
MVS Utility Programs - IBM and User Written
January, 2022

Program Source Function
AMASPZAP IBM Inspect and/or modify a load module or data record stored on

disk.
AMBLIST IBM Produce a formatted listing of an object or load module,

produce a map and cross-reference listing of a nucleus,
produce a list of IDRDATA from a CSECT, or produce a
map of all modules in the reenterable load module area (the
Link Pack area).

CMPRSEQ CBT File #226 Compare two sequential datasets or members of two
partitioned datasets at the logical record level.

COPYMODS CBT File #229 Copy all files of an input tape onto 1 to 16 output tapes, strip
labels from tape files, add new labels to tape files, correct
label records, initialize tape volumes.

DSSDUMP CBT File #860 Create a backup sequential dataset, ADRDSSU format,
containing the contents of one or more DASD datasets.

DSSREST CBT File #860 Restore one or more datasets from a backup set created by
ADRDSSU or DSSDUMP.

FIXDSCB CBT File #566 Modify and repair of dataset control blocks (DSCBs).
ICKDSF IBM Prepare an offline DASD volume so that it can be used in an

MVS system.
IEBCOMPR IBM Compare two sequential datasets or two partitioned datasets

at the logical record level to verify a backup copy.
IEBCOPY IBM Copy one or more partitioned datasets or to merge partitioned

datasets.
IEBGENER IBM Copy a sequential dataset, or a member of a partitioned

dataset, to a sequential dataset or a member of a partitioned
dataset.

IEBISAM IBM Copy an indexed sequential (ISAM) dataset from one DASD
volume to another, or into a sequential dataset on DASD or
tape; create an ISAM dataset from an unloaded dataset, or
print an ISAM dataset.

IEBPTPCH IBM Print or punch: all/selected members/selected records from a
sequential or partitioned dataset, or the directory of a
partitioned dataset.

IEBUPDTE IBM Incorporate source language modifications into sequential or
partitioned datasets.

IEHDASDR IBM Prepare DASD volumes for use, dump/restore the entire
contents or portions of a DASD volume to a volume or
volumes of the same DASD type, or to a tape volume or
volumes.

IEHINITT IBM Prepare tape volumes for use by writing IBM volume label
sets in EBCDIC onto any number of magnetic tapes mounted
on one or more tape units.

IEHLIST IBM Print entries in a DASD Volume Table Of Contents or entries
in the directory of one or more partitioned datasets.

IEHMAP CBT V129 File#83 Print a formatted listing of a VTOC or a dataset.
IEHMOVE IBM Move or copy one or several datasets from one DASD

volume to another, or to a tape.
IEHPROGM IBM Modify system control data and to maintain datasets at an

organizational level.
LISTPDS CBT File #316 Prints formatted listings of a PDS directory, the contents of

processed members or sequential files, as well as (optionally)
punching processed members and/or sequential datasets.

MINIUNZ CBT File #135 Uncompress the contents of datasets created by compression
utilities commonly used on PCs and by the companion
program MINIZIP.

MINIZIP CBT File #135 Compress the contents of: 1) one or more sequential datasets
or members of partitioned datasets; or 2) all the members of a
one or more partitioned datasets, to create a smaller, portable
copy of the original data.

OFFLOAD CBT File #093 Sequentialize a partitioned dataset.
PDSLOAD CBT File #093 Recreate a partitioned dataset from a sequential dataset that

contains control statements interspersed with data records.
PDSMATCH CBT File #357 Compare two partitioned datasets.
PDSPRINT CBT File #316 Print or punch members from a partitioned dataset.
PDSPROGM CBT File #316 Perform maintenance on partitioned datasets.
PDSSCAN CBT File #684 Scan all members of one or more partitioned datasets,

searching for specified strings.
PDSUPDTE CBT OFL FIle #065 Scan all members of one or more partitioned datasets,

searching for specified strings and replacing those found with
replacement strings.

PDSUR CBT File #949 Copy partitioned datasets from DASD to tape (unload) and
from tape to DASD (reload) in IEHMOVE format.

RECV370 CBT File #571 Process XMIT files produced by either the TSO/E
TRANSMIT command processor, the XMIT370 batch
program, or a similar facility.

RESETDS NaSPA 1986 Reset to empty status partitioned or sequential datasets in
preparation for a reload.

REVLMOD CBT File #134 Reload load modules that have been offloaded with
REVIEW's OFFLOAD command.

SORT CBT File #1036 Sort data records from one or more sequential datasets.
SUPERLST CBT File #134 Print DASD VTOC listing, with optional Partitioned dataset

directory information and volume allocation map.
SYSREPRO CBT File #316 Copy data records from a sequential dataset or member of a

partitioned dataset to another sequential dataset or member.
TAPEMAP CBT File #299 Read a tape volume and report everything it contains,

including detailed information about file contents when the
creation program is recognized.

TAPESCAN CBT File #102 Read a tape volume and report an overview of the datasets on
a tape, copy files and recover data past the first end of
volume indicator.

UNUPDTE CBT File #093 Sequentialize a partitioned dataset.
UPDTE CBT File #093 Recreate a partitioned dataset from a sequential dataset that

contains ADD control statements interspersed with data

records.
VTOCLIST CBT OFL File #343 Print formatted VTOC listing.
XMIT370 CBT File #571 Read partitioned datasets to produce XMIT files equivalent to

the TSO/E TRANSMIT command processor or a similar
facility.

ZAPDSCB CBT File #163 Update DSCBs for specified datasets with values supplied on
DD statements.

ZTDUMPTP CBT File #316 Print data records from datasets on tape.
ZZRELINK CBT File #860 Re-link-edit one or more existing load modules.

Index of Programs With Control Statements and
Example JCL

Program Name Control Statements Examples (JCL)

AMASPZAP ABSDUMP | ABSDUMPT
DUMP | DUMPT
IDRDATA
REP
VER | VERIFY
SETSSI

1) Dump the CSECT from a load module
2) Verify/Replace instruction in a load module
3) Dump a record from a file
4) Inspect/Modify a data record

AMBLIST LISTIDR
LISTLOAD
LISTLPA
LISTOBJ

1) List Load Module
2) List Object Module
3) List Identification Records from one or more CSECTs
4) List Link Pack area

CMPRSEQ 1) Compare members of two partitioned datasets

COPYMODS BLKCNT | NOBLKCNT
BYTES
CHGVOL | NOCHGVOL
COPYLTM | SKIPLTM
CORRBLKS
CUMTOT | CUMSEP
EOF1 | NOEOF1
EOF2 | NOEOF2
EOFS | NOEOFS
EOV1 | NOEOV1
EOV2 | NOEOV2
EOV2EOF | NOEOVCHG
EOVS | NOEOVS
EXNULL | NOEXNULL
FOOTAGE
FILELIMIT
HDR1 | NOHDR1
HDR2 | NOHDR2
HEXPRT
IDRCOFF

1) Copy tape to 3 output tapes, SL output, change VOL1s
2) Simulate copy, print input tape information

KEEPVOL
LABADDIN
LABELIMIT
LABLDUMP |
NOLABELD
LBLFIX | NOLBLFIX
LBLINFO | NOLABL
MINMAX
OUTVOLALL
PRADDLBL |
NOPRADDL
PRINTRCDS
READ | WRITE
RECSIZE
SECOFF
SHOOVL
STRIP
SYSIN | NOSYSIN
TAPEOWNER
VOLLBL | NOVOLLBL

DSSDUMP DUMP
EXCLUDE
INCLUDE
OPTIONS
PREFIX
RENAME
STRIP

1) Run a test (simulation) dump
2) Dump a dataset, substituting new HLQ on backup set
3) Dump two groups of datasets contained on one volume

DSSREST 1) Read backup set, generate report and restore JCL
2) Restore a single dataset from backup set
3) Restore more than one, but not all, datasets from backup set

FIXDSCB EXPIRE
EXTEND
NAME
 BLKSIZE
 DSORG
 KEYL
 LRECL
 OPTCODE
 RECFM
 RKP
PROTECT
RENAME
RENEW
SCRATCH
SETNOPWR
UNLOCK
ZEROEXPD

1) Extend expiration date for dataset
2) Modify RECFM, LRECL, BLKSIZE

ICKDSF INIT 1) Initialize 2314, 3330, 3340, 3350 DASD
2) Initialize 3375, 3380, 3390 DASD

IEBCOMPR COMPARE
EXITS
LABELS

1) Compare two sequential datasets
2) Compare two partitioned datasets

IEBCOPY COPY
EXCLUDE
SELECT

1) Copy partitioned dataset from one DASD to another DASD,
including all members
2) Copy partitioned dataset from one DASD to another DASD,
selecting specific members
3) Copy members from two partitioned datasets, creating a new
partitioned dataset, replacing any members with the same name from
dataset 2
4) Compress partitioned dataset
5) Unload a partitioned dataset to tape
6) Reload some members of an unloaded partitioned dataset

IEBGENER EXITS
GENERATE
LABELS
MEMBER
RECORD

1) Copying tape to tape
2) Tape to print
3) Card to tape

IEBISAM COPY
EXIT
LOAD
PRINTL
UNLOAD

1) Copy ISAM dataset blocking data records
2) Copy ISAM dataset to portable copy (unloaded)
3) Reload ISAM dataset from unloaded copy
4) Print ISAM data records

IEBPTPCH EXITS
LABELS
MEMBER
PRINT
PUNCH
RECORD
TITLE

1) Print sequential dataset with conversion to hex
2) Print partitioned dataset, 10 records from each member
3) Copy all members from PDS onto single file on tape
4) Print two members of PDS
5) Resequence card deck

IEBUPDTE ADD
ALIAS
CHANGE
DELETE
ENDUP
NUMBER
REPL
REPRO

1) Add two members to a partitioned dataset
2) Change member in partitioned dataset, update in place
3) Add records to member in partitioned dataset
4) Delete records from a member in a partitioned dataset
5) Create a partitioned dataset, input data contained solely in control
dataset
6) Create a partitioned dataset, input data copied from existing dataset

IEHDASDR ANALYZE
DUMP
LABEL
RESTORE

1) Initialize 2314, 3330 (1 and 2), 3340, 3350 DASD volumes
2) Dump DASD volume to tape
3) Restore DASD volume from backup
4) Alter Volume Serial on offline 2314

IEHINITT INITT 1) Initialize 3 tapes

IEHLIST LISTCTLG
LISTPDS
LISTVTOC

1) List VTOC
2) List PDS

IEHMAP ATTRIB
AVAIL
CCHHR
DIR
DSNAME
DUMP
DUMP456
FIXUP

1) List all datasets on volume

All other functions are documented in the job above.

FREE
MAP
MISSING
NAME
OVERLAP
PDS
SORT
TRACKS
TTR
VERIFY

IEHMOVE COPY DSGROUP
COPY DSNAME
COPY PDS
COPY VOLUME
MOVE DSGROUP
MOVE DSNAME
MOVE PDS
MOVE VOLUME

1) Copy partitioned dataset from one DASD to another DASD,
recataloging
2) Copy all datasets from one DASD volume to another DASD volume
3) Move all datasets matching HLQ from one DASD to another
DASD, recataloging
4) Unload all datasets matching HLQ from DASD to tape
5) Reload partitioned dataset from tape to DASD
6) Unload multiple datasets from DASD to separate TAPE datasets

IEHPROGM ADD
CATLG
DELETEP
LIST
RENAME
REPLACE
SCRATCH
UNCATLG

1) Scratch all expired datasets, including SYS datasets
2) Remove all datasets on volume, regardless of expiration status
3) Scratch and uncatalog two datasets
4) Rename and recatalog a dataset
5) Add passwords to a dataset
6) List passwords for a dataset
7) Rename a member of a Partitioned dataset

LISTPDS DECK | NODECK
EJECT | NOEJECT
EROPT
HEXOUT | NOHEXOUT
LINECNT
LIST | NOLIST
LISTDIR
NUM | NONUM
RITS | CRBE | CRJE
SELECT | NOSEL |
EXCLUDE
SPF | NOSPF
SSI | NOSSI
TRUNC | NOTRUNC
UPDTE | NOUPDTE
XLATE | TEXT |
NOXLATE | NOTEXT

1) Print the directory of a partitioned dataset
2) Print all members of a partitioned dataset
3) Punch selected members of a partitioned dataset
4) Punch selected members of a partitioned dataset with IEBUPDTE
cards
5) Punch and print sequential dataset

MINIUNZ 1) List contents of archive
2) Extract entire contents of archive to a partitioned dataset
3) Extract a single member from an archive to a sequential dataset

MINIZIP 1) Compress all members of a partitioned dataset to archive
2) Compress all members of three partitioned datasets to archive
3) Compress three sequential datasets to archive
4) Compress four members of a partitioned dataset to archive

OFFLOAD E (Exclude)
O (Offload)
S (Select)

1) Offload selected members of a partitioned dataset
2) Offload all but excluded member of a partitioned dataset
3) Offload all members of a partitioned dataset

PDSLOAD CK3
CTL(xx)
NAME={CHK|ASIS|IBM}
NEW
S(namemask)
SPF
UPDTE(x)

1) Load partitioned dataset from OFFLOADed dataset
2) Load partitioned dataset using mask to select members
3) Add members to partitioned dataset from OFFLOADed dataset

PDSMATCH 1) Compare two partitioned datasets, names only
2) Compare two partitioned datasets, names and userdata
3) Compare two partitioned datasets, names and actual data records

PDSPRINT PRINT
PUNCH

1) Punch all members with IEBUPDTE ADD cards
2) Print selected members
3) Punch long list of selected members
4) Print members selected with name pattern

PDSPROGM ALIAS
DELETE
FILE
OPTION
RENAME

1) Partitioned dataset maintenance

PDSSCAN 1) Scan two partitioned datasets searching for strings

PDSUPDTE 1) Scan two partitioned datasets searching for strings
2) Scan a partitioned dataset, two matchings strings required, update if
found

PDSUR LIST
MEMBER
RELOAD
UNLOAD

1) Unload two partitioned datasets
2) Reload a partitioned dataset
3) Unload and reload a partitioned dataset in one step
4) List three unloaded partitioned datasets
5) Unload with selects and excludes
6) Reload with selects and excludes

RECV370 1) Unpack XMIT to create PDS

RESETDS 1) Reset datasets to empty

REVLMOD 1) Reload load module from sequential dataset

SORT SORT
MERGE
RECORD
MODS
OPTION
END

1) Sort 1 tape dataset, creating a disk dataset
2) Sort 2 tape datasets (implicit merge), creating a disk dataset
3) Merge 2 disk datasets, creating a disk dataset
4) Sort disk dataset on split sequence field
5) Sort disk dataset on split sequence field, all CH data

SUPERLST 1) List VTOCs and PDS directories on two volumes

SYSREPRO 1) Print a card dataset
2) Copy a sequential dataset, disk to disk
3) Copy a tape dataset to disk
4) Add member to existing partitioned dataset from cards

TAPEMAP 1) Analyze tape and report on files and their contents

TAPESCAN 1) Print dataset VTOC for SL tape
2) Copy 4th and 5th datasets to second tape

UNUPDTE 1) Offload members of a partitioned dataset to sequential dataset

UPDTE 1) Load partitioned dataset from sequential dataset

VTOCLIST 1) List VTOC for DASD volume
2) List VTOC for DASD volume with PDS directory information

XMIT370 1) Pack partitioned dataset into XMIT

ZAPDSCB 1) Modify DSCB fields for dataset

ZTDUMPTP FILES
MODE
PRINT
REC
REDUN
RUN
SKPFIL
SKPREC

1) Dump and print first 20 records from first 5 files on tape

ZZRELINK LINK
SELECT

1) Create (on SYSPUNCH) JCL for job to relink a load module
2) Re-link-edit all members of a load library to a new library
3) Re-link-edit a load module, renaming it into the input library
4) Re-link-edit a group of modules to a new library, replacing
duplicates

AMASPZAP [supplied by IBM, located in SYS1.LINKLIB]
Used for inspecting and/or modifying a load module or data record stored on disk. AMASPZAP requires the following
DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSLIB - defines the load library or dataset that will be accessed.

DSNAME and DISP (either OLD or SHR) are required.
The VOLUME and UNIT parameters are necessary only if the dataset is not cataloged.
When the dataset is the VTOC, DSNAME=FORMAT4.DSCB must be specified.
The SYSLIB DD statement cannot define a concatenated dataset.

• SYSIN - defines a sequential input dataset that contains AMASPZAP control statements.

