Nor sk Regnesentral
Norwegian Computing Center
January, 1983

SIMULA
Programmer's Guide
IBM System 360/370

O

Pt bt ot ot
* e L]
[SV I Sy

* o » o
SN

A0) G2 N e
* -
N -

[¥Y] R RNMONRPPPRONNNRNNNDND NN
® o 5 5 & & % * ® @ o " e » o @
L WM NNDN N NN P e b e

W W W
® & ® [)
L VU ,N [

S s
e o o o o o . .

b A0 D OV W PO

®
Pt et b
PSWMRN-O

PSP poLrpLrprprbLbpy

Contents

Introduction

System requirements
Computer model
Operating system
Secondary storage

System elements

Job control language

Job statement

Execute statement

Data definition statement
Catalogued procedures

SIMULA system elements

Compiler

Compiler parameters

Linkage Editor

Ob ject program

Ob ject program parameters
Return code

Storage management under RTS
External procedures and classes
Use of catalogued procedures
Using the SIMULA system with the JCL procedure SIM.

Hardware and implementation defined

restrictions and capacity limitations

Permitted ranges of arithmetic quantities,
precision of real number arithmetic

Maximum sizes of block instancesy arrays and texts
Program capacity limitations

Ob ject program storage requirements

Implementation defined parts of the SIMULA language
Use of system prefixes

Accepted virtual specifiers and rules for virtual
matches

Collating sequence

Initialisation of character variables

Evaluation of Boolean expressions

For statements

Parameter type correspondence

Separator

Power-of-ten symbol

Edit overflow

Formats of editing procedures

Mathematical subroutines

Array subscript checking

External procedures

External classes

Assembly and Fortran procedures

Random drawing procedures

Attribute protection

0Ob ject program input/output
0S 360/370 data management terminology

® @ @ ® @ & » @ o S o o * 9 0
(RS
* ® » 9
W N

e ® ® 5 2 v % e v o
M NN~ SN WN RN -

e o o o o
e W N

. o L . L] L] -

e e e @ 5 o » o @

L]
[

[] e o []
RS

R LL LW NNDN PN -
® o @
WP e

» L] e ° - » L] L] ® [L] L]

ccooccocccrococoCCocoCCcCOCCOOC Vgt U on (SIS LRV IR R R NG I R I IR G G RN

SLSWWWLWOLLWEWOLWWLWWRANK

L L] * @ L] [] L I L] L - * L] * ° - -

. e o
WA e

AW WO NN R e
® o e
W R -

@ NN NN NN N
L] - L] [] [] L J * * L] [[]

Principles of 0S 360/370 data management

Device independent restrictions

Run-time specification of I/0 processing parameters
Data definition statement (0D-statement)

Binding a file to a data set

Creating a data set on magnetic tapey disk or drum
Naming a data set

Allocating a data set

Birect-access storage

Magnetic tape

System output

Retrieving a data set

System input

Disposition of a data set

Sequential data sets?! characteristics and processing
options (outfile, infile)

Fixed record length

Blocked records

Variable and undefined record formats

Carriage control character

Additional DCB subparameters

Printfile data sets

Direct data sets

End-of-file text

Sysin and sysout

Debugging aids

Diaghostics

Tracing

Program control flow tracing
The symbolic dump facility
Design principles

Dump format

Blocks

Local quantities

Arrays

Text object

‘System overhead

System control

Compi ler

RTS

Additicnal control remarks

Examp le

External utilities related to the SYMBDUMP facility
Dump

Dynamic profile of program execution
Ob jectives and design principles
Scope of the facility

Assignment counter

Frequency monitor

Data structure register

Qutput format of the respective components
Assignment count

Assignment frequencies

Generated data structures

Control

Examp le

Bibliography

(o]

I & Mm m QO

Appendices

HARODWARE REPRESENTATION OF THE SOURCE LANGUAGE
COMPILER DIAGNOSTICS

RUN=TIME DIAGNOSTICS

SIZES OF RUN-TIME LIBRARY ELEMENTS

HOW TO DESIGN AN OVERLAY STRUCTURE

INTERNAL REPRESENTATION OF DATA STRUCTURES

HOW TO WRITE AN EXTERNAL ASSEMBLY OR FORTRAN PROCEOURE
SPECIFYING USER EXITS

SAMPLE JOB LISTING

CATALOGUED PROCEDURES

REPORT PROCEDURE

0 Introductione.

This SIMULA Programmers Guide is intended to cover all parts of SIMULA
for 360/370 not covered by the defining document of SIMULA (see (12)).

This manual covers the essential features of System 360/370 0S Job
Management, but is not meant to duplicate the IBM documentation of
these items (see section 8). To take full advantage of the operating
system facilities and installation dependent features, consult the IBM
documentation and the system programmers at your own installation. This
should not, however, be necessary except for unusually advanced
applications, and when you have very high efficiency requirements.

If familiar with System 360/370 0Ss you may skip sections 1, 2y 3.1l.1
and 5, except for 2.2019 2.2:3) 203’ 502.1[5.301’ S5e3:7s 5.4 and 5.5

1 System requirements.
1.1 Computer model.

The 360/37C IBM SIMULA can be used on a 360 or 370, with full
instruction set.

The core storage should be less than 16,340 K bytes, and greater than
or equal to 128 K.

1.2 Operating system.

The system operates under any of the following operating systems: 0S
(MFT, MVT, MVT with TSO) and their VS (VS1/VS2) counterparts, CMS, VM,
MTS, GUTS, MVS and TSS, and other operating systems that are compatible
with one of these. The system cannot operate under DOS.

1.3 Secondary storage.

The compiler uses secondary storage for intermediate tables and
partially translated code. 1t will not need more direct access
secondary storage than three times the size of the source programe.

2 System elements.
2.1 Job control language.

The environment of 360/370 SIMULA is the 360/370 Operatin System.
Actions to be performed under this system are specified by a job
control language (JCL),; the statements of which are called job

control statements. The job control language is considered to be more
complicated and more difficult to use than other similar control
languagess but it is also very flexible and useful once it is mastered.

The general format of a JCL statement is:
//name operation cperands

The two slashes are in columns 1 and 2 of a line and identify it as a
JCL statement.

name is an identifier of not more than 8
consecutive alphameric characters, the first
of which is a letter. The name starts in
position 3.

operation is a word separated from the name and from
the operands by at least one blank. The
words considered here are J0B, EXEC and DD,
identifying a job statement, an execute
statement and a data definition
statement, respectively.

operand is a list of operands separated by commas,
with no intervening blanks. The operands are
either positional (the meaning of the
operand is determined by its relative
position in the list) or keyword (the
meaning is determined by a keyword followed
by an equal sign preceding the operand).

An operand list can contain only positional
operands, only keyword operandss or both,
but all positional operands must precede all
keyword operands in the operand list.

The operand list can be continued on the
next line if it is interrupted after a
comma. The following line is then marked
with two slashes in position 1 and 2, and
the operand list is continued starting
anywhere between the 4th and 16th positione«
No part of an operand list may extend past
position 71.

The use of each particular JCL statement is described in the succeeding
sections. For reasons of readability and simplicity several operands
are omitted and the rules are sometimes given in a stricter form than
is necessary when this does not decrease usability. The actual rules
are given in (6).

2.141 Job statement.

The largest unit of work recognized by the system is a jobs defined
by a job statement and the following JCL statements up to the next job
statement in the input stream.

The name field of the job statement is the job name, used to identify
the printed output from the job. The operands of a job statement supply
account inginformation and programmer name by positional operands.
Keyword operands can be used to specify whether the JCL statements of
the job will appear on the message listing, and to specify a minimum
size of core in which the job can be run.

Example:t

//& JOB O0,SMITH,MSGLEVEL=1,REGION=90K

A is the job name
JOB identifies the this as a job statement
0 is the accouting information. In general you

must replace the 0 by your account number
and possibly some other information
depending on the installation.

SMITH is the programmer name. Special rules apply
if the name contains blanks or other
nonalphameric characters (see (6}).

MSGLEVEL=1 requests the system to let the JCL
statements of the job appear on the message
listing. If omitted, no JCL statement will
appear.

REGION=90K is @ request for a problem program partition
of not less than 90 K bytes. The parameter
is an unsigned integer followed by a K
indication multiplication by 1024.

In a system with LCS support (release 17 or
later) storage of both hierarchies can be
requested (see (6)).

2:1e2 Execute statement.

A job consist of one or more job steps. A job step is defined by an
execute statement and the data definition statements (DD-statements)
following it. The job steps of a job will be executed sequentially in
the order in which they appear within the job. The execute statement
defines a program which will operate on data defined by

DO-statements of the job stepe The name field of the EXEC statement is
the job step name. The operands of the execute statement define the
program to be executed and, opticnally, a parameter string to the
program and a test for bypassing the step.

Examples
//51 EXEC PGM=prognames;PARM="'parm string',COND=conditions

S1 This is the step name (name of the execute
statement) of the job step to be executed.
This is used for referencing the step for
instance in JCL messages.

PGM=progname The PGM operand defines the program to be
executed. Progname os the name of a load
module (2.2+2)s in the system link library,
the job library or the step library.

The system link library (SYSL.LINKLIB) is
always accessibles. A job library can be
defined by a OD-statement with the ddname
JOBLIB, immediately following the job
statement. A step library is defined by a
DD-statement with the ddname STEPLIB, placed
among the DD-statements of the step.

PARM=*parm string'

A parameter in the form of a character
string is passed to the program by means of
the PARM operand. The interpretation of the
parameter string is dependent on the
program. The parameters allowed for the
SIMULA compiler and the SIMULA ob ject
program are discussed in sections 2.2.1 and
2¢2435 respectively.

COND=conditions conditions is a condition or a list of
conditions separated by commas and enclosed
in parentheses. If any one of the conditions
is satisfied, the step will not be executed.
A condition has the form (unsigned integer,
relops stepname)

relop is any of EQ, GE, GT, LE, LT or NE,
meaning=s, 2=, 2, =, < or]
respectively.

stepname is the name of a preceding job
step in the job.

When a program terminatesnormally, a return
code is passed to the operating system. It
the stepname of the conditions is replaced
by the return code of that step you get an
arithmetic relation, and the condition is
satisfied if this relation is true. The
return codes passed by application programs
are discussed in subsections of 2.2.

A condition can also be any of the words
EVEN and ONLY.

EVEN is never satisfied, which implies that
the step will be executed even if an earlier
step terminated abnormally.

ONLY is satisfied only if no earlier step
has terminated abnormally.

I1f neither EVEN or ONLY occurs among the
conditions; the job step will be bypassed if
an earlier job step terminated abnormally.

Special rules apply if EVEN of ONLY is mixed
with relational conditions (see (6)).

2.1.3 Data definition statement.

A data definiticn statement (DD-statement) defines either data on which
the program of a job step will operate, or a program library from which
the program is to be loaded. The name field of the DD-statement is the
ddname, which connects the data to a logical file of the program. A
detailed description on the use of DD-statement is found in section 5.

2.1.4 Catalogued procedures.

In order to reduce the number of control statements for frequently used
job step combinations, the system provides a cataloguing facility for
JCL statements. A set of catalogued JCL statements, constituting one or
more job steps (procedure steps) is called a catalogued procedure. The
operands of the JCL statements can be modified when the procedure is
used by means of symbolic parameters. The operands that can be

changed in this way are defined when the procedure is catalogued.
Operands not given symbolic parameters can be overridden when the
procedure is used. The use of the catalogued procedures supplied as
part of the 360/370 SIMULA is described in section 2.4.

Invoking a catalogued procedure.

A catalogued procedure is invoked with an EXEC statement in which the
keyword PGM operand is replaced by a positional operand which is the
name of the procedure. The keyword operands of this statement are the
symbolic parameters of the procedure.

Modifying execute statements of & procedure.

Operands of the execute statements of the procedure can be redefined in
the EXEC statement invoking the procedure by means of operands of the
form

keyworde.procstepname=newoperand

where keyword is the keyword of the operand which is to be added or
modifieds, procstepname is the name of the execute statement in the
procedure which is to be modifieds and newoperand is the new operand
value.,

If operands of more than one procedure step are redefined, the operands
must occur in the same order as the procedure steps to which they

applye.
Modifying and adding DD-statements in & procedure step.

Operands of a DD-statement of a procedure step can be modified by means
of an overriding DD-statement:

//procstepname.ddname DD newoperands

OD-statements can be added to a procedure step with an ordinary
DD-statement where the ddname is preceded by the procedure step name
and g dot.

Overriding and added DD-statements must be sorted so that DD-statements
belonging to a later step follow thocse belonging to an earlier step,
and within each step overriding DD-statements must occur in the same
sequence as the overriding DD-statements in the procedure.

Overriding OD-statements of a procedure step must precede added
DD-statements of that step.

Some examples on modifying and added DD-statements are found in 2.4.

2.2 SIMULA System Elements.

The software elements needed to use 360/370 SIMULA are the SIMULA
compiler, named SIMULA, the IBM-supplied Linkage Editor, named IEWL,
and the run~time system load module library, named SIMLIB.

Furthermores the JCL procedures of Appendix J should be catalogued,
ieee put in the catalogued procedure library SYS1.PROCLIB.

2.2.1 Compiler.

The SIMULA compiler will read a SIMULA source program (Appendix A}, and
it will produce one or more of the following items:

a source program listing,

a cross-reference listing,

an ob ject module,

a copy of the object module and
a diagnostic message listinge.

e
m—e w0 -

C € ot e
et et ot St

The parameter string passed to the compiler from the EXEC statement
determines which items are produced (2+s2+¢1el1),

The ob ject module is a machine-language, non-executable version of the
source program (2¢2.2)

The source program and cross-reference listings are useful for
debugging and documentation.

When an error or a possible error in the source program is detected, an
error or a warning message (Appendix B) is written. Production of the
ob ject module is suppressed if an error with severity code greater than
3 has been detected by the compilers

The files used by the compiler are given in Table 2.1,
The return code issued by the compiler is the highest diagnostic

severity code encountered (Appendix B), rounded upwards to a multiple
of 4.

- tep te® tem sem

VB B ¢ Cwd LD Cem S W Pen PVH PP PuR D QD VD fep D P fep VO Fe® Vew oew

Table 2.1:

into the available memory.

] !
ddname ! mode ! use
1§]
SYSIN ! input ! contains the source program
1 !
SYSGO ! output ! will contain the object
! ! module produced by the com-
! ! piler.
- _—! _— _! _
SYSLIB ! input, partitioned ! contains external class
! ! definitions used in the
! ! source programe.
1]
SYSPRINT ! output ! will contain the source
! ! listings the cross-reference
! ! table and diagnostic
! ! messages.
! ———— ! - - -
SYSPUNCH ! output ! will contain the object deck
! ! (identical to the ob ject
! ! modulel.,
- - ! - !
SYSUT1 ! input, ouput ! temporary data sets used to
SYsuTz ! ! hold compiler created tables
SYSUT3 ! ! and partially translated
SYSUT4 ' ! code if these do not fit
1
f

Compiler files

U VR D 4R PD PeB Sem MR SeB teD D PeD PR AE O D Sum S AuD pup S0 Gum tw® AW owm OO Sem gy

2¢2:1.1 Compiler parameters.

Compiler control is achieved by means of the parameters coded in the
PARM field of the compiler EXEC statement. The compiler parameters are
a number of wordss separated by commas and with no intervening blanks.

The parameters are separated into twc groups, those that are only given
by a keyword (positional keyword), and those that are given by a
keyword and a value (value keyword).

Positional keywords are used to invoke various processing options of
the compiler, and any of these can be preceded by NO which has a
suppressing effect.

Word: Meaning?

LIST an assembly=-like version of the compiled
program is listed on SYSPRINT.

LOAD an ob ject module is produced on SYSGO.

DECK a copy of the object module is written to
SYSPUNCH.

WARN warning messages will appear on the
diagnostic message listing.

SUBCHK instructions to check array indexing are
compiled.

EXTERN the source program on SYSIN is an external
procedure definition.

XREF a cross-reference listing is produced on
SYSPRINT.

SOURCE the source program is listed on SYSPRINT.

RESHD reserved words will be underlined on the

source listings This is accompanied by by
double printing and on most systems two
lines will be charged for each line which
contains a reserved word.

TERM output abbreviated error messages on
SYSTERM«
LONGREAL All arithmetic computstions involving real

quantities should be performed in long real
precision.

The following parameters are specified with a value following the
parameters and an equalsigne

LINECNT=n

MAXERROR=n

MAXLINES=n

MAXPAGES=n

INDENT=n

TIME=n

SYMBOUMP=n

n is the number of lines per page written on
SYSPRINT.

n is the maximum number of diagnostic
messages (errors and warnings) to be
printed. Further diagnostics will be
counted, however.,

n is the maximum number of lines to be
listed in the source listing.

n is the maximum number of pages in the
source listings If the value is exceeded,
the processing is terminated. n=0 is
interpreted as Yno limit"%.

n is the number of positions that each block
level is to be indented (i.e. shifted right)
in the source listing to show the block
structure of the program.

specifies that the compilation should be
stopped after n/loo cpu seconds. n=0 is
interpreted as "no limit".

specifies that provision of compiler
generated data structures for runtime
debugging is to be made, see section 6.3,

SIZE=(sihl ys2h2s53h35s54h4 4s5456)

The SIZE parameter controls the internal use
of core by the compiler. The default size
will be appropriate for most purposes,
otherwise see section 2.2.1.2.

RESWD=n specifies special marking of reserved words
in the source listing. The value n has the
following meaningful values:

0 no marking (identical to NORESKD)

1 under line reserved words (identical
to RESHD)

2 reserved words in triple printing

3 reserved words in lower case,
identifiers in uppercase and standard
names in lower case with capital
letter.

4 reserved words in upper case,
identifiers in lower case and
standard names in lower case with
capital letter.

The underlining of the reserved words in the
compilation listing is only possible if the
applied printer allows printing of more than
one image at one physical line and the
printer chain contains the underscore (_)
character.

EXTERN=v Specifies the kind of compilation?
0! main program,
C: external class,
P: external procedure.
'EXTERN' is equivalent to EXTERN=P, and
*NOEXTERN' is equivalent to EXTERN=0.

The default parameters and values are?

*NOLIST,NODECK,LOAD s WARN,; SUBCHK NOEXTERN NOXREF SQURCE 4
NORE SWD 4L INECNT=60 ,MAXERROR=50,INDENT=0".

SIZE parameter

The SIZE parameter is composed of & subparameters, written in the
general format:

SIZE=(slhl,s2h2s53h3,54h%,55,56)
Each si (i=1y2ysee36), stands for a value of the form ddd,,d (a decimal
integer) or ddd...dKs where K means multiplication by 1024, or it may
be omitted, leaving the default value unchanged.
Each hi (i=1,2,344%) is either YH1Y or omitted.

YH1" means that the corresponding area or areas should be placed in LCS
(large core storages hierarchy 1). Otherwise the area(s) are placed in
HSS (high speed storage, hierarchy 0).

Trailing commas need not be written.
The subparameters have the following significance (refer to “YDEFAULTY):
sl - DSYMBUFL length of buffers for SYSUT1 and SYSUTZ2

(intermediate language symbols). Preferably
a multiple of 16.

s2 DIDBUFLE length of buffers for SYSUT3 (idenfifier

list). Should be a multiple of 16.

s3 SYSFREE work area size for system use. Must accom=
modate one or two buffers for each of SYSGO
and SYSPUNCH (if used), in addition to some

space for transient system modules.

s4 COREMIN this is the minimum work storage needed by
the compiler. If DIDBUFLE and COREMIN have
the same storage hierarchy, and COREMIN <=
LIMBLKSZ, then the actual min. work area
size is (2*%*DIDBUFLE+COREMIN) except in
passes 1,2 and 9, because SYSUT3 buffers are

released when not in use in that case.

s5 COREMAX maximal amount of core requested in any
hierarchy. Must be larger than the sum of
component areas in the respective
hierarchies. The effective components arei
1%SYSFREE, 1%COREMIN, 2%DIDBUFLE,

4%DSYMBUFL, 8*MAXERROR.

sé LIMBLKSZ largest block size allowed to be written on
SYSUT1-3. A larger value of DIDBUFLE or
DSYMBUFL forces the corresponding file to be

kept entirely in-core.

Default values of Sly.eeyS6 are installation dependent, and, for the
sake of efficiency, it is important that any change in buffer size etc.
should be reflected in the corresponding 00 statement.

2.2.2 Linkage Editor.

The Linkage Editor is an 1BM=-supplied program which reads the ob ject
module and produces an executable ob ject program.

An executable program is always a member of a program library on
direct-access secondary storages. In IBM terminology it is called a load
module, since it has a different orgenization from an ob ject module and
it can be loaded into core by the control program.

The ob ject module (primary input) is read from a file with ddname
SYSLIN. Additional input is taken from a lcaded module library
identified by the ddname SYSLIB to resolve external references
(automatic library call). The load module produced is put in the
library identitied by ddname SYSLMUOD, under a name given in the
DD-statement.

Information and diagnostic messages, as well as an optional map and
cross- reference listing, useful for debugging on the machine-code
levely, are printed on a data set with ddname SYSPRINT.

The Linkage Editor will optionally perform a large number of functions
requested by control statements in the primary input. One of these
functionsy overlay editings is described in Appendix E, while the
remaining functions are described in (10).

2.2.3 U0Object program,.

The ob ject program output from the Linkage Editor is an executable
program corresponding to the source program. When this program is
executed by means of an execute statement, the machine equivalents of
the SIMULA statements will be executed. The PARM operand of the execute
statement can be used to control the storage setup and the amount of
debugging information produced (2.2.3.1).

The return code to the operating system can be used in CUOND operands of
following job steps (2.2.3.2).

If a run-time error occurs during the execution of the object program
it is terminated at once and a diagnostic message is printed together
with programmer controlled debugging information on a file identified
by the ddname SYSOUT (Section 6).

The run-time system is assigned the three letter prefix 2YQ, occurring
in all diagnostic messages and control section names.

2¢243.1 0b ject program parameterse.

The parameters to the ob ject program are given by the PARM operand of
the execute statement in the form of a character string enclosed in
quotes. The character string consists of keyword operands separated by
commas with no intervening blankse If a permitted keyword is omitted,
the default velue of that operand is used. The permitted keywords and
operand formats are shown below.

DUMP=digit The DUMP parameter controls the post-mortem
dump (see section 6.2}« The digit is
0319233964456 or 7. Default value is 1,
giving a diagnostic message and a register
dump.

HIARCHY=0 or 1 In a system with LCS support this operand
determines the hierarchy of the SIMULA
working storage. The default value is O
(fast core storage).

LINECNT=unsigned integer

The unsigned integer is the initial value of
the variable LINES PER PAGE of a printfile
Objecto

60 is the default value.
MAXPAGES=unsigned integer

The amount of user program output on SYSOUT
is controlled together with all other
printfiles. If the value is exceeded, the
processing is terminated. A value of zero
means Yno limit¥Y.

SIZE=(qlyq2,q3)

q2

q3

This operand controls the partitioning of
available storage into SIMULA working
storage and system free storage. The size of
the SIMULA working storage is fixed during
execution, and is used for declared
quantities, texts, arrays and control blocks
for program sequencing and the sequencing
set, see section 2.2.4 for further details.

qls g2 and g3 are unsigned integers,
optionally followed by the letter K
indicating multiplication by 102¢.

Only those of the sizes which are required
may be specified, however, only trailing
commas may be omitted.

A1l sizes are measured in bytess

is the maximum expected sum of the sizes of
all blocks, arrayss texts and temporary
results in the SIMULA programe. If this size
is exceeded, the object program is
terminated.

If ql is omitted it is set equal to g3.

is the minimum size of the system free
storage. It should be large enough to
accommodate access routines, 1/0 buffers,
and all GETMAIN, LINK and LOAD requests from
non-SIMULA external procedures.

g2 is set to 10K if omitted.

is the desired size of the SIMULA working
poocle. If g3 is omitted all storage except
that defined by g2 is allocated.

If q2 and g3, are both specified, q2 takes
precedence if the sum of g2 and g3 is
greater than the available storage. If the
sum is less, g3 takes precedence.

TRACE=unsigned integer

TEST
NOTEST

This operand determines the size of the
tracing buffer for control and dataflow
tracing (See section 6.3).

print header lines prior to the first line
of the ,

program output indicating the compilation
dates release identification and the coptions
in force and traling lines indicating the
total exectuion time, return code and the
time spent in garbage collection (if anyl).

TIME=unsigned integer

SYMEDUMP=digit

2e2e342 Return code.

set cpu~time limit for execution in
hundredths of seconds = the default value =
no limit. Appropriate diagnostics and
optional dump are obtained in the case of
limit overflow rather than abnormal
terminations thus facilitating the location
of unintended infinite loops.

specifies the level of information to be
given in a post-mortem symbolic dump (see
section ¢.%4). The digit is Oy 1, 25 34 45 5
or 6. Default value is 3, giving the heading
of blocks on the operating chain and a
symbolic dump of the local quantities in the
involved blockse.

The default values indicated are common
standarde. They can, however, be altered to
any other default values at system
installation using the SIMULA system macro
SIMRDF which is a standard part of every
system delivery. The same macro also allows
alteration of the standard ddnames of the
RTS files.

The~object program passes a return code to the operating system
indicating the way the program was comp leted.

Code: Meaning:
0 Successful completion.
4 One or more edit overflows occurred.
8 The program was terminated because of a run-time
error.
12 Une or more edit overflows occurred and the program

was terminated because of a run=~time error.

2+2+4 Storage management under RTS.

The following is a simplified scheme of the storage allocation during a
SIMULA program execution:

compi led SIMULA program

ted sew tem wme l

compi?gr prodazed control
tables

“cardno tagTe (used for
diagnostics)

£

RTS support rout?;es &
fixed storage area

W 1 e 1w 1w @ ¢ s

q2 SIMULA free storage (used
for 0S interface)
53 —EIMULA wo;QT;g szgrage

!
H
]
.
!
.
!
.
!
.
'
.
!
.
T
.
]
.
!
.
'
H
!
.
!
.
!
H
!
H
]
.
]
.

D G 1D D G D D (D VWD (D D S (D GeD 1D Gen S0

——— -— ——

This figure illustrates use of storage in the case where a SIMULA
program is executed in a separate JCL step (it has to be modified
accordingly for situations where the execution is invoked using the 0S
loader or NCC's utility SIMCNT)}. In this case the value.of g is equal
to the size of the region allocated to this task by the operating
system.

The size of the SIMULA free storage is 10K by default. If more core
than g2 bytes is needed for 0S interface routines (e.g. when performing
170 using extraordinarily large buffers), the execution terminates
abnormally (usually with the System Completion Code 804).

The SIMULA working storage is by default the largest contiguous area of
core left within the region after all other core requests are
fulfilled, and its size is printed in the RTS header.

The internal organisation of the SIMULA working storage is as follows?

H ! Pool 1 ! H
t ! ! !
! ! —_ ! 4
gl ! ! ! !
! ! ! ! !
! ! ! ! 4
’ ! s ! !
—_ ' o _ _ o ____._ q3
! H ! !
! ! ! !
! ! ! !
| S . ! !
! Pool 2 ! 'y
1 1

figt 2e

Pool 1 is used for block instancess array and text objects and
temporary results; pool 2 is used for control blocks used by the RTS
working storage management system. The governing idea of this system is
that pool 1 and pool 2 are extended in the course of program execution
in the respective directions indicated by arrows in fig. 2 until they
use up all the working storage area. The garbage collection is then
automatically performed which deletes all unreferenceable data
structures so that further extensions of the pools are possible. If
garbage collection does not result in a sufficient gain of core,; the RT
error ZYQ0017 (STORAGE EXHAUSTED) is forced.

Furthery it is the user's option to set up a limit for pool 1, namely
the value of ql in fige. 2. If this is done and pool 1 reaches this
limit in the course of the program execution without garbage collection
being able to compress pool 1 beyond this limit, the RT error ZYGO0018
(DATA LIMIT) results.

The value of g1 is zero by default, which the RTS interprets as "“no
pool 1 limit" and allows pool 1 to expand until it reaches pool 2.

A user may exercise control over the RTS storage management via the
parameter SIZE, where the respective values of gqly g2 and g3 may be
specified in the form of subparameters, see section 2.2.3.1.

A user should bear in mind that:

- the range of the values of the respective subparameters is
dependent on the program size, the size of the requested RTS
support and the region size.

- if both q2 and g3 are specified, g2 takes precedence if the
sum of q2+q3 is greater than the available storages otherwisey
g3 takes precedence.

- the main storage request issued by the RTS via GETMAIN on
behalf of the SIZE subparameter g3, is conditional and no
extra action is taken if the requested amount of the main
storage is not available«M

2.3 External procedures and classes.

External procedures and classes make it possible to compile procedure
and class declarations separately.

An external procedure can be saved as an object module (25%4. ex. 7) or
as a load module (2,4 ex. 8).

An external class is saved in an image librarye.

External procedures can be replaced in a program without recompilation
of the main program, but external classes cannote

External procedures can be of three different types: SIMULA, FORTRAN or
ASSEMBLY. How to write an external procedure of type FORTRAN or
ASSEMBLY is described in Appendix G.

2.4 Use of catalogued procedures.

The following sample jobs illustrate the use of the catalogued
procedures listed in Appencix I.

The catalogued procedures are:

SIMC compile source program, create object module. The
procedure consists of one procedure step named SIM,
which is an execution of the SIMULA compiler. The
procedure has no symbolic parameters.

SIMCL Compile source and linkedit to executable PROGRAM.
Procedure step names are SIM and LKED. Symbolic
parameters:

PROG=progname
progname will be the name of the created
programe.

LIB='libname"
libname is the name of the catalogued
library in which the object program is placed.

EXLIB=*libnamel’
libnamel is the name of the catalogued library
from which external procedures are taken.

LOISP=0LD or MOD
OLB: the object program is to replace an
existings identically named program in
the library.
MODB: The ob ject program is to be added to the
library.

SIMCLG Compile, linkedit and eXecute object program.
Procedure step names are SIM, LKED and GO. Symbolic
parameter ¢

EXLIB=*1ibname!’
Name of library from which external
procedures are to be loaded.

SIMG Execute @ SIMULA ob ject program from a load module

SIM

SIM

Not

Explanation

library. The only procedure step of SIMG has the name
G0. Symbolic parameterst

PROG=progname
Name of program to be executed.

LIB='libname*
libname is the name of the load module library.

CG Compile cource and execute the LOADER program (which
combines the steps LKED and GO in SIMCLG). Step names
are SIM and GO. Symbolic parameter same as in SIMCLG.

A one-step JCL=procedure which makes use of a special
program called SIMCNT. This program is a standard part
of every SIMULA systems starting with release 3.0« For
details on this procedure, see section 2.4.1.

e The mandatory job statement has been omitted in all
the following examples.

//A EXEC SIMC,PARM.SIM="*NOLOAD s XREF"
//SIM.SYSIN D %
{source program deck>

- ey fup CWR A swe
DY -
Sum S PR AWR e pem

® o e —— . — —— —— -

Exs 1¢ Compile program to obtain program listing,
cross-reference listing and diagnostic messages.

(digits refer to line numbers of the example).

1: This line invokes the catalogued procedure SIMC. The
PARM operand of its only step, SIM, is replaced by
'"NOLOAD,XREF ', which will suppress object module
generation (NOLOAD) and cause the cross-reference
listing to be printed (XREF}.,

2¢ This dd-statement defines the source program data set.
The asterisk indicates that the data set follows this
line in the job stream.

3¢ The delimiter statement signals the end of the source
programe.

//h EXEC SIMCyPARM.SIM="DECK,NOLOAD?®
//SIM.SYSPUNCH DD DSN=MYSAVE,UNIT=3330-1,=--
//SIM.SYSIN 0D %

{source program

LI b

<&

/%

—— —— —— — ——

Sun Cup Cum s R WD pem
Sem 48 40 90 g S pum

Ex. 2¢ Compile and save program.

When the program has been found to be free from errors, the object
module can be saved. This will mean that when the program is to be
executed it is not necessary to recompile it each time.

1: Since we want to produce an object module but not load
ity the parameter to the compiler is 'OECK,NOLOAD'.

2: This DO-statement has been added to the procedure step.
SYSPUNCH is the ddname on which the module is stored.

