 PLACE M NUTES | N QUTPUT
MC OUTPUT4(2), QUT+4 PLACE SEC I N QUTPUT
XPRNT QUTPUTS, 34

LA R11, 4095 SET R10 TO 4095
LA R11, 4095(R11) SET R11 TO 8190
LA R11, 1810(R11) SET R11 TO 10, 000

LA R9, DONE

THE TI ME MACRO | N THE RANDOM NUMBER GENERATOR RETURNS THE
TIME INREG O INBINARY FORM THEN I T I'S STORED I N SAVECDD
TO BE USED FOR THE BASI S FOR RANDOM NUMBER GENERATOR

THEN OUTPUT THE RESULTS OF 10,000 THROANS OF A TEN SI DED DI E.

CALL | AND, (TEN, MONE)

LR R10,RO SET R10 TO RO

BCTR RI10, RO SUBTRACT 1 FROM R10

SLL R10,2 MULTI PLY R10 BY FOUR

AR RI0, R9 GET ADD OF NUMBER TO | NCREASE

L R8, 0(R10) GET LAST VALUE

LA R8, 1(R8) | NCREMENT COUNT BY ONE

ST RS, 0(RL0) PLACE | N COUNTER

BCT R11, LOOP RETURN FOR NEXT CALL

XPRNT OUTT

XPRNT OUTTT

LA R10,10 SET R10 TO NUMBR OF SIDES ON DI E
LA R11, OUTTTT+1

L R8, 0(R9) GET NUMBER OF TIMES A NUMBER OCCURED
XDECO R8, 0(R11) PLACE VALUE OF COUNTER | N OUTPUT
LA R9, 4(R9) GET ADDRESS OF NEXT COUNTER

LA R11, 12(RL1) | NCREASE OUTPUT POl NTER

BCT R10, LOOP1 RETURN FOR NEXT COUNTER

XPRNT OUTTTT

VWHEN AN STI MER MACRO IS | SSUED W TH TASK I T ONLY DECREMENTS
THE TI ME | NTERVAL WHEN THE TASK IS ACTI VE. THE TUI NTVL

IS A FULLWORD ON A FULLWORD BOUNDRY THAT G VES THE TIME IN
TIMER UNITS. ONE TIMER UNI T = APPROXI MATELY 26 M CRO SECONDS
THI'S STI MER SETS THE | NTERVAL TO APPROXI MATELY 5 SECONDS.
THEN 1000 BCT ON R10 TO * ARE DONE.

LA R10, 1000 SET R10 TO 1000 FOR BCT
STI MER TASK, TUI NTVL=TUNUM
BCT R10, *

L I R T T

¥ 0% % 3k kX X X X X Xk

-
T

* ok ok F F X X X g
m

LPI NTVLP

LPI NTVL1
LPI NTVLM
CHECK

LPI NTVL

WHEN A TTIMER MACRO | S | SSUED | T RETURNS THE Tl MER REMAI NI NG
IN THE TI MER | NTERVAL | SSUED BY THE STI MER MACRO. THEN
COWPUTE THE TI ME FOR 1000 BCT | NSTRUCTI ONS AND OUTPUT THE
RESULTS. NEXT CANCEL THE TI MER | NTERVAL USSI NG THE TTI MER
W TH CANCEL SPECI FI ED.

TTI MER

L R9, TUNUM GET NUMBER OF TI MER UNI TS AT START

SR R9, RO GET NUMBER OF REMAI NI NG TI MER UNI TS

SR R8, R8 ZERO REG 8

LA R6, 26 SET R6 TO NUMBER OF M CRO SECONDS
PER TIMER UNI' T

MR R8, R6 GET THE NUMBER OF M CRO SECONDS

SR R8, R8 ZERO R8 FOR DI VI DE

LA R6, 1000 SET R6 TO 1000 FOR DI VI DE

DR R8, R6 GET AVERAGE TIME PER CALL IN M CRO S
SECONDS

XDECO R9, QUZZ PUT ROI N QUTPUT

XPRNT OUZ, 84

TTI MER CANCEL

NEXT | SSUE AN STI MER WTH AN EXIT ROUTI NE. WHEN AN EXI T
ROUTINE IS G VEN AT THE END OF THE | NTERNAL THE ROUTINE I S
G VEN CONTRCL. THEN SET CHECK TO 0 TO STOP THE LOOP.

THE TASK | NDI CATES THE TI ME TO BE DECREMENTED ONLY WHEN THE
TASK |'S ACTIVE. AGAIN THE | NTERVALI S SPECI FI ED I N TI MER
UNITS. 1T IS 1.04 SECONDS APPROXI MATELY.

AFTER THE LOOP | S STOPED THEN CANCEL THE TI ME | NTERVAL
WTH A TTI MER CANCEL.