Control Statements
NAME member

csect

The NAME control statement specifies the CSECT in a load module that is to be the object of subsequent
VERIFY, REP, IDRDATA or SETSSI operations. The parameters are:

member

Specifies the member name of the load module that contains the control section in
which the data to be inspected and/or modified is contained. The load module must
be a member of the partitioned dataset defined by the SYSLIB DD statement.

csect

Specifies the name of the particular control section that contains the data to be
verified or replaced. When this parameter is omitted, it is assumed that the first
CSECT contained in the load module is the one to be referenced. If there is only
one CSECT in the load module, this parameter is not required.

CCHHR record address

The CCHHR control statement specifies the address of a physical record on a direct access device that is to
be modified or verified. The record must be located within the dataset defined by the SYSLIB DD
statement. Any immediately following REP or VERIFY control statements will reference the data in the
specified record. The parameter is:

record address

Specifies the actual direct access device address of the record containing the data to
be replaced or verified. It must be specified as a 10-digit hexadecimal number in
the form cccchhhhrr, where cccc is the cylinder, hhhh is the track, and rr is the
record number. For example, 0001000A01 addresses record 1 of cylinder 1, track
10. A zero record number is invalid and will default to 1.

More than one CCHHR control statement can be supplied in the input stream, however, the VERIFY, REP
and SETSSI control statements associated with each CCHHR control statement must immediately follow
the specific CCHHR control statement to which they apply.

VER | VERIFY offset

expected content

The VERIFY control statement specifies that the contents at a specified location within a control section or
physical record are to be compared with the data the user supplies in the control statement. VERIFY may
be abbreviated to VER. If the two fields being compared are not in agreement, no succeeding REP or
SETSSI operations will be performed until the next NAME or CCHHR control statement is encountered. A
formatted dump is provided of each CSECT or record for which a VERIFY operation failed. The
parameters are:

offset

Specifies the hexadecimal displacement of the data to be inspected in a CSECT or
record. This displacement must be specified as a multiple of two hexadecimal digits
(0D, 021C, 014682, etc.). If this offset value is outside the limits of the CSECT or
data record defined by the preceding NAME or CCHHR control statement, the
VERIFY control statement will be rejected. When inspecting a record with a key,
the length of the key should be considered in the calculation of the displacement;

that is, offset zero is the first byte of the key.

expected content

Specifies the bytes of data that are expected at the specified location. As with the
offset parameter, the number of bytes of data defined must be specified as a
multiple of two hexadecimal digits. If desired, the data within the parameters may
be separated by commas (never blanks), but again, the number of digits between
commas must also be a multiple of two. For example, the data may look like this:
5840C032 (no commas), or this: 5840,C032 (commas).

If all the data will not fit into one VERIFY control statement (one 80-byte logical
record), then another VERIFY control statement must be supplied.

REP offset

data

The REP control statement modifies data at a specified location in a CSECT or physical record that has
been previously defined by a NAME or CCHHR control statement. The data specified on the REP control
statement will replace the data at the record or CSECT location stipulated in the offset parameter field.
(Note: You should always first use the VERIFY function to make sure you know what you are going to
change with the REP function.) A message will be issued to record the contents of the specified location as
they were before the change was made. The parameters are:

offset

Specifies the hexadecimal displacement of the data to be inspected in a CSECT or
record. This displacement must be specified as a multiple of two hexadecimal digits
(0D, 021C, 014682, etc.). If this offset value is outside the limits of the CSECT or
data record defined by the preceding NAME or CCHHR control statement, the REP
control statement will be rejected. When modifying a record with a key, the length
of the key should be considered in the calculation of the displacement; that is, offset
zero is the first byte of the key.

data

Specifies the bytes of data that are to be inserted at the specified location. As with
the offset parameter, the number of bytes of data defined must be specified as
multiples of two hexadecimal digits. If desired, the data within the parameter may
be separated by commas (never blanks), but again, the number of digits between
commas must also be a multiple of two. For example, the data may look like this:
4160BB20 (no commas), or this: 4160,BB20 (commas).

If all the data to be modified will not fit into one REP control statement (one 80-
byte logical record), then another REP control statement must be supplied.

AMASPZAP automatically updates the system status index (SSI) when it successfully modifies the
associated load module.

If multiple VERIFY and REP operations are to be performed on a CSECT, then all the VERIFY control
statements should precede all the REP control statements. This will ensure that all the REP operations are
ignored if any VERIFY reject occurs.

When a record in the VTOC (that is, a DSCB) is accessed for modification, a message is written to the
console.

IDRDATA xxxxxxxx

The IDRDATA control statement places up to eight bytes of user data into the CSECT Identification
Record of the load module. This is only done if a REP operation associated with a NAME control
statement is performed and the load module has been processed by the Linkage Editor to include CSECT
Identification Records. The parameter is:

xxxxxxxx

Specifies one to eight characters of user data (with no embedded blanks) that is to
be placed in the user data field of the IDR of the load module. If more than eight
characters are in the parameter field, only the first eight characters will be used.

The IDRDATA control statement is valid only when used in conjunction with the NAME control
statement. It must follow its associated NAME control statement and precede any DUMP or ABSDUMP
control statement. IDRDATA control statements associated with CCHHR control statements will be
ignored.

SETSSI xxyynnnn

The SETSSI control statement places user supplied system status information in the partitioned dataset
directory entry for the library member specified in the preceding NAME control statement. The SSI,
however, must have been created when the load module was link edited. The parameter is:

xxyynnnn

Specifies the 4 bytes of system status information the user wishes to place in the SSI
field for this member. Each byte is supplied as two hexadecimal digits signifying
the following:

xx - change level
yy - flag byte
nnnn - modification serial number

If an error has been detected in any previous VERIFY or REP operation, the SETSSI function will not be
performed.

Since all bits in the SSI entry are set (or reset) by the SETSSI control statement, extreme care should be
exercised in its use to avoid altering information vital to the depiction of the maintenance status of the
program being changed. A message will be issued to record the SSI as it was before the SETSSI operation
was performed.

DUMP | DUMPT member

csect | ALL

The DUMP control statement dumps a specific control section or all control sections in a load module. The

format of the output of this dump is hexadecimal. The DUMPT control statement differs from the DUMP
control statement in that it also gives the user an EBCDIC and instruction mnemonic translation of the
hexadecimal data. The parameters are:

member

Specifies the member name of the load module that contains the control section(s)
to be dumped. This module must be a member of a partitioned dataset that is
defined by the SYSLIB DD statement.

csect

Specifies the name of the particular control section that is to be dumped. To dump
all the CSECTs of a load module, code ALL instead of the CSECT name. If the
CESCT parameter is omitted entirely, it is assumed that the user means to dump
only the first control section contained in the load module.

ABSDUMP | ABSDUMPTstartaddr stopaddr | membername | ALL

The ABSDUMP control statement dumps a group of data records, a member of a partitioned dataset, or an
entire dataset, as defined in the SYSLIB DD statement. If the key associated with each record is to be
formatted, DCB=(KEYLEN=nn), when nn is the length of the record key, must also be specified by the
SYSLIB DD statement. Note that when dumping a VTOC, DCB=(KEYLEN=44) should be specified;
when dumping a PDS directory, DCB=(KEYLEN=8) should be specified.

ABSDUMP produces a hexadecimal printout only, while ABSDUMPT prints the hexadecimal data, the
EBCDIC translation, ant the mnemonic equivalent of the data. The parameters are:

startaddr

Specifies the absolute direct access device address of the first record to be dumped.
This address must be specified in hexadecimal in the form cccchhhhrr (cylinder,
track and record number).

stopaddr

Specifies the absolute direct access device address of the last record to be dumped,
and it must be in the same format as the start address.

Both addresses must be specified when this method of dumping records is used, and both
addresses must be within the limits of the dataset defined by the SYSLIB DD statement. The
record number specified in the start address must be a valid record number. The record number
specified as the stop address need not be a valid record number, but if it is not, the dump will
continue until the last record on the track specified in the stop address has been dumped.

membername

Specifies the name of a member of a partitioned dataset. The member can be a
group of data records or a load module. In either case, the entire member is dumped
when this parameter is specified.

ALL

Specifies that the entire dataset defined by the SYSLIB DD statement is to be
dumped. How much of the space allocated to the dataset is dumped depends on
how the dataset is organized: for sequential datasets, the dump will continue until it
reaches end of file; for indexed sequential and direct access datasets, the dump will
contain all extents; for partitioned datasets, the dump will contain all extents,
including all linkage editor control records, if any exist.

BASE xxxxxx

The BASE control statement is used to adjust offset values that are to be specified in any subsequent
VERIFY and REP control statements. This control statement should be used when the offsets given in the
VERIFY and REP control statements for a CSECT are to be obtained from an assembly listing in which the
starting address of the CSECT is not location zero.

For example, assume that CSECT ABC begins at assembly listing location x'000400', and that the data to
be replaced in this CSECT is at location x'000408'. The actual displacement of the data in the CSECT is
x'08'. However, an offset of 'x0408' (obtained from the assembly listing location x'000408') can be
specified in the REP control statement if a BASE statement specifying x'000400' is included prior to the
REP control statement in the input stream. When the REP control statement is processed, the base value
x'000400' will be subtracted from the offset x'0408' to determine the proper displacement of data within the
CSECT. The parameter is:

xxxxxx

Specifies a 6-character hexadecimal offset that it to be used as a base for subsequent
VERIFY and REP operations. This value should reflect the starting assembly
listing address of the CSECT being inspected or modified.

The BASE control statement should be included in the input stream immediately following the NAME
control statement that identifies the control section that is to be involved in the operations. The specified
base value remains in effect until all VERIFY, REP, and SETSSI operations for the CSECT have been
processed.

Examples
 Dump the CSECT from a load module
//AMASPZAP JOB (SYS),'AMASPZAP DUMP',CLASS=A,MSGCLASS=X
//AMASPZAP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.LINKLIB
//SYSIN DD *
 NAME IKFCBL01 IKF011
 DUMPT IKFCBL01 IKF011
/*
//

 Verify/Replace instruction in a load module
//AMASPZAP JOB (SYS),'AMASPZAP REP ',CLASS=A,MSGCLASS=X
//AMASPZAP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=JAY01.LOAD
//SYSIN DD *

 NAME ISLOAD
 VER 0616 9640,1051
 REP 0616 966B,1051
 SETSSI 01212134
/*
//

 Dump a record from a file
//AMASPZAP JOB (SYS),'AMASPZAP DUMP',CLASS=A,MSGCLASS=X
//AMASPZAP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=JAY01.ISAM.MASTER
//SYSIN DD *
 ABSDUMPT 007A000120 007A000120
/*
//

 Inspect/Modify a data record
//AMASPZAP JOB (SYS),'AMASPZAP CH VTOC',CLASS=A,MSGCLASS=X
//AMASPZAP EXEC PGM=AMASPZAP
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=OLD,DSN=FORMAT4.DSCB,UNIT=3330,VOL=SER=111111,DCB=(KEYLEN=44)
//SYSIN DD *
 CCHHR 005000001
 VERIFY 2C 0504
 REP 2C 0A08
 REP 2E 0001,03000102
 ABSDUMPT ALL
/*
//

Source: GC28-0633-1 OS/VS Service AIDS

AMBLIST [supplied by IBM, located in SYS1.LINKLIB]
Used for producing a formatted listing of an object or load module, producing a map and cross-reference listing of a
nucleus, producing a list of IDRDATA from a CSECT, or producing a map of all modules in the reenterable load
module area (the Link Pack area). AMBLIST requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSLIB or any DD name specified on the control statement - defines the load or object library that will be

accessed.
• SYSIN - defines a sequential input dataset that contains AMBLIST control statements.

Control Statements
LISTLOAD[OUTPUT={MODLIST | XREF | BOTH}]

[,TITLE=('title',position)]

[,DDN=ddname]

[,MEMBER={membername | (membername[,membername]...)]

http://bitsavers.org/pdf/ibm/370/OS_VS2/Release_3.0_1975/GC28-0683-1_OS_VS2_Supervisor_Services_and_Macro_Instructions_Rel_3_Jun75.pdf

[,RELOC=nnnnnn]

The LISTLOAD control statement produces a listing of the load module along with its module map and
cross-reference listing. The parameters are:

OUTPUT=type

Specifies the type of load module listing to be produced. The choices for type are:

• MODLIST - Requests a formatted listing of the control and text records,
including its External Symbol Dictionary and Relocation Dictionary
Records.

• XREF - Requests a module map and cross-reference listing.
• BOTH - Requests both MODLIST and XREF.

If omitted, BOTH is assumed.

TITLE=('title',position)

Specifies a title, one to forty characters, to be printed below the heading line on
each page of the output. The optional position specifies the number of characters
from the left margin the user's title is to be indented. There may be no commas
included in the 'title' text, as commas are recognized as delimiters; any characters
beyond the first comma encountered will be ignored.

DDN=ddname

Identifies the DD statement that defines the dataset containing the input module. If
omitted, SYSLIB is the default DD name.

MEMBER={membername | (membername[,membername]...)

Identifies the input load module(s) by member name or alias name. To specify
more than one load module, enclose the list of names in parentheses and separate
the names with commas. If you omit the MEMBER= parameter, all modules in the
dataset will be printed.

RELOC=nnnnnn

Specifies a relocation or base address in hexadecimal of up to six characters. When
the relocation address is added to each relative map and cross-reference address, it
gives the absolute main storage adress for each item on the output listing. If
omitted, no relocation is performed.

LISTOBJ[TITLE=('title',position)]

[,DDN=ddname]

[,MEMBER={membername | (membername[,membername]...)}]

The LISTOBJ control statement produces a listing that contains the External Symbol Dictionary, the
Relocation Dictionary, and the text of the program containing instructions and data. The parameters are:

TITLE=('title',position)

Specifies a title, one to forty characters, to be printed below the heading line on
each page of the output. The optional position specifies the number of characters
from the left margin the user's title is to be indented. There may be no commas
included in the 'title' text, as commas are recognized as delimiters; any characters
beyond the first comma encountered will be ignored.

DDN=ddname

Identifies the DD statement that defines the dataset containing the input module. If
omitted, SYSLIB is the default DD name.

MEMBER={ membername | (membername[,membername]...)

Identifies the input load module(s) by member name or alias name. To specify
more than one load module, enclose the list of names in parentheses and separate
the names with commas. If you omit the MEMBER= parameter, all modules in the
dataset will be printed.

LISTIDR[OUTPUT={IDENT | ALL}]

[,TITLE=('title',position)]

[,DDN=ddname]

[,MEMBER={membername | (membername[,membername]...)}]

The LISTIDR control statement produces a formatted listing of all information in a load module's CSECT
identification records, including:

• the version and modification level of the language translator and the date that each
CSECT was translated,

• the version and modification level of the linkage editor that built the load module and
gives the date the load module was created,

• identifies by date modifications to the load module that may have been performed by
AMASPZAP.

The parameters are:

OUTPUT={IDENT | ALL }

Specifies whether the listing should include all CSECT identification records or
only those containing AMASPZAP data and user data. If the parameter is omitted
or OUTPUT=ALL is specified, all IDRs associated with the module will be
printed. If OUTPUT=IDENT is specified, only those IDRs that contain
AMASPZAP data or user-supplied data will be printed.

TITLE=('title',position)

Specifies a title, one to forty characters, to be printed below the heading line on
each page of the output. The optional position specifies the number of characters
from the left margin the user's title is to be indented. There may be no commas

included in the 'title' text, as commas are recognized as delimiters; any characters
beyond the first comma encountered will be ignored.

DDN=ddname

Identifies the DD statement that defines the dataset containing the input module. If
omitted, SYSLIB is the default DD name.

MEMBER={ membername | (membername[,membername]...)

Identifies the input load module(s) by member name or alias name. To specify
more than one load module, enclose the list of names in parentheses and separate
the names with commas. If you omit the MEMBER= parameter, all modules in the
dataset will be printed.

LISTLPA

The LISTLPA control statement produces a map of all modules in the reenterable load module area (the
Link Pack area). There are no parameters for this control statement.