3 and 4:
Same as 2 and 3 in the preceding example.

1] 1
! //A EXEC SIMCLG 1 !
! //SIMJSYSIN DD 2 !
! {source program> !
LA 3 !
! //GO.SYSIN DD 4 !
! {test data> 5 '
!/ 6 !
! ¥

— —— e —— . —

Ex. 3¢ Compiley, linkedit and execute.
This is the typical test run in a debugging cycle. The object program
is not saved.

1: This statement invckes the SIMCLG catalogued procedure.

2 and 3@
Same as in the previous examples.

5¢ Test data to be read by sysine.
6t Signals end og file for sysin.

When you want to use the LOADER program replace SIMCLG by SIMCG in line
1.

The library

VP LB Sem SR Cwm Pwp AWR Qum O e

//& EXEC PGM=I1EFBRI14

//L1I8 DD DSN=A.LLIB,DISP=(NEW,CATLG), C
// UNIT=2314,VOL=SER=XXXXXX), c
// SPACE=(TRK,(10,5,20))

//8B EXEC SIMCL,PRCG=PROGA,LIB='A.LLIB®
//SIMSYSIN DD %

{source program

NI LH NN -
P ST AP Gwe G R SR cem e e

-

Exe 4% Create a program library in which an ob ject

program is saved.

is created in a dummy step preceding the compilation.

This statement requests an execution of the dummy
program IEFBR14.

The first line of the DD-statement requests the system
to catalogue a new data set with data set name A.LLIE.
A must be the name of an index in the catalogue.

The first continuation line defines the disk pack on
which the data set will be put?! 2314 disk pack with
serial number XXXXXX.

The second continuation line defines the space
allocated to the data set (section 5.3.2.2). The number
20 indicates that the data set will be & library with
20 directory blocks, which will permit approximately 5
% 20 = 100 different programs in the library.

This statement invokes the SIMCL catalogued procedure.
The symbolic parameters request the linkage editor to
add the ob ject program to the library A.LLIB under the
name PROGA.

- — —— —— — ——

Aad T3

//A EXEC SIMCL yPROG=PROGA,LIB=*A.LLIB'sLDISP=0LD 1
//SIM.SYSIN DD * Z
{source program> !

/% 31!
1

Ren Swm Som @ Sewm Rem
-t

Ex. 5¢ Compile and replace a program in an existing
program library.

The first statement of this job requests the linkage editor to replace
the program PROGA in A.LLIB with the ob ject program resulting from this
compilation.

!

! //A EXEC SIMG,PROG=PROGA,LIB='A.LLIB*
! //G0.SYSIN DD *
1

t

!

P e

{execution data>

tes Pom 2w Pped S0 2o

— — - ———— — — . . . o o oo

Ex. 6% Execute an object program from an old program
library.

When an ob ject program has previously been saved, the above example
shows how it will be executed.

————— —— —— ——— e i e, . o . S e

//A EXEC SIMC,PARM.SIM=EXTERN
//SIMJSYSIN DD
{external procedure source>
/%
//B EXEC SIMCLG
//SIM,SYSIN DD &
<main program source>
/%
//GO.SYSIN DD *
{test data>
/%

=
HFOWVME~NOCJmSUN-

 od

G0 P Fs Vws WO AR (e D FuD cem @ Pem e
S SR Pus P Pup IV Pud tmp Sem Pom fwe Pl Sup

—— - e e . e —— e o —

Ex. 7¢ Compile and run external procedure and main programe.

Statement 1 - 4 can be repeated if there is more than one external
procedure.

//A EXEC SIMCL,PROG=PROCI1,LIB="A.LLIB's
// PARM.SIM=EXTERN,PARM.LKED=NCAL
//SIMJSYSIN DD

<external procedure source>
/%

——— — ——— —— —— —— — - . s " S S ot S it e S —— -

M-
- tem tem tem 9em te@ gum

s e tem Pem CwB tw pem

Ex. 8 Save an external procedure in a program library.

1 Add the operand LDISP=0LD if an old procedure is to be
rep laced.

2t The linkage-editor parameter NCAL prevents addition of
run-time system elements. This will save space in the
library. The operands must occur in this order since
the SIM procstep precedes LKED in the catalogued

procedure.
v T - B
! //A EXEC SIMCLG,EXLIB='A.LLIB"* 1!
Y //SIM.SYSIN DD 2!
! {source program> !
v/ !
! //GOLSYSIN DD 3!
! {test data> !
LA !
! 1

Exe« 9¢ Compile and execute program using external
procedures in a load module library.

The external procedures used must have been put in A.LLIB using the
method of Example 8.

The name specified in the PROG operand of Example 8 must coincide with
the identifier of the procedure and with the <external identifier> of
the external procedure declaration in the main programe.

2.4.1 Using the SIMULA system with the JCL procedure SIM

SIM is a one-step JCL procedure which makes use of a special program
called SIMCNT. The basic action of SIMCNT is to retrieve input programs
and process them, one after another.

There are four modes in which SIMCNT can operatet

sour ce mode
ob ject mode
load mode

update mode

input program is in source code

input program is an object module

input program is a load module

input program is a source code which is to be updated
prior to further processing.

The operating mode may be freely changed for any program.

Program processing in the source mode consists of compilation (using
the SIMULA compiler), loading (using the 0S LOADER) and execution. Once
compiled and loaded, a program can be executed an arbitrary number of
times. The above mentioned pattern of program processing is cut short
if either compiler or loader actions were not successfull or if only
compilation was requested; processing continues with the next program
in such a case«. In object mode, program processing consists solely of
loading and subsequent executicn (possibly multiple executions). In
load mode, the program is loaded from secondary storage into core
(using the LOAD macro) and then executed the specified number of times.
In update mode, the source program is updated (using the IEBUPDTE
utility) and the new master, which is & temporary, sequentially
organised data set, is then treated as an crdinary input program in
source mode unless updating was not successfull.

The function of SIMCNT and mode switching are controlled by a trivial
command language, sentences of which are passed to SIMCNT via the SIM
symbolic parameter P, which is positioned at the beginning of the EXEC
PARM field. A sentence of the SIMCNT language is a string of arbitrary
length consisting of the letters C, U, L, U, E and unsigned integers.
An empty string is also legal and it is interpreted as digit 1. In
addition, program names (terminated by commas, if necessary) may also
be part of the control string.

The meanings of the respective symbols are as follows?

C eoo switch to source mode:
retrieve and compile a source code program.

0 «oe switch to object mode:
retrieves load and execute an object program.

L oses switch to load mode:
retrieve the program whose name follows the L (and is
delimited by a comma if not terminating the string), and
execute it.

U see switch to update mode?
retrieve and update a source program, then compile the updated
version.

E see if in source or update mode:
(load if necessary and) execute the program which was compiled
lasts otherwise execute the last loaded program.

unsigned integer

ese if followed by any of the above control letters, indicates
repetition of the associated action (e.g. 2C means CC, 3E
means EEE, etce.); if terminating the control string? perform
CE the requested number of times (i.e. compile/load/execute
the specified number of programs, e.ge. digit 3 at the end of
the control string stands for CECECE).

The physical location of prograams to be processed by SIMCNT depends on
their processing mode! the program to be processed in load mode must be
a member of a load library specified as or concatenated with STEPLIB;
the program to be processed in update mode must be a (member of &
partitioned) data set specified as (or concatenated with) SYSLIB} any
other program must be a sequential data set with ddname SYSINn, where n
is empty for the very first program to be processed or i-1 for the i-th
program (regardless of mode witching). In update mode, SYSINn is used
as a ddname for the IEBUPDTE control statement data set. Execution data
(if any) must be submitted on the following ddnames?

DATA for the first execution qf the first program (i.e«¢ on SYSIN}
DATA j for the (j+1)-th execution of the first program (i.e.« on SYSIN)
DATAI j for the J-th execution of the i-th program (i.e. on SYSINIi)
Notes:

- Execution data set ddname conflicts must be resolved by appropriate
sequencing of the programs (e.g. CATAll may be data for the 12th
execution of the first program as well as for the first execution of
the second).

- Syntax checking of the control string is minimal and the effect of
illegal strings is unpredictable.

- The global condition code returned by SIMCNT is?
(max update/compilation ¢c)*100 + (max loading/execution cc) or 1111
in the case of the command language syntax error.

- Control of the processors involved (compiler, loader, RTS) may be
exercised in the usual way, i.e. by specifying requested opticns in
the EXEC PARM field. But remember that this affects all processed
programs equally. (The EXEC PARM field to be used with SIMCNT may
either be empty or of the following format:

PARM='<{SIMCNT control>/<{SIMULA comp. parme.>/<{loader
parms«>/<RTS parmse«>/<user parms.>"'

Any angle bracketed part may be empty, but only trailing slashes may
be dropped.)

The complete set of control statements for procedure SIM as suggested
in the SIMJCL data set of the release tape are given in appendix I.

Note that the basic set of DD statements used by SIMCNT is identical to
that of a standard SIMULA compiler. Providing that SYSPRINT and SYSGO
DD statements are not altered, SIMCNT operates equally well with any
compiler version regardless of its default ddnames.

Additional data sets may also be used.

Setting of the RTS parameter TIME is a8 recommended safety precaution
which will inhibit waste of CPU time if an infinite loop occurs in some
executed program (the time unit used is 1/100 second).

Examples of SIMCNT activation using SIM?

//A EXEC SIM
//SYSIN DD s
<{SIMULA program>
//DATA DD %%
Cexecution data>
/%

- NS ¢ O ¢ed PP ted Cwm
S0 P e Fom ¢t PP ¢ tem

Ex. 10: Compiles load and execute one SIMULA program

//8 EXEC SIM,P=2,CP=XREF
//S5YSIN DD e

{1lst program>
//BATA 0o %

{data for 1lst program>
//SYSIN1 DD %

<2nd program>
//DATA11 DD i

{data for 2Znd programd>
/%

IED B I 1B 4P PP PP S W ¢ s s

W D FeB CuR GNP Ce® S PR tup CeB e tem

Ex. 11: Compile two source programss taking cross-
reference listing and execute them.

/7/C EXEC SIM,P=COE
//SYSIN DD %

<lst program (source)>>
//SYSIN1 DD %

<ob ject module of the 2nd programd
//0ATAL1l DD %

<{data for the 1lst exec of 1lnd prg>
//DATA12 0D *

<{data for the 2nd exec of 2nd prg>
/%

S G D P D S Qen VD ¢ GWP G Pwe tew
10 10 10 I D e ‘D R P t® ped e

Exs 12¢ Compile one program, then load and execute
twice another program which is supplied in
ob ject module form

———— e —— -

//0 EXEC SIM,P=*LPROGRAMX,2EC"
//DATA 2]8] 3%

<data for 1lst exec of PROGRAMX>
//DATAl DD %

{data for 2nd exec of PROGRAMX>
//DATAZ DD 3¢

{data for 3rd exec of PRUGRAMX>
//SYSIN1 DD £

<{source program>

S 4@ 20 oem

N® PP FeD VB D LB QD D 2B E tew pew

- s te VO P e @ 4w

Exe 13: Execute three times PRUOGRAMX which has
previously been compiled and linked-edited
(into SIMLIB), then compile a source program

//E EXEC SIM,P=U
//SYSLIB DD DSN=CLDTEST,DISP=SHR
//SYSIN [D
«/ CHANGE NAME=TEST,NEW=PS
-- update data statements -=-
«/ ENDUP
/%

G PB D Vew R ted VB tem Ve
Pl PP Vel Ped VB Ped NP V@ o

Ex. 14: Update and compile a source program which is
held under member name TEST in pds OLDTEST.

3 Hardware and implementation defined restrictions and capacity
limitations.

3.1 Permitted ranges of arithmetic quantities, precision of real
number arithmetice

The ranges of arithmetic quantities are listed in table 3.1l.

|
i
|
|
I
|
{
!
|
{

TTLONG REAL %)t ((1-16)%%-14)%16%%63 1 16%%=65

P e e e - o . e — —

; quantity ; max imum i minimum ;
% INTEGER g 2%%31 - 1 "é Z2%%3] g
g"suoét INTEGER é' 2%%15 - 1 '"é “2%%15 g
1TTTTREAL %) 1 ((1-16)%%-6)%16%%63 1 16%%-65 1
: : ;
' !

cam P
tem

Table 3.1¢ Ranges of arithmetic quantities.

%*) The range of the magnitudes of normalized numbers are
given. A true zero is also representable, and the range
of the magnitudes of negative numbers is the same as
for positive numbers.

Integer arithmetic is performed exactly.

REAL quantities have a precision of 6 hexadecimal digits (around 7
decimal digits), LONG REAL quantities have 14 hexadecimals (around 16
decimal digits). There may be an additional loss of precision due to
the rules for truncation of floating point operation results (see (4)).
3.2 Maximum sizes of block instances, arrays and texts.

The maximum size of a block instance is 4096 bytes. The size of a block
instance depends on its parameters and declared quantities and can be

computed using the information in 3«4.

There is no maximum size of an array, but if the last subscript is
ignored, the array must not have more than 2%%15 - 1 elements.

A text must not have length greater than 2%¢15 - 20.

3.2 Program capacity limitations.
Besides the capacity limitations given in the table below there are

restrictions on the complexity of an expressiony for which no
comprehensive estimate can be givens. See also 3.2,

——— o

—— - e e e . e . e e s et e ———

Item ;max valueé

“Block level o - 1) —g 15 é
Prefix level of class or prefixeg_block 2) é 62 g

“Number of parameters to a pFEceduFe or a class -—-i—----_——-i
(including parameters of prefixes) s 127 s

Number of Egggieters tb_EgFtran or assembly procedure.é---—Ig---%

For statement nesting level - ‘___Egg__-‘

Designational expressions in switch declaration

-
~
-

tel g8 s ten

Number of_;irtuals specified in class

B ID FD B ITE D P D S I D (D PP 1D PP el PR PP G P el PP VD tep P fed fed Sl D Pem

——— o —— ——o— ——— —— - e —— ¥ s e e . . S . s

!

!

'

!
! !
(including prefixes) ! 255 !
] 1]
Number of subscripts of array ! 127 !
1 !
Identifiers declared in one list ! 127 !
1 !
Number of differently spelled identifiers, ! !
compiled in minimum core area ! 1000 !
1 !
Number of differently spelled identifiers, ! !
independent of core area 3) ! 3072 !
1 !
! Redeclaration level capacity 4) ! 30 !
] ! |
! Number of fixups 'Deps on !
! 5) 'part.size!
| _ ! _ !
! Number of external references 6) ! 200 !
1 4

1) The block level for a program point is the number of
begin-end pairs that enclose ity excluding those of compound
statements, but including connection blocks.

2) A class with no prefix has prefix level zeros, and a class with
prefix has prefix level one higher than its prefix.

3) This is normally 1500 user identifiers as default. In order to
obtain the maximum, the compiler CSECT DEFAULT must be modified
and the compiler regenerated to increase tha table size.

4) Block level plus the number of enclosing compound statements
that have tocal labels and are also controlled statements or
connection blocks.

5) The number of fixups generated by program constructions are:

! ! !
! Item ! Fixups !
v _ _ ! !
! Class declarationy prefixed block ! 4 !
1 Y !
! Other block ! 3 !
! | S
! then t 1 !
| . —_— _ ! _ !
! else ! 1 !
Ve _ ! - !
! label ! 1 !
| S —_— _—— _ ! _ !
! inspect ! 3 1
t_ . e _— _— N !
! when H 1 !
L S _— _ S R |
! for statement ! 2 !
! | !
! switch ! 1 !
! ! !

3.4 Object program storage requirementse.
The SIMULA cobject program needs storage of three categoriest

i) Storage for compiled code (load module).
ii) SIMULA working storage.
iii) System working storage.
The amount needed for i) is fixed during program execution and can be
determined from the linkage=editor listing when the object program is
created.

The amount of system working storage needed can be determined from (2).

The amount of SIMULA working storage needed is the sum of the storage
needed for all referable block incarnations in the program, and a
general overhead of 368 bytes (which includes the images of sysin and
sysout) «

Except for space for declared variables a block takes:

24 bytes if it is not terminatedy, or if it is an object of a
class with local class attributes

2¢ bytes if it is a scheduled process

2% bytes if it is a procedure made visible through connection
or remote referencing.

The block instance itself has an overhead of 8 bytes and the storage
needed for parameters and declared quantities can be determined from
table 3.25 which gives the number of bytes and the alignment factor for
any quantity. Quantities are allocated in the order in which they are
declareds then 4 bytes are added for each nesting level of for
statements.

1 %, mode ! declared or !—Earm.by !—_parm. by !
! Wy !' by value ! reference ! name !
] Q3 ! e t | !
! quant e 1 S ! A !''S ! A LA -
L LS SR ! ' | S S
! PROCEDURE 'O ' o ! 8 f 4 r 8 t 4 1
! LABEL,SWITCH ! ! ! ! ! ! !
L i ' '_ '__ L DI,
! REAL ' 4 LI ! - ! - '8 !t 4 !
' _ — L S S ' ! ' ' !
! LONG REAL '8 L ! - ! - '8 ! 4 !
| S ! ! ! '_ | S S |
! INTEGER ! 4 ' 4 ! - ! - ! 8 ! 4 !
L - LS SEVS SIS SN SN SRS |
! SHORT r 2 ' 2 ! - ! - tr 8 !t 4 !
! INTEGER ! ! ! ! ! ! !
LS — | S SR ! . S DS DR |
! BOCLEAN 'l 11 ! - ! - ' 8 t 4
! CHARACTER ! ! ! ! ! ! !
LS ! ! '_ '_ ! r____!
! REF ' 4 ' ¢4 ! 4 ' 4 '12 ot o4 !
Y Y Y ! ! N !
' TEXT 112 ! 4 112 ! 4 ! 8 ! 4 !
| S ! S S ' L _! L !
! REF ARRAY ' 4 ' 4 ! 4 ! 4 t12 !t o4 !
| S ! N S L __ ! ____
! arrayis L ! 4 ! 4 ! 4 tr 8 ! 4 1!
L r__ 1___ L - ' ! ! !
Table 3.2 Space for quantis in block instance .

S ¢ size (bytes) for quantity.

A ¢ alignment of quantity.

For & <type> procedure block instance, the result takes the space of a
declared quantity of the same type.

Arrays and text blocks are allocated cutside the block instance. An
array needs the space required for all its elements according to table
3.2y and an overhead of 28+2%n bytes, where n is the number of
subscripts of the array. A text block needs 12+n bytes, where n is the
length of the main text.

The sizes of block instances, arrays and texts are always rounded
upwards to a multiple of 8.

4 Implementation defined parts of the SIMULA language.

The references in each sections refer to (12).

4.1 Use of system prefixes.
Refer section 2.2.1.

The system prefixes SIMSET and SIMULATION must not be used at more than
one block level at a time in & program (including external procedures
and classes). When a SIMSET or SIMULATION block is left through the
final end, another one can be declared at any block level. Several
incarnations of a SIMSET or SIMULATICN block can exist at the same
time, as long as they have the same block level.,

SIMSET and SIMULATION can be used for block or class prefixing.
LINK, HEAD and PROCESS can be used for class prefixing only.

FILE subclasses must not be used as prefixes.

4,2 Accepted virtual specifiers and rules for virtual matches.
Refer section 2.2.3.

The accepted virtual specifiers are the same as the legal procedure
parameter specifiers. For all virtual quantities any match must have
the same type as the specification, except for the case of a virtual
REF procedures where a subordinate type is accepted (cf. (12)y 3.2:5),
and a <notype> procedures which can be matched by a <{type> procedure.
In the latter case the type is accessible only at access levels deeper
than or equal to that of the match, and any match in a subclass must
have the same type, or a type subordinate to that of the latest match.

4,3 Collating sequence.

Refer section 3.2.2.1.

The collating sequence is defined by the 8-bit internal EBCDIC
character representation, which also defines the integer-character
correspondence established by the standard procedures RANK and CHAR
(4).

4«4 Initialisation of character variables.

Refer section 3¢2:%.

Character variables are initialised to internal zero bytes. These have
no printable equivalent, but usually show up as blanks.

4,5 Evaluation of Boolean expressions.
Refer to section G.2.2.1.

In SIMULA for 360/370 all function designators occurring in a Boolean
expression will be evaluated from left to right. Some other systems,
however, do not follow this rule. They operate such that evaluation
proceeds from left to right only until the resulting value of the
Boolean expression can be calculated. For this reason you are advised
not to use side-effects of function designators occurring in Boolean
expressionss unless you have checked that execution is independent of
the evaluation method. Utherwise this would destroy the portability of
the programe.

4.6 For statements.

Refer secticoh 6.2

The controlled variable of a for statement must not be a remote or
subscripted variable, a formal parameter called by name, or a procedure

identifier. Note that the value of a controlled variable is welldefined
when the for statement is left.

4.7 Parameter type correspondence.
Refer to section 8.2.

The type correspondence rules for parameters are given in the table
4‘1.

——— o ——— ——

!, mode ! ! ! '
! e ! ! ! !
!' formal ol ! name ! reference ! value !
! parameter %ol ' ! !
! ! ! ' __ !
! <{value type> ! C ! - L !
Y e ! ! ' __ !
! {reference ! ! ! !
! type> LA ! c L !
'_ _ _—— ! ! LI !
! <value type> ! ! ! '
! ARRAY ' I ! I LA { !
'__ ! ! ' !
! <ref type> ! ! ! t
! ARRAY ' C ! 1 ! - ¢
e - ! e | S !
! <type> ! ! ! !
! PROCEDURE LI ! S ! - !
1 1 ']]

Table 4.1t Actual/formal type correspondence
c: types must be compatible.
I types must coincide.

S: actual type must be subordinate to formal type.

4.8 Separator

Refer to section 10.8.2.

On output (PUTFRAC, OUTFRAC) & <separator> is a blank character.
On input (GETFRAC, INFRAC) a blank or & comma is accepted.

A separator is a character separating the digit groups in a <GROUP>.

4.9 Power-of-ten symbol.

The basic symbol is used by the standard procedures PUTREAL,
OUTREAL s GETREAL and INREAL. Initially is represented by E (as in
Fortran), but it can be altered dynamically by means of the standard
procedure LOWTEN, which has one character parameter. After a call on
LOWTEN, the character passed as parameter will act as the power-of-ten
symbol in place of E. This character should not be a digits a sign, a
blank or a period.

4,10 Edit overflows
Refer section 10.10

If an edit overflow occurss the text intc which the number could not be
edited is filled with asterisks.

In addition a warning message is printed at the end of program
execution and 4 is added to the return code.

4,11 Formats of editing procedures.
Refer section 10.10,

PUTINT: The number is edited with initial zero
suppresion. If it is negative, a minus sign
is edited immediately before the first
significant digite. Zero is edited as the
single digit 0, right adjusted in the text.

PUTFRAC:S The number is edited in three=digit groupssy
starting outwards from the decimal point. If
the number is zero, the digits after the
decimal point are zero. For a negative
number, a minus sign is edited immediately
before the decimal point or the first
significant digit, whichever is first.

No more than 12 digits may appear after the
decimal point.

PUTREAL: The number is edited according to the
picture?

sde.dddEzdd or sEzdd
where s is blank or -

d is a digit

z is + or -

The number of digits after the decimal point
depends on the precision requested.

Zero is edited as a single 0, right ad justed
in the text.

4.12 Mathematical subroutines.

The following elementary functions are available as standard functions:

name function

ARCCOS (cos X)odee=1

ARCSIN (sin X)ok=1

ARCTAN (tan X)oo-1

cos cos X

COSH coshyp X (1/2(e¥¥x + e¥¥(-x)))
EXP e %lkx

LN In X

SIN sin X

SINH sinhyp X (1/2(e¥kx = e¥i(-x)))
SQRT SQRT(X)

TAN tan X

TANH tanhyp X ((e¥¥%x = edik(=x))/(eddx + edk(=-x))})

The approximaticn methods used to compute these standard functions are
described in (see (14)).

The function value is computed in double precision if the argument is
of type LONG REAL.

The algol-defined functions ABS, ENTIER and SIGN are also available.

4,13 Array subscript checking.

The subscripts of an array are not checked individually, but a check is
made to see that the address of a subscripted variable lies within the
array.

4,14 External procedures.

Any REF type parameter of an external procedure must be qualified by a
subclass of FILE.

An external <type> procedure may have any type except REF.

The name of an external procedure may not start with the prefix ZYQ,
and seven characters are significante

When a program includes a declaration of an external procedure, an
entry in the external symbol dictionary is generated (ESD). Khen the
procedure is used in the programy this ESD entry will be used as the
basis for the information passed on to the loader. If the procedure is
not referenced, the information will not be passed to the loader, i.e.
only those procedures that are actually used will be included by the
loader.

A user can indicate that an assembly procedure does not require the
standard interface in order to work correctly. In such case the routine
is linked in directly which results in an increased efficiency. In
particular note that:

- One must use the word FAST after external e.g.
external fast long real procedure cputime;

- Such procedure cannot have parameters (so far) but, if the
procedure name happens to be CODE (Cf. External Procedure
Library, NCC Publication S56) then the compiler will plant
its literal parameters as in-line code and no call will be
generated at all.

- A given procedure can only be linked in one way in a
programe

4,15 External classes.

Any REF type parameter of an external class must be qualified by a
subclass of FILE or by the external class itself.

The name of an external class may not start with the prefix ZYQ, and
seven characters are significante.

To compile a class separatelys use the procedure SIMC as follows:

Notes?

External

//XEC EXEC SIMC,PARM='EXTERN=C®
//SYSPUNCH DD DSN=library=-name (Mname) ,DISP=0LD,DCB=BUFNCO=1
//SYSIN DD %
{class source code>
/%

as The class code submitted on SYSIN must start with the word
class or a prefix identifier or an external class
declaration, ieee¢ it must not start with begin.

be If BISP=0LD is coded on the SYSPUNCH statement and there
was already a member called Mname in the library, it will
be overridden by the currently compiled class. DISP=NEHK
disables the overriding.

c. Mname may conveniently be identical to the class identifier
but this is not a rule.u

class usage in the main program can be achieved by use of

procedure SIMCLG:

Note:

Example:

//USEC EXEC SIMCLG

//SYSLIB DD DSN=library=-name DI SP=SHR

SYSIN oD %
{SIMULA program (or class to be separately compiled)
which contains the external class declaration>

/3%

ae External class declaration has one of the following forms:

external class classname;
external class classname=Mname;

This is placed among the declarationsy and the line itself
must not contain anything else.

The second aslternative is used in case that classname is
different from Mnsme.

The following is an example showing how to use an external class
MYSIMSET as & program prefix:?

//USEC1 EXEC SIMCLG
//7SYSLIB DD OSN=library-name ,3ISP=SHR
//SYSIN DD %
external class MYSIMSET;
MYSIMSET begin
{program declaraticns and statements>
end of program;

4.16 Assembly and Fortran procedures.

Any parameter to an EXTERNAL ASSEMBLY PROCEDURE must be a declared
variables a parameter called by values, a declared arrays an array
parameter not called by name or a8 label local to the block of the call.
An EXTERNAL <type> ASSEMBLY PROCEDURE may have any type.

The same rules apply to an EXTERNAL FORTRAN PROCEDURE and an EXTERNAL
{type> FORTRAN PROCEDURE, but types REF, TEXT, LABEL and formal arrays
are not permitted.

4,17 Random drawing procedures.

The procedures for probability distributions use Lehmers multiplicative
congruence method for random number generation:

uti) = lambda*U(i-1) (mod P)
X(i) = Ulti)/pP
with
P = 20032 = 4296957296
lambda = 5713 = 1220703125

Each X(i) is computed with 24 bits significance. Since the U(i) are
represented with 32 value bits and no sign bits the antithetic drawings
are obtained by reversing the sign of the initial value.

Since it may be important to know the algorithms used for obtaining the
various distributionss a formal definition is given in SIMULA. The
utility procedures XI(U) and UI(U) return X(i) and U(i), respectively,
and they also replace U(i=1) in U by U(i)e The checks for parameter
validity are not showns but if the algorithmic description implies a
reference to & non-existent array element, then this will be detected.

BOOLEAN PROCEDURE DRAW(A,U)}; NAME Uj; REAL A3
INTEGER U3
DRAKH = (XI{(U)<A})i

INTEGER PROCEDURE RANDINT(A,B,U); NAME U}
REAL A, B§ INTEGER U;

RANDINT = (UI(U)//2%(B=-A+1)//2%%31+A;

COMMENT THE PRECEDING EXPRESSION CANNOT BE EVALUATED
IN SIMULA FOR 360 (FIXED OVERFLOW);

REAL PROCEDURE UNIFORM(A, Bs U); NAME Uj
REAL A, B; INTEGER Uj

UNIFORM t= XI(U)*(B-A)+Aj

REAL PROCEDURE NEGEXP(A,U); NAME Uj
REAL Aj INTEGER Uj;
NEGEXP := ~LN(XI(U))/A;

INTEGER PROCEDURE POISSON(A,U) ;i NAME Uj

REAL A5 INTEGER Uj

BEGIN INTEGER T§ REAL Rs R1j
R1 = EXP(-A)} R = 13

L: R ¢= R*XI(U); IF R>=R1 THEN
BEGIN T ¢= T+1; GOUTO L ENDj§
POISSON = T;

END POISSON;

REAL PROCEDURE ERLANG(A, B, U); NAME U;
REAL A, B; INTEGER U;
BEGIN REAL AB, P;
AB = A%B; P 1= 1;
FOR B ¢= B-1 WHILE B>=0 DO
P ¢= PxXI(U);
P = LN(P);
IF B <>0 THEN
P = P=BxLN(XI(U));
ERLANG = =-P/AB
END ERLANG;

COMMENT LSB AND USB BELOW ARE NOT USER-ACCESSIBLES
INTEGER PROCEDURE LSB(A); ARRAY Aj
COMMENT RETURNS LOWER SUBSCRIPT BOUND
FOR A ONE-DIM ARRAY; «ce

INTEGER PROCEDURE USB(A)j§ ARRAY Aj;
COMMENT RETURNS UPPER BOUND; <o

INTEGER PROCEDURE DISCRETE(A, U); NAME Uj

ARRAY A5 INTEGER U;

BEGIN INTEGER I, Ji REAL Xj
X t= XI(U); I ¢= LSB(A); J = USB(A)-I;
FOR J = J//2 WHILE J <30 0O
IF A(I+J)<{=X THEN I = I+J;
FOR I = I+1 WHILE 1<= USB(A) DO
IF A(CI)>X THEN GOTO L3S

L DISCRETE = I;

END DISCRETE;

REAL PROCEDURE LINEAR(A, Bs U)j; NAME U;
ARRAY A, Bj INTEGER U;
BEGIN INTEGER I, J; REAL Xj
X t= XI(U); I = LSB(A); Ji= USB(A)-I;
FOR J = J//2 WHILE J4 <30 00
IF A(I+J)<= X THEN = I+J;5
FOR I ¢= I+1 WHILE A(I)<=X DO

LINEAR = B(I-1)+(X-A(I-1))*(B(I)-B(I-1))
/(A(I)-A(I-1))

END OF LINEAR;

INTEGER PROCEDURE HISTD(A,U); NAME U; ARRAY Aj
INTEGER U}
BEGIN REAL S; INTEGER T;j
FOR T ¢= LSB(A) STEP 1 UNTIL USB(A) DO
S = S+A(T)
= S%XI(U): T &= LSB(A);
Ls S = S5=A(T); IF S5>=0 THEN
BEGIN T = T+1j GOTO L END3
HISTD := T3
END OF HISTOD;

REAL PROCEDURE NORMAL(A,B,U); NAME U
REAL A,B; INTEGER Uj;
BEGIN REAL X,L S
Al: X &= 24%XI(U)=-1;
S = XI(U)adk2+XkX5
IF S>1 THEN GOTC Al;
L $= SQRT(=2%LN{(X1(U}}/S):
NORMAL = Xkl %B+A;
ERND NORMAL

4,18 Attribute protection.

The definition of attribute protection is not fully implemented.
Programs containing hidden and protection specifications will be
checked syntactically, but the specifications will be treated as
comments.

A warning is given indicationg the lack of semantical implementation of
the feature.

5 Ob ject program input/ocutput.

Input/output (I/0) is the part of SIMULA used for communication.
The mode of communication is:

i) wuser to program
t) program to user
i) program to program

An example of i) is the reading of the scurce program from the user.
it) 1is exemplified by printing on a line printer.