LA R9, 0 SET R9 TO 0 FOR COVPARE

LA R10, 0 SET R10 TO O

BCTR R10,0 SUBTRACT ONE FROM RO

STI MER TASK, LPI NTVLP, TUI NTVL=LPI NTVL

C R9, CHECK CHECK TO SEE | F I NTERVAL | S OVER
BE VDONE I F TIME | NTERVAL OVER GO TO DONE
BCT R10, LP RETURN DO LP OVER

TTI MER CANCEL

XRETURN SA=*

DROP 12

THIS IS THE STIMER EXIT ROUTINE I T ZEROS CHECK AND PRI NTS

A MESSAGE AND RETURNS CONTROL TO A PROGRAM THAT THEN RETURNS
CONTROL TO THE PLACE WHERE | T LEFT OFF WHEN THE | NTERVAL
EXPI RED.

NOTE THE USE OF SAVE AREAS.

XSAVE SA=NO

XC CHECK(4) , CHECK

XPRNT LPI NTVLM 80

XRETURN SA=NO

DC CL80' OLP TAKES LONGER THAN 1.04 SECONDS SO STOP LOOP
DC F' 1’

DC F 4000

oz

Quzz
TUNUM
MONE
DONE
TWO
THREE
FOUR
Fl VE
SI X
SEVEN
El GHT
NI NE
TENT
TEN

QUTPUTS
QUTPUT2
QUTPUT3
QUTPUT4

QUTPUT1

QUTPUT
QUTT

QUTTT

g
388888888888888888888888888888888

QUTTTT
LTORG
EJECT
I AND CSECT
XSAVE

L I S T S R S

L
*
L
L
L
*
*--FIND THE NO
OVERFL LA
LR
OVER SRL
LA

C OTHE AVERAGE TIME I N M CRO SECONDS
CTION IS

CL12" ', C M CRO SECONDS'
F' 20000’

F 1

F 0O

F 0O

F 0

F 0

F o

F o

F o

F 0

F 0

F 0O

F' 10

Do

2F' O

C OTI ME:

cL3r

FOR A BCT | NSTRUC

C THE NUMBER OF TI MES THAT EACH NUMBER OCCURED | S G VEN

C BELOW',6 CL62" '

co,c1mr ',cr1,c1r ',cz2,cir
c4,C11 ',cb5,C11' ',Ce6',C1r
csg,Cc1mr ',c9o,C11' ',C 10, C12
CL133"

SA=NO, TR=NO

--TH 'S IS A RANDOM NO GENERATCR
--1 T HAS TWO ARGUMENTS THE FI RST THE MAX VLLUE TO BE RETURNED
--THE SECOND THE M N VALUE TO BE RETURNED
--TI FIRST DETERM NES THE NO OF BITS IN THE MAX VALUE
--THEN | T GENERAES THAT MANY RANDOM BI TS
--THESE BI TS ARE PLACED I N ONE OF THE REG STERS
--THEN | T DETERM NES | F THE NO GENERATED | S WTHI N THE BOUNDS COF THE
--THE TWO AGUMENTS IT WAS GVEN IF IT IS NOT THEN I T DOES THE PROCESS
--ALL OVER AG AN

',C3,c1r
', CcT7,CcLir

--FIRST FIND THE MAX AND M N VLUES TO BE CONSI DERED

R2, O(R1) LOAD THE ADDRESS OF THE MAXI MUM OF
THE RANDOM NO. GENERATOR

R8, 4(R1) LOAD THE ADDRESS COF 2ND ARG

R8, O(R8) LOAD THE M N VALUE

R2, 0(R2) LOAD THE MAX OF RANDOM NO GENERATOR

OF RANDOM BI TS TO BE SET

R4, 0 PUT AO INR4

R3, R2 MAKE A COPY OF MAX

R3, 1 FIND THE NO OF BITS TO BE SET

R4, 1(R4) R4 IS THE NO OF BITS TO BE SET

LTR R3,R3
BNE OVER

*

DETERMNE IF R3 1S O
IF NOT 0 THEN SH FT AGAI N

*--PLACE A1 INTHE ZEROBIT OF RS

LA R5, 2048
SLL R5, 20
SR R6, R6

*

PUT A1 INTHE OBIT OF RS
MOVE THE BIT TOBIT O
ZERO REG 6

*--THE NEXT SECTI ON GENERATES A RANDOM BI T

AGAI N L RO, SAVEQDD

LTR RO, RO

BNE BEG N

PRI NT GEN

TIME BIN

PRI NT NOGEN
LOADODD ALR RO, RO

BNO LOADCDD

BCTR RO, 0
BEG N LR R1, RO
ALR RO, RO
BO ONETWO
ALR RO, R1
BO ONE
LA R1,0
*
B FI NI SH
ONETWO ALR RO, R1
BO BEGA N
ONE LR R1, RS