Examples
 List Load Module
//AMBLIST JOB (SYS),AMBLIST,CLASS=A,MSGCLASS=X
//AMBLIST EXEC PGM=AMBLIST
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.LINKLIB
//SYSIN DD *
 LISTLOAD OUTPUT=BOTH,MEMBER=IKFCBL01
//

 List Object Module
//AMBLIST JOB (SYS),AMBLIST,CLASS=A,MSGCLASS=X
//AMBLIST EXEC PGM=AMBLIST
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=MVTSRC.COBOL.OBJECT,
// UNIT=SYSDA,VOL=SER=MVTSRC
//SYSIN DD *
 LISTOBJ MEMBER=IKFCBL01
//

 List Identification Records from one or more CSECTs
//AMBLIST JOB (SYS),AMBLIST,CLASS=A,MSGCLASS=X
//AMBLIST EXEC PGM=AMBLIST
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.LINKLIB
//SYSIN DD *
 LISTIDR OUTPUT=IDENT,MEMBER=IKFCBL01
//

 List Link Pack area
//AMBLIST JOB (SYS),AMBLIST,CLASS=A,MSGCLASS=X
//AMBLIST EXEC PGM=AMBLIST

//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LISTLPA
//

Source: GC28-0633-1 OS/VS Service AIDS

CMPRSEQ [written by David B. Cole, located in SYSC.LINKLIB]
Used to compare two sequential datasets or members of two partitioned datasets at the logical record level. CMPRSEQ
was written by David B. Cole and the source may be found on CBT Tape File #226 (Version 437).

The CMPRSEQ program compares two sequential card image files and reports precisely the differences between the
two. Such differences can consist of insertions, deletions, and replacements (of either equal or unequal sizes).
CMPRSEQ accomplishes this by reading the two input files alternately and comparing the card images as it goes
along. When it encounters two cards that mismatch, it saves them and continues to read the two files alternately. Each
time it reads a card from one file, it compares it to all cards that it has read from the other file since the start of the
mismatch. If no match is found, then it saves that card and proceeds to read the next card from the other file.
CMPRSEQ continues alternating back and forth in this manner until it has read a card that does match one of the saved
cards from the other file. The mismatch then consists of all cards in the two saved stacks that are below the two
matching cards.

CMPRSEQ requires the following DD statements:

• SYSPRINT - a sequential output message dataset.
• OLD - sequential input: first of the input datasets to be compared.
• NEW - sequential input: second of the input datasets to be compared.
• OLDLIST - sequential output dataset where the records read from OLD are reproduced, along with the locations

of mismatches.
• NEWLIST - sequential output dataset where the records read from NEW are reproduced, along with the

locations of mismatches.
• IGNORE - sequential input dataset that can contain images of records that appear repeatedly and are to be

ignored.

The ignore file is optional. If it is available, then it is used to help control the possible
desynchronization problems. The ignore file should contain copies of card images that appear
repeated ly throughout the files being compared, and especially appearing in areas affected by
insertions and deletions. Copies of these cards, when encountered during a mismatch resolution
process, will not be used to resolve the mismatch

• SYNC - sequential input dataset that can be used to manage desynchronization problems.

This file should contain copies of one or more cards each of which appears exactly once in both
the old and new files. The cards in the SYNC file should appear in the same order by which
they appear in the OLD and NEW files. They should represent points in the OLD and NEW
files at which you wish to force comparison synchronization. Generally, such points will be
following those area where otherwise unrecoverable desynchronization has occurred.

http://bitsavers.org/pdf/ibm/370/OS_VS2/Release_3.0_1975/GC28-0683-1_OS_VS2_Supervisor_Services_and_Macro_Instructions_Rel_3_Jun75.pdf

Completion Codes
0 - processing has completed successfully. No mismatches have been found.
4 - processing has completed successfully. At least one mismatch has been found.
12 - processing has failed. A memory shortage has occurred.
16 - processing has aborted. One of the comparison files (OLD or NEW) is not available.

Program Parameter (PARM= on EXEC statement)
By default CMPRSEQ compares the records of the two input datasets on columns 1 through 72. By
specifying a PARM='FULL' on the EXEC statement, CMPRSEQ may be directed to perform the
comparison on columns 1 through 80.

Control Statements
There are no control statements for CMPRSEQ.

Examples
 Compare members of two partitioned datasets
//CMPRSEQ JOB (1),'COMPARE MEMBERS',CLASS=A,MSGCLASS=X
//CMPRSEQ EXEC PGM=CMPRSEQ,REGION=1024K PARM=FULL DEFAULT=1,72
//SYSPRINT DD SYSOUT=*
//OLD DD DISP=SHR,DSN=SYS1.MACLIB(YREGS)
//NEW DD DISP=SHR,DSN=SYSP.MACLIB(YREGS)
//OLDLIST DD SYSOUT=*
//NEWLIST DD SYSOUT=*
//IGNORE DD *
//SYNC DD *
//

COPYMODS [written by Paul Tokheim, located in SYSC.LINKLIB]
Used to copy all files of an input tape onto 1 to 16 output tapes. The original purpose of this program was for copying
the SHARE MVS MODs tape, but if you have any need for copying (or recovering data from) a tape, you probably
should see if COPYMODS will solve your problem. COPYMODS was written by Paul Tokheim, but has been heavily
modified and is now maintained by Sam Golob. The source may be found on CBT Tape File #229. COPYMODS
requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains COPYMODS option statements.
• IN - defines the input tape volume.
• OUT1 through OUT16 - defines the output tape volume(s).
• LABLDUMP - (optional) defines the sequential output dataset to hold label sets copied from IN.

• LABADDIN - (optional) defines the sequential input dataset holding label sets to insert in OUT1 (through
OUT16).

• PARMREPT - (optional) defines the sequential output message dataset to receive diagnostic output from
PARMCHEK.

Program Parameter (PARM= on EXEC statement)
COPYMODS will accept many of its options as keywords in the PARM parameter, but if you code SYSIN
as the only keyword, all options will be read from the SYSIN DD. If an option is supplied both by PARM
and SYSIN, the SYSIN version takes precedence.

PARM may be omitted if a SYSIN DD is provided; the presence of the SYSIN DD sets the PARM=SYSIN
option on.

Control Statements

COPYLTM | SKIPLTM

If COPYLTM is coded, leading tape marks on the input tape are copied to the output tape(s). If SKIPLTM
is coded, leading tape marks on the input tape are skipped. The default is COPYLTM. LTMCOPY is a
synonym for COPYLTM.

LBLINFO | NOLABL

If LBLINFO is coded, information from all standard labels will be printed. If NOLABL is coded, no label
information will be printed. The default is NOLABL. PRINTL and LABELS are synonyms for LBLINFO;
NOLABEL is a synonym for NOLABL.

HDR1 | NOHDR1

If HDR1 is coded, HDR1 labels will be printed. If NOHDR1 is coded, HDR1 labels will not be printed.

HDR2 | NOHDR2

If HDR2 is coded, HDR2 labels will be printed. If NOHDR2 is coded, HDR2 labels will not be printed.

EOF1 | NOEOF1

If EOF1 is coded, EOF1 labels will be printed. If NOEOF1 is coded, EOF1 labels will not be printed.

EOF2 | NOEOF2

If EOF2 is coded, EOF2 labels will be printed. If NOEOF2 is coded, EOF2 labels will not be printed.

EOV1 | NOEOV1

If EOV1 is coded, EOV1 labels will be printed. If NOEOV1 is coded, EOV1 labels will not be printed.

EOV2 | NOEOV2

If EOV2 is coded, EOV2 labels will be printed. If NOEOV2 is coded, EOV2 labels will not be printed.

HDRS | NOHDRS

If HDRS is coded, all HDR labels will be printed. If NOHDRS1 is coded, HDR labels will not be printed.

EOFS | NOEOFS

If EOFS is coded, all EOF labels will be printed. If NOEOFS1 is coded, EOF labels will not be printed.

EOVS | NOEOVS

If EOVS is coded, all EOV labels will be printed. If NOEOVS1 is coded, EOV labels will not be printed.

CHGVOL | NOCHGVOL

If CHGVOL is coded, the VOLSER on the output tape(s) will be changed to the serial coded in JCL. If
NOCHGVOL is coded, the VOLSER on the output tape(s) will not be changed. JCLVOL and NEWVOL
are synonyms for CHGVOL; NOJCLVOL and NONEWVOL are synonyms for NOCHGVOL.

VOLLBL | NOVOLLBL

If VOLLBL is coded, the VOL1 label will be printed. If NOVOLLBL is coded, the VOL1 label will not be
printed. The default is NOVOLLBL.

EOV2EOF | NOEOVCHG

If EOV2EOF is coded, the EOV label will be changed to EOF. If NOEOVCHG is coded, the EOV label is
not converted. The default is NOEOVCHG. EOVTOEOF and EOVCHG are synonyms for EOV2EOF.

READ | WRITE

If READ is coded, the input tape will be read, but no output tape(s) will be written. If WRITE is coded, the
output tape(s) will be written. The default is WRITE. READONLY and NOWRITE are synonyms for

READ.

LABLDUMP | NOLABELD

If LABLDUMP is coded, all standard labels will be written to LABLDUMP DD. If NOLABELD is coded,
standard labels will not be written to LABLDUMP. The default is NOLABELD.

SYSIN | NOSYSIN

If SYSIN is coded, other options will be read from SYSIN DD. If NOSYSIN is coded, options are not read
from SYSIN. The default is NOSYSIN, except if a SYSIN DD card is supplied, SYSIN becomes the
default.

OUTVOLALL=volser

If OUTVOLALL is coded, the VOLSER on the output tape(s) will be changed to volser.

TAPEOWNER=ownerid

If TAPEOWNER is coded, the owner field on the output tape(s) will be changed to ownerid.

LABADDIN

If LABADDIN is coded, label sets will be read from LABADDIN DD and merged with the data files read
from an unlabeled input tape to create standard labels on the output tape(s).

BLKCNT | NOBLKCNT

If BLKCNT is coded with LABADDIN, EOF1/EOV1 block counts will be corrected on the output tape(s).
If NOBLKCNT is coded, block counts in EOF1/EOV1 labels will not be changed. The default is
BLKCNT.

PRADDLBL | NOPRADDL

If PRADDLBL is coded, labels created with LABADDIN will be printed. If NOPRADDL is coded, labels
created with LABADDIN will not be printed.

CORRBLKS

If CORRBLKS is coded, EOF1/EOV1 block counts will be corrected on the output tape(s).

EXNULL | NOEXNULL

If EXNULL is coded, with LABADDIN, null standard labels sets will be added at end of tape if the input
unlabeled tape runs out of files. If NOEXNULL is coded, adding labels will stop at end of the input tape.
SLNULL is a synonum for EXNULL. NOSLNULL is a synonum for NOEXNULL.

LBLFIX | NOLBLFIX

If LBLFIX is coded, with LABADDIN, fix missing EOF labels. If NOLBLFIX is coded, missing EOF
labels will not be fixed.

INITVOLS

If INITVOLS is coded, the output tape volumes will be initialized without an input tape volume. Code
OUTVOLALL=serial and TAPEOWNER=owner and all output tapes will be initialized identically.

BYTES

If BYTES is coded, bytes read from all the files on the input tape will be counted.

CUMTOT | CUMSEP

If CUMTOT is coded, a running total of bytes counted and reported for all the files read from the input
tape. At the end of the input tape, total bytes are broken into: grand total, bytes read from labels, and bytes
from files. If you code CUMSEP the total label bytes are cumulatively reported separately from the
cumulative data bytes.

FILELIMIT=nnn

If FILELIMIT is coded, the number of files copied from the input tape is limited to the number specified in
nnn. For a standard label input tape, the number entered for nnn will be multiplied by 3 to compensate for
the labels. The adjustment of nnn may be forced by coding option SLLIM for standard label volumes and
NLLIM for unlabled volumes.

LABELIMIT=nnn

If LABELIMIT is coded, the number of label sets copied from the LABADDIN DD is limited to the
number specified in nnn.

RECSIZE

If RECSIZE is coded, the detailed block size of every block in every file read from the input tape volume
will be displayed. Coding RECSIZE automatically produces the MINMAX option.

MINMAX | NOMINMAX

If MINMAX is coded, the minimum and maximum block size of every file read from the input tape volume
will be displayed. Coding NOMINMAX turns off this display.

PRINTRCDS=nnn

If PRINTRCDS is coded, the number of records to print at the beginning of each tape file, turned on by the
HEXPRT option, is specified by nnn. The default for n is 4.

HEXPRT

If HEXPRT is coded, the first 132 bytes of the first n records in each file are printed in HEX and EBCDIC.
The value of n is set by the PRINTRCDS option and the default value is 4.

STRIP

If STRIP is coded, standard labels are not copied from the input tape file onto the output tape(s); the output
tape(s) are unlabeled.

IDRCOFF

If IDRCOFF is coded, a virtual device on AWS format tapes is handled as non-compressed.

SECOFF

If SECOFF is coded, the security indicators in tape labels for the output tape(s) are turned off.

FOOTAGE

If FOOTAGE is coded, the estimate tape size, at 6250 BPI, is calculated and reported.

KEEPVOL

If KEEPVOL is coded, an existing VOL1 label on an output tape will be retained.

SHOOVL

If SHOOVL is coded, in combination with READ, COPYMODS will do a dry run to show you the results
of a future copy.

Examples
 Copy tape to 3 output tapes, SL output, change VOL1s
//COPYMODS JOB (001),'COPYMODS-1',CLASS=A,MSGCLASS=X
//COPYMODS EXEC PGM=COPYMODS,REGION=4096K,PARM='SYSIN'
//SYSPRINT DD SYSOUT=*
//IN DD VOL=SER=157806,DISP=SHR,UNIT=TAPE,LABEL=(,BLP,EXPDT=98000)
//OUT1 DD VOL=SER=022101,DISP=OLD,UNIT=TAPE,LABEL=(,SL,EXPDT=98000)
//OUT2 DD VOL=SER=022102,DISP=OLD,UNIT=TAPE,LABEL=(,SL,EXPDT=98000)
//OUT3 DD VOL=SER=022103,DISP=OLD,UNIT=TAPE,LABEL=(,SL,EXPDT=98000)
//SYSIN DD *
CHGVOL
CUMTOT
LABELS
TAPEOWNER=HERCULES
BYTES
MINMAX
SHOOVL
FOOTAGE
//

 Simulate copy, print input tape information
//COPYMODS JOB (001),'COPYMODS-1',CLASS=A,MSGCLASS=X
//COPYMODS EXEC PGM=COPYMODS,REGION=4096K,PARM='SYSIN'
//SYSPRINT DD SYSOUT=*
//IN DD VOL=SER=22013C,DISP=SHR,UNIT=TAPE,LABEL=(,BLP,EXPDT=98000)
//OUT1 DD VOL=SER=022301,DISP=OLD,UNIT=TAPE,LABEL=(,SL,EXPDT=98000)
//SYSIN DD *
CHGVOL
CUMTOT
LABELS
TAPEOWNER=HERCULES
BYTES
MINMAX
READ
FOOTAGE
//

DSSDUMP [written by Gerhard Postpischil, located in SYSC.LINKLIB]

Used for creating a backup sequential dataset containing the contents of one or more DASD datasets. The output
dataset may be written to a tape image or to a DASD dataset. DSSDUMP backup datasets are equivalent to those
produced by ADRDSSU, which is a licensed program used under z/OS. DSSDUMP was written by Gerhard
Postpischil and the source may be found on CBT Tape File #860. DSSDUMP requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains DSSDUMP control statements.
• TAPE - defines the sequential output dataset that will contain the backup set, in DSS format, uncompressed.

RECFM=U
For tape device output: 65520 is the default BLKSIZE; 7892<block size<65520 is supported, RECFM=V is
supported, with blocks 7900<block size<32760.
For DASD device output: the default BLKSIZE=track size, if >=7892 or the half-track size for modulo
devices; the supported range is 7892<data size<32760.

Control Statements

OPTIONS [{ENQ | NOENQ}]

[,TEST]

[,{ALLDATA | ALLEXCP}]

[,EXPORT]

[,{LIST | SHOW}]

The OPTIONS control statement specifies one or more options, separated by commas. The OPTIONS
statement may appear anywhere in the stream of control statements. The parameters are:

ENQ | NOENQ

If ENQ is specified, DSSDUMP issues an exclusive ENQ TEST for each dataset.
Dump continues if the dataset is not available, and issues RC=4. Applies from prior
DUMP until end-of-job. If NOENQ is specified, which is the default if neither
ENQ or NOENQ is specified, each dataset is written to the output dataset as is.

TEST

If TEST is specified, DSSDUMP bypasses all TAPE output. Note that file has been
opened already, and will be empty.

ALLDATA | ALLEXCP

If ALLDATA or ALLEXCP, which are synonyms, is specified, DSSDUMP writes
all tracks, including unused ones, to be written to the output dataset. This option
may be needed to recover from invalid, non-zero LSTAR. This option also
preserves LABEL=SUL data.

EXPORT

If EXPORT is specified, DSSDUMP modifies the output DSCB1 by removing any
expiration date and password flags.

LIST | SHOW

If LIST or SHOW, which are synonyms, is specified, DSSDUMP will write the
current OPTION settings to the message dataset.