Examples of iii) are the writing of a tape to be read by another
program or the same programs, and the writing and reading of blocks
selected at random on a direct-access device.

In the following subsections the basic principles of Data Management
with respect to SIMULA 1/0 are described. Subsections marked with an
asterisk cover special features reguiring some background knowledge not
given in this manual. The references in the heading of these sections
refer to the IBM 360/370 documentaticn that should be understood before
reading the section.

The following features are not described at all since they are not
related to the fact that the data sets are processed by SIMULA
programs:

Operations on data sets by Utility Programs (see (9))

Concatenation of data sets (see (6))
Multivolume data sets (see (6))
Using members of partitioned data sets as

sequential data sets (see (6))
Detai Is of SPACE allocation (see (6))
Password data sets (see (6))

Generation data sets (see (&) (9))

5.1 0S 360/370 data management terminology.

The pieces of equipment which do the physical reading or writing on the
external data carrier are called devices or units (peripherals with
non-IBM terminology). The word device usually refers to the kind of
equipment (e.g. Ya 2311 device") whereas unit refers to a particular
piece (Ythis tape unit“). The distinction is, however, not always
maintained and is rather unimportant. A detachable data carrier is
called a volume (tape reel, a disc pack or even a drum). Data on
volumes are read and written in blocks, which are physically

recognized by the units. A block will always correspond to an integral
number of bytes.

Devices with a fixed block length are called unit record devices
(card reader/punch, line printer).

An important function of data management is to maintain a logical
structuring of data, which may be different from the physical
structuring in volumes, blocks and bytes.

The largest logical data unit is a data set. Several data sets may
reside on one volume, but a data set may also occupy several volumes. A
data set is uniquely defined by its data set name and the volume on
which it starts. For retrieval and checking purposes, the system
requires that all volumes have volume labels and that all data sets
have data set labels (except for magnetic tapes, which need not have
labels, in which case the system assumes that the operator has mounted
the correct volume).

The data set label contains a description of the data set
characteristics, such as data set organization, logical record
format, logical record lengths etc. Simula programs process data

sets with sequential, direct or partitioned organization. In a

data set with sequential organization the records are retrieved in
sequence while in a direct data set the records can be retrieved in a
random order. A partitioned data set can be regarded as a collection
(library) of similar sequential data sets (members).

5.2 Principles of 0S 360/370 data management.

Since the SIMULA ob ject program runs under the operating system 0S
360/370, it must follow the rules of Data Management of this system,
and it also has access to the facilities provided by the system. The
most important facilities are device independence of the source
program and run-time specification of I/0 processing parameters.

The most important rule is that each file must be defined by a data
definition statement (DD-statement), which logically connects the file
to a data set at run-time.

52«1 Device independence restricticns.

Device independence means that the source program does not refer to
actual devicessy so it can be different devices without recompilation,
depending on availability. The device characteristics musty however, be
compatible with the functions requested by the program. The allowed
devices for the different file classes are given in table 5.1. Infiles,
outfiles and printfiles process sequential or partitioned data sets,
whereas directfiles process direct data sets.,

1ok, file !] ! ! !
! %o ! ! ! ! !
! device e ! infile ! outfile ! printfile ! directfile !
Y 1_ ! —_——— ! '_ _— !
! card reader ! X ! I ! I ! I !
! S ! 1! N S - __!
! line printer ! I ! (X) ! X ! I !
'_ ! ! _! !
! disk ! X ! X ! X ! X !
| S ! 1! - ! - !
! drum ! X ! X ! X ! X !
| S Y ' | S |
! tape unit ! X ! X ! X ! 1 !
| S S ! _ ! ! ———— !
! card punch H I ! X ! (X) ! I !
! ! ! ! ! !

Table 5.1 Device-file class correspondence.
I: illegal combination.
X: legal combination.

(X): legal but not recommended.

5¢2.2 Run-time specification of 1/0 processing parameters.

A SIMULA source program will, in generaly, not contain detailed
information on the processing mode for a file. 0SS 360/370 allows a
large number of alternatives for such things as record format, record
lengths, block sizes number of buffers, buffer length, recording density
(tapel, etc. to be specified at run-time by means of the DD-statement.
Some of these parameters are permanent characteristics of the file
(data set), and they need only be specified in the job step that
creates it. When the data set is used later, the characteristics will
be obtained from the data set label by the control program (this does
not apply to magnetic tapes without standard labels).

5.3 Data definition statement (0OD=-statement).

The DD-statement serves the following purposes:

i)

-
-
S

-
-t
Lal)
St

iv)

v)

vi)

vii)

It defines the correspondance between the program unique
filename and the system unique file identification.

It supplies additional information needed to find an
existing data sets when this is necessary.

It tells the system how to handle the data set when the
job step is finished.

It defines whether write operations on a sequential datsa
set are going to start at the beginning or at the end of
the data set, that is whether the program will add to
the data set or replace it (outfile).,

It indicates where a new data set is to be created and
how much space it will occupy.

It defines data set characteristics for a new data set.

It can be used to specify special processing options for
a new or old data set.

The items above are defined by a number of keyword parameters. The
keyword parameter UCB= has a large number of subparameters used for
purposes iils Vi)y and vii).

The keywords relevant to purpcses i) = vi) above are?

i)

ii)

¢ DSNAME=

! UNIT=4 VOLUME=, LABEL=
DCB subparameters DEN=, TRTCH=

e

DISP=

0ISP=

UNIT=, VOLUME=, LABEL=, SPACE=, SYSOUT=

o

LABEL=, DCB subparameters DEN=, DSORG=, RECFM=,
LRECL=s TRTCH=, BLKSIZE=

DCB subparameters BUFNO=, EROPT=, HIARCHY=, OPTCD=,
MODE=, STACK=

5¢3.1 Binding a file to a data set.

Each file object of a SIMULA program will, at execution time, be
connected to a data set. The binding is effected by a DD-statement,
which defines a data set and a DD-names and which is supplied to the
execution job step. When the file object is created it is given a
DD=-name which is the FILENAME parameter of the object. The DD-name
should be a valid SIMULA identifier, possibly with trailing blanks. 8
characters are significant. When the file is opened it is logically
connected to the data set defined by the DD-statement with a matching
0OD=-name. If no such DD-statement exists, the SIMULA program is
terminated with a diagnostic. Subsequent calls of BUTIMAGE/ INIMAGE
will cause records to be written/read on this data set. Several files
may refer to the same data set, i.e. an infile may read data written by
an outfile earlier in the program. This can be achieved by either
giving the same DD-name to the files or defining the same data set in
several DD-statements. The files should nots however, be open
simultaneously.

This also goes for different members of the same partitioned. Use of
the same dataset in different OD-names in parallell will give
unpredictable results at run-time.

Notet: If the catalogued procedures described in 2.4 are used
to execute an object program, the DD-name should be
preceded by 'G0', indicating that DD-statement is added
to the GO step of the procedure.

5.3.2 Creating a data set on magnetic tape, disk or drum.
5¢3.2.1 Naming a data set.

A data set which will be used in more than one job step must be given a
name when it is createdes The name is supplied by the DSNAME=

parameter. The name may be simple (ee.gs LLIB) or qualified (A.B.LLIB).
If the data set will be referred to in other jobs, it is preferably
catalogued (5¢3.6). In order to catalogue a data set with a qualified
name ‘qual.sequence.name', the qual.sequence must be the name of an
index in the catalogues. Indexes are built with the IEHPROGM utility
program (see (S9)).

1f the data set is only used in later steps of the job, it can be
assigned a temporary name of the form &&name, where name is a simple
name. Such data sets should be passed (5.3.6) to the later job steps of
the _}Obo

53422 Allocating a data set.
Hhen a data set is createds a volume or volume class on which it is to
be allocated must be indicated. There are two ways to specify the
volume: by specific or nonspecific volume request.
Specific request
A permanent data set should be allocated by a specific request
identifying the volume on which the data set is to be placed. A
specific request is effected by giving either

i} the device number and the volume serial numbers e€.g.

UNIT=3330,VOLUME=SER=111111,

when you want to put the data set on the 3330 disc pack
with several number 111111, or

-
ome
et

the name of a data set catalogued on the same volume,
€ege

VOLUME=REF=MYL1B,

where MYLIB is the date set name of a data set catalogued
on the volume.

Nonspecific request

For temporary data sets it is usually enough to make a nonspecific
request, in which case the system chooses a suitable volume depending
on general specifications you supply by means of the UNIT=parameter. In
each installation a number of unit group names can be used to specify
the type of volume. Common names are SYSSQ for tape or disks SYSDA for
disk or drum, and DRUM for drum.

In applications with several filess a considerable increase of
performance can be achieved by carefully considering the times at which
each of the data sets are processed, and requesting separate access
mechanisms for files operated at the same time.

As an exampley, consider a program that operates in two passes. The
first pass reads a catalogued data set and produces intermediate
results on a temporary sequential file. The second pass reads the
intermediate results and produces a new data set. Since the input and
output data sets are not used in the same passy they can use the same
access mechenismy but the temporary data set should be separated from
both the input data set and the output data set:

//STEP1 EXEC PGM=TWOPASS

//5YSCOUT DD SYSOUT=A

//SYSIN B0 ODSNAME=INPUT,DISP=0LD

//CUTSET DD UNIT=AFF=SYSIN,DISP=(NEW,PASS),

// SPACE=(ee«) yDSNAME=8&0UTSET
//TEMPSET DD UNIT=(SYSDA,SEP=(SYSIN,OUTSET)),
7/ SPACE=(..s)

VR oms NS qem W Gvm Fem W em
Cwp Gm Sum pp S wS AR sem swe

The DD-names of the three files are SYSIN, OUTSET and TEMPSET.

The DD-statement with DD-name SYSOUT is mandatory, and this data set
will contain possible diaghosticse. The UNIT= parameter of OUTSET
specifies affinity with SYSINs i.e. this data set will be allocated on
the same volum as INPUT. The UNIT= parameter of TEMPSET indicates
separation from OUTSET and SYSIN and direct-access storage (SYSDA). The
separation request will be ignored if it cannot be satisfied.

The SIMULA program may look like the followings with the detailed
processing of data removed:

BEGIN REF(QUTFILE) TEMPOUT,QUTPUT;
REF(INFILE) TEMPIN;

se e

PASSL? TEMPOUT :- NEW OUTFILE (YTEMPSETY);
TEMPOUT.OPEN(BLANKS(80))

se ¢

PASS1LCOP: INIMAGE; <.+ TEMPOUT.OUTIMAGE;
GOTO PASS1LOOGP;

PASSZ: TEMPOUT.CLOSE; TEMPOUT - NONE3
SYSIN.CLOSES
QUTPUT ¢= NEW OUTFILE("OUTSETY);
TEMPIN = NEW INFILE(YTEMPSETY);
TEMPIN.OPEN(BLANKS(80Q));
OUTPUT .OPEN(BLANKS(80))}

PASS2L00P: TEMPINCINIMAGE; «.. OUTPUT.OUTIMAGE;
GOTO PASSZLOOP;

ENDPROG: TEMPIN.CLOSES; CUTPUT.CLOSES
OUTTEXT("TWOPASS FINISHEDY);
END TWOPASSH

Note: The performance can be increased significantly
by specifying proper blocking of ODUTSET and
TEMPSET (5.347)s The SPACE requests will be
discussed in the next section. Unit affinity can
only be requested for removable volumes.

563243 Direct-access storage.

Except for the volume or volume type, one must specify the space a data
set will occupy. A data set on a direct access device may occupy
several disjoint areass called extents.

The first extents are allocated when the data set is created, anc they
constitute the prime area of the datae set. Additional extents are
allocated when all previous extents are filled by a process called
secondary allocation. Secondary allocation will occur up to 15 times,
but after that the data set must be restructured.

The format of the space parameter is

SPACE=(units,quantity)
SPACE=(units,(quantitysincrement))
SPACE=(units,(quantity,increment),,,ROUND)
SPACE=(units,quantity,s,ROUND)

unit is the unit in which the space request is given. It could be:

i) average block length in bytes
ii}] TRK: tracks
iii) CYL: cylinders
quantity 1is the number of units to be allocated as prime area.
increment is the number of units allocated to each additional extent.

ROUND this indicates that the control program will round the size
of each extent upwards to an integral number of cylinders.
Extents are also allocated on cylinder boundaries.

Notes: Specify units with average block length if the volume request
is non-specificy, since it may be satisfied by devices with
different track capacity.

ROUND can increase performance (see (9)y p. 49). There are
several alternate space allocation methods, which are given
in (see (9), pe 47).

The track and cylinder capacities are listed in (see (7}, p.
158}«

If the data set is going to have direct organization (directfile), you
must also specify DCB=DSORG=DA in the DD-statement. No other DCB
subparameters may be specifieds A direct data set will never use
secondary allocation,; so the increment is superfluous.

B5e3eleh MBQHEtiC tapee«

On a magnetic tape any SPACE parameter in the DD-statement is ignored.
Instead, the data set serial number in the LABEL= parameter must be
specifieds The format of this parameter is

LABEL=(n,SL),

where n is the ordinal number of the data set on the reel, and SL
indicates that the data set has standard labels.

A tape volum which is going to have standard labels must be initialized
with the TIEHINITT utility program (see (9}).

Tapes with no labels should be used only if they are used or produced
outside the System 360/370 0S environment.

Note? When a data set with serial number n is written, all data sets
on the volume with serial number >n are lost.

5343 System output.

When a data set is created on a line printer or a card punchs it will
logically leave the system, since the system does not recognize labels
on the corresponding data carriers (printer listings and punched card
files). Therefore, the DD-statement will not contain a DSNAME=
parameter or a volume requests but the kind of output is specified with
the SYSOUT= parameter. The parameter is a letter or a digits usually A
for printed output and B for punched outpute. In some systems (MFT or
MVT) the SPACE= parameter can be used to limit the number of lines if
the program is looping. An example of the use of SYSOUT=A is found in
section 5.3.242

5¢3.4 Retrieving a data set.

A data set is retrieved by the system if it is given the data set name
and the volume on which it resides. The volume information can be given
explicitly in the DD-statement in the form of a specific volume
request, or is implicit if the data set is catalogued or passed from a
preceding job step of the job. The data set name is given in the
DSNAME= parameter. In addition, the DISP= parameter must indicate that
the data set is to be retrieved (5.3.6).

For a magnetic tape you must give the density, which is needed for
reading the label, e.g. DCB=DEN=1 and the data set serial number in the
LABEL operand.

5¢3.5 System input.
When an input data set is smally, it is conveniently put in the job
input stream among the control statements. The DD-statement for the
data set has the following format?

//ddname DD
and indicates that the data set follows this line in the input stream.

In @ PCP system, this must be the last DD-statement of the job step,
and only one such data set can be processed in any single job step.

The line images may not have // or /% in the first two columns.

If you need to input datasets containing e«gs // in the first two
positions the [UD-statements to be used is

//ddname DD DATA
The end of the data set is signalled with a line containing /% in the
first two columns.
5¢3.6 Disposition of a data set.
The DISP= parameter serves several purposest

i} it indicates whether a data set is to be created or
retr ieved

it) it indicates whether it is to be catalogueds passed,
kept or deleted

iif) it defines positioning of sequential data sets.
The format of the DISP= parameter is?
DISP=(parml,parm2), or RISP=parml,

where parml is OLD, SHR, MOD or NEW, and parm2 is CATLG, KEEP, PASS,
DELETE or is absent.

If the DISP= parameter is missings DISP=(NEW,DELETE) is assumed, and
DOSNAME is not necessary.

parml: meaning:

OoLDo An existing data set is to be retrieved. The data
set will be locked, so that no other tasks in a
multiprogramming environment can access it during
the job step.

If the data set has sequential organization, it will
be positioned to the beginning, so that read
operations will read the entire data set and write
operations will replace the existing records.

SHR

M0D

NEW

parme:

CATLG

KEEP

PASS

DELETE

This parameter has the same meaning as OLD» except
that other tasks in the system may access the data
set concurrently. Do not specify SHR if the job step
writes on the data sets unless the write operations
are synchronized by ENQ/DEQ macro instructions
(these can be issued in an external assembly
procedure of a SIMULA program, (see (7))).

The system will check if a data set with the same
name has been passed to the step. If this is not the
casey or if the system cannot find the volume
information for the dataset, a new data set will be
created (and the DD-statement must contain enough
information to create it)e. Otherwise the existing
data set is usedsy and it is positioned to the last
records so that write operations will add records to
the data set.

A& new output data set is to be created. Write
operations will add records, starting from the
beginning of the data set.

meaning

The data set will be catalogued at the end of the
job steps. It can later be retrieved by name alone.

The data set will be kept after the job step. It
must later be retrieved with a specific volume
request.

A sequential data set (infiley outfile) will be
rewound after each close, and a later opening of the
same data set (not necessarily the same file) will
process it from the beginning.

The data set is passed to the next job step that
uses its. The next job step will retrieve it by name,
if MOD or OLD is specified in the parml field. A
sequential data set will not be rewound when closed,
and if it is reopenedy records can be added to it.

The data set is deleted at the end of the job step.
It is rewound when closed.

A third subparameter can also be used. This will specify what is to be
done with the dataset if the job step obnormally terminates (See (6)).

5.3.7 Sequential data sets! characteristics and processing options
(outfile, infile).

A sequential data set will have several characteristics which are
determined from the OD-statement when the data set is created.

These are record format, logical record lengths block size, and, for
data sets on magnetic tape, recording density and tape recording
technique., They are determined from DCB subparameters RECFM=, LRECL=,
BLKSIZE=, DEN= and TRTCH=, respectively.

5.3.7.1 Fixed record length.

If characteristics are not specified the data set will have fixed
length and unblocked records, i.e« each time OUTIMAGE or INIMAGE is
called, & block of fixed size is written or read. The length of all
blocks and records in the data set will be the same as the length of
the image passed as a parameter to OPEN. When the data set is connected
to an outfile, the image length of the latter must always be less than
or equal to the record length. When it is connected to an infile, its
image length must be greater than or equal to the record length. In
both cases some CPU time and core storgge is saved by having image
length equal to the record length of the data set.

5¢3:.7«2 Blocked recordse.

A data set with fixed length and unblocked records provides the fastest
processing of blocks with a given length. It will, however, often be
the case that the logical units of information (customers, employees,
projects, loads, charges, measurement pointss etc.) require much less
space than the optimum block size for the device. In these cases one
can maintain logical clarity of the source program and still use
optimal size of blocking the records (images) together. A blocked data
set is obtained by specifying RECFM=FB,LRECL=image length,
BLKSIZE=block size in the DCB parameter of the DD-statement. The block
size must be a multiple of the image length. It must in no case exceed
the track capasity of the device of 32760.

Example! 80 byte images blocked 20/block:?
//BLOCKSET DD DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)s¢e¢s

5¢3.7+3 Variable and undefined record formats. (see (7)})s pe 58).

If there are considerable variations in the amount of information per
image, space can be conserved on secondary storage by writing variable
(V or VB) or undefined (U) format records. The length of image
determines the length of each record when written.

Un input, the image must contain the record if variable format is used,
whereas for U format data sets the image length determines the number
of bytes read. The LRECL and BLKSIZL parameters are filled in as shown
in Table 5.2

———— —— it . e e e e o e G .

¥] t 1
! RECFM= !t LRECL= ' BLKSIZE= !
Y ! ! _ !
' v ! maxt4 ! - !
t ! S R, |
4 VB ' max+4 !' > max + 8 !
| t ! _ !
t U ! - ! max !
4 ——— 1 ! !
4 F ' max ! - 4
f_ ' I DR
H FB ' max ' n¥*max !
] 1]

Table 5.2 LRECL and BLKSIZE parameters
max is the maximum length of image.

BLISIZE= may never exceed the track capasity or
32760y whichever is smallest.

563744 Carriage control character. (see (7), p.60)

A carriage control or stacker bin selector character may be the first
character of each record of a sequential data set. This is indicated by
appending A (ASA control character) or M (device dependent control
character) to the RECFM= code. This character must be supplied in the
first position of image. It will be written together with the rest of
the image on secondary storage (disc, drum, tapel). It will not appear
on a printer listing or on punched cards.

5.3.7.5 Additicnal DCB subparameters. (see (6) and (7))

The following additional subparameters can be used in special

applications (none

BUFNO=

DEN=

EROPT =

HIARCHY=

MOBE=

OPTCD=

STACK=
TRTCH=

is compulsoryl}:

Number of buffers. 1f omitteds two buffers are
allocated, which is the most suitable in most cases.
If there is lack of storage BUFNO=1 is specified. If
chained scheduling is used it is advantageous to
have many buffers (always less than 255).

Tape recording density (@, 1y 2y 3 or 4) 2 (800 bpi)
is assumed if omitted.

Action taken when an erroneous block is read (1/0
error):

ACC @ accept block. The image should be
investigated character by character to
avoid termination in number de-editing
procedures.

SKP Skip the erroneous block.
not defined ¢ the program is terminated.
In any case a message is printed on sysout.

Hierarchy of buffer storage in systems with Large
Capacity Storage support (@ or 1). @ (high speed
core}l is assumed if omitted.

Mode of cared reader or card punch (e.ge E
indicating EBCDIC).

Special services reqguested

C: Chained scheduling. Several 1/0 requests are
grouped together and performed in one channel
-operation. This is of advantage if the data set
has been given a small blocksize because of the
core requirements of one program and is also
processed by a program with small core
requirements. Specify channel separation and many
buffers for better performance.

Q: Conversion EBCDIC/ASCI1. The conversion is from
EBCDIC to ASCII on outputs and the opposite on
input. Note that the maximum block size which can
be used is 160C. Note also that only non-labeled
tapes cah be handled.

Stacker bin selection on & card punch (1 or 2).
Magnetic tape recording technique (CyE,T}). Note that

the parameters TRTCH, STACK and MUDE are mutually
exclusive.

{See (6) for further details)

5.3.8 Printfile data sets.

All printfile data sets have variable length and blocked records with
ASA control character.

The control character is inserted automatically and is controlled by
standard procedures (lines per page, spacings eject).

Performance can be increased by giving

LRECL

n

(maximum image length + 5) and

BLKSIZE

(>=maximum image length + 9)

The other DCB parameters (except RECFM) of section 5.3.7 can be
specifieds, but most of them will usually not be applicable.

5¢3.9 Direct data sets.

A direct data set will consist of a number of fixed length blocks. The
block length will be equal to the image length when the file is first
opened. The first time the data set is opened, it is initialized by
consecutively writing the open text parameter until the prime area is
fillede No DCB subparameters except DSORG=DA may be specified, and this
must be specified when the data set is created. The image length must
at all times be equal to the block size of the data set.

The access method is BDAM. Addressing is by relative block number.

When INIMAGE or OUTIMAGE is called and LOC is out of ranges the end of
file text is supplied if INIMAGE was called, but image is unaltered if
OUTIMAGE was called. The Boolean procedure ENDFILE indicates whether
the last i/0 call on the file was successful (FALSE) or not (TRUE).
ENDFILE is reset after a successfull i/0 operation. Two unsuccessful
calls may not occur in sequenhce.

t

ITRTCH= 1C,E,T (tape)
1

e e

CsE»T (tape)

! ! ! ! ! !
!Keyword ! infile ! outfile ! printfile ! directfile!
1 ' ' ! !]
1BLKSIZE=! 1)! 2)!max.blocksize! !
! ! ! ! ! !
1BUFNO= ! 3)! 3)! 3)! !
! ! ! ! ! !
!DEN= 1051,2,3,6(tape) 0514293545 (tapel! ! !
! 1] ! ! !
'DSORG= ! ! ! ! !
! ! ! ! ! !
TEROPT= !ABE,SKP,ACC 5)! ! ! !
! ! ! ! ! !
THIARCHY=10, 1 9)10, 1 9)10, 1 9)10, 1 9) !
] t ! ! t !
'LRECL= ! n! 6)! 7)! !
! ! ! ! ! !
!MOOE= ! ! ! ! !
! ! ! ! ! !
0PTCD= ! ! ! ! !
! ! ! ! ! !
IRECFM= ! 1)1 ! ! !
! ! ! ! ! !
!STACK= !1 or 2 8)!1 or 2 8)! ! !
! ! ! ! !

! ! ! !

! ! ! !

Table 5.3¢ DCB subparameterss

1) must be specified for tape without standard labels if the default
values were overriden when the data set was created.

2) for V and U formatsy a maximum blocksize can be specified when
the data set is created.

3) The system default values (two buffers) may be overriden.
%) must be specified.
5) Defines system action on bad blocks.
ACC: accept the bad record
SKP: skip the bad records
ABE: terminate processing
6) U format? do not specify LRECL
V format: maximum length of image + 4
F format: 1length of each record, can be defined when data set is
created.
7) maximum length of image + 5.

8) card punche

9) 0 is default.

5.4 End-of-file text.

When all records of a sequential input data set have been read, an end
of file condition exists« On the next call of inimage, the Boolean
variable endfile (sensed by the Boolean procedure ENDFILE) is set and
the end of file text is stored in image. The end of file text consists
of /% in positions 1 and 2 and of blanks in the other position. If the
length of image is greater than 260 bytes, the character after the
260th are not blanked.

Be careful with making programs depend on the EOF-record. The
EOF-record definition in SIMULA Common Base is the text value ®w!25!%,
Programs making use of this value will not be compatible with other
SIMULA systems.

5.5 Sysin and sysout.

The standard files sysin and sysout are defined with the ddnames
SYSIN® and *SYSOUT', respectively. DD-statements for these files must
always be supplied. If & program does not use sequential input, sysin
can be defined as a dummy data set by the statement

//SYSIN DO DUMMY
and core storage canh be released by closing it at once.

The standard output file sysout will be used to produce any run=time
error or warning diagnostics. If sysout is closed, these diagnostics
will appear on the console, but if SYSOUT, OUTIMAGE is called, the
program is terminated.

If sysout is closed, a dump or trace should not be requested since the
console typewriter is fairly slow and is not supposed to be used for
such purposes.

6 Debugging aids.

The following utility functions are available for program debugging at
compile= or run-time?

- diagnostic messages from the compiler,

- diagnostic messages at execution time,

- identifier cross-reference table from the compiler, see
2e2¢lels

- manipulation of the source listing by improving layout,
see 2.24¢1lele

- program control and data flow tracing,

- symbolic dump of the environment at a run-time error,

- formatted storage dumps,

- assembly listing of the object code.

The two latter are normally only used in connection with system
maintenance, but users who connect toc assembly procedures may think of
these functions as useful.

6.1 Diagnostics.

Messages may be issued by all system components involved in the use of
SIMULA. These messages will appear on the printed output from the job,
or on the console listings. Each message is identified by a three-letter
prefix identifying the system component and a three-digit message
number within the component in the first six positions of the printed
line. An explanatory text will follow the message identification.

Messages are of three kinds:

i) Information messages - reguiring no response from the
user .
ii) Warning messages - should be considered, but no response

necessaryes
iii) Error messages = requiring correction by user.

The most common messages are issued by the Job Scheduler (1EF), the
SIMULA Compiler (SIM), the Linkage Editor (IEW), the SIMULA object

program (ZYQ) and the Fortran diagnostic package (IHC, in external

Fortran procedures).

If @ program is aborted by the control program, a system completion
code and an optional abnormal termination dump will be printed.

Completion codes and messages issued by IBM-supplied system components
are listed in (see (11)]}.

Compiler and object program messages are explained in Appendices B and
Ce

6.2 Tracing.

6.2.1

Program control flow tracing.

The program control flow tracing has been available in the IBM SIMULA
System from release 07.00, while the data flow has been available from
release 08.00.

General description

The system reports all events causing program control to
change its sequential flow; the control switching Is indicated
in the form:

aaaa*bbbb?! mmee o

where asaaa is the line number at which the sequential flow was
interrupted, bbbb is the line number at which control
continues and mm...m is the message giving the explanation.

There are altogether 22 different events that can be reported.
In order to distinguish tracing messages in the listing from
program output they are embedded in dots.

Either implicit or explicit tracing can be required (or both).
The implicit tracing will cause the specified number of
tracing messages to be output in case of a program error
describing the corresponding number of events occurring before
the error occurred. The explicit tracing can be achieved
during program execution via utility procedures TRACEs TRACEON
etce.

Commencing with release 08.00 of the IBM SIMULA there exists a
possibility for tracing the flow of data during the program executione.
It is the tracing of events affecting the contents of the user defined
data structures that is covered by this facility (i.e. alterations of
data structures predefined in the system are not traced).

All kinds of data transmissions are monitored whether they are
expressed in the program explicitly as assignment statements or not
(eege parameter transmissions, text attributes for editing of numerals

etCe)e

Means of control

The control of tracing resides mostly with the RTS« The
following are the only traces whose presence is dependent on
compiler cooperation (SYMBOUMP must be greater than zero):?

« Jjump from one prefix level to another.
e« jump to first statement within a block.
« jump to a local label.

The number of tracing messages required in case of error is to
be specified using TRACE option of the runtime system. (See
2¢2:¢3e¢1s) This activates the tracing facility which then
remains in action behind the scene during the whole program
execution. Be aware of the fact that this degrades program
efficiency. For production programs the normal efficiency is
regained simply by specifying TRACE=0 as the RT option which
is normally a default anyway (check your installation).

A positive value ny if specifiedy has as a consequence the
allocation of a buffer with n entries i.e. up to n tracing
messages will be output describing events immediately
preceding a RT=-error. The disadvantage of this mechanism is
that maintenance of the buffer alone (i.e. disregarding
overhead due to its final interpretation) deteriorates program
execution considerably (304 - 50% cpu~time can be used for
this activity).

Therefore it is much more economical to initiate the tracing
activity dynamically at a suitable instant prior to the
RT-errore. Te this end one can specify a negative integer as a
TRACE parameter value. If value =-n is specified the tracing
activity is started first after n assignments were carried out
in the course of the program execution. Consequently one must
know how many assignments were executed at the instant when
RT-error occurred« This information is given from now on at
the RTS trailing line. Obviously, using this method program
must be rerurn in case of a RT-error.

Finallys one can alsoc use the TRACE option to specify a fill
character which will be used for embedding the tracing message
to distinguish them from normal program outpute. (The default
value is a dot character). This is convenient in case that
e«gs a default character is not sufficiently represented on
the pointer chain, or to improve the outlook of tracing
messages (underscore may be quite handy) or simply to shorten
the messages to fit on one line on a screen (use blank as the
fill character). All that is required for changing the default
fill character is to indicate the suitable character right
behind the TRACE parameter numeric value or next to the equal
sign if no numeric value is specified, e€sg.

TRACE=100_ or TRACE=!
It is recommended that only selected events are traced (e«ge

simulation events etc.}i for this as well as the total list of
traced events see documentation of the tracing utilities.

The necessary conditions for obtaining data flow tracing message are:!

- compilation of the program (module) with the option
SYMBOUMP=4,

- activating the tracer at execution either through specifying a
non-zero value for the RTS TRACE option (see Updates for
tracing control in release 08.00) or explicitly using the
tracing utility TRACE.

Since assignments are often the most frequently executed statements in
a program it is arranged so that a particular assignment is traced only
limited number of times (5 times in default) and further monitoring is
suppressed automatically. It is possible however to obtain further
traces by lifting this limit through use of the tracing utility
TRACECNT.

Finally note that the data flow tracing can be switched on and off
using the tracing utilities TRACEON and TRACEUFF through the message
number O used as the parameter value (it is on in default when tracing
commences unless explicitly suppressed).

Format of messages

All data transactions are illustrated in a form of a synthetized
assignment statement. The left hand side is a unique identification
(throughout the whole program) of the location being altered while the
right hand side is the actual value being assigned. The left hand side
usually takes the form of a (subscripted) variable, its declaration
block being identified at the right from the actual assignment image in
a separate column. Exception is a text value assignment where the left
hand side identifies the modified text object directly through its
counter. (Note that TEXT(1) stands for the standard SYSOUT image and
TEXT(2) for the standard SYSIN image.)

Finally one should note that each message of course identifies the line
number in the source text where the monitored event is expressed and to
which of its successive executions the message is related (the very
first number on the line followed by a star).

Control procedures for the tracing facility.