FINNSH ST RO, SAVEQDD
*--SH FT THE BIT INTO R6 WHI CH
LR R7, R1

SLDL R6,1

*

*--IF THHS IS NOT THE LAST BI T
BCT R4, AGAI N

*

GET THE ODD NO.
DETERM NE | F SAVEODD=0
| F SAVECDD NO 0 THEN BEG N COVPUTI NG

MAKE RO JUST BELOW OVERFLOW
| F NOT OVERFLOW MAKE RO OVERFLOW
SUBTRACT 1 FROM RO
LOAD R1 FROM RO
CREATE A RANDOM BI T
BRANCH IF A BIT | S CREATED
CREATE A RONDOM BI T
IF BIT | S CREATED BRANCH
PUT A 0O INRL FOR THE RNADOM BI T VWH CH
WAS NOT CREATED
GO TO THE END OF THE SECTI ON
CREATE A ROANDOM BI T
RETURN AND START AGAI N
LOAD THE BI T FROM THE RANDOM CHO CE
SAVE THE CODD NO.
W LL CONTAI N THE RANDOM NO.
MOVE THE RANDOM BI T TO R7
MOVE THE RANDOM BI T | NTO R6

GENERATE ANOTHER
FI ND THE NEXT RANDOM BI T

*--DETERM NE | F THE NO EXCEEDES THE MAX VALUE

CR R6, R2

*

BP OVERFL

DETEMM NE | F THE NO GENERATED EXCEEDES
THE MAX VALUE
| F MAX EXCEEDED RETURN AND DO AG AN

*
*--DETERM NE | F THE NO EXCEEDES THE M N VALUE

CR R6, R8
*

BM OVERFL

LR RO, R6

XRETURN SA=NO, RGS=(14-
L DS 0D
SAVECDD DC F 0O

END

/ *
/ | DATA. SYSUDUMP DD SYSOUT=A

DETERM NE | F THE RANDOM NO | S L5SS THIN
THE M N VALUE

F QUT OF RANGE DO OVER

PLACE RESULT IN RO FOR RETURN

15, 1-12), TR=NO

[1*

[1* THIS JOB WLL RUN WTH TI Me= 25 SECONDS
/1> RECORDS = 600
[+

/| EXEC ASGCG

/ / SOURCE. | NPUT DD *

[*LOG

*

THE PURPOSE OF THI' S PROGRAM | S TO DEMONSTRATE THE FOLLOW NG
MACRCS:

TI MVE

WI'L

Wo

WIOR

WO ROUTCDE = 11

L T I T N

PRI NT NOGEN
CSECT

XSAVE

PRI NT GEN

=
z

WTH THE WIL MACRO THE MESSACGE APPEARS AT THE BEGQ NNI NG OF
THE PROGRAM I N THE LOG

WTH THE WO ROUTCDE = 11 WE ARE WRI TI NG TO THE PROGRAMVER
BUT ON THI' S SYSTEM THI S | S ALSO THE SYSTEM LOG

* 0% % %k X X Xk

WI'L
WO

"THIS I S AN EXAVPLE OF WIL, WO WIOR, AND WIO RTCDE=11'
"THIS I S AN EXAVPLE OF WO, ROUTCDE =11', ROUTCDE=11

| F ACTUALLY CODE THESE WOULD BE EXAVPLES OF WIO AND WIOR

WO

THE FI RST PARAMETER | S THE MESSAGE TO BE WRI TTEN TO THE
OPERATOR

THE ROUTCDE G VES THE CONSOLE NUMBER TO BE WRI TTEN TO.

THE MEANI NG OF THE DESCRI PTOR IS G VEN I N APPENDI X THREE TO
SUPERVI SOR AND DATA MANAGEMENT MACROS

WO ' IF JOB DOES NOT TERM NATE IN 10 SECONDS TERM NATE' ,
ROUTCDE=(1, 2) , DESC=1

WOR

THE FI RST PARAMETER | S THE MESSAGE TO BE WRI TTEN TO THE
OPERATOR W TH THE | NDI CATED REPLY | NDI CATED

THE SECOND PARAMETER |'S THE REPLYADDRESS THAT 1S WHERE I N
THE PROBLEM PROGRAM THE ANSWER GOES

THE THI RD PARAMVETER IS THE MAXI MUM LENGTH OF THE REPLY

THE FOURTH PARAMETER | S THE NAME OF AN EVENT CONTRCOL BLOCK TO
BE POSTED BY THE CONTROL PROGRAM | N THE WIOR MACRO

THE ROUTCDE | S THE SAME AS FOR THE WO MACRO

THI'S DESC | NPLI ES THAT SOME | MVEDI ETE ACTION | S REQUI RED ON
THE PART OF THE OPERATOR

WOR '|IF STANDARD OPERATI NG CONDI TI ONS? REPLY YES OR NO ,
REPLYADD, 3, MECB, ROUTCDE=2, DESC=2

L T D T B B R I B . N N R S T

PRI NT NOGEN
XRETURN SA=*
MEXB DC F o
REPLYAD DC C '
END
/ *