INCLUDE | DUMP mask

[VOLUME(serial)]

The INCLUDE or DUMP control statement - DUMP and INCLUDE are synonyms - specifies which
datasets are selected to be written to the backup set. The INCLUDE or DUMP control statement occurs

one or more times for each execution of DSSDUMP. The parameters are:

mask

Specifies either a single dataset name, unquoted, or provides a mask which may
match one or more datasets. A mask ending in a period (.) is treated as a mask
followed by an implied double asterisk (**). In MVS (VSAM catalog), the first
index level may not contain a mask character. Also note that VSAM catalog
processing does not support detection or processing of alias entries.

A percent sign (%) is treated as a positional mask (one to one correspondence of
characters/mask to dataset name). Any number of DUMP cards may be used in a
run but only about 700 datasets will fit in the name table (which is an assembly time
option).

Masking bytes are valid in any position in the mask.

VOLUME(serial)

Specifies inclusion of matching datasets on the specified VOLUME SERIAL only.
If this results in duplicate dataset names, a .D#nnnnnn is appended to duplicates on
higher volume serials (i.e., the cataloged entry may be the one that gets renamed).

EXCLUDE mask

The EXCLUDE control statement allows for excluding matching datasets which have been selected by a
preceding DUMP or INCLUDE control statement. The parameter is:

mask

Specifies either a single dataset name, unquoted, or provides a mask which may
match one or more datasets. A mask ending in a period (.) is treated as a mask
followed by an implied double asterisk (**). In MVS (VSAM catalog), the first
index level may not contain a mask character. Also note that VSAM catalog
processing does not support detection or processing of alias entries.

A percent sign (%) is treated as a positional mask (one to one correspondence of
characters/mask to dataset name). Any number of DUMP cards may be used in a
run but only about 700 datasets will fit in the name table (which is an assembly time
option).

Masking bytes are valid in any position in the mask.

PREFIX string

The PREFIX control statement causes all dataset names to be prefixed by the specified text string. It is not
required to be an index level (e.g., SYS9.), but if not, generated names may be syntactically invalid. Result
names are truncated to 44 characters, and a trailing period is blanked. Only one PREFIX card may be used
per execution, and it is mutually exclusive of RENAME and STRIP options.

STRIP string

The STRIP control statement specifies that the specified string is removed from any dataset name where it
is found. Multiple STRIP and RENAME requests are supported (up to 16; which is an assembly time
option).

RENAME oldname

newname

The RENAME control statement specifies that wherever oldname is found in a selected dataset name it is to
be replaced by newname. Up to 16 combined RENAME and STRIP requests are legal. All strings in
PREFIX/RENAME/STRIP are limited to 23 characters (which is an assembly time option).

Examples
 Run a test (simulation) dump
//DSSDUMP JOB (SYS),'DSSDUMP',CLASS=S,MSGCLASS=X
//DSSDUMP EXEC PGM=DSSDUMP,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 OPTIONS TEST
 DUMP HMVS01.**
 DUMP HMVS02.CNTL
//TAPE DD DSN='DUMP.HMVS.USERS.DATA',
// UNIT=(TAPE,,DEFER),DISP=(NEW,KEEP),
// DCB=(LRECL=18448,BLKSIZE=18452,RECFM=V)
//

 Dump a dataset, substituting new HLQ on backup set
//DSSDUMP JOB (SYS),'DSSDUMP',CLASS=S,MSGCLASS=X
//DSSDUMP EXEC PGM=DSSDUMP,REGION=4096K
//STEPLIB DD DSN=SYSC.LINKLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DUMP HMVS01.STUDENT.DATA
 RENAME HMVS01 HMVS02
//TAPE DD DSN='DUMP.HMVS.USERS.DATA',
// UNIT=(TAPE,,DEFER),DISP=(NEW,KEEP),
// DCB=(LRECL=18448,BLKSIZE=18452,RECFM=V)
//

 Dump two groups of datasets contained on one volume
//DSSDUMP JOB (SYS),'DSSDUMP',CLASS=S,MSGCLASS=X
//DSSDUMP EXEC PGM=DSSDUMP,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DUMP GCC.** VOLUME(SYSCPK)
 DUMP PDPCLIB.** VOLUME(SYSCPK)
//TAPE DD DSN='DUMP.GCCMVS',
// UNIT=(TAPE,,DEFER),DISP=(NEW,KEEP)
//

DSSREST [written by Charlie Brint, located in SYSC.LINKLIB]
Used for restoring one or more datasets from a backup set created by DFDSS (ADRDSSU) or DSSDUMP. DSSREST
was written by Charlie Brint and the source may be found on CBT Tape File #860. DSSREST requires the following
DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSUT1 - defines a sequential input dataset that contains a backup set in DSS format, uncompressed.
• REPORT - defines a sequental output dataset that will contain the details of the contents of the backup set.
• JCLOUT - defines a sequential output dataset that will contain skeleton JCL that, after customization, may be

used to restore one or more datasets from the backup set. This DD is optional and, if omitted, a message will be
written to the output message dataset and the skeleton JCL will not be produced.

• SYSUT2 - defines a model DD that will be used for each dataset restored.

Control Statements
There are no control statements for DSSREST.

Program Parameter (PARM= on EXEC statement)
If no PARM is specified, DSSREST will read the backup set and produce a report of the datasets contained
in the backup set, and, if the JCLOUT DD is supplied, will write to the JCLOUT DD a set of skeleton JCL
that may be used to restore one or more of the datasets contentained in the backup set. The parameters
allowed are:

DYNALLOC | DYNALLOC,prefix

If DYNALLOC is specified alone, DSSREST will attempt to dynamically restore all datasets
from the backup set. If DYNALLOC is specified with a prefix, DSSREST will attempt to
dynamically restore all datasets from the backup set, but substitute the supplied prefix for the
high level qualifier of each dataset in the backup set.

* | single dataset name

If the parameter supplied is a single asterisk (*) or a single dataset name, the JCL is expected to
include the set of model SYSUT2 DDs generated by DSSREST executed with no PARM.

If the parameter is an asterisk (*), DSSREST will attempt to restore all datasets from the backup
set. There should be a SYSUT2 included for each dataset in the backup set, which DSSREST
will use, in sequence, to allocate the output dataset to restore. Because the SYSUT2 DD
statements are expected to be in the same sequence as the datasets contained in the backup set,
it is recommended that you always use the generated skeleton JCL to restore an entire backup
set. If you wish to restore only some of the datasets contained in the backup set, you should
edit the skeleton JCL and comment out the SYSUT2 statements that correspond to the datasets
in the backup set that you do not wish to be restored.

If the parameter is the name of a single dataset in the backup set, DSSREST will use the model
SYSUT2 DD to restore only the single dataset from the backup set.

Examples
 Read backup set, generate report and restore JCL
//DSSREST JOB (SYS),'DSSREST',CLASS=S,MSGCLASS=X
//DSSREST EXEC PGM=DSSREST,REGION=2048K,PARM=''
//SYSPRINT DD SYSOUT=*
//REPORT DD SYSOUT=*
//JCLOUT DD SYSOUT=*
//SYSUT1 DD DSN='DUMP.JAY01',
// UNIT=TAPE,VOL=SER=21121A,DISP=OLD
//

 Restore a single dataset from backup set
//DSSREST JOB (SYS),'DSSREST',CLASS=S,MSGCLASS=X
//RESTORE EXEC PGM=DSSREST,REGION=8000K,TIME=1440,
// PARM='JAY01.CNTL'
//SYSPRINT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=DUMP.JAY01,
// UNIT=TAPE,VOL=SER=(21121A),
// LABEL=(1,SL)
//*
//SYSUT2 DD DSN=JAY01.CLIST, /*50*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=19040),
// SPACE=(CYL,(1,1,1)),
// UNIT=3380 VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.CNTL, /*51*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=23440),
// SPACE=(CYL,(12,1,1)),
// UNIT=3380,VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.EXEC, /*52*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=VB,LRECL=255,BLKSIZE=23460),
// SPACE=(CYL,(3,1,1)),
// UNIT=3380 VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.LOAD, /*54*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=U,BLKSIZE=19069),
// SPACE=(CYL,(3,1,1)),
// UNIT=3380 VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.SOURCE, /*59*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=19040),
// SPACE=(CYL,(6,1,1)),
// UNIT=3380 VOL=SER=PUB000
//

 Restore more than one, but not all, datasets from backup set

//DSSREST JOB (SYS),'DSSREST',CLASS=S,MSGCLASS=X
//RESTORE EXEC PGM=DSSREST,REGION=8000K,TIME=1440,
// PARM='*'
//SYSPRINT DD SYSOUT=*
//REPORT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=DUMP.JAY01,
// UNIT=TAPE,VOL=SER=(21121A),
// LABEL=(1,SL)
//*
//*SYSUT2 DD DSN=JAY01.CLIST, /*50*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=19040),
// SPACE=(CYL,(1,1,1)),
// UNIT=3380,VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.CNTL, /*51*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=23440),
// SPACE=(CYL,(12,1,1)),
// UNIT=3380,VOL=SER=PUB000
//*SYSUT2 DD DSN=JAY01.EXEC, /*52*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=VB,LRECL=255,BLKSIZE=23460),
// SPACE=(CYL,(3,1,1)),
// UNIT=3380,VOL=SER=PUB000
//*SYSUT2 DD DSN=JAY01.LOAD, /*54*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=U,BLKSIZE=19069),
// SPACE=(CYL,(3,1,1)),
// UNIT=3380,VOL=SER=PUB000
//SYSUT2 DD DSN=JAY01.SOURCE, /*59*/
// DISP=(,CATLG,DELETE),FREE=CLOSE,DCB=(DSORG=PO,
// RECFM=FB,LRECL=80,BLKSIZE=19040),
// SPACE=(CYL,(6,1,1)),
// UNIT=3380,VOL=SER=PUB000
//

FIXDSCB [written by David Alan Weaver, located in SYSC.LINKLIB]

Used for modification and repair of dataset control blocks (DSCBs). FIXDSCB was written by David Alan Weaver
and the source may be found on CBT Tape File #566. FIXDSCB requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a dataset input that contains FIXDSCB control statements.
• any DD name - defines the volume on which to find the dataset(s) for which the control blocks are to be

modified.

Control Statements

RENAME VOLUME=volid

,DSNAME=current

,NEWNAME=new

The RENAME control statement alters the dataset name to the specified new name. The parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset to be renamed
exists. VOLUME may be abbreviated VOL.

DSNAME=current

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

NEWNAME=new

Specifies the one to forty-four character name which will be the new name of the
dataset.

Note: When using this command, I have found that the resulting dataset is no longer catalogued. There are
other methods available to rename a dataset, see IEHPROGM and PDSPROGM.

PROTECT VOLUME=volid

,DSNAME=name

The PROTECT control statement sets the dataset's password bits ON. The parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

 SETNOPWR VOLUME=volid

,DSNAME=name

The SETHOPWR control statement sets the dataset's no password read enable bits ON. The parameters
are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.

DSNAME may be abbreviated DSN.

UNLOCK VOLUME=volid

,DSNAME=name

The UNLOCK control statement sets the dataset's password bits OFF. The parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

RENEW VOLUME=volid

,DSNAME=name

The RENEW control statement resets the creation date for the specified dataset to the current date. The
parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

EXPIRE VOLUME=volid

,DSNAME=name

The EXPIRE control statement swaps creation date and expiration date for the specified dataset. The
parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.

DSNAME may be abbreviated DSN.

EXTEND VOLUME=volid

,DSNAME=name

The EXTEND control statement set the expiration date to 99:365 for the specified dataset. The parameters
are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

ZEROEXPD VOLUME=volid

,DSNAME=name

The ZEROEXPD control stateement sets the expiration date to 00:000 for the specified dataset. The
parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

SCRATCH VOLUME=volid

,DSNAME=name

The SCRATCH control statement deletes the specified dataset. The parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be deleted.

DSNAME may be abbreviated DSN.

Note: When using this command, I have found that the scratched dataset remains in the catalog. There are
other methods available to scratch a dataset, see IEHPROGM and PDSPROGM.

NAME VOLUME=volid

,DSNAME=name

The NAME control statement provides the dataset information for immediately following subcommand(s).
The parameters are:

VOLUME=volid

Identifies the DASD Volume Serial number on which the dataset exists. VOLUME
may be abbreviated VOL.

DSNAME=name

Specifies the one to forty-four character name of the dataset to be modified.
DSNAME may be abbreviated DSN.

RECFM=xxxxx

The RECFM subcommand sets the RECFM to the value specified as xxxxx. The
value specified must be one of: UT, UA, UM, UTA, UTM, F, FB, FS, FT, FBS,
FBT, FBST, FA, FBA, FSA, FTA, FBSA, FBTA, FBSTA, FM, FBM, FSM, FTM,
FBSM, FBTM, FBSTM, V, VB, VS, VT, VBS, VBT, VBST, VA, VBA, VSA,
VTA, VBSA, VBTA, VBSTA, VM, VBM, VSM, VTM, VBSM, VBTM, or
VBSTM.

LRECL=xxxxx

The LRECL subcommand sets the LRECL to the value specified as xxxxx.

BLKSIZE=xxxxx

The BLKSIZE subcommand sets the BLKSIZE to the value specified as xxxxx.

DSORG=xxx

The DSORG subcommand sets the DSORG to the value specified as xxx. The
value specified must be one of: PSU, DA, DAU, IS, ISU, PO, or POU.

KEYL=xxx

The KEYL subcommand sets the key length to the value specified as xxx.

RKP=xxx

The RKP subcommand sets the relative key position to the value specified as xxx.

OPTCODE=x

The OPTCODE subcommand sets the OPTCODE to the value specified as x.
Consult JCL manual for possible values.

If a particular subcommand is entered more than once, the last occurrence of the subcommand will be the
one used. If an error occurs during processing of any subcommand, the entire subcommand set for the
current NAME command will be discarded.

Examples
 Extend expiration date for dataset
//FIXDSCB JOB (1),'FIXDSCB',CLASS=A,MSGCLASS=X
//FIXDSCB EXEC PGM=FIXDSCB
//DD01 DD UNIT=SYSDA,VOL=SER=MVS381,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 EXTEND VOL=MVS381,DSN=HMVS01.SOURCE.COBOL
//

 Modify RECFM, LRECL, BLKSIZE
//FIXDSCB JOB (1),'FIXDSCB',CLASS=A,MSGCLASS=X
//FIXDSCB EXEC PGM=FIXDSCB
//DD01 DD UNIT=SYSDA,VOL=SER=MVS381,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 NAME VOL=MVS381,DSN=HMVS01.COBOL.LISTINGS
 RECFM=FBA
 LRECL=121
 BLKSIZE=23474
//

ICKDSF [supplied by IBM, located in SYS1.LINKLIB]
Used to perform various operations on direct-access storage devices. For the scope of this page, I will only be covering
the use of ICKDSF to initialize an offline direct-access storage volume so that it can be used in an MVS system.

Note that on MVS 3.8j systems built following my instructions/tutorial, there are two versions of ICKDSF installed and
available for use. The version installed with the base Operating System resides in SYS1.LINKLIB and is Version 6.
The version installed in SYS2.LINKLIB is Version 13. ICKDSF requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.

• SYSIN - defines a sequential input dataset that contains ICKDSF control statements.
• any DD name - defines the input dataset containing IPL text records; required only when the IPLDD parameter

is used.

Control Statements
INIT UNITADDRESS(address) -

{VERIFY(volser) | NOVERIFY} -

{PURGE | NOPURGE} -

[OWNERID(owner)] -

VOLID(volser) -

VTOC(cylinder,track[,extent]) -

[IPLDD(ddname)]

The INIT control statement prepares a DASD volume for use by examining the mounted (offline) volume
to determine available space, optionally writes IPL bootstrap records as records 1 and 2, writes a volume
label as record 3, and reserves tracks for the Volume Table of Contents at the location specified by the user
and for the number of tracks specified. If no location is specified, tracks are reserved at the default
location. Alternate tracks are checked for defective-track flags. The parameters are:

UNITADDRESS(address)

Specifies the physical device address of the DASD to be initialized. The keyword
UNITADDRESS may be abbreviated to UNIT. The device must be on a channel
that is online; if the channel is offline the program may enter a nonterminating wait
state. The address may be specified as either a three or four digit hexadecimal
address.

VERIFY(volser) | NOVERIFY

VERIFY specifies the current Volume Serial number of the DASD mounted at the
address specified, which will be verified before ICKDSF proceeds. NOVERIFY
specifies that no checking will be performed. The keyword VERIFY may be
abbreviated to VFY; NOVERIFY may be abbreviated to NVFY.