The following utility procedures are available for control of the
tracing facility on the IBM 360/370 SIMULA. The routines have effect
both for the program control=flow and data-flow tracing.

1)

2)

TRACE

Motivation?

Description

NOTRACE

Motivationt

Description

L3
.

It should be possible to start output of tracing
messages from any point in the program.

The procedure can optionaly have one parameter.
Cepending on whether it is used or not and
whether it is positive or negative, we have the
following cases:?

= No parameter:
Tracing is wanted from now on.

- Positive parameter?
Tracing is wanted from now on, but only given
the number of messages are wanted. If a
RT-parameter TRACE was specified,
accumulation of messages in the buffer
continues afterwards. Otherwise the effect is
that of NOTRACE after the specified number of
messages is output.

- HNegative parameter:
The corresponding number of tracing messages
present in the tracing buffer is wanted. This
possibility demands that the RT-parameter for
trace was specifieds The buffer is emptied
after dumping.

It should be possible to stop listing of tracing
messages at any point in the programe. The
execution of the following part of the program
should not be affected by the fact that we have
been tracing a previous part of the program.

The procedure takes no parameters. If the
RT-parameter for tracing was specified, the
accumulation of trace messages continues in the
buffer of course. Otherwise all links to the
tracing routines are removedy, and the program
efficiency will hereafter be as if the program
had not been traced at atl.

3)

4)

5)

TRACEGFF

Motivation:

Description:

TRACEON

Motivation:

Description:

TRACETXT

Motivation:

Description:

In any of the procedure is used
will have no effect.

The number of different trace messages is
relatively highs. For a specific application it
might be desirable to use only some of the
messages. Therefore the messages can be turned
off individually.

The procedure can take up to 18 integer/short
integer parameters. These will refer to a
message number. The specified tracing message
will then no longer be listeds nor collected in
the tracing buffer if the RT-parameter was set.
If the value O is used as parametery the
dataflow tracing will be suppressed. If the
procedure is called without any parameters, then
all tracing messages are suppressed.

For a limited part of the program it might be
desirable to have a more complete trace of the
control flow, without getting an endless tracing
listinge Therefore it should be possible to turn
the messages on and off individually.

The parameters are specified in the same form as
under TRACECFF. If the value O is used, the
dataflow tracing will be activated.

For some applications the tracing facility may
be more than a debugging tool. It is also a good
general guide to the description of control flow
in SIMULA programs. For educational purposes it
might be desired to alter the text in some of
the messages. Some may also wish to change the
text to get a better overview of the messages
from the tracing for their special problem.

The procedure takes two parameters. The first
one is an integer or short integer referring to
a message number. The second one is a text,
specifying the contents of the new message. In
some of the messages there is incorporated
variable information gathered under the flow of
program execution. It should be specified where
in the new text this information should occurs
The three characters &, % and $ are used to
specify where ob ject 1, object 2 and time is to
be placed, respectively. If any of these are
missing in a message which needs specification,
it is assumed that the information is not
required. However, once dropped this information
cannot be anymcre obtained in laber tracing
messages.

A list of the default messages with placement of
object 1, object 2 and time is appended.

in conflict with its specification, it

TRACECNT
function?

declaration:

parameters:

result:

notes

TRACE facility control

external asssembly integer procedure
TRACECNT

two optional parameters which must be simple
variables or literals of type (short) integer.

The first parameter (if present) specifies how
many times (from now on) any assignment
statement is to be traced (default=5). The
second parameter (if any) specifies at which
column of the tracing line the declaration
block/ current process is to be monitored
{default=100).

Note that the skipping of the first parameter
can be achieved by specifying a negative value
at its place, also that the permitted range of
the second pearameter values is <0,109>, the
value zero disabling the output of the
declaration block/current process monitor
altogether.

the integer value yielding the number of the so
far recorded assignment statementse.

the returned value may be conveniently used for
initiating/terminating dynamically various
events e.g. debugging printouts. Note though
that the assignment counting is carried out only
if the program was compiled with SYMBDUMP>3.

Tracing messages:

Nre?

Text:

CALLING &

GENERATING &

EXIT FROM &

DETACHING &

RESUMING &

ATTACHING &

EXPLICIT GOTO STATEMENT
NAME PARAMETER OR SWITCH THUNK
THUNK EVALUATION COMPLETED
LEAVING PREFIX &

STARTING BLOCK PREFIX

JUMP TO FIRST STATEMENT

£ £0 £ £ 2 PO £

TERMINATED, % BECOMES CURRENT

PASSIVATED, % BECOMES CURRENT

CANCELLED

SUSPENDED DUE TO ACTIVATION OF %

SCHEDULED FOR TIME $, % CONTINUES

SCHEDULED FOR TIME %, $ CONTINUES %
SCHEDULED BEFORE %, $ CONTINUES *

SIMULATION CLOCK IS ADVANCED

&
&

REMOVED FORM A SET
PUT AFTER %

% For message nr. 18 and 19, three objects should be
specified. Here the character $ is borrowed to indicate
the third object.,

0BS: Message no O (zero) is used for the data flow tracing.

6¢3 The symbolic dump facility.

Commencing with release 06.00 the 360/370 SIMULA System has & provision
for taking symbolic dump of the program under execution either at
specified points or when an execution error occurse. This facility is
provided in addition to the earlier formatted hexadecimal dumps.

6.3.1 Design principles.

Although the full implementation of this facility requires an extensive
cooperation of many compiler and RT modules, the bulk of the work is
done in the RT-routine ZYQDEBUG. By this separation it was possible to
design the debuyging system so that

- the incurred overhead in the execution time is negligible
unless the dump is really produceds in which case the increase
in the execution time is reasonably proportional to the amount
of the dump.

- the extra core required by the debugging system is at all
times at user control and may be altogether eliminated for
production runs where this system is not used.

Thisy plus the amount of the dump received and its format is controlled
by SYMBDUMP options introduced both in the compiler and the runtime
system. (Similar control can be exercised through parameters to the
assembly procedure SYMBDUMP which can be used at will for program
debugging).

6+43.2 Dump format.

As regards the format of the dump in general, the following remarks are
of relevance:?

- the detail of the information provided can be graded in
approximately similar levels as with the hexadecimal program
dumps although in this case all information is given in the
source language terms.

- as regards the line number identifications occurring in the
dump they apply to the main program listing unless followed by
IN <external module name>.

6.3.2.1

Blocks.

The currently existing block instance of the program under execution
are identified by

6.3.2'2

procedure/class identifiers and/or line number of their
beginning in the source programe Prefixed blocks are displayed
with their prefix identifier.

current status of the block instance is always shown where
relevant (e.ge. *'detached's 'inspected's; etc.)

object instances are counted on generation, separately for
each class and the corresponding counts then identify the
respective ob jects throughout their life span (given in
parentheses following the class name).

addresses (in hexadecimal notation) identify only arrays and
text objects in principle. However in the case that no object
counters are provideds the system must resort to the use of
addresses - in addition they can be provided also on reguest.
Note though that due to garbage collecting the addresses may
vary from dump to dump.

Local quantities.

The respective quantities declared/specified in a block instance occur
in the dump after the block heading in the order of their definition.
Note particularly that?

in case that its current value is identical to the initial
value the quantity does not appear at all.

an attempt is made to identify actual parameters to formal
parameters called by name. However, in case that this would
entail an evaluation of an expression only an indication of a
thunk presence is given.

matches are shown for virtual specifications.

in default one and only one quant is output on a line.
However, the dump can be compressed by putting as many quants
per line as possible when required (e.g. when SYSOUT is
connected to a display screen).

6e3:243

Arrays.

Arrays form a specific kind of RT data structure which is also
reflected in their dump?

6e3e2:4

arrays are always mentioned in the dump together with their
bounds. Howevers only non-default valued elements appear.

as many as possible array elements are output on a line.

respective array elements are identified by the true subscript
(in parenthesis) in case of one dimensional arrays or by
ordinal numbers (commencing with 1) enclosed in a single
appostrophe in case of multidimensional arrays. The mapping
between the ordinal numbers and the full subscripts is
obtained by counting the array elements varying the first
subscript most frequently,; then the next, etc.

Text objects.

Similarly text objects, mostly due toc their reference/ value
properties, require a special treatment:?

6.3.3C

the reference part of text objects signifies whether the
object in question is a subtext, and in all cases the current
position indicator value and length are shown.

if the text value in its entirety can be placed on the current
line it appears within a pair of double quotes. Otherwise only
the stripped value is shown, possibly continued - rightly
aligned after its first character - on one or more lines in
which case the closing double quote appears only in case the
last non-blank character comes on the same line of dump as the
very last character of this text does.

System overhead.

The execution time overhead caused by this facility is hardly of
relevance, however one should realise that the following overheads are
inflicted in space requirements:

the prototype section of the compiled program is expanded when
dump of individual quants is required.

all objects are expanded by a minimum of one fullword when
ob ject counts are required.

the size of the loaded program is increased by ZYQDEBUG length
when its services are potentially required.

6+3.4. System control.

In the sequel there

is a detailed description of the compiler and RT

option SYMBDUMP. Note that unless locally changed at system
installation (using SIMCDF and SIMRDF macros), their default values are
0 (=NONSYMBDUMP) in case of compiler and 1 in case of RTS. Alsc note
that the following overrides take place automatically:

- compiler SYMBDUMP is forced to 3 for separate compilation of
classes and procedures.

- RTS SUMBDUMP

is forced to 1 in case of an error or time limit

overflow in garbage collection.

- RTS SYMBDUMP is suitably reduced when the program was compiled
with SYMBDUMP<3 and dump of local block quantities is required
through the initial RTS SYMEDUMP setting.

6¢3:441 Compiler.

SYMBDUMP=3

SYyMBbumMp=2

SYMBOUMP=1

SYMEDUMP=0

causes extension of compiler generated
prototypes by local quantity lists in addition
to all belowe.

causes extension of object lengths to encompass
object counts which identify individual
instances in the dump (hexadecimal addresses
used otherwise).

(equivalent to SYMBDUMP) causes the RTS ZYQDEBUG
routine, producing the dump to be automatically
linked in.

(equivalent to NOSYMBDUMP) has the effect of
avoiding the linkage of the above routine to the
programs thus limiting the dump possibilities to
the formatted hexadecimal dump (convenient for
production runs).

6+344.2 RTS
SYMBDUMPC=1 no dump produced in case of error.
SYMBDUMP=2 headings of blocks on the operation chain appear.

SYMBDUMP=3 above plus the symbolic dump of the local
quantities of the involved blocks.

SYMEDUMP=% above plus SGS contents (an implicit garbage
collection is forced).

SYMBDUMP=5 above plus headings of all referencable blocks.

SYMBEDUMP =6 above plus full dump of all referencable blocks.

6e3¢4.3

66345

Additicnal control remarks.

Hexadecimal addresses of block instanced will appear, in
additional to eventual counters, with SYMBDUMP=7.

Any of the above SYMBDUMP values may be multiplied by 16 to
affect compression of quant dump.

the values recommended for program testing are:

compi ler: SYMBDUMP=3

RTS: SYMBDUMP=3 and DUMP=1 (default).
the effective Tength of the lines produced by ZYQDEBUG is

directly controlled by LRECL subparameter of SYSOUT DCB
(maximum)e The default value is customarily 132,

Example

The following example was solely designed to illustrate the symbolic
dump facility at worke In order to cut its length short, the system
output concerned with the snapshot of the compilation and the run time
system options in use was omitted. Alsc omitted is the (useless) output

made on

the inspected printfile SIMPRINT, but on the other hand the

SYSOUT output shown here is complete. Note that the SYMBDUMP settings
were identical to those recommended in 4.33

17 MAR 1978 17:55:45.18

SIMULA 67 (VERS 86.88) Ade SYMBDUMP DEMONSTRATION ek

01l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
1e
19
20
21
22

Simulation begin real X3 integer U, COUNT}S
ref(Head) WAITQUEUE, OUTQUEUE;

Process class ENTITY; virtual: procedure SNAPSHOT;
begin real TIMEUSED; '
procedure SNAPSHOT(TITLE)} name TITLES text TITLES
begin external assembly procedure SYMBDUMP;
TITLE:=YDEBUGGING VERSIONY;
SYMBODUMP (4 ,*SITUATION BEFORE START");
end OF SNAPSHOT;

TIMEUSED!=Time;
into(WAITQUEUE) 3
reactivate this ENTITY delay Normal(38,3,U);
TIMEUSED:=Time-TIMEUSED;
COUNT ¢=COUNT=1; CHARS(COUNT) t=tut;
Wait(OUTQUEUE) ;

end OF ENTITY;

booltean STARTED;
character array CHARS(8:127});

Ut=Inint;
WAITQUEUE:-new Head; OUTQUEUE:=-new Head;
for COUNT:=1 step 1 until 5 do activate new ENTITY;

Inspect new Printfile(lntext(8)) do
begin text SUBTITLE;

Open(Blanks(80)});
Outtext (YSIMULATIOW PROTOCOL:Y);
SUBTITLE-Image.Sub(Pos+lsiength-Pos);
WAITQUEUE.Last qua ENTITY.SNAPSHOT(SUBTITLE);
Close;

end OF INSPECTION;

STARTED:=true; Passivate; comment WILL GIVE A RT-ERROR:

end OF PROGRAM

NO DIAGNOSTICS FOR THIS COMPILATIOR.

Bl

B2

E2

B4

E4

E1l

Note that RESWD=3 was used in order to get the kew-words and standard

indentifiers in lower case, also the

the compiler alone).

indentation was taken care of by

The first part of the SYSOUT output is produced by the systems utility
SYMBOUMP 3

-=-- SYMBDUMP CALLED AT LINE @9@9 (SITUATION BEFORE START) =======-=c=--
OPERATING CHAIN
SYSOUT INSPECTED AT SYSTEM LEVEL: IMAGE==#299258/P0S=1 OF 132/=%
SYSIN INSPECTED AT SYSTEM LEVEL: IMAGE==#299at8/P0S=1a OF
8a/=Y3SIMPRINT

PROCEDURE SNAPSHOT UN LINE a@a6 (LOCAL TO ENTITY(S5) ON LINE a2a4),
CALLED FROM LINE @a35:

TITLE IS SUBTITLE OF BLOCK ON LINE 2d3@

BLOCK ON LINE a23a:
SUBTITLE ==#399398.35UB(22,59)/P0S=1/="DEBUGGING VERSIGN

PRINTFILE(2) ON LINE @aada IN *PREDEFINEDY, TERMINATED,
VISIBLE THROUGH INSPECTION:

IMAGE ==$999398/P0S=21 OF 8a/=YSIMULATION PROTOCOL:
DEBUGGING VERSION
CONAME $SIMPRINT
LINE =1
LINESPERPAGE =46
SPACING =1
SIMULATION BLOCK ON LINE @3al:
MAIN ==MAINPROGRAM(1)
CURRENT ==MAINPROGRAM(1}
U ==1317a61513
COUNT =6
WAITQUEUE ==HEAD (1)
OUTQUEUE ==HEAD (2)
#299188 ARRAY CHARS(a@:127):
SQS * SCHEDULING TIMES PROCESSES (SIMULATION BLOCK AT LEVEL 1,
TIME=3.3)
ded MAINPRUGRAM(1) ON LINE @2aa IN
*PREDEF INE D,

' DETACHED AT LINE 2399

2.74757251739502E+21 ENTITY(S) UON LINE 3224,
ODETACHED AT LINE 3314

3.26943817138672E+21 ENTITY(Z2) ON LINE QJ294,
DETACHED AT LINE 3al4

3.1606823894a430E+21 ENTITY(4) ON LINE 2234,
CETACHED AT LINE aal4

3.29338769912722E+a1 ENTITY(1) ON LINE 2924,
DETACHED AT LINE 2214

3.71304626464844E+91 ENTITY(3) ON LINE 2924,
DETACHED AT LINE Q314

-== END OF SYMBDUMP CALL AT LINE 9@@9 ==========-====cc=-e- R LT

This was the cutput produced before the execution error predicted on
line 0039 disabled a normal program completion. The appropriate
diagnostics accompanied by the operating chain dump follows on the next

page.

ZYQDOT %P ASSIV SQS.LAST AT LINE @a@l7 ookl ool ioiokoiolololol

OPERATING CHAIN ¢

SYSOUT INSPECTED AT SYSTEM LEVEL: IMAGE==#299358/P0S=1 OF 132/=v

SYSIN INSPECTED AT SYSTEM LEVEL: IMAGE==#2992E8/P0S=10 OF
8a/=Y"3S5IMPRINT

ENTITY(3) ON LINE 22394, DETACHED AT LINE awl7:

Suc ==HEAD (2)

PRED ==ENTITY(1)

SNAPSHOT HAS MATCH AT LINE Q@326

TIMEUSED =3,71304626464844E+a1
SIMULATION BLOCK OW LINE 2aa@l:

MAIN ==MA INPROGRAM(1)

CURRENT ==ENTITY(3)

u ==1317261513

COUNT =1

WAITQUEUEL ==HEAD(1)

OUTQUEUE ==HEAD(2)

STARTED =TRUE

#299188 ARRAY CHARS(@:127): (1)="'3%" (2)=t%' (3}="4"' (4)="'x!

(5) =t

6.3.6.

External utilities related to the SYMBODUMP facility.

SYMBODUMP

function:

declarationt

parameterss:

result:

prints a symbolic snapshot of the program under
execution. The output format is basically the
same as that used in case of a run—-time error
detection with RT option SYMBDUMP > 1.

external assembly procedure SYMBDUMP

= (short) integer which determines the extent of

the snapshot as follows:

value displayed

<=1 nothing

2 headings of blocks on the operating
chain

3 above plus the symbolic dump of the
involved blocks

4 above plus SQS contents

5 above plus headings of all
referencable blocks

6 above plus full dump of all

referencable blocks

- a single reference variable (of arbitrary

qualification) causing the snapshot to be
limited to the object referenced.

a single text variable or a text constant
(string) whose value is used as the snapshot
heading.

(short) integer from within one of the
following intervals:

<1 ¢ current block level> or
<1 - current block level ¢ 0>

which will cause the snapshot taken to be
limited to a single block instance on the
static chain counted upwards from the outermost
block in case of positive value of backwards
from the current block if negative.

no value returned.

noctes:

the order of the parameters is irrelevant with
the exception of the (short) integer parameter
ambiguity implied above.

in case that a specific block dump is requested
either by a reference parameter specification
or by a display indication, the ordinary dump
(of the operating chain, SQS and pool 1) is
suppressed.

if the total volume of the dump produced is at
premium rather than its structure (e.g. when
SYSOUT is connected to a display screen), the
system may be instructed to output as many
quants on a line as possible by using as the
first parameter a value which is a 16-multiple
of any of the values shown above.

the length of the lines output SYMBDUMP is
directly controlled by the SYSOUT setting of
LRECL.

1D

function: ob ject identification through its class
member ship.

declaration: external assembly text procedures ID

parameter: one and only parameter which must be a simple
reference to an cobject of arbitrary
qualification.

result: reference to a text ob ject the value of which is
the identifier of a class which the ob ject passed
as a parameter belongs.

notes: - the class identifier returned is truncated to
the first 12 characters if necessary.

- in case that the reference passed as the actual
parameter does not currently refer to any
ob jectsy the value returned is notexte.

NO

function:

declaration:

parameter:

result?

note:?

ob ject identification via internal count value or
adress.

external assembly integer procedure NO

one and only one parameter which must be a simple
reference to an object of arbitrary
qualification.

integer value which is a numeric identification
of the cobject referenced by the actual parameter.
The following possibilities may occur:?

sign(NO)>0 the value returned is the ordinal
number of this particular ob ject
within the given classe.

sign(NO)=0 which identifies a case when the
reference value of the actual
parameter is none.

sign(NO) <O (occurs in case that the program
was compiled with SYMBDUMP<Z and
thus no internal object counters
were provided). The value returned
is the =1 <address of the ob ject>.

when a program re-execution is affected without

reloading (e.g+) using the SIMCNT monitor), the

ob ject counters remain at the values reached in

the previous execution i.e« no resetting to zero
oCcCcurs.

et Dump.

A formatted core is optionally printed when an object program is
terminated because of @ run=time error. The DUMP parameter of the
object program (2.2.2.1) determines the dump level.

DUMP= meaning

0 No debugging information is provided. The job step
is aborted if a run-time error occurs.

1 A diagnostic message and a register dump is printed
if a run-time error occurse.

2 In addition to the information of level 1 the
operation chain is printed.

3 Prints the information of 2, the sequencing sets of
all SIMULATION blocks and the local sequence
controls of all scheduled processes.

4 Prints the information of 3 and all local sequence
controls of non-terminated objects.

5 Prints the information of 4 and all referable data
structures in hexadecimal format.

7 Programming considerations.

Commencing with release 08.00 there is & built-inn facility in the
360/370 SIMULA System for recording program behaviour during the
execution. A user can obtain useful insight into the program dynamics
by requesting results of various measurements to be output.

In the follcwing the user will be given full orientation about the
tools available for improving performance of the SIMULA programs. It is
not necessarily intended for a thorough study = on the contrary, it is
hoped that & user interested in using this facility will find all
sufficient information in paragraphs 7.1 and 7.4, eventually supported
by a glimpse of the example. However, should she/he have any enquiries
it should be possible to find full answers in the rest of the text.

7.1 Objectives and design principles.

The purpose of this facility (referred to as the turner in the rest of
this text) is to provide a sufficient insight into the dynamics of
execution in order to reduce its cpu-time and storage requirements. To
this end special focus is put on supervising the two most critical
issues:

- data transmissions realized through various kinds of
assighments (the most frequently encountered operation)

- allocation of data structures (a complex operation dictated by
the dynamic nature of SIMULA).

The character of this facility, however, suggests that it can also be
useful in the program debugging processe.

Since the collection of the various statistics during the program
execution represents whatever small but nevertheless a certain overhead
the facility has been designed in such a way that its function (and
thus the overhead) can be completely eliminated at the user's will.
Therefore the user should carefully consult paragraph 7.4 below to make
sure of correct activation of the various tuner components.

7.2 Scope of the facility.

Even though useful in ttself the bulk of this programming aid is just
an offspring of other program development tools SYMBODUMP and TRACE (see
separate documentation). In particular the latter and specifically its
data flow monitoring subsystem are of primary importance for
understanding the dynamics of the program behaviour. However, since
these tools are basically desighed for program debuggings their use for
program tuning can be somewhat cumbersome.

In contrast to these facilities, the tuner concentrates on giving just
the resulting contour cof the dynamic profile of program execution. This
image is created by several components outlined below.

7T.2.1 Assignment counter

This is a global counter which is increased by one for each assignment
statement carried out by the system.

Included here are:

- explicit value- and reference-assignments affecting user
declared data items;

- implicit assignments in for-statements and those of parameter
transmission to procedures and classes by value or by
reference,

- text value assignments implicit to text PUT-attributes and the
corresponding OUT=-precedures of files (assignments to image
subtexts).

Excluded (ie«es« not recorded in the assignment counter) are the
following assignments:?

- those leading to alteration of system declared data items e«g.
text position indicator setting, manipulation of SUC and PRED
through SIMSET procedures, manipulation of the SQS through
SIMULATION utilities and parameter transmission for standard
procedure calls,

- parameter transmission of value and reference parameters to
virtual, formal and external procedures,

- all assignments in SIMULA program modules which were compi led
with option avoiding assignments recordinge.

The current value of the global assigment counter is available during
the program execution through use of an external procedure TRACECNT
(cf. TRACE documentation)e. This can be conveniently used for dynemic
initiating/terminating of other program execution supervising
facilities. The final value is output at the end of execution in the
Run Time System trailing line. This value tends to be a fair measure of
the volume of the performed computation.

7.2.2 Frequency monitor.

This is a control flow monitor updating local counters associated with
both explicit and implicit assignment statements. Each time an
assignment statement (of the kind affecting assignment counter, see
above) is executed its local counter is increased by one so that at the
termination of the program the values recorded in the local counters
reflect fairly precisely the dynamic profile of the execution.

The contents of the local counters can be obtained at the end of
execution both in numeric and graphic form. Furthermore indication is
given of the most frequently executed as well as the void assignments.,
These tables give a deep insight into the program dynamics and
specifically turn attention to the apparent execution time bottlenecks.
Be aware though that a flat histogram does not necessarily imply the
most efficient algorithm.

7.2¢3 Data structure register.

This is a device for recording the number of generated instances of
each data structure defined in the program. These include:?

- block instances of various kinds (however, only those which
are user defined appear in the final account)}.

- user and system generated text objectse.
- all declared arrays and arrays passed as parameters by value.

Not counted are:d

- system generated control blocks (drivers and event notices
since these are at least partly reused).

- system generated storages for holding temporary results which
may be quite many but are unfortunately not under direct user
control.

- static instances of standard procedures, buffers and other
accessories necessary for the operating system interface
because these do not take space in the working storage.

While the current value of a particular object counter serves at each
time as a unique identification of the next generated instance of this
kind, the final list of these counters is most valuable information for
the assessment of program storage requirements. In addition the ratio
of the respective data structures in the total program storage demand
is estimated. Obviously, this kind of information is a more direct hint
on how to improve program performance than just a number of store
collapses.

Hith the considerable overhead of SIMULA storage management in mind,
one can achieve drastic reductions of cpu~time usage by minimizing e«.g.
the number of generated procedure instances. However, one more aspect
which must be considered here is the prevailing way in which a
procedure is invoked (direct or remote call, virtual, formal procedure
etc.).

7.3+ Output format of the respective components.

A1l the information provided by this facility appears on the standard
printfile SYSOUT appended to the user program produced printoute. With
the exception of the histogram part of the frequently monitor the
output can be intercepted also on a teletype compatible device with
line length of 80 characters.

Hith the exception of the global assignment count the output is
organised by modules: the first come execution frequency counters and
the list of allocated data structures concerning the main program alone
and then follow corresponding tables for the separately compiled
modules used in the program (if any) in turn.

When organizing the output modulewise the following rules are observed:

- it is the maximum assignment frequency within a particular
module that is used for forming out the histogram and for
marking the lines of specific interest in the module.

- the data structure counts indicate the ocutcome of the complete
program execution. Consequently also the logical partitioning
of all allocated storage on the fragments taken by the
respective data structures shown in the last (%) column is
related to the complete execution.

- Obviously text and array objects may be allocated in the
course of execution of any module. However their statistics
are only given globally and appear together with the dynamic
profile of the main program.

As regards the particular format of the respective tuner components see
illustration in the paragraph 5 and also consider the remarks below.
7.3.1 Final assignment count.

Final assignment count appears (if requested, see par. %) at the RTS
trailing line in the form:

{count> ASSIGNMENTS RECOROED
Be aware that the true value cah be greater than the figure given in

case that one or more separately compiled modules used in the program
had assignment counting suppressed.

7+.3.2 Assignment frequencies.
Assignment frequencies (if registered) appeared under the title:?

DYNAMIC PROFILE OF THE PROGRAM EXECUTION BASED
ON DATA FLOW MONITORING

The output consists basically of two parts:

- a numeric table of absolute frequencies given for the
respective assignments in the given module,

- a histogram (adjacent to the table) showing schematically
relation between the maximum frequency on a line and the
maximum frequency within the module.

Note that the original source text is not reproduced as is sometimes
customary in these reports. Instead references are made to its
respective lines through the line numbers.

Several further details may be of interest:

o respective frequencies for up to 7 (first) assignments are
registered on each line = the user must alone match the
figures given with the corresponding source listing
{identified in the report}),

o the maximum frequency on a line appears in a clearly marked
column next to the line number,

o the maximum frequency over the whole module is marked by a
sequence of exclamation marks at the left of the line number.

Finally note that the following convention is used when generating
these tablest in default only lines where there has been at least one
assignment executed appear in the table. Optionally however, the user
can require a report on every single lines If this is the case the
following rules apply?

o just the line number alone is given for lines without any
executable codes

o the line number followed by a colon with the rest of the line
blank signifies @ line with executable code not containing any
assignment,

o all lines containing assignment statements of which none was
performed in the course of the program execution are marked by
a sequence of question marks to the left of the line number.

7.3.3 Generated data structures.
List of the generated data structures appears under the title:?
USER GENERATED DATA STRUCTURES

Listed in the table are various block patterns defined in the module in
question, some instances of which were generated during the program
execution. For each block patterns the following information is given:

- pattern identification (its kind and commencing line number in
the source (text),

- total number of generated instances,

- size (in bytes) of instance. Note that this is the true size
i.e. includes space for user data, the necessary system
overhead, block counter location plus eventual padding to meet
the storage allignment requirements (if any),

- share of the total program storage demand attributed to this
particular block kind (in percent rounded to the nearest
integer).

Following the table the total sum of all generated block instances is
given together with an indication of how large a portion of the total
storage used this represented. (Note that when estimating total storage
use only true store collapses are considered i.e. the effect of garbage
collections occurring as a side effect e«gs various program deve lopment
utilities are disregarded.)

If the related module is the main program the total number of generated
text and array objects together with the indication of how large a
portion of the total storage used these represented is also given in
percent.

Note that the percent figures will not sum up to 100%: the discrepancy
is accounted for by the system generated data structures (drivers,
event notices and temporary and standard objects) which do not appear
anywhere in this table.

Finally it is worth mentioning that also this table is compressed to
the block patterns of which no instances were generated at all are
suppressed in default. Since their appearance may have som value for
program documentations the user can coptionally request them to be
output together with nonempty lines.

7.4 Control.

The production cf the tuner printouts is under full user control by
means of the compiler and the runtime system options.

The following combinations are required for cutput of the respective
items:

total number of assignments registered during program execution
will appear if:

- the program was compiled with SYMBDUMP)>3
- and run with the TEST option.

assignment frequency table (and the histogram) will appear if:

= the program (module) was compiled with SYMBOUMP>3,

= the program was run with SYMBEDUMP>3

- and the program terminated with return code zero (i.e« without
any RT=error}.

the generated data structures are listed if?

- the program was compiled with SYMBDUMPD>1
- and run with SYMBDUMP>3.

Note that default settings at SIMULA system distribution are SYMBDUMP=0
for compiler and SYMBDUMP=1 for the runtime system so that they have to
be either permanently reset at the installation or overriden at
individual runs in order to activate the tuner.

As regards the expansion of the tables to their full length (i.e.
including also the void entries which are suppressed in default, see
par. 3) the following conventions apply:

The specification of the RTS option SYMBDUMP must be followed
immediately by

o the seguence AA to force YAll Assignments" to appear, or
by
o the sequence AB to force "All Blocks" to appear,
eventually by
o the letter A alone get All assignments and blocksy
€eQe

//EXEC SIMCLG,PARM.SIM="SYMBOUMP=4"',PARM.GO="SYMBOUMP=4ARBR"

will cause the full table of user defined block patterns to appear
while the assignment frequency table which will also be generated will
include only non-empty entries.

Note that the best way how to alter default values of the compiler and
the RTS option SYMBDUMP is through the use of the macros SIMCDF and
SIMRDF which are part of the system delivery. This would however not
suffice for the expansion of the tuner tables where the letters A, AA
or AB can only be specified at execution.