Note: It is a sound practice to create new DASD volumes with the Hercules'
dasdinit utility giving a new volume a known Volume Serial number, such as
111111, which may be specified in the VERIFY parameter to ensure that the proper
address has been given for ICKDSF to initialize.

PURGE | NOPURGE

PURGE specifies that unexpired, or VSAM, or password-protected, or RACF-
protected datasets found on the volume are to be written over. NOPURGE specifies
that if these types of datasets exist on the volume, you do not want them written
over. The keyword PURGE may be abbreviated to PRG; NOPURGE may be
abbreviated to NPRG.

OWNERID(owner)

Specifies an optional one to fourteen character string that will be written in the
volume label. The keyword OWNERID may be abbreviated OWNER.

VOLID(volser)

Specifies the volume serial number to be written in the volume label. For volser,
substitute one to six alphameric characters for the volume serial number. If fewer
than six characters are specified, the serial is left-justified, and the remainder of the
field is padded with blanks (X'40'). The VOLID of each DASD placed online for
MVS to access must be unique.

VTOC(cylinder,track[,extent])

Specifies the location and size for the Volume Table of Contents. For
cylinder,track, specify one to four decimal (n) or hexadecimal (X'n') numbers to
identify the cylinder and one to four decimal (n) or hexadecimal (X'n') numbers to
identify the track where the volume table of contents is to be placed. For extent,
specify one to five decimal (n) or hexadecimal (X'n') numbers for the number of
tracks that are to be reserved the volume table of contents.

Defaults: The default for cylinder,track is 0,1. The default for extent is one track.
A VTOC cannot be placed at cylinder 0, track 0.

IPLDD(ddname)

An optional parameter which allows you to supply an IPL program to be written on
the volume during initialization. ICKDSF supplies an IPL bootstrap which is
written on the volume during initialization together with the IPL text you supply.

Examples
 Initialize 2314, 3330, 3340, 3350 DASD
//ICKDSF JOB 1,ICKDSF,CLASS=A,MSGCLASS=X
//* *** *
//* * USE FOR 3350 | 3330 | 3340 | 2314 *
//* *** *
//*
//ICKDSF EXEC PGM=ICKDSF,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INIT UNITADDRESS(254) VERIFY(111111) -
 VOLID(134134) OWNER(HERCULES) -
 VTOC(0,1,15)
//

 Initialize 3375, 3380, 3390 DASD
////ICKDSF13 JOB 1,ICKDSF,CLASS=S,MSGCLASS=X
//* *** *
//* * USE FOR 3390 | 3380 | 3375 *
//* *** *
//ICKDSF13 EXEC PGM=ICKDSF13,REGION=4096K
//SYSPRINT DD SYSOUT=*

//SYSIN DD *
 INIT UNIT(187) -
 VERIFY(SVD001) -
 OWNER(HERCULES) -
 VOLID(SVD001) -
 VTOC(0,1,15)
//

Source: GC35-0033-5 Device Support Facilities User's Guide and Reference 4.0

IEBCOMPR [supplied by IBM, located in SYS1.LINKLIB]
Used to compare two sequential datasets or two partitioned datasets at the logical record level to verify a backup copy.
Fixed, variable, or undefined records from blocked or unblocked datasets or members can also be
compared. Note: This is a very old utility and of limited functionality. I would suggest taking a look at
CMPRSEQ and PDSMATCH.

Two sequential datasets are considered to be identical, if: 1) the datasets contain the same number of records, and, 2)
corresponding records and keys are identical. If these conditions are not met, an unequal comparison results. If records
are unequal, the record and block numbers, the names of the DD statements that define the datasets, and the unequal
records are listed in a message dataset. Ten successive unequal comparisons terminate the job step unless a user
routine is provided to handle error conditions.

Two partitioned datasets are considered to be identical if: 1) corresponding members contain the same number of
records, 2) note lists are in the same position within corresponding members, and 3) corresponding records and keys are
identical. If these conditions are not met, an unequal comparison results. If records are unequal, the record and block
numbers, the names of the DD statements that define the datasets, and the unequal records are listed in a message
dataset. After ten successive unequal comparisons, processing continues with the next member unless a user routine is
provided to handle error conditions. Partitioned datasets can be compared only if all the names in one or both of the
directories have counterpart entries in the other directory. The comparison is made on members identified by these
entries and corresponding user data.

IEBCOMPR requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEBCOMPR control statements.
• SYSUT1 - defines the first of the input datasets to be compared
• SYSUT2 - defines the second of the input datasets to be compared

Control Statements

COMPARE TYPEORG={PS | PO}

The COMPARE control statement specifies the organization of the two datasets to be compared. The
COMPARE control statement, if included, must be the first utility control statement. A COMPARE control
statement is required if the EXITS or LABELS statement is used or if the input datasets are partitioned
datasets. The values that may be specified are:

• PS - specifies that the input datasets to be compared are Physical Sequential organization.

http://bitsavers.org/pdf/ibm/370/DSF/GC35-0033-5_Device_Support_Facilities_Users_Guide_and_Reference_4.0_May81.pdf

• PO - specifies that the input datasets to be compared are Partitioned organization.

LABELS DATA={YES | NO | ALL | ONLY}

The LABELS control statement specifies whether user labels are to be treated as data by IEBCOMPR.
Note: LABELS DATA=NO must be specified to make standard user label (SUL) exits inactive when
input/output datasets with nonstandard labels (NSL) are the be processed. If more than one valid LABELS
statement is included, all but the last LABEL statement are ignored. The values that may be specified are:

• YES - specifies that any user labels that are not rejected by a user's label processing routine are to be
treated as data. Processing of labels as data stops in compliance with standard return codes.

• NO - specifies that user labels are not to be treated as data.
• ALL - specifies that user labels are to be treated as data regardless of any return code. A return code

of 16 causes IEBCOMPR to complete processing of the remainder of the group of user labels and to
terminate the job step.

• ONLY - specifies that only user header labels are to be treated as data. User header labels are
processed as data regardless of any return code. The job terminates upon return from the OPEN
routine.

EXITS [INHDR=routinename]

[,INTLR=routinename]

[,ERROR=routinename]

[,PRECOMP=PCRTN]

The EXITS control statement specifies the name of the routine to receive control after each error condition.
The parameters are:

ERROR=routinename

Specifies the symbolic name of a routine that is to receive control after each unequal
comparison for error handling. If this parameter is omitted and ten consecutive
unequal comparisons occur while IEBCOMPR is comparing sequential datasets,
processing is terminated; if the input datasets are partitioned, processing continues
with the next member.

INHDR=routinename

Specifies the symbolic name of a routine that processes user input header labels.

INTLR=routinename

Specifies the symbolic name of a routine that processes user input trailer labels.

PRECOMP=routinename

Specifies the symbolic name of a routine that processes logical records (physical
blocks in the case of VS or VBS records longer than 32K bytes) from either or both
of the input datasets before they are
compared.

Examples
 Compare two sequential datasets
//IEBCOMPR JOB (1),IEBCOMPR,CLASS=A,MSGCLASS=X
//IEBCOMPR EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=DATASET1,UNIT=3330,VOL=SER=D10040,
//DISP=SHR
//SYSUT2 DD DSN=DATASET2,UNIT=3330,VOL=SER=D10040,
// DISP=SHR
//SYSIN DD *
COMPARE TYPORG=PS
/*
//

 Compare two partitioned datasets
//IEBCOMPR JOB (1),IEBCOMPR,CLASS=A,MSGCLASS=X
//IEBCOMPR EXEC PGM=IEBCOMPR
//SYSPRINT DD SYSOUT=*
//SYSUTl DD DSN=PDSSET1,UNIT=DISK,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// VOLUME=SER=111112
//SYSUT2 DD DSN=PDSSET2,UNIT=DISK,DISP=SHR,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),
// VOLUME=SER=111113
//SYSIN DD *
 COMPARE TYPORG=PO
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEBCOPY [supplied by IBM, located in SYS1.LINKLIB]
Used to copy one or more partitioned datasets or to merge partitioned datasets. A partitioned dataset which is copied to
a sequential dataset is said to be unloaded. The sequential dataset created by an unload operation can be copied to any
direct access device. When one or more datasets created by an unload operation are used to re-create a partitioned
dataset, this is called a load operation. An individual member, or members, of a partitioned or unloaded dataset can be
selected for, or excluded from, a copy, unload, or load process.

IEBCOPY can be used to:

• Create a backup copy of a partitioned dataset.
• Copy one or more datasets per copy operation.
• Copy one partitioned dataset to a sequential dataset (unload).
• Copy one or more datasets created by an unload operation to any direct access device (load).
• Select members from a dataset to be copied, unloaded, or loaded.
• Replace identically named members on datasets (except when unloading).
• Replace selected dataset members.
• Rename selected members.
• Exclude members from a dataset to be copied, unloaded, or loaded.
• Compress partitioned datasets in place (except when the dataset is an unloaded dataset).
• Merge datasets (except when unloading).

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

• Re-create a dataset that has exhausted its primary, secondary, or directory space allocation.

A compressed dataset is one that does not contain embedded, unused space. After copying or loading one or more
input partitioned datasets to a new output partitioned dataset (by means of a selective, exclusive, or full copy or load
that does not involve replacing members), the output partitioned dataset contains no embedded, unused space. To make
unused space available, either the entire dataset must be scratched or it must be compressed in place. A compressed
version can be created by specifying the same dataset for both the input and the output parameters in a full copy step.
A backup copy of the partitioned dataset to be compressed in place should be kept until successful completion of
an in-place compression is indicated (by an end-of-job message and a return code of 00). An in-place
compression does not release extents assigned to the dataset. Selection, exclusion, or renaming of selected members
cannot be done during the compression of a partitioned dataset.

In addition, IEBCOPY automatically lists the number of unused directory blocks and the number of unused tracks
available for member records in the output partitioned dataset. If LIST=NO is coded the names of copied, unloaded, or
loaded members listed by the input dataset are suppressed.

IEBCOPY requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEBCOPY control statements.
• SYSUT1 - defines the first of the input datasets to be compared
• SYSUT2 - defines the second of the input datasets to be compared
• SYSUT3 - defines a temporary work file
• SYSUT4 - defines a temporary work file

Control Statements
All keywords on the control statements may be abbreviated to a single letter: COPY to C; INDD to I;
OUTDD to O; SELECT to S; EXCLUDE to E.

COPYOUTDD=ddname

,INDD={ddname | (ddname1[,ddname2]...)}

[,LIST=NO]

The COPY control statement specifies the DD names to be used for a copy operation and allows
suppression of list. The parameters are:

OUTDD=ddname,

Specifies the DD name for the output dataset.

INDD=ddname | INDD=(ddname1[,ddname2]...

Specifies one or more DD names for the input dataset(s). If more than one ddname
is specified, they must be enclosed in parentheses and separated by commas; the
input datasets specified in the list are processed in the order specified in the list.

In the case of multiple input datasets, there can arise the event of duplicate member

names. If this happens, a subsequent member encountered with the same name as a
member already copied to the output dataset will not replace the member that has
already been copied to the output dataset, unless the replace option is specified. To
replace any duplicate members encountered, enclose the ddname for which the
replace option is to be used in an additional pair of parentheses and follow the
ddname with a comma followed by R:

INDD=(ddname1,(ddname2,R),ddname3)

will result in any members in ddname2 that have duplicates
in ddname1 to replace the members already copied from
ddname1 in the output dataset.

[,LIST=NO]

Specifies that the list of copied members, as well as unused tracks and
directory blocks in the output dataset, is to be suppressed.

SELECTMEMBER={name | (name1[,name2]...) | ((name,newname)[,(name2,newname2)...)}

The SELECT control statement specifies specific members to be copied from the input dataset(s). If more
than one member name is specified, they must be enclosed in parentheses and separated by commas.
Multiple SELECT statements may be specified, in which case the subsequent statements are processed as a
continuation of the first. If the optional newname is specified for a member, the original member is copied
to the output dataset using the newname supplied.

A selected member will not replace an identically named member already copied into the output dataset
unless the replace option is specified. To cause any selected member to replace an identically named
member, enclose the member name in an additional pair of parentheses and follow the member name with
two commas followed by R:

SELECT MEMBER=(name1,(name2,,R),name3,(name4,newname4,R))

will result in name2, and name4 after renaming to newname4, replacing any
duplicate already copied into the output dataset.

EXCLUDE MEMBER={name | (name1[,name2]...)}

The EXCLUDE control statement specifies specific members to be excluded from being copied to the
output dataset.

Note: SELECT and EXCLUDE statements may not appear together in the same COPY operation.

Examples
 Copy partitioned dataset from one DASD to another DASD, including all members
//IEBCOPY JOB (1),IEBCOPY,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*

//FROM DD DSN=FROMLIB,UNIT=3330,VOL=SER=D10040,
// DISP=OLD
//TO DD DSN=TOLIB,UNIT=3330,VOL=SER=D10080,
// DISP=(NEW,KEEP),SPACE=(TRK,(400,,50))
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
COPY INDD=FROM,OUTDD=TO
/*
//

 Copy partitioned dataset from one DASD to another DASD, selecting specific members
//IEBCOPY JOB (1),IEBCOPY,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//FROM DD DSN=FROMLIB,UNIT=3330,VOL=SER=D10040,
// DISP=OLD
//TO DD DSN=TOLIB,UNIT=3330,VOL=SER=D10080,
// DISP=(NEW,KEEP),SPACE=(TRK,(400,,50))
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
COPY INDD=FROM,OUTDD=TO
 SELECT MEMBER=(PROGA,PROGB)
/*
//

 Copy members from two partitioned datasets, creating a new partitioned dataset, replacing any members
with the same name from dataset 2
//IEBCOPY JOB (1),IEBCOPY,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//FROM1 DD DSN=FROMLIB1,UNIT=3330,VOL=SER=D10040,
// DISP=OLD
//FROM2 DD DSN=FROMLIB2,UNIT=3330,VOL=SER=D10041,
// DISP=OLD
//TO DD DSN=TOLIB,UNIT=3330,VOL=SER=D10080,
// DISP=(NEW,KEEP),SPACE=(TRK,(400,,50))
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
COPY INDD=(FROM1,(FROM2,R)),OUTDD=TO
/*
//

 Compress partitioned dataset
//COMPRESS JOB (1),COMPRESS,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY,REGION=4M
//SYSPRINT DD SYSOUT=*
//LIB DD DSN=LIBFILE,UNIT=3330,VOL=SER=D10040
// DISP=OLD
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
COPY INDD=LIB,OUTDD=LIB
/*
//

 Unload a partitioned dataset to tape
//UNLOAD JOB (1),UNLOAD,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*

//LIB DD DSN=LIBFILE,UNIT=3330,VOL=SER=D10040
// DISP=OLD
//TAPE DD DSN=LIBFILE.BACKUP,UNIT=TAPE,VOL=SER=T10002,
// LABEL=(1,SL),DISP=(NEW,KEEP)
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
COPY INDD=LIB,OUTDD=TAPE
/*
//

 Reload some members of an unloaded partitioned dataset
//RELOAD JOB (1),RELOAD,CLASS=A,MSGCLASS=X
//IEBCOPY EXEC PGM=IEBCOPY,REGION=1M
//SYSPRINT DD SYSOUT=*
//TAPE DD DISP=(OLD,KEEP),UNIT=TAPE,LABEL=(1,SL),
// VOL=SER=T10002,DSN=LIBFILE.BACKUP
//LIB DD DISP=(,CATLG,DELETE),DSN=SYSP.SOURCE.COBOL,
// UNIT=SYSDA,VOL=SER=SYSP01,
// SPACE=(TRK,(15,15,5))
//SYSUT3 DD UNIT=3330,SPACE=(TRK,5)
//SYSUT4 DD UNIT=3330,SPACE=(TRK,5)
//SYSIN DD *
 COPY INDD=TAPE,OUTDD=LIB
 SELECT MEMBER=(PROGV,PROGL)
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEBGENER [supplied by IBM, located in SYS1.LINKLIB]
Used to copy a sequential dataset, or a member of a partitioned dataset, to a sequential dataset or a member of a
partitioned dataset.

Note: At the January 2022 rewrite, for this utility, as with several others, I was using IBM manual GC26-
3092-1 OS/VS2 MVS Utilities Release 3.8 for the primary source. That manual includes the definitions of
control statements for using IEBGENER for much more advanced dataset manipulation than simply
copying. However, in many decades of using IEBGENER, I have only once seen the use of SYSIN control
statements to do any manipulation of the data moved between datasets. The vast majority of cases where I
have seen IEBGENER used was simply for copying a dataset or member from one location to another, with
the SYSIN DD provided as DUMMY. IEBGENER is excellent at performing that task. I would also
suggest taking a look at SYSREPRO.

IEBGENER requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines an optional sequential input dataset that may contains IEBGENER control statements.
• SYSUT1 - defines the input dataset to be copied
• SYSUT2 - defines the output dataset

Control Statements

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

GENERATE [MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

The GENERATE control statement specifies the number of member names and alias names, record
identifiers, literals, and editing information contained in the control dataset. The parameters are:

MAXNAME=n

Specifies a number that is no less than the total number of member names as aliases
appearing in subsequent MEMBER statements. MAXNAME is required if there are
one or more MEMBER statements.

MAXFLDS=n

Specifies a number that is no less than the total number of FIELD parameter
appearing in subsequent RECORD statements. MAXFLDS is required if there are
any FIELD parameters in subsequent RECORD statements.

MAXGPS=n

Specifies a number that is no less than the total number of IDENT parameters
appearing in subsequent RECORD statements. MAXGPS is required if there are
any IDENT parameters in subsequent RECORD statements.

MAXLITS=n

Specifies a number that is no less than the total number of characters contained in
the FIELD literals of subsequent RECORD statements. MAXLITS is required if
the FIELD parameters of subsequent RECORD statements contain literals.
MAXLITS does not pertain to literals used in IDENT parameters.

EXITS [INHDR=routinename]

[,OUTHDR=routinename]

[,INTLR=routinename]

[,OUTTLR=routinename]

[,KEY=routinename]

[,DATA=routinename]

[,IOERROR=routinename]

[,TOTAL=(routinename, size)]

The EXITS control statement specifies that user routines are provided. The parameters are:

INHDR=routinename

Specifies the symbolic name of a routine that processes user input header labels.

OUTHDR=routinename

Specifies the symbolic name of a routine that creates user output header labels.
OUTHDR is ignored if the output dataset is partitioned.

INTLR=routinename

Specifies the symbolic name of a routine that processes user input trailer labels.

OUTTLR=routinename

Specifies the symbolic name of a routine that processes user output trailer labels.
OUTTLR is ignored if the output dataset is partitioned.

KEY=routinename

Specifies the symbolic name of a routine that creates the output record key. (This
routine does not receive control when a dataset consisting of VS or VBS type
records is processed because no processing of keys is permitted for this type of
data.)

DATA=routinename

Specifies the symbolic name of a routine that modifies the physical record (logical
record for VS or VBS type records) before its processed by IEBGENER.

IOERROR=routinename

Specifies the symbolic name of a routine that handles permanent input/output error
conditions.

TOTAL=(routinename,size)

Specifies that exits to a user's routine are to be provided prior to writing each
record. The keyword OPTCD=T must be specified for the SYSUT2 DD statement.
TOTAL is valid only when the utility is used to process sequential datasets. These
values must be coded:

• routinename - Specifies the name of a user-supplied totaling routine.
• size - Specifies the number of bytes needed to contain totals, counters,

pointers, etc.

LABELS[DATA={YES | NO | ALL | ONLY | INPUT}]

The LABELS control statement specifies whether user labels are to be treated as data. The values that may
be specified for the DATA operand are:

• YES - Specifies that any user labels that are not rejected by a user's label processing routine are to

be treated as data. Processing of labels as data ends in compliance with standard return codes.
• NO - Specifies that user labels are not to be treated as data.
• ALL - Specifies that user labels in the group currently being processed are to be treated as data

regardless of any return code. A return code of 16 causes IEBGENER to complete processing the
remainder of the group of user labels and to terminate the job step.

• ONLY - Specifies that only user header labels are to be treated as data. User header labels are
processed as data regardless of any return code. The job terminates upon return from the OPEN
routine.

• INPUT - Specifies that user labels for the output dataset are supplied as 80-byte input records in the
data portion of SYSIN. The number of input records that should be treated as user labels must be
identified by a RECORD statement.

MEMBER NAME={(name[,alias]...)}

The MEMBER control statement specifies the member name and alias(es) of a member of a partitioned
dataset to be created. The parameter is:

NAME=(name[,alias]...)

Specifies a member name followed by a list of its aliases. If only one name appears
in the statement, it need not be enclosed in parentheses.

RECORD[IDENT=(length,'name',input-location)]

[,FIELD=([length],[{input-location | 'literal'}]

,[conversion]

[,output-location])

[,FIELD=...]]

[,LABELS=n]

The RECORD control statement defines a record group to be processed and supplies editing information.
The parameters are:

IDENT=(length,'name',input-location)

Identifies that last record of the input group to which the FIELD parameters of MEMBER
statement applies. If the RECORD control statement is not followed by additional RECORD or
MEMBER control statements, IDENT also defines the last record to be processed. These
values can be coded:

• length - Specifies the length (in bytes) of the identifying name. The length cannot
exceed eight characters.

• 'name' - Specifies the exact literal that identifies the last input record of a record group.
Default: If no match for name is found, the remainder of the input data considered to be
in one record group; subsequent RECORD and MEMBER statements are ignored.

• input-location - Specifies the starting location of the field that contains the identifying
name in the input records.

Default: If IDENT is omitted, the remainder of the input data is considered to be in one record
group; subsequent RECORD and MEMBER control statements are ignored.

FIELD=([length],[{input-location | 'literal'}],[conversion],[output-location])[,FIELD=...]

Specifies field-processing and editing information. Only the contents of specified fields in the
input record is copied to the output record, that is, any field in the output record that is not
specified will contain meaningless information. The values that can be coded are:

• length - Specifies the length (in bytes) of the input field or literal to be processed. If
length is not specified, a length of 80 bytes is assumed. If a literal is to be processed, a
length of 40 bytes or less must be specified.

• input-location - Specifies the starting byte of the field to be processed. Default: Byte 1
is assumed.

• 'literal' - Specifies a literal (maximum length of 40 bytes) to be placed in the specified
output location. If a literal contains apostrophes, each apostrophe must be written as two
consecutive apostrophes.

• conversion - Specifies a two-byte code that indicates the type of conversion to be
performed on this field. If no conversion is specified, the field is moved to the output
area without change. The values that can be coded are:

• PZ - Specifies that data (packed decimal) is to be converted to unpacked decimal
data.

• ZP - Specifies that data (unpacked decimal) is to be converted to packed decimal
data.

• HE - Specifies that data (H-set BCD) is to be converted to EBCDIC.
• output-location - Specifies the starting location of this field in the output records. If

conversion is specified in FIELD, the following restrictions apply:

For PZ-type (packed-to-unpacked) conversion is impossible for packed
decimal records longer than 16K bytes.

For ZP-type (unpacked-to-packed) conversion, the normal 32K-type
maximum applies.

When the ZP parameter is specified, the conversion is performed in place.
The original unpacked field is replaced by the new packed field. Therefore,
the ZP parameter must be omitted from subsequent references to that field.
If the field is needed in its original unpacked form, it must be referenced
prior to the use of the ZP parameter.

If conversion is specified in the FIELD parameter, the length of the output
record can be calculated for each conversion specification. When L is equal
to the length of the input record, the calculation is made, as follows:

For a PZ (packed-to-unpacked) specification, 2L-1.

For a ZP (unpacked-to-packed) specification, (L/2) + C. If L is
an odd number, C is 1/2; if L is an even number, C is 1.

For an HE (H-set BCDIC to EBCDIC) specification, L.

Default: Byte 1 is assumed.

If both output header labels and output trailer labels are to be contained in the SYSIN dataset,

the user must include one RECORD statement (including the LABELS parameter), indicating
the number of input records to be treated as user labels, for header labels and one for trailer
labels. The first such RECORD statement indicates the number of user header labels; the
second indicates the number of user trailer labels. If only output trailer labels are included in the
SYSIN dataset, a RECORD statement must be included to indicate that there are no output
header labels in the SYSIN dataset (LABELS=O). This statement must precede the RECORD
LABELS=n statement which signals the start of trailer label input records.

LABELS=n

An optional parameter that indicates the number of records in the SYSIN dataset to be treated as
user labels. The number n, which is a number from 1 to 8, must specify the exact number of
label records that follow the RECORD statement. If this parameter is included, DATA=INPUT
must be coded on a LABELS statement before it in the input stream.

Examples
 Copying tape to tape
//DUPTAPE JOB (1),DUPTAPE,CLASS=A,MSGCLASS=X
//DUPTAPE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=TAPE,DSN=TAPE.FILE,
// VOL=SER=004000,DISP=OLD,LABEL=(1,SL)
//SYSUT2 DD UNIT=TAPE,DSN=TAPE.FILE,
// DISP=(NEW,KEEP),LABEL=(1,SL),
//DCB=BLKSIZE=80
//SYSIN DD DUMMY
//

 Tape to print
//PRNTTAPE JOB (1),PRNTTAPE,CLASS=A,MSGCLASS=X
//PRNTTAPE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=TAPE,DSN=TAPE.FILE,
// VOL=SER=004000,LABEL=(1,SL),DISP=OLD
//SYSUT2 DD SYSOUT=A,DCB=BLKSIZE=80
//SYSIN DD DUMMY
//

 Card to tape
//CARDTAPE JOB (1),CARDTAPE,CLASS=A,MSGCLASS=X
//CARDTAPE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD *

 [card file to be put on tape goes here]

/*
//SYSUT2 DD UNIT=TAPE,DSN=TAPE.FILE,
// DISP=(NEW,KEEP),LABEL=(1,SL),
// DCB=BLKSIZE=80
//SYSIN DD DUMMY
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

IEBISAM [supplied by IBM, located in SYS1.LINKLIB]
Used to:

• copy an indexed sequential (ISAM) dataset from one DASD volume to another,
• copy an ISAM dataset into a sequential dataset on DASD or tape image (unloading),
• create an ISAM dataset from an unloaded dataset,
• print an ISAM dataset.

IEBISAM requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSUT1 - defines the input dataset
• SYSUT2 - defines the output dataset

Control Statements
There are no control statements.

Program Parameter (PARM= on EXEC statement)
The PARM parameter on the EXEC statement is used to control the execution of IEBISAM. The
parameters are:

COPY

Specifies the input (ISAM) dataset is to be copied, creating an ISAM dataset. The SYSUT2 DD statement
must include a primary space allocation that is sufficient to accommodate records that were contained in
overflow areas in the original indexed sequential dataset. New overflow areas can be specified when the
dataset is copied.

UNLOAD

Specifies the input (ISAM) dataset is to be copied to a sequential dataset, creating a portable copy of the
data records that may subsequently be reloaded to recreate the ISAM dataset. Regardless of the data record
size in the ISAM dataset, the LRECL of the output dataset is always 80 bytes. If a block size is specified
for the output dataset, it must be a multiple of 80 bytes.

LOAD

Specifies the input dataset (created by IEBISAM with the UNLOAD function) is to be used to recreate an
ISAM dataset. The input dataset, defined by the SYSUT1 DD statement, must have a record size of 80
bytes and the block size must be a multiple of 80 bytes. The SYSUT2 DD statement must include a
primary space allocation that is sufficient to accommodate records that were contained in overflow areas in
the original indexed sequential dataset. If new overflow areas are desired, they must be specified when the
dataset is loaded.

PRINTL [,N]

Specifies the records of the input ISAM dataset are to be printed. If the device defined by the SYSUT2 DD

statement is a printer, the specified BLKSIZE must be equal to or less than the physical printer size; that is
121, 133, or 145 bytes. If BLKSIZE is not specified, 121 bytes is assumed. LRECL (or BLKSIZE when no
LRECL was specified) must be between 55 and 255 bytes. PRINTL specifies a print operation in which
each record is converted to hexadecimal before printing. The N is an optional value that specifies that
records are not to be converted to hexadecimal before printing.

EXIT=routinename

Optionally specifies the name of an exit routine that is to receive control before each record is printed. If a
user routine is supplied for a PRINTL operation, IEBISAM issues a LOAD macro instruction to make the
user routine available. A BALR 14,15 instruction is subsequently used to give control to the routine.
When the user routine receives control, register 0 contains a pointer to a record heading buffer; register 1
contains
a pointer to an input record buffer.

Examples
 Copy ISAM dataset blocking data records
//IEBISAMC JOB (1),'IEBISAM-COPY',
// CLASS=A,MSGCLASS=X,REGION=2M,NOTIFY=&SYSUID
//IEBISAM EXEC PGM=IEBISAM,PARM='COPY'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=JAY01.ISAM.MASTER,DCB=DSORG=IS
//SYSUT2 DD DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,VOL=SER=PUB000,
// DSN=JAY01.ISAM.MASTER.TWO,SPACE=(CYL,(5,5)),
// DCB=(DSORG=IS,RECFM=FB,LRECL=200,BLKSIZE=23400,
// KEYLEN=7,RKP=1,CYLOFL=2,NTM=4,OPTCD=LMY)
//

 Copy ISAM dataset to portable copy (unloaded)
//IEBISAMU JOB (1),'IEBISAM-UNLOAD',
// CLASS=A,MSGCLASS=X,REGION=2M,NOTIFY=&SYSUID
//IEBISAM EXEC PGM=IEBISAM,PARM='UNLOAD'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ISAM.MASTER,DCB=DSORG=IS
//SYSUT2 DD DISP=(NEW,KEEP),UNIT=TAPE,VOL=SER=21305B,
// DSN=JAY01.ISAM.MASTER.BACKUP,LABEL=(1,SL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//

 Reload ISAM dataset from unloaded copy
//IEBISAML JOB (1),'IEBISAM-RELOAD',
// CLASS=A,MSGCLASS=X,REGION=2M,NOTIFY=&SYSUID
//IEBISAM EXEC PGM=IEBISAM,PARM='LOAD'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=JAY01.ISAM.MASTER.BACKUP
//SYSUT2 DD DISP=(NEW,CATLG,DELETE),DSN=JAY01.ISAM.MASTER,
// UNIT=SYSDA,VOL=SER=PUB000,SPACE=(CYL,(5,1)),
// DCB=(DSORG=IS,RECFM=FB,LRECL=200,BLKSIZE=23400,
// KEYLEN=7,RKP=1,CYLOFL=2,NTM=4,OPTCD=LMY)
//

 Print ISAM data records
//IEBISAMP JOB (1),'IEBISAM-RELOAD',
// CLASS=A,MSGCLASS=X,REGION=2M,NOTIFY=&SYSUID
//IEBISAM EXEC PGM=IEBISAM,PARM='PRINTL,N'

//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=JAY01.ISAM.MASTER,DISP=OLD,DCB=DSORG=IS
//SYSUT2 DD SYSOUT=*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEBPTPCH [supplied by IBM, located in SYS1.LINKLIB]
Used to:

• Print or punch a sequential or partitioned dataset in its entirety.
• Print or punch selected members from a partitioned dataset.
• Print or punch selected records from a sequential or partitioned dataset.
• Print or punch the directory of a partitioned dataset.
• Print or punch an edited version of a sequential or partitioned dataset.

IEBPTPCH requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEBPTPCH control statements.
• SYSUT1 - defines the input dataset
• SYSUT2 - defines the output dataset

I would also suggest taking a look at LISTPDS and PDSPRINT.

Control Statements
PRINT [PREFORM={A | M}]

[,TYPORG={PS | PO}]

[,TOTCONV={XE | PZ}]

[,CNTRL={n | 1}]

[,STRTAFT=n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,INITPG=n]

[,MAXLINE=n]

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

The PRINT control statement specifies that the data is to be printed. If this is a print operation, the PRINT
statement must be the first statement in the control statements. The parameters are:

PREFORM = {A | M}

Specifies that a control character is provided as the first character of each record to
be printed. The control characters are used to control the spacing, number of lines
per page, and page ejection. That is, the output has been previously formatted, and
the "standard specifications" are superseded. If an error occurs, the print operation
is terminated. If PREFORM is coded, any additional PRINT operands other than
TYPORG, and all other control statements except for LABELS, are ignored. Any
ignored statement or operands are checked for correct syntax, however. PREFORM
must not be used for printing datasets with VS or VBS records longer than 32K
bytes. These values can be coded:

• A - Specifies that an ASA control character is provided as the first character
of each record to be printed. If the input record length exceeds the output
record length, the utility uses the ASA character for printing the first line,
with a single space character on all subsequent lines of the record.

• M - Specifies that a machine-code control character is provided as the first
character of each record to be printed. If the input record length exceeds the
output record length, the utility prints all lines of the record with a print-
skip-one-line character until the last line of the record, which will contain
the actual character provided as input.