7.5 Example

Let us suppose that the following program is compiled with SYMBDUMP=4
(shown below is an extract of the compilation listing):

begin class BOARD(E,F,RIMCHAR); integer E,F; character RIMCHAR;
begin character array C(2:E,3:F); integer IsJsMsN;

procedure PRINT;
for 1:=a step 1 until E do
begin for Ji=e2 step 1 until F
do Outchar(C(1,J));
Outimage
e nd % >:(::¢PR IN T>:n:<::¢ H

procedure READ;
for I:=1 step 1 until M do
begin Inimage;
for Ji=1 step 1 until N do
if Inchar="' "'
then C(I,J)i=* ' else C(I,J)i="3%";
end >:¢::¢>:<RE.AD 2% 5% H

M:=E-1§ Ni=F-1j

for I1:=9 step 1 until N do
C(a,I):=C(E,I+1):=RIMCHAR}
for Ji=a@ step 1 until M do
C(J+1,a3):=C(J,F) :=RIMCHAR};
e ndoorBO ARDAkk§

BOARD class LIFE}
begin integer procedure NEIGHBOURSOF(I,J); integer I,J;
begin integer T;

if C(I-1,J=1)="'%"' then T:=T+1;
if C(I-1,4d)='e' then T:=T+1;
if C(I=1,J+1)="%k? then Ti=T+1;
if C({1 Sd=1)=%e* then Ti=T+1;
if C(I sJ+1)=%kt then Ti=T+1;
if C(I+1,4d=-1)="%"' then Ti=T+1;
if C(I+1,J)='%' then Ti=T+1;
if C(I+1,J+1)=*%" then T:=T+1; NEIGHBOURSOF:=T;

end X NE IGHBOURSOF %}

procedure WRITE(GENERATION); integer GENERATION;
begin Duttext(“GENERATION NO ¥); Outint(GENERATION,6);
Outimages PRINT
end R I TEY k3
e ndXedkl I F Exobl §

Continued onh the next pag€ecee

«eesContinued from the previous page?

procedure SWAP;
begin TEMP:-0QLOB; OLDBI=-NEWB; NEWB:-TEMP endi¥iSHAPIk;

ref(LIFE) OLDB,NEWB, TEMP; character Cl}
integer Linesperpage ;P,Q,GENS,Z, LIFELENGTH;
external real procedure BALAS;

LIFELENGTH:=BALAS(Inint,Inint);

Cuttext(YINITIAL STATEY); Outimage;
Pi=Inint; t=Inint; Linesperpaget=64;

OLDB:-new LIFE(P,Q,'+'}; OLDE.READ; OLDB.PRINT;
NEWB t=new LIFE(P,Q,"*+");

for GENS =1 step 1 until LIFELENGTH do
begin inspect OLDB
do begin for P.=1 step 1 until M do
for Q=1 step 1 until N do
begin Z:=NEIGHBOURSOF(P,Q); C1:=C(P,Q):
if Z=3
then Cli="tix? else
if Z=2 and Cl=1t%?
then Cl:=t*¢ else Cl:=" *';
NEWB.C(P,Q):=C1}
end ‘
end;
NEWB «WRITE(GENS); SHAP
end
end

Note in particular the declaration of an external procedure BALAS at
line 53 and its use at line 57. Let us assume that the procedure BALAS
was compiled with SYMBDUMP=3 and that the program above is run with the
run time option TEST and SYMBDUMP=4,

Disregarding the normal output which is of no particular interest to
this demonstration the following two lines will at last appear on
SYSOUT :

END OF SIMULA PROGRAM EXECUTION AT 17:36:46.86
EXECUTION TIME @.29 SEC.

RETURN CODE 135 #2322daaa

ddadea STORECOLLAPSES, DATA STURAGE USED : 9184 BYTES
2198 ASSIGNMENTS RECORDED

These are the RTS trailing lines (usually prefixed by the 2YQ994
message identifier). The very last item is the final value of the
global assignment counter implying in this case that altogether 2108
data transmission were recorded when executing this program. (Be aware
though that this does not include assignments needed for execution of
the procedure BALAS because that was compiled with SYMBDUMP less than
4).

On the next page comes the assignment frequency table and the histogram
shown in Appendix A. Note that only Yactive" lines appear in this
overview. Obviously line 8 contains the most frequently executed
constructione.

(As regards the for-statements with step-until elements remember that
these contain two implicit assignment statements, see Common Base,
section 6.243.y case 2. These may appear on two successive lines if the
for-statement is split)e.

The dynamic profile of the main program then continues on the next page
by

USER GENERATED DATA STRUCTURES:

BLOCK PATTERN LINE TOTAL SIZE %
SUB-BLOCK adal 1 64 1

PROCEDURE PRINT dda5 8 24 2
PROCEDURE READ da12 1 24 a
CLASS LIFE da 28 2 48 1
PROCEDURE NEIGHBOURSOF @@29 112 32 39
PROCEDURE WRITE aad 4l 7 16 1
PROCEDURE SHAP ad 47 1 16 1
TOTAL NUMBER OF BLOCK INSTANCES: 138 - 46
TOTAL NUMBER OF TEXT OBJECTS ¢ Z - 3
TOTAL NUMBER OF ARRAY QOBJECTS @ 8 - 7

THE LINE NUMBERS CORRESPOND TO THE SOURCE COMPILED ON 25 NOV 198a@ AT
17:a5:28.13

Finally, the very last page holds the dynamis profile (or what is
available of it remember the compilation of the external mode was
carried out with SYMBDUMP=3) concerning the module BALAS:

DYNAMIC PROFILE OF THE PROGRAM EXECUTION o« MODULE: BALAS

USER GENERATED DATA STRUCTURES:

BLOCK PATTERN LINE TOTAL SIZE %
PROCEDURE BALAS adl4 1 &a 1
PROCEDURE MAXX daz22 3 32 1
PROCEDURE MAXT da29 4 48 2
PROCEDURE CHANGE Qa5 % 32 1
PROCEDURE SOLVER da6l 2 32 1

TOTAL NUMBER OF BLOCK INSTANCES 14 - 6

THE LINE NUMBERS CORRESPOND TC THE SCOURCE COMPILED ON 25 NOV 1986 AT
17:95:a@8.13

Note here that of the total storage required for the execution of the
above program approximately 52% (46+6) was taken up by various
instances of which most is clearly attributed to procedure NEIGHBOURSOF
altogether 112 times.

OYNAMIC PROFILE OF THE PROGRAM EXECUTION BASED ON DATA FLOW MONITORING

NOTES LINE MAXIMUM FREQUENCES OF THE

ooooo

dwab:
daat:
dyad:
dal3:
aals5:
Qal7t
da2a
deel
@23
da24:
da2s:
@a3l:
aa32:
@a33:
2ad34 ¢
P E LR
aad36¢:
@37
2938
ao42:
Q348
oa57:
Da59:
*062
Qa62:
2263
65
Q67
ca68:
2a69:
a71:
Qa73:
274
Qa7

48
48
288
4
16
12
2
19
le
la
la
39
41
32
41
43
32
43
112

A R

28
112
112

28

63
112

7

RESPECTIVE ASSIGNMENTS

8
48
288

112

112
7

48

288
4
16
12
2
19
la
19
19

—~d Pt s

28
112
112

€63

b et s

112

----- HISTOGRAH

0 3
¢3¢ 2 dexelee

0
%
el

e

¢

e

sledc

%

¢35 e v

¢ 2% e e Mool
¢ 9 ¢ e >k
20 e Nele
el Aol Mexleole
¢ e SN
solololololol

........

8
%

5

%
¢3¢ dleKe e
.....
.......
5 3% ¢
i3l el ke e sl v le
solosiovloloobolloluioollolo)

5

8 Bibliography.

(1) SIMULA Users Guide. Publication No. S-24.
Norwegian Computing Center, Oslo, Norway.

(2) 1IBM System/360 (0S: Storage Estimates.

(3) 1IBM System/360 0S: Concepts and Facilities.
Form €C28-6535.

(4) IBM System/360: Principles of Operation.
Form A22-6821-7.

(5) 1IBM System/360 0S¢ Assembler Language.
Form C28-6514-5.

(6) 1IBM System/360 0S: Job Control Language.
Form C28-6539-8.

(7) 18M System 360 0S: Supervisor and Data Management
Services. Form C28-6646-2,

(8) IBM System/360 0S¢ Supervisor and Data Management Macro
Instructions. Form C28-6647-3.

(9) 1IBM System/360 0S: Utilities. Form C28-6586-9.

(10) 1IBM System/360 (0S: Linkage Editor.

Form €C28-6538.
(11) 1IBM System/360 0S: Messages and Codes.
Form C28-6631-6,

(12) UOle-Johan Dahl, Bjnrn Myrhaug, Kristen Nygaard:
SIMULA 67 Common Base Language. Publication No. S-22.
Norwegian Computing Centers Oslo, Norwaye.

(13) P. Naur (Ede.):! Revised Report on the Algorithmic
Language Algol 60.

(14) 1IBM System/360 (0S: FORTRAN IV library subprograms.
Form C28=-6569.

(15) 1IBM System/360 (0S: FORTRAN IV (G & H)

Programmers Guide. Form C28-6817.
Note: Page number given in references to IBM documentation are

only approximates, since they may vary with the release
number.

Appendix A

‘HARDWARE REPRESENTATION OF THE SUURCE LANGUAGE

A SIMULA program which is to be processed by the compiler should be
contained in the job-input stream or put in a sequential data set with
fixed or fixed blocked record format and 80 byte record length. It can
also be a member of a partitioned data set with the same record
characteristics. The program must be contained in columns 1-72 of the
lines, and columns 73-80 may be used for sequence numbers (these
columns will not be processed, but they will appear on the program
listing)s The EBCDIC code is used.

Basic symbols.

A basic symbol is represented as a keyword, a special character or a
sequence of special characters (table A.l).

Identifierse.

Identifiers should follow the syntax of ALGOL 60, and the syntatic
class {letter> consists both of lower and upper case letters. Lower
case and upper case letters are not distinguished, except in text or
character constants. 12 characters are significant in an identifier. An
identifier must not be a keyword used to represent a basic symbol.

Constants.

Arithmetic constants follow the ALGOL 60 syntax. If an integer constant
is out of integer range (3.1, pe2) it is regarded as a real constant. A
constant can be given in hexadecimal as 1 to 16 hexadecimal digits,
preceded by #. The constant is regarded as real if it is followed by an
R

A character constant is represented as the desired character, enclosed
in single quotes (').

A text constant (<string>) is represented as the desired sequence of
characters, enclosed in double quotes (¥). A text constant may not
contain a double quote without the use of a special convention: If s
text string contains two double quotes in sequences this is interpreted
as one double gquote within the text, and not the ending double qoute.

Any basic symbol, identifier or constant must be contained in one line,
and it must not contain interspersed blanks. A text constant may,
howevers continue over several lines. Adjacent identifiers or basic
symbols represented by keywords must be separated by line shift or at
least one blank.

Commentse

A comments consists of the basic symbol COMMENT, followed by a
nonalphameric character, and the successive characters up to and
including the next semicolon (3 or $).

An end comment is the string of characters following the basic symbol
END up to, but not including the next semicolon, END, ELSE, HWHEN or
OTHERWISE.

Comments and end comments are printed on the program listing, but they
are not further processed by the compiler.

A warning message is issued if an end comment contains the basic
SymbOIS "::”, ":-"’ ﬂ("’ or "GUTU"‘

——— — — —— ——— o vt —— ——

] ! ' ! !
! basic ! representations ! basic ! representations !
! symbol ! (EBCDIC) ! symbol ! (EBCDIC) !
] 1 !] 1
1 = 1 - EQ ! == PR !
! 1O NE ! =/= ! =/= !
! > LI GT L LI !
! < ! < LT !oe= !oe= !
! ! = GE ! . ! . !
! ! = LE ! ! !
! ! OR L L $!
! 4 ! AND LA v !
! ! IMP !)) !
! ! EQV ! LI !
! ! NCT ! ') !
! + !+ Yoy L !
! - v - ! ! & !
! e ' 13 1 ! !
! !'oosek ! ! !
! / L ! ! !
! L4 ! ! !
! ! ! ! !
! ! ! ! !

—— ® o o -_— ———

——— e - —— o —

Table A.l1 Basic symbol representations.

Basic symbols consisting of boldface or underlined keywords in
the reference language are represented as the corresponding word
in capital letters. The basic symbol go to can be punched

with or without space(s) between GO and TO.

Listing and input control lines.

The compilation listing and compiler input can be controlled by special
lines put in the compiler input date set. Such lines are identified by
a % sign in column 1, immediately followed by a control word. The
allowed control lines are:?

ZTITLE text

The contents of columns 10-55 of this line are put in printer
positions 24-69 of the headings of subsequent pages. Any old
title text is overwritten. Source program listing continues
with the next line on a new page. The XTITLE line itself is
not listed.

%PAGE

The program listing continues with the next line listed on a
new page. The %ZPAGE line is not listed.

%ZNOSCOURCE

Suppress listing of the source program. The lines following
this line up to the next ZSOURCE line (if any) will not be
listed. The line numbers will, however, be updated. THE
XNOSOURCE line is not listed.

%SOURCE

Resume listing of the source program. The %SOURCE line is not
listed.

4COPY text

The %COPY control line will obtain source-language coding from
a partitioned or sequential data set and insert it into the
program currently being compileds The coding to be inserted is
identified by the text on the line, which is interpreted as
the name of a member in the partitioned data set.

The partitioned data set is identified by the SYSLIB
DD-statement supplied to the compilation stepe.

If this member cannot be locateds or if SYSLIB is not
specifieds the system will try to locate a sequential data set
with the ddname identical to what was expected to be the
member name.

The %COPY card will be listed.
ZENDCOPY

This line signals the end of predefined source=-language codinyg
obtained by a %ZCOPY line., It must be the last line of any
member in a partitioned data set which will be obtained by a
%ZCOPY line. The data set should have blocksize not greater
than 1600. The code to be copied is inserted in the library by
the IEBUPDTE or IEBUPDAT utility program (see (9)).

The %ENDCOPY line will be listed.

%RESWD=n

This has the same effect as the compiler parameter RESWD, see
section 2¢2¢1e1

%ZINDENT=n

This has the same effect as the compiler parameter INDENT, see
section 2.2.1.1.

%ZNOINDENT
Suppress indentation of subsequent lines in the compilation
listings esgs enabling visual distinction of label
declarations in an otherwise automatically indented listing.
%INDENT

Resume the indentation at the earlier level.

Appendix B

COMPILER DIAGNGOSTICS

The general format of a compiler diagnostic is?t

SIMhhh c CARD nnnn text
hhh three hexa-digits giving compiler component issuing message
(first hexadigit) and messaye serial within component.
c Severity code:?
W Warning; the compiler has detected a possibly

nnnn

text

Compiler messages:

erroneus construction but compilation and object
program generation continue.

Recovery error; The program contained an errror that
could be corrected by inserting or changing some
symbol(s) in the program.

Severe error; the compiler had to discard part of
the program, but the compilation could continue.

Ob ject module output is suppressed.

Severe error; the compilation is terminated after
the current scan of the program text.

Severe error; the compilation stops at once.

Internal error; follow report procedure in Appendix
Ke

Card number at which the error was detected.

Message text. Lower-case letters and the Ssequence
XXXX in the message text denote fields that will be
filled with relevant information when the message is
printed.

If an internal error message is given for a compilation, this might be
a result of a bad recovery from another error. Could this be the case,
correct these errors and recompile the program.

In case only an internal error message is given, please report the
error to NCC as described in the SIMULA Programmers Guide.

SIMO00 F

LINE nnnn INTERNAL ERROR: PROGRAM INTERRUPT (n)
AT hhhhhhhh RELATIVE TO LINKEDIT ORIGIN

User response: Follow report procedure.

SIMOO1 E

XXXX CANNOT BE OPENED, DDCARD MAY BE MISSING

User response: Supply or correct the DD-card.

SImMo02 7 SYSUT3 BUFFER SIZE SPECIFIED TOO BIG -
REDUCED TO nn BYTES

Explanation: The two SYSUT3 buffers could not be placed
in the area specified (by default, or by use of the SIZE

parameter - see section 2.2+3.1 for a description of the use
of the SIZE parameter and its default values).

User response: Change SIZE parameter if used, otherwise
contact a systems progreammer .

SIMOO3 F ATTEMPT TO READ PAST END OF FILE ON sSYSLIB -
INTERNAL COMPILER ERROR

User response: Follow report procedure.

SIMO0O4 E LINE nnnn I/0 ERROR
Explanation: An input/output error occured when the
compiler was writing the object module. A SYNADAF message
further identifying the cause of error is also printed.
User response: Check the corresponding DD-card for
invalid parameters. If none are found, consult a system
programmer.

SIM005 F LINE nnnn ECF ON SYSUTn
User response: Follow report procedure.

SIMO06 E LINE pnnnn I/80 ERROR ON SYSUTn

User response: Check the corresponding DD-card. If it
appears to be correct, consult & systems programmer.

SIM007 F LINE nnnn EOF ON SYSIN
User responset Follow report procedure.

SIM0O0O8 3 LINE 0000 SYSPUNCH COULD NOT BE OPENED,
*NODECK®' ASSUMED

Explanation! The DD-card for SYSPUNCH was probably
missing although a deck had been reqguested.

Compiler action: No object deck is punched.

SIMO09 3 LINE 0000 SYSGO COULD NOT BE OPENED, °*NOLOAD!
ASSUMED

Explanation® Analogous to SIMOOS8.
SIMOOGA E LINE nnnn 1/0 ERROR ON SYSIN
User response! Check that the SYSIN DD-card defines a

SIMULA source program (App.A). If no error is founds contact
a systems programmer.

SIMOOB E LINE nnnn ATTEMPT TO WRITE ON SYSUT1 OR SYSUTZ2
WITH BLKSIZE xxx > LIMBLKSZ Xxxx

Internal message.
SIMOOC W 0000 MAXERROR SPECIFIED TOO LARGE, 50 USED

Explanation: The user has requested too many errors to be
listed.

Compiler action: A maximum of 50 errors will be listed.
SIMOOD E LINE nnnn ESTIMATED NUMBER OF PAGES EXCEEDED

User response! Increase value of the compiler parameter
MAXPAGES if more printed output is required.

SIMOOE E LINE nnnn ESTIMATED COMPILATION TIME EXCEEDED

User response: Increase value of the compiler parameter
TIME, remember though that the value should remain less than
the EXEC step time limit (if any).

SIMOOF F LINE nnnn ILLEGAL SYMBOL (hhhhhhhh) DETECTED BY
OUTSYM - INTERNAL ERROR

User responset Follow report procedures.

SIM010 F LINE nnnn ILLEGAL SYMBOL (hhhhhhhh) DETECTED BY
INSYM = INTERNAL ERROR

User response! Follow report procedure.
SIMOFF F RELEASE nnnn IS OUT OF DATE AND MUST BE REPLACED

Explanationt All delivered systems have only limited
duration and must be withdrawn from time to time. Updated
fresh copies are delivered in good time for replacement so
that the responsability for installation of new releases
resides with the licencee.

Messages from Pass 1¢
SIM101 3 LINE nnnn HMEAR COLUMN nns EXCESS DECIMAL POINT

Explanation: More than one decimal point was found in a
numeric item.

Compiler action?! The excess decimal point is ignored.
SIM102 3 LINE nnnn NEAR COLUMN nn, MISSING DIGIT
Compiler action: The digit O is inserted.
SIM103 3 LINE nnnn HNEAR COLUMN nn, EXCESS EXPONENT
Explanationt: More than one & in a numeric item.

Compiler action: Previous exponent used as mantissa, new
exponent developed.

SIM104 B MISSING TEXT QUGTE

Explanation: The source program ended inside a text
~constant.

User response: Check all text constants (note that any
text quotes must be before or in column 72).

SIM105 7 LINE nnnn NEARK COLUMN nny MISSING CHARACTER
QUOTE

Compiler action! The quote that was found is ignored.
User response! Check if a character was intended. If so,
add the missing quote. Note that a character constant must
be on one card onlys; and that the power-of=-ten symbol is
(&)1 not ('),

SIM106 7 LINE nnnn NEAR COLUMN nn, ILLEGAL CHARACTER
Explanationt A character which cannot be part of a SIMULA
source program is found outside a comment or a character or
text constant.

Compiler actiont: Character is treated as blanke.

SIM107 7 LINE nnnn NEAR COLUMN nn, 'GO*' NOT FOLLOWED
BY *T0°?

Compiler action: 'G0' is regarded as '6GOTO'.

SIM108 7 LINE nnnn NEAR COLUMN nn, 'REAL' EXPECTED
AFTER 'LONG®

Compiler action: 'REAL' is inserted.

SIM1I02 7 LINE nnnn NEAR COLUMN nn, 'INTEGER' EXPECTED
AFTER 'SHORT®

Compiler action: YINTEGER' is inserted.

SIMIOA 7 LINE nnnn NEAR COLUMN nn, '=' EXPECTED
Explanationt '=/' should be followed by '='.
Compiler action: '=/' is assumed to mean '<{d'.

SIMIOR E LINE nnnn MORE THAN nnnn DIFFERENTLY SPELLED
IDENTIFIERS, ID TABLE FULL - CORE SIZE TOO SMALL

User response! If there are more than 3072 differently
spelled identifiers, the program must be re=-written,
otherwise it may be compiled in a larger core area.

SIM1OC 3 LINE nnnn NEAR COLUMN nn, DIGIT EXPECTED
AFTER '&°,

Compiler actiont: '&' is disregarded.

SIM10D 3 LINE nnnn NEAR COLUMN nn, INTEGER LARGER
THAN 2%31-1, TAKEN AS REAL

Compiler actiont! The integer constant is converted to a
real constante.

SIMIOE B8 LINE nnnn END OF FILE WHILE SCANNING COMMENT

SIMIOF W LINE nnnn NEAR COLUMN nn, SEMICOLON MAY BE
MISSING FOLLOWING END

Explanation: A t:i=t', vi-t, (' or 'GOTO* is found in an
end comments. This may happen if the semicolon terminating
the ende comment has been omitted.

SIM110 7 LINE 0000 NO SOURCE PROGRAM TEXT
User responset: Check the SYSIN DD=-card.

SIM111 3 LINE nnnn NEAR COLUMN nn, NUMBER TOO BIG

Compiler action: The largest representable number is used
(appre 10%x75).

SIMi12 3 LINE nnnn NEAR COLUMN nn, NUMBER UNDERFLOW,
0 USED AS VALUE

User response:! Read section 3.1 of this manual.
SIM113 3 LINE nnnn NEAR COLUMN nn, EXPONENT > 75
Compiler action: «cf. SIMI1ll.
SIMIl4 7 LINE nnnn NEAR COLUMN nn, UNMATCHED 'END?
Explanationt More 'END'!s than 'BEGIN':s.

User response! Check the program structure. BEGIN-END
numbering in right margin should be useful for this purpose.

SIM115 3 LINE nnnn TOOC MANY BITS IN A NONDECIMAL CONSTANT
= TRUNCATED

Explanation: This message is related to use of
unsuppor ted feature (nondecimal numerals)e.

SIM116 B LINE nnnn DEBUG CODE INCORRECTLY SPECIFIED
User response: Check for mis=punch in column 1.

SIM117 7 LINE nnnn NEAR COLUMN nns 'TO' NOT PRECEDED BY
OGG'

Compiler action: 'TO* is ignored.

User response:! Use a different identifier if 'TO"* is
meant as such,s otherwise insert 'GO'.

SIM118 7 LINE nnnan *EXTERN' NOT SPECIFIED - OBJECT MODULE
OUTPUT CAMCELLED

Explanation: The source program is a class or procedure
definition.

User response! Correct the program of supply the EXTERN
parameter to the compiler.

SIM119 7 LINE nnnn '%COPY' NOT FOLLOWED BY VALID NAME,
OR *2COPY' FOUND IN COPIED CODE

Exp lanation: 1. The first non-blank character after
*ZCOPY' was not alphabetics or no non-blank character was
found in the remaining portion of the card

or 2. The code to be copied contained a 'ZCOPY*
statement,

Guide to user: 1. Specify name of existing source madule
on same card as ‘'ZCOPY'.

2« Avoid recursive copy.
Compiler actiont Card ignored.

SIMI1IA 7 LINE nnnn SYSLIB CANNOT BE OPENED - DD-CARD
MAY BE MISSING

Compiler actiont No copy code accepted.

SIM118 7 LINE nnnn MEMBER TO BE COPIED NOT FOUND ON
SYSLIB

Coempiler action: ‘*ZCOPY' statement is ignored.

User response: Check the '%COPY' statement and, if
necessarys, the source library.

SIMIIC 7 LINE nnnn SYSLIB BLKSIZE GREATER THAN 3200
Compiler action: '%COPY' statement is ighored.

User response: Check the SYSLIB DD-card ands if
necessarys reblock the library (see (9)).

SIMIID 7 LINE nonnn I/0 ERRUOR ON SYSLIB DURING DIRECTORY
SEARCH

Compiler actiont 'ZCOPY' statement is ighored.

User respons: Consult a systems programmer. (List and
correct the PDS directorys or recreate the PDS).

SIMIIE 7 LINE nnnn 1/0 ERROR ON SYSLIB WHILE READING A
MEMBER

Compiler action: 'ZCOPY member' is ignored.

User responset: Recreate the number ory if necessary, the
entire librarye.

SIMI1IF W LINE nnnn LENGTH OF TEXT CONSTANT>132 (ONE
PRINTED LINE)}

User responset Chech for missing or improperly punched
text quote. If no quote is missing, ignore message.

SIM120 B LINE nnnn RUMBER OF IDENTIFIERS (INCLUDING
STANDARD IDENTIFIERS)=nn > 3072.

Exp lanation: The maximum number of differently spelled
identifiers allowed in this implementation is 3072.

User response! Redeclare quantities where possible.

SIM121 B LINE nnnn 'EXTERNAL CLASS' NOT FOLLOWED BY
VALID ID

SIM1Z22 B LINE nnnn NOT ENOGUGH SPACE FOR TREATING IDS OF
EXTERNAL CLASS, (NIDS=xxx, yyy BYTES LACKING)

User response! Recompile in a longer partition.

SIM124¢ B LINE nnnn EXTERNAL CLASS DECLARATION IN COPIED
COBDE = ATTEMPT TGO READ FROM SYSLIB RECURSIVELY

Explanation: Code segments inserted by %COPY statement
must not contain other %COPY statement or external class
declaratione.

SIM125 B LINE nnnn UNEXPECTED END OF FILE WITHIN AN
EXTERNAL CLASS

User response! Verify that entire separately compiled
class is submitted - if the problem persists, contact NCC.

SIM126 B LINE nnnn INCORRECT FORMAT IN EXTERNAL CLASS CODE
Explanation: Internal error, please report to NCC,

together with a hexadecimal dump of the precompiled class
and the listing showing the error.

SIM127 B LINE nann INCORRECT SYNTAX IN EXTERNAL CLASS
DECLARATION

Exptanation: Internal error, please report to NCC,
together with a hexadecimal dump of the precompiled class
and the listing showing the error.

SIM128 3 LINE nnnn DIGIT >= RADIX IN A NON-DECIMAL
CONSTANT

Explanation: The error is related to use of unsupported
feature.

SIM129 7 LINE nnnn RADIX NOT 2,4,8 DR 16

Explanation: The error is related to use of unsupported
feature.

SIM12A 7 LINE nnnn EXTERNAL CLASS OUTPUT SUPRESSED -
SYSPUNCH CANNOT BE OPENED

User response: Check presence and validity of SYSPUNCH
data set definition. It must be either a sequential data set
or a pds member.

SIMI2B W LINE nnnn INTEGER LESS THAN =-2%%31, TAKEN AS REAL

Explanationt! A value of a fixed=-point literal in the
program text exceeds the hardware dictated limit.

SIM12C W LINE nnan TOO MANY BITS IN A NONDECIMAL INTEGER
CONSTANT,s TAKEN AS LONG REAL

Explanation: A hexadecimal constant with more than 8
hexadecimal digits occurring in the program text, not
appended by L.

SIM120 7 LINE nnnn EXTERN SPECIFIED, BUT NEITHER PROUCEDURE
NOR CLASS SUPPLIED

Explanationt: Compiler parameter EXTERN value was

different from zero, however a main program in the form of a
(prefixed) block or a compound statement was detected on
SYSIN.

SIMIZE W LINE nnann XXXxxxxx IS AN UNKNOWN KIND OF EXTERNAL
PROCEDURE, TREATED AS 'ASSEMBLY?®

Explanationt A word following external was different
from FORTRAN, ASSEMBLY, PROCEDURE or any known type.

SIMI2ZF W LINE nnnn NOT EXACTLY COMPLETE PROGRAM, AT
LEAST 'END' MISSING

Explanation: A SIMULA program must have form of a
compound statement or a (prefixed) block. Neither of these
were found on SYSIN,

SIMI130 3 LINE nnnn MISSING DELIMITER IN EXTERNAL
DECLARATION

Explanation: A comma missing as a separator in the
identifier list of an external declaration.

SIM131 W LINE nnnn HIDDEN/PROTECTED FEATURE IS NOT
IMPLEMENTED

Explanationt Attribute protection feature was used in the
compiled program but it will not give the expected effect
because the present release does not contain an
implementation of this feature's semantics.

Messages from Pass 3@

SIM301 3 LINE nnnn THE SPECIFICATION GF THE PARAMETER
XXXX HAS BEEN OMITTED

Compiler action: The parameter is given the specification
INTEGER called by value.

Guide to user: If this specification was not intended
superfluous messages may follow.

SIM302 3 LINE nnnn THE PARAMETER XXXX IS NOT IN THE FORMAL
PARAMETER LIST

Explanaticont The mode part of a procedure of class
declaration specifies a parameter not in the formal
parameter list.

Compiler actiont: The specification is ighorede. This may
cause 'UNDECLARED' messages later.

SIM303 E LINE nnnn STACK OVERFLOKW

Explanationt The program has been embedded to too many
tevels of 'BEGIN'y 'IF' (... symbols and/or formal
parameters.

SIM304 B LINE nnnn STACK UNDEFFLOW: YOU PROBABLY HAVE
TOO MANY 'END'S

Explanation: There are too many 'END':!s or some missing
*BEGIN':s in the program.

Compiler actiont! The program text is discarded until a
new 'BEGIN' symbol is found. Then the syntax for a program
is applied to the remaining part, and message SIM318 is
i ssued,

SIM305 7 LINE onnnn HMISSING DELIMITER BEFORE XXXX

Explanationt A constant or identifier is not separated
from the succeeding identifier by a delimiter.

Compiler action: Statement is discarded.

SIM306 7 LINE onnn HWRONG DELIMITER: XXXX 1S ILLEGALY
PLACED

Compiler action: Statement is discarded.

SIM307 7 LINE nnnn SEMICOLON OMITTED AFTER FORMAL
PARAMETER PART.

Compiler action: The erroneous program text is discarded.

SIM308 7 LINE nnnn IMPROPER QUALIFICATION: IT SHOULD
HAVE THE FORM REF(<IDENTIFIERD)

Compiler actiont Declaration/specification discarded.

SIM309 7

LINE nnnn MISPLACED CONSTANT

Explanationt: An identifier or constant is immediately

followed
Compiler
SIM30A 7
Compiler

SIM30B 7

Compiler

SIM30C 7

Compiler
Guide to
SIM30D 7
Compiler

SIM30E 3

Compiler

SIM2OF 3

Compiler

by a constant.

action:! Statement discarded.

LINE nnnn XXXX IS ILLEGALLY PLACED
action: Statement discarded.

LINE nnnn MISSING IDENTIFIER AFTER 'IN'*, 'IS?
OR 'QUA!

action: Statement discarded.

LINE nnnn ILLEGAL CONSTRUCTION: THE CLAUSE
BEFORE XXXX IS NOT PROPERLY ENDED

actiont Statement discarded.
user: May be caused by an earlier error.
LINE nnnn IMPROPER ACTIVATION STATEMENT
action?! Statement discarded.

LINE nnnn ILLEGAL USE OF PRIOR: 'PRIOR' MAY BE
USED ONLY WITH 'AT' OR 'DELAY®

action: 'PRICR' is ignored.

LINE nnnn THE FORMAL PARAMETER XXXX IS SPECIFIED
MORE THAN ONCE

action: The latest specification is used and any

mode definition for this parameter is ighored.

SIM310 3

SIM311 3

Compiler

SIM312 7

Compiler

SIM313 F

LINE nnnn A SWHITCH, LABEL, REF QUANTITY OR
PROCEDURE - SUCH AS XXXX - MAY NOT BE PASSED BY
VALUE: THE DEFAULT MODE 1S SET.

LINE nnnn THE FORMAL PARAMETER XXXX HAS BUPLICATE
NAME/VALUE MODES

action: The first specified mode is used.

LINE nnnn ILLEGAL SPECIFICATION: 'VIRTUAL'® MUST
BE FOLLOWED BY A COLON

actiont Statement discarded.

INTERNAL ERROR - CONTACT A SYSTEMS PROGRAMMER

User response: Follow report procedure,

SIM314 3

Compiler

SIM315 3

Compiler

SIM316 7

Compiler

SIM317 7

Compiler

SIM318 B

Compiler

SIM319 3

SIM31A 7

Compiler

SIM31iB 7

Compiler

SIM31C 3

SIM31D 3

SIM31E 7

SIM31F 3

SIM320 3

LINE nnnn DUPLICATE 'INNER': AT MOST ONE INNER
MAY APPEAR PER CLASS BODY

action: 'INNER®* is ignored.

LINE nnnn MISPLACED 'INNER': INNER MUST APPEAR
AS A STATEMENT ON ITS OWN AT THE OUTERMOST BLOCK
LEVEL OF A CLASS BODY

action: Statement is ignored.

LINE nnnn ILLEGAL WHEN BRANCH: THE IDENTIFIER
IS MISSING IN 'WHEN' <IDENTIFIER> DO*

action: The clause is ignhored.

LINE nnnn ILLEGAL WHEN BRANCH: THE DO IS MISSING
IN '"WHEN <IDENTIFIER> DO

actiont: An extra do has been insertede.

LINE nnnn UNBALANCED PROGRAM: A FURTHER *BEGIN®
HAS BEEN FOUND AFTER THE 'END' WHICH MATCHED THE
INITIAL 'BEGIN'

actiont Start from scratche

LINE nnnn UNBALANCED PROGRAM DUE TO INSUFFICIENT
YEND'S: EXTRA 'END'S HAVE BEEN INSERTED AT THE
FINISH OF YOUR PROGRAM

LINE nnnn UNBALANCED PARENTHESES BEFQORE ':=?
OR *:-?

action: Statement is discarded.

LINE nnnn A BRACKETED EXPRESSION IS NOT A LEGAL
STATEMENT

actiont Expression is ignored.

LINE nnnn MISPLACED NAME/VALUE PART - THE DEFAULT
MODE HAS BEEN TAKEN. PLACE IT BEFORE THE
SPECIFICATIONS.

LINE nnnn PASS 3 RECOVERY HAS INSERTED A 'BCEGIN'
HERE. THIS CHANGES IN SCOPE MAY GIVE RISE TO
SPURIOUS ERROR MESSAGES IN LATER PASSES.

LINE nnnn THE PROGRAM TEXT STOPPED IN THE MIODLE
OF A CONSTRUCTIGN -~ PRUBABLY DUE TO MISSING LINES.

LINE nnnn NO SEMI-COLON FOUND AFTER A
PARENTHESIZED FORMAL-PARAMETER=-LIST. AN EXTRA ';°
HAS BEEN INSERTED.

LINE nnnn THE CONSTRUCTION *IF ... THEN
INSPECT/FOR/WHILE ELSE' IS ILLEGAL. WRAP THE
STATEMENT FOLLOWING THE 'THEN' IN A 'BEGIN - END®
PAIR.

SIM321

SImM322

SIM323

SIM324

SIM325

SIM326

LINE pnnnn MISSING IDENTIFIER AFTER THE KEYWORD
*CLASS/PROCEDURE'

LINE nnnn MISSING ATTRIBUTE IDENTIFIER AFTER A
DOT (*'.").

LINE nnnn TEXT CONSTANTS ARE NOT ALLOWED TO THE
IMMEDIATE LEFT OR RIGHT OF REFERENCE COMPARATORS
(v==' OR '=/='),

LINE nnnn LABEL, SWITCH OR PROCEDURE MAY NOT BE
USED AS A CLASS PARAMETER SPECIFIER.

LINE nnnn LEFT PARENTHESIS OMITTED IN
'REF(IDENTIFIER)'. AN EXTRA '(' HAS BEEN INSERTED.

LINE nnnn RIGHT PARENTHESIS OMITTED IN
YREF(IDENTIFIER) '« AN EXTRA ')}' HAS BEEN INSERTED.

Messages from Pass 4:

SIM401 F LINE nnnn INTERNAL ERROR - IMPROPER BLOCK
NESTING

User response: Follow report procedure.

SIMG02 F LINE nnnn STACK OVERFLOW IN STACK nn (nn ENTRIES
WERE ALLOCATED)

User response! Follow report procedure.

SIM403 F LINE nnnn INTERNAL ERRDOR - STACK UNDERFLOW IN
STACK nn

User response?! Follow report procedure.
SIM404 F LINE nnnn INTERNAL ERROR - MICPLACED SYMBOL XXXX
User response?! Follow report procedure.

SIM405 7 LINE nnnn HNUMBER OF PARAMETERS TO PROC/CLASS
EXCEEDS 127

Explanation: See section 3.3,

SIMG06 7 LINE nnnn NUMBER OF VIRTUAL SPECIFICATIONS
EXCEEDS 255

Explanation: See section 3.3.
SIM407 7 LINE onnnn FOR-STATEMENT NESTING LEVEL EXCEEDS 30
SIM408 7 LINE nnnn NUMBER OF SWITCH ELEMENTS EXCEEDS 127
SIM409 7 LINE nnnn ARRAY DIMENSION EXCEEDS 127

Explanation! An array declaration indicated more than 127
subscriptse

SIMGOA 7 LINE nnnn HMORE THAN 127 IDENTIFIERS IN ID LIST

Explanationt A declaration list (i«e. a list of
identifiers separated by commas in a declaration part) had
more than 127 elements.

User response: Divide the list into lists with less than
127 elements.

SIM4OB F LINE nnnn INTERNAL ERRCOR = STACK INDEX (nn)
OUT OF RANGE

User response: Follow report procedures

Messages from Pass 5t

SIM501 F LINE nnnn INTERNAL ERROR - XXXX WAS READ INSTEAD
OF *SuBL@L' SYMBOL

User response: Follow report procedure.

SIM502 F LINE nnnn INTERNAL ERROR = XXXX WAS READ INSTEAD
OF *LQLEND' SYMBOL

User response: Follow report procedure.
SIM503 7 LINE nnnn CLAS XXXX HAS UNBECLARED PREFIX XXXX
Compiler action?! Prefix is ignored.

SIM504 7 LINE nnnn ILLEGAL PREFIX XXXX TO CLASS XXXX,
XXXX IS NOT A CLASS

Compiler actiont: Prefix is ignored.

SIM505 7 LINE nnnn CLASS XXXX, DECLARED AT BLOCK LEVEL nn,
IS USED AS PREFIX AT LEVEL nn

User response: Declare the subclass or prefixed block at
the same block level as the prefix.

SIM506 7 LINE nnnn ILLEGAL PREFIX TO CLASS XXXX, XXXX
BECAME VISIBLE THROUGH CONNECTION

User responset Declare the class in the class body of the
connected class.

SIM507 7 LINE nnnn CLASS XXXX OCCURS IN ITS OWN PREFIX
CHAIN

Compiler action: Prefix is ignored.

SIM508 7 LINE nnnn AMBIGUOUS IDENTIFIER XXXX
(THIS DECLARATION OF XXXX REPLACES THE LAST MADE
ON LINE nnonn)

Explanation: An identifier has been declared twice in a
block.

SIM509 7 LINE nnnn CONFLICTING VIRTUAL SPECIFICATICN OF
XXXX IN CLASS XXXX

Explanationt XXXX (first occurrence) has been specified
VIRTUAL twice in a prefix chaine.

SIMS50A B LINE nnnn QUALIFYING CLASS XXXX OF REFERENCE
QUANTITY XXXX IS UNDECLARED (XXXX IS ASSUMED
TO BE OF TYPE 'INTEGER')

Guide to user:! The altered meaning of the quantity will
probably trigger other error message.

SIM50B B LINE nnnn QUALIFIER XXXX OF REFERENCE QUANTITY
XXXX IS NOT A CLASS (XXXX 1S ASSUMED TO BE OF
TYPE 'INTEGER®')

Guide to user: cf. SIMS50A.

SIMS0C 7 LINE nnnn MATCHING QUANTITY XXXX IN CLASS XXXX
IS OF IMPROPER KIND

Compiler action: The quantity will not be regarded as a
match, and the virtual specification will become invisible
(ieee no further matches will be accepted).

SIMS0D 7 LINE nnnn MATCHING QUANTITY XXXX IN CLASS XXXX
IS OF IMPROPER TYPE

Compiler actiont cf. SIMSOC.
Guide to user! Read section 4.2.

SIMS50E 7 LINE nnnn MATCHING PROCEDURE XXXX IN CLASS XXXX
IS NOT SUBORDINATE

Compiler action: cf. SIM50C.
Guide to usert: Read section %.2.
SIM50F E LINE nnnn CAPACITY ERROR - ALLUCATE STACK

OVERFLOW: TRY DECLARING SUBCLASSES BEFORE THEIR
PREFIXES

Guide to usert: This compiler capasity limitation can

& lways be overcome by preceding a sufficient number of

prefixed classes by their subclasses.

SIM510 E LINE nnnn ILLEGAL PREFIX XXXX - PREFIX LEVEL
EXCEEDS 62

Explanationt! See section 3.3,

SIM511 B LINE nnnn UNDECLARED BLOCK PREFIX XXXX
Compiler action: Prefix is ignhored.

SIM512 E LINE nnnn STATIC BLOCK LEVEL GREATER THAN 15
Explanation?! See section 3.3.

SIM513 W LINE nnnn QUALIFICATIONS XXXX AND XXXX HAVE
INCOMPATIBLE BLOCK LEVELS

Explanationt The qualifications are either not on the
same prefix chain or one of them has become visible by
connection.

SIM514 B LINE onnnn QUALIFICATIONS XXXX AND XXXX ARE
INCOMPATIBLE

Explanationt: The qualifications are not on the same
prefix chaine.

SIM515 F LINE nnnn INTERNAL ERROR = XXXX IS UNKNOWN
KEY SYMBOL

User response! Follow report procedure.

SIM516 7 LINE nnnn SYSTEM CLASS XXXX CANNOT BE USED FOR
PREFIXING

Explanationt: See section 4.1.

SIM517 7 LINE nnnn XXXX IS AN ILLEGAL BLOCK PREFIX (DUE
TO LOCAL CBJECT(S) IN CLASS XXXX)

SIM518 B LINE nnnn MISPLACED TEXT EXPRESSION BEFORE XXXX
SIM519 B LINE nnnn MISPLACED OBJECT EXPRESSION BEFORE XXXX
SIMB1A B LINE nnnn MISPLACED VALUE EXPRESSION BEFORE XXXX

Guide to user: May result from the compiler recovery
action in SIM50A or SIMS0EB.

SIM51B B LINE nnnn HMISPLACED NON-0OBJECT EXPRESSION BEFURE
XXXX

Guide to user: cf. SIMS1lA.

SIMS1C 8 LINE nnnn MISPLACED NON-REFERENCE EXPRESSICN
AFTER XXXX

SIM51D B LINE nnnn MISPLACED NON-ARITHMETIC EXPRESSION
AFTER XXXX

SIMB1E E LINE nnnn OPERAND STACK CAPACITY EXCEEDED -
SIMPLIFY EXPRESSION

User responset If error persists after simplification,
follow report procedure.

SIMS1F F LINE nnnn INTERNAL ERROR = OPERAND STACK
UNDERFLOW

User response: Follow report procedure.

SIM520 7 LINE nnnn ATTEMPT TO MATCH VIRTUAL SPECIFICATICN
XXXX OF XXXX BY A FORMAL PARAMETER

Compiler action: The formal parameter will become
invisible, but the virtual specification will be further
matchable.

SIMS521 B LINE nnnn IDENTIFIER XXXX IN OBJECT GENERATOR
IS NOT A CLASS IDENTIFIER

SIM522 F LINE nnnn INTERNAL ERROR - SYMBOL ‘*SuBLQL!
SCANNED IN 5B

User response: Follow report procedure.

SIMS23 F LINE nnnn INTERNAL ERROR = OPERAND STACK DATA
ENTRY hhhhhhhh UNSTACKED

User response: Follow report procedure.

SIMS524 F LINE nnnn INTERNAL ERROR = SYMBOL ‘*OTHR?
SCANNED IN 5B

User response! Follow report procedure.
SIM525 7 LINE nnnn IDENTIFIER XXXX IS UNDECLARED

Compiler action: A dummy declaration is inserted, which
may cause other errors (51A, 51B, 51C).

SIM526 B LINE nnnn MISPLACED TEXT OR REFERENCE EXPRESSION
AFTER XXXX

SIM527 B LINE nnnn IMPROPER TYPE IN XXXX RELATION
Explanationt A binary relation had incompatible operands.

SIM528 B LINE nnnn DYNAMIC QUALIFICATIONS XXXX AND XXXX
IN REFERENCE RELATION DISAGREE

Explanationt Either the qualifications were not on the
same prefix chain or at least one of the qualifications had
become visible by connection.

SIMB529 F LINE nnnn INTERNAL ERROR = XXXX IS INVALID
CONTROL TABLE INDEX

User response! Follow report procedure.

SIM52A F LINE nnnn INTERNAL ERROR =~ XXXX FOLLOWS CLASS ID
IN OBJECT GENERATOR

User response:! Follow report procedure.

SIMS528 B8 LINE nnnn NUMBER OF ACTUAL PARAMETERS (nn) NOT
EQUAL TO NUMBER OF FORMAL PARAMETERS (nn) OF XXXX

SIM52C 3 LINE nnnn MATCH TO VIRTUAL REF SPECIFICATICON XXXX
IN CLASS XXXX IS INCORRECTLY QUALIFIED - SPECIFIED
QUALIFICATION ASSUMED

Explanation! See section G.2.

SIMS520 B LINE nnnn P*THIS XXXX' IS AN INVALIOD LOCAL OBJECT

Explanation: The local object did not occur inside a
class body or connection block quatified by XXXX.

SIMS2E 7 LINE nnnn ILLEGAL USE OF LOCAL OBJECT ('THIS
XXXX*} IN A BLOCK PREFIXED BY XXXX

Explanationt A reference expression must not evaluate to
a reference to a prefixed block.

SIMS52F B LINE nnnn INCOMPATIBLE TRUE/FALSE CLAUSES IN A
CONDITIUONAL EXPRESSION

SIM530 B LINE nnnn XXXX IS NOT A CLASS IDENTIFIER

Explanation: The identifier was used as prefix or after
"QUA's 'IS', 'IN' or 'WHEN'.

Compiler action! Prefix or expression ignored.

SIMS31 7 LINE nnnn ILLEGAL USE OF DOT NOTATION,s CLASS XXXX
CONTAINS LOCAL CLASSES

SIMS532 B LINE nnnn XXXX IS NOT AN ATTRIBUTE OF CLASS XXXX
Explanation: In a <remote identifier> the identifier
after the dot was not an attribute of the object reference
expression before the dot.

SIM533 B LINE nnnn XXXX IS NOT A TEXT ATTRIBUTE
IDENTIFIER

Explanation: A text expression followed by a dot was not
followed by a text attribute.

SIM534 E LINE nnnn REDECLARATION STACK OVERFLOW
Explanation: The sum of the block level and the
forstatement nesting level is greater than 30. See section
363,

SIM535 E LINE nnnn CLASS XXXX HAS MORE THAN 127
PARAMETERS (INCLUDING THOSE IN PREFIXES)

Explanation: See section 3.3.

SIM536 E LINE nnnn CLASS XXXX HAS MORE THAN 255 VIRTUAL
SPECIFICATIONS (INCLUDING THOSE IN PREFIXES)

Explanation: See section 3.3,
SIM537 B8 LINE nnnn BLOCK PREFIX XXXX IS NQT A CLASS

Compiler action: Prefix ignored.

SIM538 W LINE nnnn MATCHING QUANTITY XXXX IN CLASS XXXX
HAS INCONSISTENT NUMBER OF PARAMETERS OR SUBSCRIPTS

Explanation! Two matches of the same virtual procedure or
array specification had different number of
parameters/subscripts.

Guide to user: This message shows that the quantity must
be used with care if execution errors are to be avoided.,

SIM539 W LINE nnnn INCONSISTENCY BETWEEN ACTUAL PARAMETER
COUNT (nn) AND FORMAL PARAMETER COUNT (nn) IN
MATCH TO VIRTUAL PROCEDURE XXXX

Guide to usert: When this message appears, but not SIM538,
then the program certainly contains parts that can never be
executed without a run-time error.

SIMS3A B LINE nnnn MIXED TYPES IN REFERENCE ASSIGNMENT
Explanationt REF and TEXT types were mixed.

SIM53B W LINE nnnn CALL ON UNMATCHED VIRTUAL PROCEDURE
XXXX

Explanation?! There was no match at this access level.
Harning onlye.

SIM63C B LINE nnnn ATTEMPT TO ACTIVATE A NON-PROCESS
OBJECT OF CLASS XXXX

SIM53D0 E LINE nnnn DYNAMIC BLCOCK LEVEL GREATER THAN 15
Explanationt! See section 3.3.

SIMS3E 7 LINE nnnn MATCHING QUANTITY XXXX IN BLOCK
PREFIXED BY XXXX IS OF IMPROPER KIND

Compiler action: Same as SIMSO0C.

SIMS3F 7 LINE nnnn MATCHING QUANTITY XXXX IN BLOCK
PREFIXED BY XXXX IS OF IMPROPER TYPE

Compiler action: Same as SIM50C.

SIM540 7 LINE nnnn MATCHING PROCEDURE XXXX IN BLOCK
PREFIXED BY XXXX IS NOT SUBORDINATE

Compiler action: Same as SIMS50C.

SIM541 7 LINE nnnn ILLEGAL BLOCK PREFIX = XXXX CONTAINS
LOCAL OBJECTS (IN CLASS XXXX AMONGST OTHERS)

SIM562 7 LINE nnnn MATCH XXXX IN CLASS XXXX REJECTED
DUE TO REDECLARATION OF SPECIFIED QUALIFYING CLASS

Explanationt The qualifying class of a virtual
specification is no longer visibley, so no further matches
can be requested.

SIM543 7 LINE nnnn INCORRECTLY QUALIFIED MATCH XXXX IN
CLASS XXXX (NOTE THAT VIRTUAL SPECIFICATION XXXX
IS UNMATCHABLE)

Explanation: The specified qualifying class is invisible
and therefore the specification is unmatchable at this
pOinto

SIM544 B LINE nnnn MISPLACED CLASS IDENTIFIER XXXX

SIM545 B LINE nnnn ACTUAL PARAMETER TO PROCEDURE/CLASS
XXXX HAS TYPE INCOMPATIBLE WITH THAT OF
CORRESPONDING FORMAL PARAMETER XXXX

Guide tc user: Check that an arrays switch or procedure
was not passed with associated subscript(s), index or
parameter(s) if the formal parameter was specified array,
switch or proceduree.

SIM56¢6 7 LINE nnnn CLASS SIMSET/SIMULATION USED AS A
PREFIX WITHIN BLOCK OR CLASS PREFIXED BY
SIMSET/SIMULATION

Explanationt! See section G.1l.

SIM547 7 LINE nnnn BLOCK PREFIX XXXX BECAME VISIBLE
THROUGH CONNECTICN

SIM548 3 LINE nnnn MATCH TO VIRTUAL REF SPECIFICATION XXXX
IN BLOCK PREFIXED BY XXXX IS WRONGLY QUALIFIED -
SPECIFIED QUALIFICATION IS ASSUMED

Explanation: See section 4.2.

SIM549 7 LINE nnnn MATCH XXXX IN BLOCK PREFIXED BY XXXX IS
REJECTED DUE TO REDECLARATION OF SPECIFIED
QUALIFYING CLASS

Explanation: See SIM542.

SIMS54A 7 LINE nnnn INCORRECTLY QUALIFIED MATCH XXXX IN
BLOCK PREFIXED BY XXXX (NOTE THAT VIRTUAL
SPECIFICATION XXXX IS UNMATCHABLE)

Explanationt See SIM543.

SIM54B W LINE nnnn MATCHING QUANTITY XXXX IN BLOCK
PREFIXED BY XXXX HAS INCONSISTENT NUMBER OF
PARAMETER DR SUBSCRIPTS

Explanation: See SIM538.

SIMS54C 7 LINE bnnnn MATCHING PROCEDURE XXXX IN CLASS XXXX
IS NOT SUBORODINATE (PROBABLY DUE TO A PREFIX LOOP)

Explanation: Section 4.2.

SIM54D0 W LINE nnnn COMPATIBILITY OF QUALIFICATIONS XXXX
AND XXXX MUST BE CHECKED AT RUN-TIME

Explanationt! In a reference assignment (A:=X) the
qualification of the identifier A is a subclass of the
qualification of the expression X.

Guide to user:! The run=-time check will degrade program
performance. If appearing in an “Yinner loop" it could pay
off to alter the qualification of A, but this may imply
other changes in the program.

SIMS4E 7 LINE nnnn MATCHING PROCEDURE XXXX IN CLASS XXXX
IS NOT SUBORDINATE (PRCBABLY DUE TO USE OF
UNBECLARED PREFIX)

Explanation: Section 4.2.

SIMS54F 7 LINE nnnn (IN LOWER BOUND OF ARRAY XXXX
DECLARATION) = IDENTIFIER XXXX IS UNDECLARED

Compiler action: cf. SIM52Z25.

Guide to usert nnnn is the cardnumber of the left bracket
of the array bounds list.

SIMS550 7 LINE nnnn MATCHING PROCEDURE XXXX IN CLASS XXXX
IS NOT SUBORDINATE (PROBABLY DUE TO USE OF
NON=-CLASS PREFIX)

Compiler actiont «cf. SIMS50C,

SIM551 7 LINE nnnn (IN UPPER BOUND OF ARRAY XXXX
DECLARATION) = IDENTIFIER XXXX IS UNDECLARED

Compiler actiont «c¢f. SIM525.

Guide to usert cf. SIM54F.
SIM552 B LINE nnnn MISPLACED OBJECT EXPRESSION AFTER t:i=¢?
SIM553 B LINE nnnn MISPLACED VALUE EXPRESSION AFTER ‘t:-¢

SIM554 E LINE nnnn CAPACITY ERROR - FREE STORAGE AREA
TOO SMALL TO CONTAIN DICTIONARY

User responset Try to compile in a larger core area. If

no mcre core is available, the number of differently spelled
identifiers must be decreased by parallell and nested
redeclarations.

SIM555 B LINE nnnn (IN LOWER ARRAY BOUND) - NO. ACTUAL
PARMS (nn) NOT EQUAL TO NO. FORMAL PARMS (nn) OF
XXXX

Guide to usert cf. SIM54F.

SIMS%6 B LIKRE nnnn (IN UPPER ARRAY BOUND) - NO. ACTUAL
PARMS (nn) KOT EQUAL TO MO. FORMAL PARAMS (nn) OF
XXXX
Guide to user: cf. SIMS4F.

SIM557 B LINE nnnn (IN LOWER BOUND nn OF ARRAY XXXX
DECLN) - MICPLACED TEXT EXPRESSION

Guide to user: cf. SIMS54F,

SIM558 B LINE nnnn (IN UPPER BOUND nn OF ARRAY XXXX
DECLN) = MISPLACED TEXT EXPRESSION

Guide to user: cf. SIM5¢F.

SIM559 B LINE nnnn (IN LOWER BOUND nn OF ARRAY XXXX
OECLN) - MISPLACED OBJECT EXPRESSION

Guide to user: cf. SIMS4F,

SIM55A B LINE nnnn (IN UPPER BOUND nn OF ARRAY XXXX
DECLN) - MISPLACED OBJECT EXPRESSION

Guide to user: cf. SIM54F,

SIMSSB W LINE nnnn (IN LOWER ARRAY BOUND) = MATCH TC
VIRTUAL PROCEDURE XXXX HAS INCONSISTENT
ACTUAL/FORMAL PARAMETER COUNTS (nn/nn)

Guide to usert: cf. SIM539, SIMS4F

SIMSSC W LINE nnan (IN UPPER ARRAY BOUND) = MATCH TO
VIRTUAL PROCEDURE XXXX HAS INCONSISTENT
ACTUAL /FORMAL PARAMETER COUNTS (nn/nn)

Guide to usert cf. SIM539, SIMS4F

SIMSSE W LINE nnnn (IN LOWER BOUND OF ARRAY XXXX
DECLARATION) = CALL ON UNMATCHED VIRTUAL
PROCEDURE XXXX

Explanation: cf. SIMS3B.
Guide to user: cf. SIMS4F.

SIMSS5E W LINE nnnn (IN UPPER BOUND OF ARRAY XXXX
DECLARATION) - CALL ON UNMATCHED VIRTUAL
PROCEDURE XXXX

Explanationt: cf. SIM53B.
Guide to user: cf. SIMB4F,
SIM55F B LINE nnnn ACTUAL PARAMETER TO STANDARD

PROCEDURE/CLASS XXXX HAS TYPE INCOMPATIBLE WITH
THAT OF CORRESPUNDING FORMAL PARAMETER

SIM560 B8 (IN ARRAY XXXX BOUNDS) - IDENTIFIER XXXX IS
INVALID: DECLARED AT SAME BLOCK LEVEL AS ARRAY XXXX

SIM561 B ACTUAL PARM TO PRUOC/CLASS XXXXs CORRG TO FORMAL
PARM XXXX, SHOULD NOT INCLUDE
PARMS/SUBSCRIPTS/INDECES

Explanation: The corresponding formal parameter is a
procedure, array or switch. Parameters, subscripts or
indeces should not be supplied with the actual parameters.

SIM562 B ACTUAL PARM TO STANDARD PROC/CLASS SHOULD NOT
INCLUDE PARMS/SUBSCRIPTS/INDECES

Explanation: cf. SIM561.
SIM563 B HMISPLACED TEXT EXPRESSION AFTER *'GUTO*
SIM564 B MISPLACED OBJECT EXPRESSION AFTER 'GOTO®
SIM565 E BLOCK SIZE EXCEEDS 4096 BYTES

Explanation: This implementation restricts the maximum
block size to 4096 bytes (see Section 3.2.)

SIM566 W FURTHER OCCURRENCE OF IDENTIFIER XXXX (PREVIOUSLY
UNDECLARED AND GIVEN A DUMMY DECLARATION)

Guide to user: On the first occurrence of an undeclared
identifier, message SIM525 is issued. On subsequent
cccurrencessy this message (SIM566) is issued (up to 10
times). If the identifier occurs more than 10 times, message
SIM56T is issued and further occurrences are not noted.

SIMB567 W FURTHER OCCURENCE OF IDENTIFIER XXXX (PREVIOUSLY
UNDECLARED) = FURTHER WARNINGS FOR THIS ID ARE
SUPPRESSED

Explanation: see SIM566.
SIM568 F LINE nnnn PAGING ERROR - SYSUT4 1/0 ERROR

User response: Check the DBD-card for SYSUT4. Note that a
preallocated data set can not be useds If no error is found,
consult a systems programiner .

SIM569 F LINE nnnn PAGING ERROR = SYSUT4 DD CARD MISSING

Explanationt A DD-card for SYSUT4 had not been supplied,
and the compiler tables and stacks were tco large to be held
in core.

User response: Supply the DD-card or re-submit the job to
be run in a larger region.

SIMS56A F LINE nnnn PAGING ERROR - WRONG PAGE LOADED FROM
SYSUT4

User response: Follow report procedure.

SIM568 F LINE nnnn PAGING ERROR - INVALID LOAD FROM
VIRTUAL MEMORY, VIRTUAL ADDRESS = hhhhhhhh

User response: Follow report procedure.

SIMS6C E LINE nnnn PAGING ERRUOR - CORE STORAGE TOO SMALL:
COMPILATION TERMIMNATED

User response: Run in a larger core area. If error
persists, consult a systems programmer.

SIMS56D0 F LINE nnnn PAGING ERROR - VIRTUAL ADDRESS
hhhhhhhh OUT OF RANGE

User response: Follow report procedure.

SIMS6E F LINE nnnn PAGING ERROR = ATTEMPT TO STORE INTO
FIXED PART OF VIRTUAL MEMORY AT ADORESS hhhhhhhh

User response! Follow report procedure.

SIMB6F B LINE nnnn MISPLACED NON-PROCEDURE IDENTIFIER
XRXXXXX KX

Explanationt O0Only a procedure identifier can form a
statement on its owns

SIM570 W LINE nnnn INCONSISTENCY BETWEEN
PARAMETER/SUBSCRIPT COUNTS IN OCCURENCES OF
PROCEDURE/ARRAY xxxxxxxx CALLED BY NAME

SIMS571 7 LINE nnnn INCONSISTENCY BETWEEN
PARAMETER/SUBSCRIPT COUNTS IN OCCURRENCES OF
PROCEDURE/ARRAY XXXXXXXX

SIMS572 3 LINE nnnn STANDARD PROCEDURE xxxxxxxxX MAY NOT BE
PASSED AS A PARAMETER TO PROCEDURE yyyyyyyy

Messages from Pass 7:
SIM7C00 F LINE pnnn INTERNAL ERROR XXXXXXXX

User response: Please report to NCC with the listing
demonstration the error.

SIM701 3 LINE nnnn NON-BOOLEAN OPERAND XXXX IN BOOLEAN
EXPRESSION

Compiler action: OQOperand is replaced by value *FALSEY,
SIM7062 3 LINE nnnn OPERAND XXXX NOT SIMPLE IN EXPRESSION

Explanation: A procedure, array or class identifier was
used without parameters or subscripts in an expression.

Compiler action: UOperand is replaced by a constant (NONE,
NOTEXT,s FALSE, CHAR(O) or a zero of appropriate type).

SIM703 3 LINE nnnn LEFT (XXXX) AND RIGHT (XXXX) PART CF
ASSIGNMENT INCOMPATISBLE

Explanationt Types were incompatible.
Compiler actiont: The assignment is ignored.
SIM704 7 LINE nnnn ASSIGNMENT RIGHT HAND SIDE ILLEGAL

SIM705 3 LINE nnnn IMPROPER TYPE OF OPERAND (XXXX) IN
ARITHMETIC EXPRESSION

Explanationt An arithmetic operator (+, =4 %, //s /s oOr
%)} had a non=-arithmetic operand.

Compiler action:! The resulting operand is replaced by
ZEro.

SIM706 3 LINE nnnn IMPROPER TYPE OF OPERAND (XXXX) IN
VALUE RELATION

Explanation? An operand of a value relation was not of
value type (arithmetic, CHARACTER or TEXT).

Compiler actiont The relation is replaced by 'FALSE'.

SIM707 3 LINE nnnn BOOLEAN OPERAND (XXXX) IN VALUE
RELATION

Compiler actiont: The relation is replaced by 'FALSE'.

SIM708 3 LINE nnnn IMPROPER TYPE OF CPERAND (XXXX) IN
REFERENCE RELATION

Compiler actiont The relation is replaced by *FALSE'.

SIM709 3 LINE nnhnn MIXED TYPES IN REFERENCE RELATION

Explanationt Types TEXT and REF were mixed.

Compiter actiont: The relation is replaced by 'FALSE'.

SIM70A B LINE nnnn CONTROLLED VARIABLE (XXXX) WAS NOT

VALUE TYPE

Compiler action: A dummy LONG REAL is used which may
trigger other messages in the FOR-1ist.

SIM708

Compiler

SIM70C

B

E

LINE nnnn CONTROLLED VARIABLE (XXXX) WAS NCT REF
action: A dummy REF is used. <cfe. SIM70A.

LINE nnnn CONSTANT TABLE OVERFLOW - SIMPLIFY
SOURCE CODE

Explanation? More than 16 constants were used in one
statement.

SIM700

F

LINE nnnn FEATURE NOT IMPLEMENTED XXXXXXXX

User response: Follow report procedure.

SIMT0E

Compiler

SIM70F

Compiler

SIMT710

Compiler

SIM711
SIM712

SIMT13
SIM714

SIM715

SIMT716

SIM717

3

3

3

3
3

LINE onnn A TEXT VALUE IS BEING ASSIGNED TO
NON-TEXT VARIABLE XXXX

action: Assighment by-passed.

LINE nnnn GO TO OPERAND (XXXX) IS NOT SIMPLE
action: GO TO statement is ignored.

LINE nnnn GO TO COPERAND (XXXX) IS NOT LABEL
action: GO TO statement is ignored.

LINE nnnnn TYPES IN DENOTES ARE INCOMPATIBLE

LINE nnnn LEFT SIDE OF DENOTES (XXXX) IS NOT REF
OR TEXT

LINE nnnn SWITCH ELEMENT NOT SIMPLE

LINE nnnn SWITCH ELEMENT (XXXX) NOT OF TYPE
LABEL

LINE nnnn EXPRESSION SUCCEEDING 'WHILE' (XXXX)
WAS NOT BOOLEAN

LINE nnnn OPERAND SUCCEEDING 'WHILE' (XXXX)} WAS
NOT SIMPLE '

LINE onnnn IMPRCPER USE OF AN ARRAY IDENTIFIER
XXXX

Explanation? No subscripts were used.