TYPORG={PS | PO}

Specifies the organization of the input dataset. These values can be coded:

• PS - Specifies that the input dataset is organized sequentially.
• PO - Specifies that the input dataset is partitioned.

TOTCONV = {XE | PZ}

Specifies the representation of data to be printed or punched. TOTCONV can be
overridden by any user specifications (RECORD statements) that pertain to the
same data. These values can be coded:

• XE - Specifies that data is to be punched in 2-character-per-byte
hexadecimal representation (for example, C3 40 F4 F6). If XE is not
specified, data is punched in 1-character per byte alphameric representation.
The above example would appear as C 46.

• PZ - Specifies that data (packed decimal mode) is to be converted to
unpacked decimal mode. IEBPTPCH does not check for packed decimal
mode. The output is unpredictable when the input is other than packed
decimal.

Default: If TOTCONV is omitted, data is not converted.

CNTRL={n | 1}

Specifies a control character for the output device that indicates line spacing, as

follows:

• 1 indicates single spacing;
• 2 indicates double spacing; and
• 3 indicates triple spacing.

STRTAFT=n

Specifies, for sequential datasets, the number of logical records (physical blocks in
the case of VS or VBS type records longer than 32K bytes) to be skipped before
printing begins. For partitioned datasets, STRTAFT=n specifies the number of
logical records to be skipped in each member before printing begins. The n value
must not exceed 32,767. If STRTAFT is specified and RECORD control statements
are present, the first RECORD control statement of a member describes the format
of the first logical record to be printed.

STOPAFT=n

Specifies, for sequential datasets, the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be printed. For
partitioned datasets, this specifies the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be printed in each
member to be processed. The n value must not exceed 32,767. If STOPAFT is
specified and RECORD control statements are present, the operation is terminated
when the STOPAFT count is satisfied or at the end of the first record group,
whichever occurs first.

SKIP=n

Specifies that every nth record (or physical block in the case of VS or VBS records
longer than 32K bytes) is to be printed. Default: Successive logical records are
printed.

MAXNAME=n

Specifies a number no less than the total number of subsequent MEMBER control
statements. The value must not exceed 32,767. Default: If MAXNAME is omitted
when there is a MEMBER statement present, the print or punch request is
terminated.

MAXFLDS=n

Specifies a number no less than the total number of FIELD parameters appearing in
subsequent RECORD control statements. The value must not exceed 32,767.
Default: If MAXFLDS is omitted when there is a FIELD parameter present, the
print or punch request is terminated.

MAXGPS=n

Specifies a number no less than the total number of IDENT parameters appearing in
subsequent RECORD control statements. The value must not exceed 32,767.
Default: If MAXGPS is omitted when there is an IDENT parameter present, the
print request is terminated.

MAXLITS=n

Specifies a number no less than the total number of characters contained in the
IDENT literals of subsequent RECORD control statements. The value must not
exceed 32,767. Default: If MAXLITS is omitted when there is a literal present, the
print request is terminated.

INITPG=n

Specifies the initial page number; the pages are numbered sequentially thereafter.
The INITPG parameter must not exceed a value of 9999. Default: 1

MAXLINE=n

Specifies the maximum number of lines to a printed page. Spaces, titles, and
subtitles are included in this number. Default: 60

PUNCH [PREFORM={A | M}]

[,TYPORG={PS | PO}]

[,TOTCONV={XE | PZ}]

[,CNTRL={n | 1}]

[,STRTAFT=n]

[,STOPAFT=n]

[,SKIP=n]

[,MAXNAME=n]

[,MAXFLDS=n]

[,MAXGPS=n]

[,MAXLITS=n]

[,CDSEQ=n]

[,CDINCR=n]

The PUNCH control statement specifies that the data is to be punched. If this is a punch operation, the
PUNCH statement must be the first statement in the control statements. The parameters are:

PREFORM={A | M}

Specifies that a control character is provided as the first character of each record to
be punched. The control characters are used to control selecting a stacker. That is,
the output has been previously formatted, and the "standard specifications" are
superseded. If an error occurs, the punch operation is terminated. If PREFORM is
coded, any additional PUNCH operands other than TYPORG, and all other control
statements except for LABELS, are ignored. Any ignored statement or operands are
checked for correct syntax, however. PREFORM must not be used for punching

datasets with VS or VBS records longer than 32K bytes. These values can be
coded:

• A - Specifies that an ASA control character is provided as the first character
of each record to be punched. If the input record length exceeds the output
record length, the utility uses the ASA character for punching first record,
and duplicates the ASA character on each output card of the record.

• M - Specifies that a machine-code control character is provided as the first
character of each record to be punched. If the input record length exceeds
the output record length, the utility duplicates the machine control character
on each output card of the record.

TYPORG={PS | PO}

Specifies the organization of the input dataset. These values can be coded:

• PS - Specifies that the input dataset is organized sequentially.
• PO - Specifies that the input dataset is partitioned.

TOTCONV = {XE | PZ}

Specifies the representation of data to be printed or punched. TOTCONV can be
overridden by any user specifications (RECORD statements) that pertain to the
same data. These values can be coded:

• XE - Specifies that data is to be punched in 2-character-per-byte
hexadecimal representation (for example, C3 40 F4 F6). If XE is not
specified, data is punched in 1-character per byte alphameric representation.
The above example would appear as C 46.

• PZ - Specifies that data (packed decimal mode) is to be converted to
unpacked decimal mode. IEBPTPCH does not check for packed decimal
mode. The output is unpredictable when the input is other than packed
decimal.

Default: If TOTCONV is omitted, data is not converted.

CNTRL={n | 1}

Specifies a control character for the output device that is used to select the stacker,
as follows:

• 1 indicates the first stacker and
• 2 indicates the second stacker.

STRTAFT=n

Specifies, for sequential datasets, the number of logical records (physical blocks in
the case of VS or VBS type records longer than 32K bytes) to be skipped before
punching begins. For partitioned datasets, STRTAFT=n specifies the number of
logical records to be skipped in each member before punching begins. The n value
must not exceed 32,767. If STRTAFT is specified and RECORD control statements
are present, the first RECORD control statement of a member describes the format
of the first logical record to be punched.

STOPAFT=n

Specifies, for sequential datasets, the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be punched. For
partitioned datasets, this specifies the number of logical records (or physical blocks
in the case of VS or VBS records longer than 32K bytes) to be punched in each
member to be processed. The n value must not exceed 32,767. If STOPAFT is
specified and RECORD control statements are present, the operation is terminated
when the STOPAFT count is satisfied or at the end of the first record group,
whichever occurs first.

SKIP=n

Specifies that every nth record (or physical block in the case of VS or VBS records
longer than 32K bytes) is to be punched. Default: Successive logical records are
punched.

MAXNAME=n

Specifies a number no less than the total number of subsequent MEMBER control
statements. The value must not exceed 32,767. Default: If MAXNAME is omitted
when there is a MEMBER control statement present, the punch request is
terminated.

MAXFLDS=n

Specifies a number no less than the total number of FIELD parameters appearing in
subsequent RECORD control statements. The value must not exceed 32,767.
Default: If MAXFLDS is omitted when there is a FIELD parameter present, the
punch request is terminated.

MAXGPS=n

Specifies a number no less than the total number of IDENT parameters appearing in
subsequent RECORD control statements. The value must not exceed 32,767.
Default: If MAXGPS is omitted when there is an IDENT parameter present, the
punch request is terminated.

MAXLITS=n

Specifies a number no less than the total number of characters contained in the
IDENT literals of subsequent RECORD control statements. The value must not
exceed 32,767. Default: If MAXLITS is omitted when there is a literal present, the
punch request is terminated.

CDSEQ=n

Specifies the initial sequence number of a deck of punched cards. This value must
be contained in columns 73 through 80. Sequence numbering is initialized for each
member of a partitioned dataset. If the value of n is zero, 00000000 is assumed as a
starting sequence number. Default: Cards are not numbered.

CDINCR=n

Specifies the increment to be used in generating sequence numbers. Default: 10 is
the increment value.

TITLE ITEM=('title'[,output-location])[,ITEM...]

The TITLE control statement specifies that a title is to precede the printed or punched data. The TITLE
control statement, if included, follows the PRINT or PUNCH control statement in the control dataset. The
parameter is:

ITEM=('title'[,output-location])[,ITEM...]

Specifies title or subtitle information. The values that can be coded are:

• 'title' - Specifies the title or subtitle literal (maximum length of 40 bytes),
enclosed in apostrophes. If the literal contains apostrophes, each apostrophe
must be written as two consecutive apostrophes.

• output-location - Specifies the starting position at which the literal for this
item is to be placed in the output record. The specified title may not exceed
the output logical record length minus one. Default: 1

EXITS [INHDR=routinename]

[,INTLR=routinename]

[,INREC=routinename]

[OUTREC=routinename]

The EXITS control statement specifies that user routines are provided. Exits to label processing routines
are ignored if the input dataset is partitioned. The EXITS control statement statement, if included, must
immediately follow any TITLE control statement or follow the PRINT or PUNCH control statement. The
parameters are:

• INHDR=routinename - Specifies the symbolic name of a routine that processes user input header
labels.

• INTLR=routinename - Specifies the symbolic name of a routine that processes user input trailer
labels.

• INREC=routinename - Specifies the symbolic name of a routine that manipulates each logical
record (or physical block in the case of VS or VBS records longer than 32K bytes) before it is
processed.

• OUTREC=routinename - Specifies the symbolic name of a routine that manipulates each logical
record (or physical block in the case of VS or VBS records longer than 32K bytes) before it is
printed or punched.

MEMBER NAME={membername | aliasname}

The MEMBER control statement specifies that the input is a partitioned dataset and that a selected member
is to be printed or punched. The parameter is:

NAME={membemame | aliasname}

Specifies a member to be printed or punched. These values can be coded:

• membername - Specifies a member by its member name.
• aliasname - Specifies a member by its alias.

RECORD[IDENT=(length,'name',input-location)]

[,FIELD=(length,[input-location],[conversion]

,[output-location])[,FIELD=...]

The RECORD control statement specifies whether editing is to be performed, that is, records are to be
printed or punched to nonstandard specifications. The parameters are:

IDENT=(length,'name',input-location)

Identifies the last record of the record group to which the FIELD parameters apply.
The values that can be coded are:

• length - Specifies the length (in bytes) of the field that contains the
identifying name in the input records. The length cannot exceed eight bytes.

• 'name' - Specifies the exact literal that identifies the last record of a record
group. If the literal contains apostrophes, each must be written as two
consecutive apostrophes.

• input-location - Specifies the starting location of the field that contains the
identifying name in the input records.

Note: The sum of the length and the input location must be equal to or less than the input
LRECL plus one. Default: If IDENT is omitted and STOPAFT is not included with the PRINT
or PUNCH control statement, record processing halts after the last record in the dataset. If
IDENT is omitted and STOPAFT is included with the PRINT or PUNCH control statement,
record processing halts when the STOPAFT count is satisfied or after the last record of the
dataset is processed, whichever occurs first.

FIELD=(length,[input-location],[conversion],[output-location])

Specifies field-processing and editing information. These values can be coded:

• length - Specifies the length (in bytes) of the input field to be processed.
Note: The length must be equal to or less than the initial input LRECL.

• input-location - Specifies the starting byte of the input field to be processed.
Default: 1 Note: The sum of the length and the input location must be equal
to or less than the input LRECL plus one.

• conversion - Specifies a two-byte code that indicates the type of conversion
to be performed on this field before it is printed or punched. The values that
can be coded are:

• PZ - Specifies that data (packed decimal) is to be converted to
unpacked decimal data. The converted portion of the input record
(length L) occupies 2L - 1 output characters when punching, and 2L
output characters when printing.

• XE - Specifies that data (alphameric) is to be converted to
hexadecimal data. The converted portion of the input record (length
L) occupies 2L output characters.

Default: The field is moved to the output area without change.

• output-location - Specifies the starting location of this field in the output
records. Unspecified fields in the output records appear as blanks in the
printed or punched output. Data that exceeds the SYSUT2 printer or punch
size is not printed or punched. The specified fields may not exceed the
logical output record length minus one. When specifying one or more
FIELDs, the sum of all lengths and all extra characters needed for
conversions must be equal to or less than the output LRECL minus one.

Default: 1

LABELS [CONV={PZ | XE}]

[,DATA={YES | NO | ALL | ONLY}]

The LABELS control statement specifies whether user labels are to be treated as data. The parameters are:

CONV={PZ I XE}

Specifies a two-byte code that indicates the type of conversion to be performed on
this field before it is printed or punched. The values that can be coded are:

• PZ - Specifies that data (packed decimal) is to be converted to unpacked
decimal data. The converted portion of the input record (length L) occupies
2L - 1 output characters.

• XE - Specifies that data (alphameric) is to be converted to hexadecimal
data. The converted portion of the input record (length L) occupies 2L
output characters.

Default: The field is moved to the output area without change.

DATA={YES | NO | ALL | ONLY}

Specifies whether user labels are to be treated as data. The values that can be coded
are:

• YES - Specifies that any user labels that are not rejected by a user's label
processing routine are to be treated as data. Processing of labels as data
stops in compliance with standard return codes.

• NO - Specifies that user labels are not to be treated as data.
• ALL - Specifies that user labels are to be treated as data regardless of any

return code. A return code of 16 causes the utility to complete the
processing of the remainder of the group of user labels and to terminate the
job step.

• ONLY - Specifies that only user header labels are to be treated as data. User
header labels are processed as data regardless of any return code. The job
terminates upon return from the OPEN routine.

Examples
 Print sequential dataset with conversion to hex
//IEBPTPCH JOB (001),'PRINT SEQ DS ',CLASS=A,MSGCLASS=X
//IEBPTPCH EXEC PGM=IEBPTPCH,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ISAMVSAM.DATA
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
 PRINT TOTCONV=XE
 TITLE ITEM=('PRINT SEQ DATASET WITH CONV TO HEX',10)
//

 Print partitioned dataset, 10 records from each member
//IEBPTPCH JOB (001),'PRINT PDS 10 EA',CLASS=A,MSGCLASS=X
//IEBPTPCH EXEC PGM=IEBPTPCH,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ALL.PTFS
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
 PRINT TYPORG=PO,STOPAFT=10
 TITLE ITEM=('PRINT PDS - 10 RECORDS EACH MEM',10)
//

 Copy all members from PDS onto single file on tape
//IEBPTPCH JOB (001),'COPY PDS TO TAPE',CLASS=A,MSGCLASS=X
//IEBPTPCH EXEC PGM=IEBPTPCH,REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ALL.PTFS
//SYSUT2 DD UNIT=TAPE,VOL=SER=PTFS21,DISP=(,KEEP,DELETE),
// DSN=PTFS,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7200)
//SYSIN DD *
 PUNCH TYPORG=PO,MAXFLDS=1
//
//

 Print two members of PDS
//IEBPTPCH JOB (001),'PRINT 2 PDS MEMBERS',CLASS=A,MSGCLASS=X
//IEBPTPCH EXEC PGM=IEBPTPCH,REGION=2M
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ISAM.COBOL
//SYSUT2 DD SYSOUT=* change to SYSOUT=B to produce cards
//SYSIN DD *
 PUNCH TYPORG=PO,MAXFLDS=1,MAXNAME=2
 MEMBER NAME=ISREPT1
 MEMBER NAME=ISREPT2
//
//

 Resequence card deck
//SEQCARDS JOB (001),SEQCARDS,CLASS=A,MSGCLASS=X
//IEBPTPCH EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD *

 [card deck to be resequenced goes here]

/*
//SYSUT2 DD SYSOUT=B

//SYSIN DD *
 PUNCH MAXFIELDS=1,CDSEQ=0,CDINCR=100
 RECORD FIELD=(72)
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEBUPDTE [supplied by IBM, located in SYS1.LINKLIB]
Used to incorporate IBM and user-generated source language modifications into sequential or partitioned datasets.
Exits are provided for user routines that process user header and trailer labels.

IEBUPDTE can be used to:

• Create and update symbolic libraries.
• Incorporate changes to partitioned members or sequential datasets.
• Change the organization of a dataset from sequential to partitioned or vice versa.

IEBUPDTE requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input control dataset.
• SYSUT1 - defines the input dataset
• SYSUT2 - defines the output dataset

IEBUPDTE originated in an age that preceded full screen editing, so much of its functionality is devoted to
applying updates to partitioned datasets in a batch job. In the current era, IEBUPDTE is mainly used to reload
or add members to partitioned datasets. I would suggest taking a look at OFFLOAD, PDSLOAD, UPDTE,
UNUPDTE, PDSPRINT and REVLMOD, which were written to efficiently perform load, unload, and reload
functions on partitioned datasets.