SIM718 3 LINE nnnn EXPRESSION BETHWEEN 'IF' AND 'THEN' WAS
NOT BOOLEAN

Compiler action: 'FALSE' is used.

SIM719 3 LINE nnnn EXPRESSION FOLLOWING '*NOT' WAS NOT
BOOLEAN

SIM71A 3 LINE nnnn PARAMETER TGO 'OUTCHAR' WAS NOT OF
CHARACTER TYPE

SIM718 3 LINE nnnn FIRST PARAMETER TO 'DISCRETE' OR
YHISTD' WAS NOT ARRAY

SIM71C 3 LINE nnnn ARRAY PARAMETER (XXXX) TO 'DISCRETE' OR
'HISTD®* WAS NOT UF TYPE REAL

SIM710 3 LINE nnnn THE LAST PARAMETER TO A RANDOM DRAWING
PROCEDURE WAS INCORRECT

Explanationt The last parameter to a random drawing
procedure was an expression.

SIM71E 3 LINE nnnn THE LAST PARAMETER (XXXX) TO A RANDOM
ODRAKWING PROCEDURE WAS KOT SIMPLE

SIM71F 3 LINE nnnn THE LAST PARAMETER (XXXX) TO A RANDOM
DRAWING PROCEDURE WAS NOT OF TYPE INTEGER

SIM720 3 LINE nnnn IMPROPER PARAMETER (XXXX) TO 'ENTIER!
SIM721 W LINE nnnn PARAMETER XXXX TO ENTIER WAS INTEGER
SIM722 3 PARAMETER TO 'RANK® WAS NOT OF CHARACTER TYPE
SIM723 3 NON-ARITHMETIC PARAMETER (XXXX) TO 'SIGN?®

SIM724 3 PARAMETER XXXX TO MATHEMATICAL FUNCTION WAS NOT

ARITHMETIC

SIM725 3 LINE nnnn PARAMETER XXXX TO ‘OUTCHAR' WAS NOT
SIMPLE

SIM726 3 LINE nnnn IMPROPER TEXT REFERENCE

SIM727 3 LIKNE nnnn A RESULT IS BEING USED AS A TEXT
REFERENCE

SIM728 3 LINE nnnn TYPE OF ACTUAL CONSTANT PARAMETER
CORRESPONDING TUO FORMAL XXXX WAS BOOLEAN OR
CHARACTER

SIM729 W LINE nnnn ZERUD CONSTANT STEP IN STEP-UNTIL CLAUSE

SIM72A 3 LINE nnnn TEXT CONSTANT ILLEGAL AS NAME PARAMETER

SIM728 3 LINE nnnn IMPRCPER PARAMETER XxXxxxxxxx TO FORTRAN
PROCEDURE

Explanationt Note the following restrictions apply for
parameters to FORTRAN procedures:

- Only identifiers or literals can be used as a parameter.
- Parameter type must not be ref, label or character.

SIM74E 3 LINE nnnn IMPRUOPER USE OF NOTYPE PROCEDURE
XXXKXAXXXX

SIM74F 3 LINE nnnn REGISTER NOT RELEASED XXXXXXXX =
INTERNAL ERROR

Follow report procedure.

SIM750 3 LINE nnnn SIMPLIFY STATEMENT, TOO MANY FORMAL
PARAMETERS

User response! Simplify the expression by reducing the
number of left hand side formal parameters or simplify the
levels of nesting (parentheses or implied parentheses) on
the right hand side.

SIM751 3 LINE nnnn SIMPLIFY EXPRESSION, TOO MANY REFERENCE
QUANTITIES

SIM752 3 LINE nnnn SIMPLIFY STATEMENT, TOO MANY TEXT
QUANTITIES

User responset Simplify by reducing the number of multiple
text assignments or reduce complexity of text expression.

SIM753 3 LINE nnnn SIMPLIFY EXPRESSION, TOO MANY NESTED
VALUE QUANTITIES

User response: Simplify the expression by reducing the
amount of nesting (or implied nesting) of value quantities.
If necessary, make the calculation in two or more steps,

SIM754 3 LINE nnnn THE RESULT OF A MULTIPLICATION OF THWO
INTEGER CONSTANTS WAS TOO LARGE TO BE CONTAINED
IN AN INTEGER

User response: One of the constants should be changed to
type real.

SIM755 W LINE nnnn I GREATER THAN 31 IN CONSTANT
EXPRESSION 2%k]

SIM756 W LINE nnnn X*%l IS X

SIM757 W LINE nnnn EQUALITY/INEQUALITY RELATION CONTAINING
REAL QUANTITIES MAY NOT BE MEANINGFUL

SIM75B F LINE nnnn OPERAND STACK UNDERFLOW = INTERNAL
ERROR

SIM75C E

Explanation:
more external names.

LINE nnnn EXTERNAL SYMBOL TABLE OVERFLOW =
CAPACITY ERROR

The present implementation does not allow
This also includes the external names

in the run-time system for the modules which have been
included by the compiler.

SIM75D 3
SIM75E 3
SIM75F 3
SIM760 3
SIM761 3
SIM762 3
SIM763 3
SIM764 3
SIM765 3

Explanation:

SIM766 3

SIM767 3

SIM768 3

SIM769 3

SIM76A E

SIM768 3

LINE nnnn ILLEGAL VALUE ASSIGHNMENT OF xxxx TO
YYYY
LINE nnnn ILLEGAL REFERENCE RELATION = XxxX

CANNOT BE COMPARED WITH yyyy

LINE nnnn ATTEMPT TO ASSIGN A VALUE TO PROCEDURE
IDENTIFIER xXxx QUTSIDE THE BODY OF xXxxx

LINE nnnn ATTEMPT TO ASSIGN A REFERENCE TO
PROCEDURE IDENTIFIER xxxx OUTSIDE THE BODY OF xxxx

LINE nnnn WRONG NUMBER OF SUBSCRIPTS (kkkk) OF
ARRAY aaaa - aaaa WAS DECLARED AS mmmm-DIMENSIONAL
ARRAY

LINE nnnn TOO MANY INDICES (mmmm) FOR SWITCH ssss
- A SWITCH MAY UNLY HAVE ONE INDEX

LINE nnan EXTERNAL FORTRAN PROCEDURE xxxx CANNCT
BE OF TEXT TYPE.

LINE nnnn ILLEGAL OCCURENCE OF A LABEL/SKITCH
IDENTIFIER xxxx AT THE LEFT HAND SIDE OF AN
ASSIGNMENT

LINE nnnn TYPE OF ACTUAL ARRAY PARAMETER xxxx IS

NOT IDEWTICAL TO THE TYPE OF THE CORRESPONDING
FORMAL ARRAY yyyy

Types of array parameters must coincide.
LINE nnnn FORMAL TEXT PARAMETER xxxx OF

PROCEDURE/CLASS aaaa MAY NOT HAVE A STRING AS
ACTUAL PARAMETER IN DEFAULT MODE

LINE nnnn ILLEGAL OCCURENCE OF A NON-ARITHMETIC
CONSTANT
LINE nnnn ACTUAL PARAMETER xxxx IS NOT AN ARKRAY,

BUT THE CORRESPONDING FORMAL yyyy WAS SPECIFIED AS
AN ARRAY

LINE nnnn FORMAL PARAMETER xxxx AND ACTUAL
PARAMETER yyyy IN VALUE/DEFAULT MODE ARE OF
INCOMPATIBLE TYPES

LINE nnnn TOO MANY NESTED PROCEDURE CALLS -
CAPACITY ERROR

LINE nnnn LABEL/SWITCH xxxx MAY NOT BE USED
REMOTELY

SIM76C 3

SIM76D 3

SIM76E 3

LINE nnnn FORMAL PARAMETER xxxx AND ACTUAL
PARAMETER yyyy ARE OF INCOMPATIBLE KINDS

LINE nnnn FORMAL PARAMETER xxxx AND ACTUAL
PARAMETER yyyy ARE OF INCOMPATIBLE TYPES

LINE nnnon REMOTE CALL ON EXTERNAL PROCEDURE xxxx

Explanationt It makes little sense to distinguish between
external attribute belonging to different objects of some
class - they are all identical.

SIMT6F 7

SIM770 F

SIM77T F

SIM772 7

SIM773 7

SIM774 7

SIM775 7

SIM776 7

SIM777 7

LINE nnnn MISPLACED SUBSCRIPT EXPRESSION
FOLLOWING SIMPLE OPERAND xXxxx

LINE nnnn PROGRAM COMPILATION IMPROPERLY ENDED -
INTERNAL ERROR

LINE nnnn EXTEENAL SYMBOL xxxx NOT FOUND IN ESD -
INTERNAL ERROR

LINE nnnn FIRST TWO PARAMETERS TO HISTO MUST
BE OF KIND ARRAY

LINE nnnn LAST TWO PARAMETERS TO HISTO MUST BE
SIMPLE OPERANDS

LINE nnnn FIRST TWO PARAMETERS TO HISTO MAY ONLY
BE OF INTEGER, SHORT INTEGER OR REAL TYPE

LINE nnnn LAST TWO PARAMETERS TO HISTO MUST BE OF
ARITHMETIC TYPE

LINE nonnn THE TYPE OF THE ACTUAL ARRAY xxxx IS
NOT IDENTICAL WITH THAT CF THE FURMAL ARRAY

LINE nnnn xxxx IS ILLEGAL CONTROLLED VARIABLE

Explanation: The controlled variable cannot be a name
parameter or procedure identifier.

SIM778 3
SIM7T79 W

SIM77A W

SIM778 3

LINE nnnn CONSTANT ARITHMETIC ERROR & XXXXXXXX

LINE nnnn xxxxxxxx IS TO LONG FOR AN EXTERNAL
NAME, ONLY SEVEN CHARACTERS WERE ACCEPTED

LINE nnnn ACTUAL PARAMETER NUMBER mmmm OF
EXTERNAL ASSEMBLY/FORTRAN PROCEDURE xxxx IS AN
EXPRESSION. THIS MAY CAUSE ERROR ZYQO62 UNDER
EXECUTION.

LINE nnnn jjjj CANNOT BE CONVERTED TO iiii
BECAUSE IT IS OUT OF iiii RANGE

Explanation: Compiler attempt to convert a (long)
real/integer literal value to integer/short integer type
failed because the former has too large a magnitude.

Compiler action! Magnitude 1 is assumed.,

SIM77C W LINE nnnn WAS USE OF THE CONNECTED LABEL xxxx
INTENDED ?

Explanationt A label which is visible through inspection
occurred in a goto-statement or a switch element list.
Unless the inspected cb ject is also operating the use of
this label will lead to ZYQQO7 error in RT.

SIMT70 W LINE nnnn SYMBDUMP VALUE T0O0 HIGH WITH RESPECT TO
CORE AVAILABLE. INCREASE SYSFREE SUBPARAMETER QOF
SIZE (AND REGIONZ?) BY nK.

Explanation: Either follow this instruction (note that
SYSFREE is the third subparameter to SIZE option = usually
4K in default) or eventually recompile with SYMBDUMP(3,

SIM77E 3 LINE nnnn DUE TO A STRING IN ONE OF BRANCHES, THE
CONDITIONAL TEXT VALUE CANNOT BE USED IN A
REFERENCE CONTEXT

Explanation: An IF-THEN-ELSE construction with at least

one of the branches being & string is taken as a conditional
text value (i.e. “conditional string") and as such cannot be
used where string could be illegal,

SIM7FF B8 LINE nnnn REG AND REGFLAG INCOMPATIBLE XXXXXXXX -
INTERNAL ERRUOR

Follow report procedure.

Messages from Pass 8:

SIMB800 F
SIMBO1 F
SIMBOZ F

LINE nnnn NON-EXISTENT FIXUP - INTERNAL ERROR
LINE nnnn COMPILER CAPACITY EXCEEDED XXXX

Rerun with partition size increased by at least
XXXX (hexadecimal) bytes.

LINE nnnn COMPILER CAPACITY EXCEEDED XXXX

Rerun with partition size increased by at least
XXXX (hexadecimal) bytes.

Appendix C

RUN=-TIME DIAGHOSTICS
1) Messages.
Information messages are identified by message numbers 900-999,
ZYQ999 PSW = hhhhhhhh hhhhhhhh el
Explanationt: This is the first line printed after a
program interruption, and ¢gives the old Program Status World
at the interrupt. The succeeding line will give the reasion
for the interrupt.
2YQ998 DDNAME = cccccccce

Explanationt: This message identifies the file on which
the error listed on the preceding line occurred.
2YQ997 LENGTH

dddd POS dddd CONTENTS: /cccesec®/

' Explanation: This message gives length, pos and the first
characters of a text con which a local standard procedure
faileds The preceding line indicates the kind of error.

ZYQ996W dddd EDIT OVERFLOWS HAVE OCCURRED

Explanationt This message is printed at end of program
execution if one or more edit overflows have occurred.

2YQ995 SYNAD MESSAGE: <cCCees
Explanationt This message is edited by the control
program and gives the reason for an I/0 error that has
occurred (see (8)).
2) Diagnostics

Z2YQO000 INTERNAL ERROR

Explanationt An error has been detected that should not
occury possibly because of an error in the compiler or
runtime systeme

User response! If there are non-Simula external procedures
in the program, these should be carefully checked, otherwise
follow the standard report procedure.

2YQoo1 CALL VIRTUAL PRO

Explanation: A virtual procedure, called in the class
bodys had no match in the object in which it was called.

ZYqo02 CON. VIRT. PROC.

Explanationt A virtual procedure, called in a connection
block, had no match in the connected object.

2YQ003 REM. VIRT. PROC.

Explanation: A virtual procedure, called by remote
referencings had no match.

ZYQOO04 RESUME TERMINATE

Explanation: The parameter of RESUME was a terminated
ob ject.

ZYQ005 NO VIRTUAL MATCH

Explanationt A virtual quantity, except for those
identified by messages 1-% and 9, had no match in the
referenced ob ject.

ZYQOO06 CALL TERMINATED

Explanation: The parameter of CALL was a terminated
ob jecte.

1YQ007 UNDEFINED GOTO
Explanation: A goto statement led into an object not in

the operating chain (e.ge a transfer from a procedure called
by remote referencing or connection into the class ob ject).

2YQo08 ILLEGAL GOTO
Explanationt A goto statement led out of a detached
object, but not out of the quasi-parallel system of that
object (see (12),y 9.4.2).

2YQ009 VIRTUAL LABEL

Explanation: A virtual label mentioned in a goto
statement had no match in the ob ject.

2YQ010 QUA ERROR
Explanationt An instantaneous qualfication faileds i.e.
the object expression was not identical to or a subclass of
the class mentioned after QUA.

2YQO11l REF ASSIGNMENT

Explanationt An implicit qua check in a reference
assignment failed.

ZYqQolz CHAR OUT OF RANG

Explanationt The parameter to CHAR was <0 or >255, i.e.
it did not correspond to any character.

ZYQO13 ARRAY DECL. LU

Explanation: The upper bound was less than the lower
bound in a bound pair of an array declaratione.

ZYQ014 ARRAY BOUNDS ERR

‘Explanation: A subscripted variable referred to an
address outside the arrays, i.e. one or more subscripts were
out of range.

2YQO015 CONVERSION RANGE

Explanation? A real quantity could no be converted to
integer because it was out of integer range.

2YQ0l6 TEXT VALUE ASSGN

Explanationt A text value assighment was illegal because
the length of the right hand side was greater than the
length of the left hand side.

ZYGOL17 STORAGE EXHAUSTD

Explanation: More storages was requested than was
available in the SIMULA working storage pools, i.e. the
parameter q(3) to the object program was exceeded (2.2.3.1)

User response! Check whether the program seems to have
executed correctly. If so, specify a smaller value for g(2)
or request a larger partition with the REGION operand of the
JOB or EXEC statement (MVT, MFT). One may have to request
smaller and fewer 1/0 buffers to execute successfully if
g(2) is decreasede.

2YQol8 DATA LIMIT

Explanation: The total size of the declared gquantities
exceeded the limit gq(l) specified to the object program.

2YQC1l9 FILES NOT CLOSED

Explanation: One or more files (except for sysout and
sysin}) were not closed when the program ended.

The last image of & sequential output file may be lost.
2YQ020 NUMB OF PARAMS

Explanationt: The number of actual parameters given in a
call of a formaly external or virtual procedure was not the
same as the number of formal parameters of the actual
procedure, the external procedure or the virtual match.

2yYqozal TEXT LENGTH

Explanationt BLANKS or INTEXT was called with a parameter
which was negative or greater than the maximum length of a
text, 2%%15 = 20,

2YQo22 PARAM KINDS 1

Explanation: An actual parameter was a <type> PRUCEDURE
while the corresponding formal parameter was specified
ARRAY, LABEL or SWITCH in a call on a formal, virtual or
external procedure.

2YQoZ3 PARAM KINDS 2

Explanation! An actual parameter was not a <{type>
PROCEDURE and the kind of the corresponding formal parameter
was incompatible with the actual kind in a call on a formal,
virtual or external procedure.

YQo24 ACT.TYPE NONARIT

Explanationt A formal parameter was of arithmetic type
but the corresponding actual parameter was not.

2YQ025 PARAM TYPE

Explanation: A formal parameter type was incompatible
with the type of the corresponding actual parameter.

lYaozeé ARRAY TYPES

Explanation: Formal and actual type did not coincide for
an arithmetic array parameter, or qualifications did not
coincide for a reference mode REF array.

z2yaeozz ACT.NOT SUBOCRD.

Explanationt For a REF(...)PROCEDURE specified parameter,
the actual type was not subordinate to the formal types

1YQo028 PARAM QUALIF.

Explanation: The qualification of an actual parameter was
incompatible with the qualifications of the corresponding
formal parameter.

2YQ029 EXTERNAL TYPE

Explanationt: The type of an external procedure
declaration was not the same as that of the procedure.

2YQ030 NOTEXT EDIT

Explanationt The text of a number editing procedure was
notext.

ZYQO031 NMUMB. OF SUBSCR.

Explanation: The number of subscripts given in a
reference to a formal or virtual array was not the same as
the number of subscripts in the actual array or virtual
match.

ZYQ032 DDCARD MISSING

Explanation: There was no dd-statement in the job step
matching a file that was opened.

User response: Check if the dd-card is theres if not add
ite If it is there, check that its ddname is correctly
spelled and that it has not been put after a OD * data set
if the system is PCP.

Z2YQ033 FILE WAS OPEN

Explanation: The parameter of OPEN was a file that was
already open. '

Z2YQ034 FILE CLOSED

Explanationt The parameter of CLOSE was a file that was
already closed.

2YQ035 FILE NOT OPEN

Explanation: When an input or ocutput regquest was issued
on a filey, it was not open.

2YQ036 IMAGE.LENGTH>256

Explanation: The image of & printfile was longer than
256.

Z2YQO037 I1/0 ERROR

Explanation: A permanent I1/0 error occurred on a file.
The preceding line gives the kind of error.

User response: Check that the data set has the correct
characteristics for the request, then check the operands of
the dd-statement. If no error is found, consult a systems
programmer.

2YQo38 IMAGE T0OO SHORT

Explanationt: For an infile or a directfile the image was
shorter than the record that was to be transmitted.

Z2YQQ039 END OF FILE
Explanationt The program tried to read past end of file
on an infile, or two successive calls on OUTIMAGE/INIMAGE
were issued with LOC out of range on a directfile.

ZYQ040 FIELD ERROR

Explanation: The field length parameter of an output
procedure was non-positive or greater than the image lengthe.

Z2YQ041 EQF IN ININT

Explanation: End-of=file occurred in ININT before a
non-blank character was found.

2YqQ042 EOF IN INFRAC
Explanationt Same as ZYQ041, but INFRAC was called.
2YQ043 EQF IN INREAL

Explanation: Same as ZYQ041l, but the INREAL was called.

2YQ044 IMAGENOTEXT
Explanation: When a file was accessedy the specific
operation could not be performed because its image was
NOTEXT.

Z2YQ045 IMAGE TOO LONG
Explanationt When OUTIMAGE was called for an outfile
connected to a data set with fixed record length, the image
length was greater than the record length, or a directfile
was used with an image longer than the blocksize.

2YQoa6 RECORD FORMAT

Explanation? A directfile was connected to a data set
which had an illegal record format.

ZYQO047 SPACING ERROR

Explanation?! The procedure SPACING was called with a
negative parameter.

2YQ048 PGS ERR IN GETCH

Explanation? GETCHAR was called for a text in which
pos=length+l.

2YQ049 POS ERR PUTCHAR
Explanationt Same as 2YQ048 for PUTCHAR.
Z2YQoso NO DIGITS:GETINT

Explanation: GETINT or ININT was called, but the first
non=-blank character found was not a digit.

2YQO51 INT RANGE:GETINT

Explanation: More than 15 significant digits were scanned
by GETINT or ININT.

2YQ052 NO DIGIT:GETFRAC

Explanationt GETFRAC or INFRAC was called, but the first
non-blank character was not a digite.

2YQ053 ItLe N:PUTFRAC

Explanation: The parameter n of putfrac was not in
0 =< n =< 12.

ZYQO054 SHORT FIELD
Explanationt: The parameter of PUTFRAC, OUTFRAC, PUTFIX or
OUTFIX were such that the decimal point falls outside the
texte.

2YQO055 ILL.NIPUTFIX

Explanationt: Same as ZYQ058 for PUTFIX or OUTFIX.

ZYQO056 LENGTH ERR: SUB
Explanationt The parameters of SUB specify a text that is
not contained in the original text, or the specified length
is negative.

ZYQO057 ILLEG It SuB

Explanation: The first parameter of SUB specified a
non=-positive starting position for the subtext.

2YQO58 ILLEG N:PUTREAL

Explanation: PUTREAL or COUTREAL was called with n not
within 0 = n =< 15,

IYQO059 NO DIGIT:GETREAL

Explanation: GETREAL or INREAL was called, but no digit
was found.

2YQO060 FORT/ASS PRM KND
Explanationt: In a call on a Fortran or assembly
procedure, an actual parameter was of illegal kind
(PROCEDURE or SWITCH). See section G.16.

2YQoO61 NON=-LOCAL LABEL

Explanation: In a call on an assembly procedures a
non~local label was passed as parameter. See section 4.16.

2YQoe2 PARAMETER FORM

Explanation: A parameter to a Fortran or assembly
procedure did not have & legal form (Section 4.16).

2YQo63 TOO MANY PARAMS

Explanationt More than 1& parameters were passed to a
Fortran or assembly procedure (Section 3.3).

2YQO64 EVT OF TERM OBJ

Explanationt On a call Z.EVTIME, Z is a terminated
Object-

2YQ065 EVT OF PASS 0BJ
Explanationt O0On a call Z.EVTIME, Z is a passive object.
2YQO66 PARAMETER TYPE

Explanationt A parameter passed to a Fortran procedure
was of illegal type (Section 4.16).

Zyeoco?v PASSIV SQS.LAST

Explanation: A call to passivate the last SQS member is
illegal.

2YQ068 REMOVE SQS.LAST

Explanation: A call to remove the last SQS member is
illegal.

ZYQ069 REZACT NON PROC

Explanation: The object toc be activated or reactivated is
not a PROCESS object.

2YQO070 BEF/AFT NON PROC

Explanation? The objects in the BEFORE or AFTER clause of
an activation statement is not qualified by PROCESS.

ZYQOT71 WAIT: NON HEAD

Explanation: The object H passed as parameter in a call
WAIT(H) is not qualified by HEAD.

YQovr2 CANCEL: NON PROC

Explanation: The object P passed as parameter in a call
CANCEL(P) is not qualified by PROCESS.

ZYQo73 RANDINT B<A

Explanation: The upper bound of the interval passed to
RANDINT was less than the lower bound.

ZYQOT74 ERLANG A<=0

Explanation: The first parameter to ERLANG was
non-positive.

ZYQO75 ERLANG B<=0

Explanation: The second parameter to ERLANG was
non-positive.

Z2YQOo76 LINEAR: ARRAYS
Explanationt: The two arrays passed to LINEAR were not
both REAL, one-dimensional arrays with equal subscript
bounds.

ZYQo77 <interrupt cause>

Explanationt A program interrupt occurred. For an
addressing interrupt the text '0OBJECT NONE' is supplied.

Z2YQQo8o POWER 0P, BASE=0

Explanation® The base was zero and the exponent
non-positive for an INTEGER to INTEGER exponentiation.

2YQoel POWER OP, BASE=0

Explanation: Same as ZYQ080 for a REAL to REAL
exponentiation.

2YQo82 POWER 0P, BASE=0

Explanation: Same as ZYQ080 for a LONG REAL to LONG REAL
exponentiation.

ZYQOE3 POWER OP, BASE=0

Explanation: Same as 2YQROB0 for a REAL to INTEGER
exponentiation.

ZYQO084 POWER OP, BASE=0

Explanation: Same as ZYQ080 for a LONG REAL to INTEGER
exponentiation.

2YQO085 ARCSIN/COS abs(X})>1

Explanation? The double precision parameter passed to
ARCSIN or ARCCOS had a modulus greater than 1.

2YQo86 SINH/COSH XO>MAX
Explanationt The parameter of SINH or COSH was too large
to be representable as a real quantity (Section 3.1). The
argument was in double precision.

2Yqosv SQRT NEG ARG

Explanationt The double precision parameter to SQRT was
negative.

2Yqoss TAN/COT abs(X)>MAX
Explanation: The double precision parameter to TAN or COT
was too large to permit accurate computation of the function
value.

2YQose9 TAN/COT INFINITE

Explanation: The function value of TAN or COT with double
precision argument was too large or infinite (Section 3.1).

2YQ090 ARCSIN/COS abs(X)>1

Explanation: Same as ZYQRO085 but argument was in single
precisione.

2Y@091 SINH/COSH X>HMAX

Explanation: Same as Z2YQ086 but argument was in single
precision.

ZYQo9z SQRT NEG ARG

Explanation: Same as ZYQO87 but argument was in single
precision.

Z2YQO93 TAN/COT abs(X)>MAX

Explanation: Same as ZYQ088 but argument was in single
precision.

2Yqo94 TAN/COT INFINITE

Explanation: Same as ZYQUE? but argument was in single
precisions

2YQo095 EXP ARG>174.673

Explanationt The value of EXP could not be represented
(Section 3.1). Argument was in double precision.

2YQ096 LOG ARG<=0

Explanation: The double precision argument of LOG was
non-positive.

1YQ097 SIN/COS ARGO>MAX

Explanation: The double precision argument of SIN or COS
was too large to permit computation of the function value.

2YQ098 EXP ARG>174.673

Explanationt Same as 2ZYQ095 with single precision
argument.

2YQ099 LOG ARGK=0

Explanation: Same as 2YQ096 with single precision
argument .

ZYQ100 SIN/COS ARGO>MAX

Explanationt! Same as ZYQ097 with single precision
argument.

ZYQ101 ACT.PARAM STRING
Explanation: A found text parameter called by name occurs
in a reference context with the actual parameter being a
stringe.

ZYQl102 UNIFORM LB > UB

ZYQ103 TIME LIMIT OVFLW

1YQ104 FORCED ERROR

2YQ1l05 POWER 0P, BASE<CO

Explanation: The base was negative for a (long) real to
{long) real exponentiation.

2YQ106 MAXPAGES LIMIT

User response: Increase the value of the run time
parameter MAXPAGES if more printed output is required.

2YQ107 EJECT PARM LE O

Explanationt The procedure EJECT was called with a
negative parameter.

ZYR108 INVALID DDNAME

Explanation: A text parameter to file object does not
conform to the operation system conventions for a DDname.
Most likely the value is notexte.

2YQl09 TRANSPLANTATION

Explanationt The qualifying class of a reference actual
parameter to a virtual, formal or external procedure was
declared in another block instance than that of the
corresponding formal parameter specification.

ZYQ110 NEGEXP & A<=0

Explanationt First parameter to standard random drawing
procedure Negexp was nonpositive.

1YQ11l RANDCM SEED IS O

Explanation:! Last parameter to a random drawing procedure
has value zero and cannot thus be used as a random stream
base.

ZYQlilz DETACH INACTIVE

Explanation: The standard procedure Detach was called on
behalf on a class object which was not on the operation
chaine.

1YQ1il3 CALL OPERATING

Explanation:! The standard procedure Call had as a
parameter a reference to an operating class object.

YQll4 NESTED SIMSET

Explanationt The SIMSET or SIMULATION environment occurs
simultanecusly at several block levels due to dynamic
nesting of procedure calls. The implementation is no geared
tc handle several SIMSET/SIMULATION contexts at the same
time.

(NB: permitted restriction of the Common Base).

Appendix D

SIZES OF RUN-TIME LIBRARY ELEMENTS
! !] - T
! Name ! Size (hex) ! When present
! 1]
T T
! ZYQACC 4 & ! Logging support
! ZYQACCUM ! 110 ! Accum
! ZYQACTIV ! 3E8 ! Schecduling statement
! ZYQARRAY ! 270 ! Arrays
! ZYQATTAC ! 48 ! CALL
! ZYQATIN ! 128 ! HWhen running the interact.debesyss
! ZYQBC ! 90 ! Object generator
! ZyaBsc ! 1B10O 1) ! Always
' ZYQBLANK ! 110 ! BLANKS
! ZYQBPB ! A8 ! Prefixed block
! ZYQCALL ! EO ' Call
! ZYQCANCE ! A8 ! Simulation block
! ZYQCCP ! 38 ! Call on connected procedure
! ZyqCCvp ! 60 ! Call on connected virtual procedure
! Z2YQCDGEN ! 38 ! Connected or remote procedure
! ! ! passed as a parameter
! ZYQCDP ! 38 ! Call on remote procedure
! ZYQCDVP ! 58 ! Call on remote virtual procedure
! ZYQCEP ! 43 ! Call on external procedure
! 2ZYQCFP ! 80 ! Call on formal procedure
! ZYQCLOSE ! 1B10O 1) !' Always
! ZYQCOM ! E20 ! Always
! ZYQCOMUN ! 98 ! Always
! ZYQCONNE ! 63 ! Connectich block
! ZYQCOPY ! c8 ! COPY
! ZYQCSHW ! 90 ! Switch
! ZYQCURRE ! 10 ! CURRENT
! ZYaqQcvp ! 40 ! Call virtual procedure
! ZYQDATE ! 68 ! Always
! ZYQpBGDT ! AF8 ! SYMBDUMP compile parm > 0
! ZYQDEBUG ! FC8 ! SYMBDUMP compile parm > 0
! ZYQDEFLT ! 60 ! Always
! ZYQDETAC ! 170 ! DETACH
! ZYQDFTRC ! 818 ! SYMBDUMP compile parm > 0
! ZYQDIREC ! 580 ! DIRECTFILE
! ZYQDISCR ! A8 ! DISCRETE
! ZYQDRAM ! 40 ! DRAMW
! ZYQDUMP ! 380 ! Always, DUMP > 3
! ZYQDXPD ! 54 ! Exponentiation real to real (long)
! ZYQDXPI ! 70 ! Exponentiation real to integer
! ZYQECB ! FO ! Always
! ZYQEJECT ! 7C ! EJECT, LINE, LINESPERPAGE, SPACING
! ZYQENT ! 1B10O 1) ! Always (program entry point)
! !]
Notes

1)

Size includes all parts of resident RTS

el FR PT® Jap AW P PV e PuD TTD D PuD D 1CH TR fap D P fed VD Ced WD (oD PP VD (D FeD +eD W fud Ped W Jep D feD =D Cem St W Rem PeD P D VD fep WD Se® cem

- tew ¢om

O e e . e . — " v S So —

OWP AW D ST AMP VD D STV W VD D (D TP D D PP PP D AT PP D P D PP PP PR P D W PR D P D Pap RO Fed AN AD O PR P P Pep FeD feD PD D 4D tep VP gen Pew Vo P P

ZYQENTVI

ZYQEPBPA
ZYQERLAN
ZYQERR
ZYQERRDP
ZYQERREX
ZYQEVU
ZYQEVTIM
ZYQFILE
ZYQFIXPI
ZYQFORT

LYQFSA
2YQGC6
ZYQGETCH
ZYQGETFR
ZYQGETIN
ZYQGETRE
ZYQGL
ZYQGVL
ZYQHISTD
ZYQHISTO
ZYQHOLD
ZYQIDLE
ZYQIFEX
ZYQINCHA
ZYQINFIL
ZYQINFRA
ZYQININT
ZYQINIT
ZYQINREA
ZYQINTEX
ZYQLACOS
ZYQLASIN
ZYQLASTI

ZYQLATAN
ZYQLCOS
ZYQLCOSH
ZYQLCOTN
ZYQLDIG
ZYQLEXP
ZYQLINEA
ZYQLLGIO
ZYQLLN
ZYQLLOG
ZYGLNMAP
ZYQLNO
ZYQLNCODT
ZYQLSIN
ZYQLSINH
ZYQLSQRT

@ N Pl TR D PD D P D FUD ITD D PR PP PP P PW PeD PP W I Nl W R D N D P PP PP S PP CNP Sep AW VD 4D D Sl WD VD PeD FD FNR G Vwd Owd PP Pk O Pep OD oy VD Py PR Oom Sew

Size (hex)

]
.

When present

500

50
08
BB8
20C
38
60
30
1810
78
308

1810
200
28
188
130
2A0
190
38
90
140
EO
28
1810
4C
1810
48
48
B90
48
208
140
138
288

128
158
108
158
104
188

Do
140

40
140
158
210

50
158
108

84

1)

1)

1)
1)

I GED PeD D PR VW D PV I VW W D W fed VD PP VD D PP PCD VD fed PP PeD Pl PeD KD R VD NP VWD P PP PP PP Ram P ReD D PuD PUD R AP PP Pl Cep P Ve® Vep VD Cup SW Cep fuw Vu® Pew Ge®

Formal, virtual or external
procedure

Prefixed block with parameter(s)
ERLANG

Alwayss error exit routines CUMP>O
Alwayss error exit routine, DUMP>0
Alwayss error exit routines DUMP>O
Same as ZYQENTVI

EVTIME

Always

Exponentiation integer to integer

Call on external assembly or
Fortran procedure

Always (RTS, Fixed Storage Area)
Always

GETCHAR

GETFRAC, INFRAC

GETINT, ININT

GETREAL,s INREAL

Goto statement

Goto statement with virtual label
HISTD
HISTO
HOLD
IDLE
Always
INCHAR,
Always
INFRAC
ININT
Always
INREAL
INTEXT
ARCCOS (long)
ARCSIN (long)
LASTITEM, LETTER,
INFRAC

ARCTAN (long)

€as (long)

COSH (long)

COT (long)

Always

EXP (long)

LINEAR
LBG
Always
LN (long)
Alwayss DUMP > 1
Always, DUMP > 1
Always, DUMP > 1
SIN (long)

SINH (long)

SORT (long)

OUTCHAR

DIGIT,

INREAL ,

(long)

D 14 SD ID FD PR AR TV Sl Ped PV Pl D Few PW G (W D VW Ped PD ed VW R P PP Pl WD ted YD P P TP Ced A G VD D Cep PD 4D P=D SP PV S fam PO P sm 1D Nap SuW P D fep S B seaw

1e0 9 Vel ¢ed 10 PeB 1D D 10 (D PV (e FD CuD WM P Fep VAR %ep IO few SeD fep ?W few Oew bem

VWD Gen P Pem FWR D VWD D S PP S FUD QD FW AED fuD VD CeD VD Vap fw G Gep SR PeD PR fep PeD VD owp Ve

—————— ———————— ® ———

! ! !

Name ! Size (hex) ! When present !

!]]
I v !
ZYQLTAN ! 158 ! TAN (long) !
ZYQLTANH ! EO ! TANH (long) !
ZYQMAINT ! 30 ! MAIN (text procedure) !
ZYQMAP ! 478 ! Always, DUMP > 1 !
ZYQMAPTR ! 190 ! Always, DUMP > 1 !
ZYGMVCL ! 68 ! Always '
ZYQNEGEX ! 70 ! NEGEXP !
ZYQNEXTE ! 78 ! NEXTEV !
ZYQNORMA ! E8 ! NORMAL !
ZYQOODNM ! 70 ! SYMBODUMP compile parm > 0 !
ZYQOPEN ! 1810 1) !' Always !
ZYQOUTAR ! 4FO ! SYMBDUMP compile parm > 0O !
ZYQOUTBL ! 530 ! SYMBDUMP compile parm > 0 !
ZYQDUTCH ! 70 !' CUTCHAR !
ZYQOUTFR ! 28 ! QUTFRAC !
ZYQOUTFX ! 28 ! CGUTFIX !
ZYQOUTIM ! 2A8 !' Always !
ZYQOUTIN ! 2 ! OUTINT !
ZyQoutig ! 168 ! SYMBDUMP compile parm > 0 !
Z2yQgourtoc ¢! 170 ! SYMEDUMP compile parm > 0 !
ZYQOUTPC ! 108 ! SYMBOUMP compile parm > 0 !
ZYQOUTRE ! 28 ! QOUTREAL !
ZYQDUTSQ ! 2E8 ! SYMBDUMP compile parm > 0 !
ZYQOUTTE ! 90 ! OUTTEXT !
ZYQOUTVI ! 280 ! SYMBDUMP compile parm > O !
ZYQPAGE ! 1B10O 1) !' Always !
ZYQPASSI ! 98 ! PASSIVATE !
2YQPFD ! 68 ! QOUTFRAC, PUTFRAC !
2YQPOISS ! 158 ! POISSON !
ZYQPRD ! 98 ! OUTFIX, OUTREAL, PUTFIX, PUTREAL !
ZYQPRED ! 28 ! SIMSET/SIMULATION !
ZYQPRINT ! 1B10 1) ' Always !
ZYQPUTCH ! 68 ! PUTCHAR !
ZYQPUTFI ! 320 ! PUTFIX, OUTFIX !
ZYQPUTFR ! 250 ! PUTFRAC, OUTFRAC !
ZYQPUTIN ! 228 ! PUTINT, OQUTINT !
ZYQPUTRE ! 338 ! Always !
ZYQQUA ! 30 ! Parameter of type REF !
ZYQRANDI ! 48 ! RANDINT !
ZYQRODAT ! 38 ! All drawing procedures !
ZYQREFER ! 4A8 ! Logging support !
ZYQRESET ! 1B10O ! Always !
ZYQRESUM ! c8 ! RESUME !
ZYQRTSCM ! C40 ! Always !
ZYQRXPI f 40 ! Exponentiation real to real (short)!
ZYQSACBS ! D8 ! ARCCOS (short) !
ZYQSASIN ! 08 ! ARCSIN (short) !
ZYQSATAN ! co ! ARCTAN (short) !
ZYQSCALE ! co !' Always !
2YQSCOos ! FO ! CBS (short) !
ZYQSCOSH ! co ! COSH (short) !
ZYQSCOTN ! 110 ! COT (short) !
ZYQSETFO ! 20 ! SETPOS !
¥] !

NeD IeD SeB IO S} (D VD D PP W VW Pep W D VWD feD VD OWE PD VD Pep $UD S Owp

@ D VD Qem W ¢ep Ce® W O4% ¢ R Rew %en Cep tew

P o e e e e e e s e e s . e e

Name

ZYQSEXP
ZYQSIMSC
2YQSImMucC
ZYQSIMUL
ZYQSIMUP
ZYQSLG1O0
ZYQSLOG
ZYQSNAP
ZYQSSIN
ZYQSSINH
ZYQSSQRT
ZYQSTAN
ZYQSTANH
ZYQSTCDA
ZYQSTCNT
ZYQSTORE
ZYQSTRIP
2YQsSuB
ZYQSYN
ZYQTERM
ZYQTERMI
ZYQTERMS
ZYQTIME
ZYQTIMEX
ZYQTRACD
ZYQTRACE
ZYQTSPIE
ZYQTVASS
ZYQTVREL
ZYQTXTCHM
ZYQUNIFO
ZYQUSERX
ZYQWAIT
ZYQWRITE

VD D D A 1D VD VD PP PP WA S D D S PR SR VAR R D IWA PR PUD Cup ONE PeD SwD R PP Cup Cep VB D Ced P (e Seq PP de® Vem

Size (hex)

When present

FO
438
404

30
180

EO

EO

30

FO

co

88
110

AQ
128

iB10O
F18
60
58
1810
460

18
450

18

70
5F0
E10

28

co

50

98

48

8

Cco

1810

1)

1)

1)

el 0D Sud PCB Gep I PeW FTD KD VW PD Sl VNP D PN PP D VD PW RWD PP Vep VD VD ¢ep Pew Ve OSew

VD geB Pe® (s Pe® tem te® W s 1O Sew

EXP (short)
SIMSET/SIMULATION
SIMULATION

SIMULATION

SIMULATION

LOG(10) (short)

LN (short)

Always

SIN (short)

SINH (short)

SQRT (short)

TAN, COT (short)

TANH (short)

Always

Always

Always

STRIP

SUB

Always

Always

TERMINATED

SYMBDUMP compile parm > 0
TIME

Alwayss Time exit routine
Tracing is specified
Tracing is specified
Always, Time exit routine
Text value assignment
Text value relation
Always

UNIFORM

Always, User exit routine
WAIT

-Always

S0 tem D 2B 2R IV P PP $uD Ped VD D YD fep WD PeD WD Pl Vel VAR SeD D P D Swh WD NeD VD PuD WP fed SeD Vap P B SwE D Te® qen

Appendix E

HOW TO DESIGN AN OVERLAY STRUCTURE.

The size of the object program load module can be decreased
significantly if it is edited as an overlay program. Routines used to
start and finish the object programy, as well as diagnostic routines and
cardnumber tables, are not needed during execution and they can be put
in a segment parallel to the object code.

In order to get an overlay, the parameter OVLY must be specified to the
linkage editor and the structure of overlays is defined by control
cards:

// EXEC SIMCLyeees PARMsLKED="MAP,LET,0VLY"
//SIMSYSIN DD *
{program>

/%
//LKED.SYSIN 0D
OVERLAY X TRANSIENT SEGMENT
INSERT (ZYQERROR,ZYQCOM,ZYQINIT,ZYQTERM,ZYQCNT)
INSERT (ZYQMAP,ZYQMAPTR,ZYQDUMP)
OVERLAY X OBJECT CODE SEGMENT
INSERT ZYQMAIN
/%

For each external procedures, the card
INSERT EP#

can be put in the transient segment (where EP is the name of the
procedure truncated to 7 characters, and

INSERT EP$

can be put in the object code segment.

Appendix F

INTERNAL REPRESENTATICN OF DATA STRUCTURES

In order to use Assembly or Fortran procedures in a SIMULA program one
must know how data and data structures are represented internally.
Variables of type INTEGER, SHORT INTEGER, REAL, LONG REAL, and
CHARACTER have their obvious internal representations: fullword,
halfwords single precision floating point, double precision floating
point and EBCDIC character.

A BOOLEAN is X*00' for FALSE and X'01' for TRUE.

A REF (...) variable is the fullword block instance address, or, if
nones X'OOFF0000', and an array is the fullword array object address.

A text variable is represented within a block as a 3-word text
descriptor. The first word is the address of the text storage block
(text object), the second is the address of the first byte of the text
-1l. The third word is divided into two halfwords! the first is the
length of the text and the second is the position indicator.

In a block the guantities are allocated in the same sequence as they
are declareds with the spaces and alignments given in table 3.2. The
first quantity of a block is allocated at the displacement 8 from the
blocks starting address.

Array object format.

0

12
16
20
24
28

-1

oL

BA

(0)
(4)
(8)
(C)
(10)
(14)
(18)
(1C)

QUALIF

LIND

UIND

type

PR W S PED Cwp VD PO P VD KD VwD CuD FWR Fnd SED Pad OWR SuD Owh 1D Cum Ovm Cwm

QUALIF

LIND

UIND

! type— ! de
!

3

dn=-1

array elements

PED VD UM VD D NNE PED WD KD WP ReD SV Pep D RaR PO fep PV b Re® Ve® OB Pew

in the first word indicates that this is an array
ob ject.

is the array object length.
is the address of the element A(O0s0jyeees0)e

is a word identifying the qualification of a REF
arrays or unused.

number of subscripts.
dope vector
lower index
upper index

array type code (App.« G).

Dope vector and index checking.
Assume the array declaration

A (T(i) ¢ us eee s 1(n) ¢ uln));

Then
d(1) = u(l) = 1(1) + 1
d(i) = dli=1)%(u(i) = T(i) + 1)y i = 2y eeesy 0 = 1
d(0) = 1 (not present in object)
LIND 2= Q3
for i ¢=1 step 1 until n do LIND = LIND + 1(i)¥d(i=-1);
UIND = 03

for { =1 step 1 until n do LIND t= LIND + u(i)*d(i-1);

The computation of the adress of A(i 5 «eey i(n)) is described by the
following algorithms:

t = 0;
for k t=1 step 1 until ndo t ¢t= t + i(k)*d(k=1};

error (Ysubscriptbounds");
address = t * elementlength + BAj

Text ob ject format.

0 ! =2 !

'__ !
4 ! 0 !

' !
8 ! cL ! oL !

| S S |

! !

! text contents !

1 ¥
-2 indicates that this is a text object.
CL is the length of the text contents.
oL is the text object length.

oL = (CL + 12 + 7)// 8 »* 8

Appendix G

HOW TO WRITE AN EXTERNAL ASSEMBLY OR FORTRAN PROCEDURE

Parameters to assembly and Fortran procedures are passed in the
standard 0S way: a list of the parameter addresses is formed, and the
address of this list is passed in register 1. The uppermost bit of the
Tast parameter address word is set to indicate the end of the list.
When the procedure is entered, R14 holds the return addresss R15 has
the address of the entry point (to the procedure), and R13 has the
address of a save area, into which the values of the registers should
be saved.

In @ call on an assembly procedure, the type of each parameter is
indicated by the upper byte of the parameter address word:

INTEGER ¢ 1, REAL ¢ 2, SHORT INTEGER
REF(see) ¢ 74 CHARACTER ¢ 8, BOOLEAN

3, LONG REAL ¢ 4, TEXT ¢ 6,
9, LABEL : 10.

on es

If the parameter is an array the type code is OR'ed with X*'10' and if
it is the last parameter it is OR'ed with X'80'. It is thus possible,
within the assembly procedures to check that the parameters are
correct.

The parameter address is the variable address, the array object address
(Appe F)}y or the object code label address.

For an EXTERNAL <type> ASSEMBLY PROCEDURE, the resulting value should
be loaded into register O (INTEGER, SHOURT INTEGER, CHARACTER, BOCLEAN),
floating point register O (REAL, LONG REAL), register 1 (REF(sss)),y or
registers 0-2 (TEXT).

When a branch is made to a label parameter, the label address must be
loaded to register 1lé4%.

An assembly procedure must always restore registers 3-14 before
returning or exitings

For a Fortran procedure call there is no type and end:-of parameter list
indication, so it is always the responsibility of the programmer
writing the call to check that the parameter list is correct. For an
array parameter the address of the first element is put in the
parameter list.

Appendix H

SPECIFYING USER EXITS

In a program it is possible to specify your own user exit routine. The
run-time element ZYQUSERX is defined for this purpose.

The routine is called after sysin and sysout have been opened, but
before the first i/o0 has been performed.

The DCB addresses of sysin and sysout are passed as parameters in the
standard 0S manner.

In the default case, the routine is only a dummy routines

SAMPLE JOB

Appendix 1

LISTING

//SIMT JOB (7254,99999942000000,1,6) "NCC',MSGLEVEL=(1,0), JoB
7/ CLASS=C,REGION=110K,TIME=3

Er$ (33

/7/

++SIMCG
++SIM
++STEPLIB
++SYSPRINT
++SYSUT1
++35YSUT2

Er3 3

INVOKE SIMCG PROCEDURE ok

EXEC SIMCG,GOPARM='LINECNT=40, TRACE=200"
PROC EXLIB=SIMLIB,GOPARM=
EXEC PGM=SIMULA,PARM="LINECNT=40,XREF',REGION=110K

bo
oo
oo
oo

++SYSUT3 DD

++SYSUT4

oD

UNIT=(SYSDA,SEP=(SYSUT1,5YSUT2)),SPACE=(2000,(20,10))

OSN=SIMULA.SIMULA,DISP=SHR

SYSOUT=A

UNIT=SYSDA,SPACE=(2000,(20,20))
UNIT=(SYSDA,SEP=SYSUT1),SPACE=(2000,(20,20))

UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)) sSPACE=(1032,256),

++ DCB=DSORG=DA
++S5YSGO OO0 DSN=8LLOADSET,DISP=(MOD,PASS) ,UNIT=(SYSDA,SEP=SYSUT1),
++ SPACE=(1600,(30,30)),0CB=BLKSIZE=1600

//S5IM.SYSIN DD *

++G0

EXEC PGM=LOADER,PARM="MAP,PRINT,LET,PR=ZYQENT/&GOPARM ",
IEF6531 SUBSTITUTION JCL = PGM=LOADER,PARM=*MAP,PRINT,LET,

++ EP=ZYQENT/LINECNT=40,TRACE=200"',

++ COND=(4,LT,SINM)

DSN=&ZLOADSET,DISP=(0LD,PASS)
DSN=&EXLIB,DISP=SHR

IFF6531 SUBSTITUTION JCL - DSN=SIMLIB,DISP=SHR

++SYSLIN bD
++SYSLIB 0o
++ [3]0]
++SYSLOUT DD
++5YSOUT 00
//G0.SYSIN DD

%

DSN=SIMLIB,DISP=5HR
SYSOUT=A
SYSOUT=A

IEF3751 JOB /SIMT / START 71077.1315
IEF3761 JOB /SIMT / STOP 71077.1316 CPU OMIN 05.08SEC

== HASP-II JOB STATISTICS =--
118 CARDS READ
279 LINES PRINTED
0 CARDS PUNCHED
2.49 MINUTES EXECUTION TIME

1) 1Invoke JCL proc SIMCG

2) Compilation stept: Compile SIMULA program, print cross-reference

listing

3) SIMULA source program on cards

4) Execution step:?

5) Input data to SIMULA program cards

280

WA PO R PO N DI DY B B 0 P et bt
I S R U R W N W I

%)
4}
%)
4)
4)

4)
&)
5)

5)

linky, edit and execute SIMULA program using LOADER.
Specify ob ject program parameters and runt-time routine library

SIMULA 67 COMPILATICN 18 MAR 1971 13:15:57.3 PAGE 1

1)

01
02
03
04
05
06
07
08
09
10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

COMPILER OPTIONS

NOLIST
NOCECK
LOAD
HARN
SUBCHK
NOFXTERN
XREF
SOURCE
NORESHD

40
10
(3072,163248192,4096,262144,7294)

LINECNT
MAXERROR
SIZE

Compiler options and parameter values in effect

SIMSET
BEGIN CLASS RUNE(T,PART,SECTION);VALUE TS3INTEGER PART;
REAL SECTION; TEXT Ti
BEGIN REF(RUNEJLL,RLS
REF(HEAD)PTR;
PROCEDURE RANK;
BEGIN REF(RUNE)ROOT;
ROOT ¢ =ROOT}

bt bt ok ot b bt et e e
N gl St? Vgl Nt gt St St gt

%)

el
B2

83

SCAN:! IF ROOT.T=T THEN NEW PAGE(PART,SECTION).INTO(RODT.PTR)

ELSE BEGIN IF ROOT.T>T THEN
BEGIN IF ROOT.LL==NONE THEN
BEGIN ROOT.LL:-THIS RUNE}

B4
ES
B6

NEW PAGE(PART,SECTION)

+INTO(PTR) ¢
END ELSE
BEGIN ROOT:-ROOT.LLS
GOTO SCAN;
END
END
ELSE
BEGIN IF ROOT.RL==NONE THEN
BEGIN ROOT.RL:-THIS RUNE}

Eé
B7

E7
ES

B8
BS

NEW PAGE(PART,SECTION)

« INTO(PTR) 3
END ELSE E9
BEGIN ROOT:-ROOT.RL;
GOTO SCAN;
END
END
END
END %30k RANK 2%k §
PTR:-NEK HEAD;
ENDYkRUN E e §
PRUOCEDURE TRAVERSE(7);REF(RUNE)7;
BEGIN REF (PAGE)X;
INSPECT Z DO
BEGIN TRAVERSE(LL)
CUTTEXT(T); SETPOS(40);

B10
E10
£E8
E4
E3
E2
Bll

Bl2

SIMULA 67 COMPILER 8 MAR 1971
39 X:-PTR.FIRST;

40 WHILE X=/=NONE DO

41 BEGIN OQUTINT(X.PART,1)3;

42 OUTCHAR(':');

43 OQUTFIX(X.SECTION,1,3);
44 OUTCHAR('s %)

45 Xi=X.SUC}

46 ENDS

47 CUTIMAGE;

48 TRAVERSE (RL) 5

49 END ;S

50 ENCkTRA VER SE 0k 3

51 LINE CLASS PAGE(PART,SECTION); INTEGER PART;
52 BEGIN

53 ENDeokoxP AG By

54 TEXT WORDsPARTNOsSECTIONNDS

55 REF(RUNE)ROOT;

56 ROOT :=NEW RUNE (¥ selcicioioioiic sk s 0, 040) §

57 INSPECT SYSIN DO

58 BEGIN WORD:-IMAGE.SUB(1,40);

59 PARTNO :~IMAGE.SUB(41,51);

60 SECTIONNDO:-IMAE.SUB(43,30);

61 END*%*SUB=-FIELDS;

62 INIMAGE;:

63 WHILE NOT ENDFILE DO

64 BEGIN NEW RUNE(WORD.STRIP,PARTNO.GETINT,
65 SECTIONNO +GETREAL }«RANK; INIMAGE;
66 END

67 TRAVERSE (ROOT) 3

68 END;

%) begin-end numbering

NO DIAGNOSTICS FOR THIS COMPILATION.

13:15:57.3

REAL SECTION;

PAGE 2

B13

£El3
E12
Ell

B14

El4

B1S

E15

B16

Elé

SIMULA 67 COMPILER

IDENTIFIER L INE
ENDFILE 63
FIRST 39
GETINT 64
GETREAL 64
HEAD 5 32
IMAGE 58 59
INIMAGE 62 65
INTO 9 14
LINK 51
LL 4 11
OUTCHAR 42 44
OUTFIX 43
OUTIMAGE 47
OUTINT 41
OUTTEXT 38
PAGE 9 13
PART 2% 9
PARTNO 54 59
ROOT g 55
PTR 5 9
RANK 6 64
R1 4 21
ROOT 7 8
RUNE 2 4
SCAN 9 17
SECTION 2% 9
SECTIONNO 54 60
SETPOS 38
SIMSET 1
STRIP 64
sus 58 59
Suc 45
SYSIN 57
T 2% 3
TRAVERSE 34 37
WORD 54 58
X 35 39
z 36% 36

24
12

23
13
64
56
14

22
9ok

27
13
64

60

9ok
48
64
40

16

35
23
67
24
26

10
12

10%
67

41

37

51
41
32
48
11
22

43

43

8 MAR 1971

51 5%

39

12 167

34 55

51%

45%

13:15:57.3

22 26%
64

TOTAL NUMBER OF DIFFERENTLY SPELLED IDENTIFIERS AVAILABLE IN
THIS PROGRAM @

BASIC SYMBOL

BRACES
BRACKET

CLASS-IDENTIFIER

DIGIT

IN

IS

KEY WORD
LETTER

OBJECT-RELATION
SIMPLE-OBJECT-EXPRESSION
SYNTACTIC UNIT

SYNTACTIC VARIABLE

nnnnnnnn

- e @ ow ow o
AN 8]
on oe
-
* o
SO
- -

-

- W w

O WIRWROL WK
R A2

QRPN NNO RN NN
O9 S0 4% "o 96 PR NG S0 T 24 NS 99 02 e
" ® o 8 8 2 P e B E S " e @
OOOOOO?OOQOOOO

- w w

e e
o
* o
QT
L

PAGE 3

129

Appendix J

CATALOGUED PROCEDURES

The following pages contain the catalogued procedures used in 2.4%.
Small changes may have to be made in order to comply with the standards
of a particular installation.

Catalogued procedure SIMC

/7/SIMC PROC

//SIM EXEC PGM=SIMULA,REGION=86K

//SYSPRINT DD SYSOUT=A

//5YSUT1 CO UNIT=SYSDA,SPACE=(22aa,(23,23))

//5YSUT2 Do UNIT=(SYSDA,SEP=SY5SUT1),SPACE=(20ad,(22,2a))

//SYSUT3 oD UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(232a,(22,13))
//5YSUT4 81} UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(1a32,256),

// DCB=DSURG=DA

//5YSGO 0o OSN=&ZLOADSET,DISP=(MOD,PASS) JUNIT=(SYSDA,SEP=SYSUTL1),
7/ SPACE=(1632+(32,32)) s0CB=BLKSIZE=16a3a

// PEND

Catalogued procedure SIMCL

//SIMCL PROC PROG=GO,LIB="8GOSET*,EXLIB=SIMLIB,LDISP=MOD

//SIM EXEC PGM=SIMULA,REGION=86K

//SYSPRINT DD SYSOUT=A

//SYSUTL oo UNIT=SYSDA,SPACE=(2a0e,(2a,23))

/7/5YSUT2 0D UNIT=(SYSDA,SEP=SYSUT1),SPACE=(203d,(20,2a))
//SYSUT3 bD UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(233a,(2a8,1Q))
//5YSUT4 0D UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(1332,256),
// DCB=DSCRG=DA

/7/SYSGO bo DSN=&&LOADSET,DISP=(MOD,PASS) ,UNIT=(SYSDA, SEP=SYSUTL1}),
// SPACE=(1632,(32,39)) ,0CB=BLKSIZE=1623

//LKED EXEC PGM=IEWL,PARM='MAP,LIST,LET"yCOND=(4,LT,SIM),

// REGION=104K

//SYSPRINT DD SYSQUT=A

//S5YSLIB oo DSN=&EXLIBsDISP=SHR

// 0o OSN=SIMLIB,DISP=SHR

//SYSUT1 bD UNIT=SYSDA,SPACE=(laea,12a)

//SYSLMOD DO DSN=&LIB.(&PROG),DISP=(&LDISP,PASS),UNIT=SYSDA,

// SPACE=(1324+(42@,53,1))

//SYSLIN b0 DSN=C&LOADSET,DISP=(ULD,PASS)

// oo DONAME=SYSIN

// PEND

Catalogued procedure SIMCLG

//SIMCLG PROC EXLIB=SIMLIB

//SIM EXEC PGM=SIMULA,REGION=86K

//SYSPRINT DD SYSQUT=A

//5YSUTL DD UNIT=SYSDA,SPACE=(2200,(22,22))

//5YSUT2 bo UNIT=(SYSDA,SEP=SYSUT1),SPACE=(203d,(22,23))

//SYSUT3 Lo UNIT=(SYSDA,SEP=(SYSUT1,5YSUT2)),SPACE=(222d,(2a,12))
//5YSUT4 8} UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(1232,256),

// DCB=DSORG=DA

//75Y560 CD DSN=R&LOADSET,DISP=(MOD,PASS)},UNIT=(SYSDA,SEP=SYSUT1),
// SPACE=(1629,(32,32)),DCB=BLKSIZE=163a

//LKED EXEC PGM=IEWL,PARM="HMAP,LIST,LET",COND=(4,LT,SIM),

// REGION=134K

//SYSPRINT 0D SYSOUT=A

//5YSLIB co DSN=&EXLIB,DISP=SHR

// 3]} OSN=SIMLIB,DISP=SHR

//75YS5UT1 bD UNIT=SYSDA,SPACE=(133a,1ad)

//SYSLMOD ©BD DSN=83GOSET(GO) ,OISP=(MOD,PASS),UNIT=SYSDA,

// SPACE=(1224,(422,5d,1))

//SYSLIN 6o DSN=&3LOADSET,DISP=(0OLO,PASS)

// bo DONAME=SYSIN

//60 EXEC PGM=% ,LKED«SYSLMOD,COND=((4,LT,SIM),(4,LT,LKED))
//7SYSOUT Do SYSCUT=A

// PEND

Catalogued procedure SIMG

//SIMG PRGC PROG=GO,LIB="&RGOSET"
//6G0 EXEC PGM=&PROG

//STEPLIB DD DSN=GLIB,DISP=(0CLDO,PASS)
//SYSOUT oD SYSOQUT=A

7/ PEND

Catalogued procedure SIMCG

//SIMCG PROC EXLIB=SIMLIB,GOPARM=

//SIM EXEC PGM=SIMULA,REGION=86K

//SYSPRINT DO SYSOUT=A

//SYSUTL 0D UNIT=SYSDA,SPACE=(23aa,(23,22))

//5YSUTZ oD UNIT=(SYSDA,SEP=SYSUT1),SPACE=(2aad,(22,2a))

//5YSUT3 oD UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(2202,(2a,12))
//5YSUT4 bo UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),SPACE=(1232,256),

// 0CB=DSORG=DA

//5YSGO oD OSN=R&LOADSET,DISP=(MOD,PASS),UNIT=(SYSDA, SEP=SYSUT1),
// SPACE=(16230,(39,32)) +DCB=BLKSIZE=162d

//GG EXEC PGM=LUADER,PARM=*MAP,PRINT,LET,EP=2YQENT/&GOPARM?",

// COND=(64,LT,SIM)

//SYSLIN oD DSN=&&LOADSET,DISP=(0LD,PASS)

//SYSLIB oD OSN=&EXLIB,DISP=SHR

// 0D DSN=SIMLIB,DISP=SHR

//SYSLOUT ©BO SYSOUT=A

//5YSOUT oD SYSOUT=A

// PEND

Catalogued procedure SIM

//S5IM PROC P=,CP=,LP=4RP=,GP=
//60 EXEC PGM=SIMCNT,COND=EVEN,
// PARM=Y&P/&CP/&LP/TIME=1000,&RP/&GP?

//STEPLIB ©D OSN=simlib,D1SP=SHR

//SYSPRINT DO SYSCUT=A

//SYSUT1 VY] UNIT=SYSDA,SPACE=(2048,(20,20))

//5YSUT2 DD UNIT=SYSDA,SPACE=(2048,(20,20))

//5YSUT3 bo UNIT=SYSDA,SPACE=(1632,(30,15))

//75YSUT4 Co UNIT=SYSDA,SPACE=(1032,256),DCB=DSORG=DA
//5YSGO DD UNIT=SYSDA,SPACE=(1600,(100,50)),

// DCB=(LRECL=80,RECFIM=FB,BLKSIZE=1600)

Appendix K

REPORT PROCEDURE

If a fault is found, or is believed to be found, in the SIMULA system,
it should be reported to the Norwegian Computing Center on a standard
error report from provided for this purpose. Care should be taken to
describe the error and its context correctly, and it is preferable to
send the program ltisting with the error report form.

Reported errors will always be dealt with in their order of arrival at
the Norwegian Computing Center.

The layout of the error report form is shown on the next page.

——— — —

Customers name:

Location?

Release no.:

|
t
!
l

“Date compiled:

!
!
!
!
!
! _—
! Project leader:
!

!

!
!
]
!
!
'
! Reference no.t
1

!

———— o ——— — —— ® —— —— —

This report should be sent to:

Norwegian Computing Center
Forskningsveien 1b
Postboks 335, Blindern
Oslo 3

Norway

— —— . ——— — ———

.aescription of problem:

® I PD D 2D e FTE S PeD 0D VD VD P S Pep VD Pep L

—— ——— ——

- S PUB CEE ¢eD P VB JuD VD P B Vel VD Cew PUD Sup Vem B Sem OCem

- rem vem tem

'Enclosure! Compilation listing Console listing Source
Object program Test material Dump
o T For use bg-NCC -

Analys?g of problem:

! Corrective action taken:
]
'
!
!
!
!
!
!
!
!
!
!
!
!
!

.Regiszration no:d

D Pem PeD PUD Vem VD D VD Vem P PeD teD QD Fem Pem O ocem tem

PIR Sem cam W fam D Red D Jen IR fen VD lem D SR OW D Tem PP fum PUD Vel P W D PR Jem PP P SR Fem PUD Jep D Iem PR Pl PTD Ced OTH fem PN el Pem D dan PN VD fuD WD jap CED AeD tep P Pep Pem 0D Sam S