Control Statements
All control statements are read from the SYSIN DD with data statements interspersed. In order for
IEBUPDTE to recognize the control statements, each control statement must contain a period in column 1,
followed by a slash in column 2, followed by a space in column 3. An optional label may appear next on
the control statement, followed by a blank, then the action word.

./ ADD | CHANGE | REPL | REPRO

[LIST=ALL]

[,SEQFLD={ }]

[,NEW={PO | PS}]

[,MEMBER=membername]

[,COLUMN=dd]

[,UPDATE=INPLACE]

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

[,INHDR=routinename]

[,INTLR=routinename]

[OUTHDR=routinename]

[OUTLR=routinename]

[,TOTAL=routinename,size]

[,NAME=membername]

[,LEVEL=hh]

[,SOURCE=x]

[,SSI=hhhhhhhh]

The Function control statement is used to initiate an IEBUPDTE operation. At least one Function control
statement must be provided for each member or dataset to be processed. The function actions are:

ADD

Specifies that a member or a dataset is to be added to an old master dataset. If a
member is to be added and the member name already exists in the old master
dataset, processing is terminated. If, however, PARM=NEW is specified on the
EXEC statement, the member is replaced. For a sequential output master dataset,
PARM=NEW must always be specified on the EXEC statement.

When a member replaces an identically named member on the old master dataset or
a member is changed and rewritten on the old master, the alias (if any) of the
original member still refers to the original member. However, if an identical alias is
specified for the newly written member, the original alias entry in the directory is
changed to refer to the newly written member.

CHANGE

Specifies that a member of a dataset is being entered in its entirety as a replacement
for a sequential dataset or for a member of the old master dataset. The member
name must already exist in the old master dataset.

REPL

Specifies that a member of a dataset is being entered in its entirety as a replacement
for a sequential dataset or for a member of the old master dataset. The member
name must already exist in the old master dataset.

REPRO

Specifies that a member or a dataset is to be copied in its entirety to a new master
dataset.

The Function control statement parameters are:

LIST=ALL

Specifies that the SYSPRINT dataset is to contain the entire updated member or
dataset and the control statements used in its creation. Default: For old datasets, if
LIST is omitted, the SYSPRINT dataset contains modifications and control
statements only. If UPDATE was specified, the entire updated member is listed
only when renumbering has been done. For new datasets, the entire member or
dataset and the control statements used in its creation are always written to the
SYSPRINT dataset.

SEQFLD={ddl | (ddl,ddl)}

ddl

Specifies, in decimal, the starting column (up to column 80) and length
(8 or less) of sequence numbers within existing logical records and
subsequent data statements. Note that the starting column specification
(dd) plus the length (l) cannot exceed the logical record length (LRECL)
plus 1. Sequence numbers on incoming data statements and existing
logical records must be padded to the left with enough zeros to fill the
length of the sequence field.

(ddt, ddt)

May be used when an alphameric sequence number generation is
required. The first ddt specifies the sequence number columns as
above. The second ddt specifies, in decimal, the starting column (up to
column 80) and length (8 or less) of the numeric portion of the sequence
numbers in subsequent NUMBER statements. This information is used
to determine which portion of the sequence number specified by the
NEW1 parameter may be incremented and which portion(s) should be
copied to generate a new sequence number for inserted or renumbered
records. Note: The numeric columns must fall within the sequence
number columns specified (or defaulted) by the first ddt. Acceptable
alphameric characters are A-Z, 1-9, @, #, $, *. Default: 738 is assumed,
that is, an eight-byte sequence number beginning in column 73.
Therefore, if existing logical records and subsequent Data statements
have sequence numbers in columns 73 through 80, this keyword need
not be coded.

NEW={PO | PS}

Specifies the organization of the old master dataset and the organization of the
updated output. NEW should not be specified unless the organization of the new
master dataset is different from the organization of the old master. These values can
be coded:

• PO - Specifies that the old master dataset is a sequential dataset, and that the
updated output is to become a member of a partitioned dataset.

• PS - Specifies that the old master dataset is a partitioned dataset, and that a
member of that dataset is to be converted into a sequential dataset.

MEMBER=membername

Specifies, a name to be assigned to the member placed in the partitioned dataset
defined by the SYSUT2 DD statement. MEMBER is used only when SYSUT1
defines a sequential dataset, SYSUT2 defines a partitioned dataset, and NEW=PO is
specified.

COLUMN=dd

Note: Used only with CHANGE. Specifies, in decimal, the starting column of a
data field within a logical record image. The field extends to the end of the image.
Within an existing logical record, the data in the defined field is replaced by data
from a subsequent Data statement.

UPDATE=INPLACE

Note: Used only with CHANGE. Specifies that the old master dataset is to be
updated within the space it actually occupies. The old master dataset must reside on
a direct access device. UPDATE is valid only when coded with CHANGE. No
other function statements (ADD, REPL, REPRO) may be in the same job step.

INHDR=routinename

Specifies the symbolic name of the user routine that handles any user input
(SYSUTl) header labels. When used with UPDATE, this routine assumes a special
function. This parameter is valid only when a sequential dataset is being processed.

INTLR=routinename

Specifies the symbolic name of the user routine that handles any user input
(SYSUTl) trailer labels. INTLR is valid only when a sequential dataset is being
processed, but not when UPDATE is coded.

OUTHDR=routinename

Specifies the symbolic name of the user routine that handles any user output
(SYSUT2) header labels. OUTHDR is valid only when a sequential dataset is being
processed, but not when UPDATE is coded.

OUTLR=routinename

Specifies the symbolic name of the user routine that handles any user output
(SYSUT2) trailer labels. OUTTLR is valid only when a sequential dataset is being
processed, but not when UPDATE is coded.

TOTAL=routinename,size

Specifies that exits to a user's routine are to be provided prior to writing each
record. This parameter is valid only when a sequential dataset is being processed.
These values are coded:

• routinename - Specifies the name of the user's totaling routine.
• size - Specifies the number of bytes required for the user's data. The size

should not exceed 32K, nor be less than 2 bytes. In addition, the keyword
OPTCD=T must be specified for the SYSUT2 (output) DD statement.

NAME=membername

Specifies the name of the member placed into the partitioned dataset. The member
name need not be specified in the DD statement itself. NAME must be provided to
identify each input member.

This parameter is valid only when a member of a partitioned dataset is being
processed.

LEVEL=hh

Specifies the change (update) level in hexadecimal (00-FF). The level number is
recorded in the directory entry of the output member. This parameter is valid only
when a member of a partitioned dataset is being processed. This parameter has no
effect when SSI is specifed.

SOURCE=x

Specifies user modifications when the x value is 0, or IBM modifications when the
x value is 1. The source is recorded in the directory entry of the output member.
This parameter is valid only when a member of a partitioned dataset is being
processed. This parameter has no effect when SSI is specified.

SSI=hhhhhhhh

Specifies eight hexadecimal characters of system status information (SSI) to be
placed in the directory of the new master dataset as four packed hexadecimal bytes
of user data. This parameter is valid only when a member of a partitioned dataset is
being processed. SSI overrides any LEVEL or SOURCE data given on the same
Function statement.

./ NUMBER | DELETE

[SEQ1={cccccccc | ALL}]

[,SEQ2=cccccccc]

[,NEW1=cccccccc]

[,INCR=nnnnnnnn]

[,INSERT=YES]

A Detail control statement is used with a Function control statement for certain applications, such as
deleting or renumbering selected logical records. NUMBER specifies, when coded with a CHANGE
Function control statement, that the sequence number of one or more logical records is to be changed. It
specifies, when coded with an ADD or REPL Function control statement, the sequence numbers to be
assigned to the records within new or replacement members or datasets. When used with an ADD or
REPL Function control statement, no more than one NUMBER Detail control statement is permitted for
each ADD or REPL Function control statement. If NUMBER is coded, it must be preceded and followed
by at least one blank. DELETE specifies, when coded with a CHANGE Function control statement, that
one or more logical records are to be deleted from a member or dataset. If DELETE is coded, it must be
preceded and followed by at least one blank.

When INSERT is coded on the Function control statement:

• The SEQ1 parameter specifies the existing logical record after which the insertion is to be made.
The SEQ2 parameter need not be coded; SEQ1=ALL cannot be coded.

• The NEWl parameter assigns a sequence number to the first logical record to be inserted. If the
parameter is alphameric, the SEQFLD=(ddl,ddl) parameter should be coded .

• The INCR parameter is used to renumber as much as is necessary of the member or dataset from the
point of the first insertion; the member or dataset is renumbered until an existing logical record is
found whose sequence number is equal to or greater than the next sequence number to be assigned.
If no such logical record is found, the entire member or dataset is renumbered.

• Additional NUMBER Detail statements, if any, must specify INSERT. If a prior numbering
operation renumbers the logical record specified in the SEQ1 parameter of a subsequent NUMBER
Detail statement, any NEWl or INCR parameter specifications in the latter NUMBER statement are
overridden. The prior increment value is used to assign the next successive sequence numbers. If a
prior numbering operation does not renumber the logical record specified in the SEQ1 parameter of
a subsequent NUMBER Detail statement, the latter statement must contain NEWl and INCR
specifications.

• The block of Data statements to be inserted must contain blank sequence numbers.
• The insert operation is terminated when a Function statement, a Detail control statement, and end-

of-file indication, or a Data statement containing a sequence number is encountered.
• The SEQ1, SEQ2, and NEW1 parameters (with the exception of SEQ1=ALL) specify eight

(maximum) alphameric characters. The INCR parameter specifies eight (maximum) numeric
characters. Only the significant part of a numeric sequence number need be coded; for example,
SEQ1=00000010 can be shortened to SEQ1=10. If, however, the numbers are alphameric, the
alphabetic characters must be specified; for example, SEQ1=00ABCO10 can be shortened to
SEQ1=ABCO10.

The parameters are:

SEQ1={cccccccc | ALL}

Specifies records to be renumbered, deleted, or assigned sequence numbers. These
values can be coded:

• cccccccc - Specifies the sequence number of the first logical record to be
renumbered or deleted. This value is not coded in a NUMBER Detail
control statement that is used with an ADD or REPL Function control
statement. When this value is used in an insert operation, it specifies the
existing logical record after which an insert is to be made. It must not equal
the number of a statement just replaced or added. Refer to the INSERT
parameter for additional discussion.

• ALL - Specifies a renumbering operation for the entire member or dataset.
ALL is used only when a CHANGE Function control statement and a
NUMBER Detail control statement are used. ALL must be coded if
sequence numbers are to be assigned to existing logical records having blank
sequence numbers. If ALL is not coded, all existing logical records having
blank sequence numbers are copied directly to the output master dataset.
When ALL is coded, SEQ2 need not be coded and one NUMBER detail
statement is permitted per function statement. When ALL is coded:

• SEQ2 need not be coded and
• one NUMBER Detail control statement is permitted per Function

control statement.

SEQ2=cccccccc

Specifies the sequence number of the last logical record to be renumbered or
deleted. SEQ2 is required on all DELETE Detail control statements. If only one
record is to be deleted, the SEQ1 and SEQ2 specifications must be identical. SEQ2
is not coded in a NUMBER Detail control statement that is used with an ADD or
REPL Function control statement.

NEW1=cccccccc

Specifies the first sequence number assigned to new or replacement data, or
specifies the first sequence number assigned in a renumbering operation. A value
specified in NEW1 must be greater than a value specified in SEQ1 (unless
SEQ1=ALL is specified, in which case this rule does not apply).

INCR=nnnnnnnn

Specifies an increment value used for assigning successive sequence numbers to
new or replacement logical records, or specifies an increment value used for
renumbering existing logical records.

INSERT=YES

Specifies the insertion of a block of logical records. The records, which are Data
statements containing blank sequence numbers, are numbered and inserted in the
output master dataset. INSERT is valid only when coded with both a CHANGE
Function control statement and a NUMBER Detail control statement. SEQl, NEWl,
and INCR are required on the first NUMBER Detail control statement.

Data statement

A Data Statement is used with a Function control statement, or with a Function control statement and a
Detail control statement. It contains a logical record used as replacement data for an existing logical
record, or new data to be incorporated in the output master dataset. Each Data statement contains one
logical record, which begins in the first column of the Data statement. The length of the logical record is
equal to the logical record length (LRECL) specified for the output master dataset. Each logical record
contains a sequence number to determine where the data is to be placed in the output master dataset. When
used with a CHANGE Function control statement, a Data statement contains new or replacement data, as
follows:

• If the sequence number in the Data statement is identical with a sequence number in an existing
logical record, the Data statement replaces the existing logical record in the output master dataset.

• If no corresponding sequence number is found within the existing records, the Data statement is
inserted in the proper collating sequence within the output master dataset. (For proper execution of
this function, all records in the old master dataset must have a sequence number.)

• If a Data statement with a sequence number is used and INSERT= YES was specified, the insert
operation is terminated. IEBUPDTE will continue processing if this sequence number is at least
equal to the next old master record (record following the referred to sequence record).

When used with an ADD or REPL Function control statement, a Data statement contains new data to be
placed in the output master dataset.

Sequence numbers within the old master dataset are assumed to be in ascending order. No validity
checking of sequence numbers is performed for data statements or existing records.

Sequence numbers in Data statements must be in the same relative position as sequence numbers in existing
logical records. (Sequence numbers are assumed to be in columns 73 through 80; if the numbers are in
columns other than these, the length and relative position must be specified in a SEQFLD parameter within
a preceding Function control statement.)

./ ALIAS | DELETE

NAME=cccccccc

The ALIAS control statement is used to create or retain an alias in an output (partitioned) master directory.
The ALIAS control statement can be used with any of the Function control statements. Multiple aliases can
be assigned to each member up to a maximum of 16 aliases. Note: If an ALIAS statement is specifying a
name which already exists on the dataset, the original TTR of that directory entry will be destroyed.
ALIAS must be preceded and followed by at least one blank. If multiple ALIAS control statements are
used, they must follow the data records.

The parameter is:

NAME=cccccccc

Specifies a one to eight character alias.

./ ENDUP

An ENDUP control statement can be used to indicate the end of SYSIN input to this job step. It serves as
an end-of-data indication if there is no other preceding delimiter statement. The ENDUP control statement
follows the last group of SYSIN control statements.

Program Parameter (PARM= on EXEC statement)
Additional information can be coded in the PARM parameter of the EXEC statement, as follows:

PARM={NEW | MOD},[inhdr],[intlr]

The action of the values which may be supplied are:

NEW

Specifies that the input consists solely of the control dataset. The input
dataset (SYSUT2) is not defined if NEW is specified.

MOD

Specifies that the input consists of both the control dataset and the input
dataset. If neither NEW nor MOD is coded, MOD is assumed.

inhdr

Specifies the symbolic name of a routine that processes the user header

label on the volume containing the control dataset.

intlr

Specifies the symbolic name of a routine that processes the user trailer
label on the volume containing the control dataset.

Examples
 Add two members to a partitioned dataset
//IEBUPDTE JOB (001),'IEBUPDTE-01',CLASS=S,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SYS2.PROCLIB,DISP=MOD
//SYSPRINT DD SYSOUT=*
//SYSIN DD DATA when statements to be added contain JCL statements, code DATA on SYSIN DD
./ ADD NAME=CLEARDMP
./ NUMBER NEW1=10,INCR=10
//CLEARDMP PROC DD=00 SPECIFY DD={00|01|02}
//* *** *
//* CLEAR DUMP DATASET *
//* *** *
//EMPTY EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DUMMY,DCB=(RECFM=U,LRECL=100,BLKSIZE=100)
//SYSUT2 DD DISP=SHR,DSN=SYS1.DUMP&DD
./ ADD NAME=CLEARERP
./ NUMBER NEW1=10,INCR=10
//CLEARERP PROC
//* *** *
//* CLEAR ENVIRONMENTAL ERROR RECORDER DATASET *
//* *** *
//EREP EXEC PGM=IFCDIP00
//SERERDS DD DISP=SHR,DSN=SYS1.LOGREC
./ ENDUP
//

 Change member in partitioned dataset, update in place
//IEBUPDTE JOB (001),'IEBUPDTE-02',CLASS=A,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYS2.PROCLIB,DISP=OLD
//SYSUT2 DD DSN=SYS2.PROCLIB,DISP=OLD
//SYSIN DD DATA
./ CHANGE NAME=CLEARDMP,UPDATE=INPLACE
//SYSUT1 DD DUMMY,DCB=(RECFM=U,LRECL=10,BLKSIZE=10) 0000080
//STEP2 EXEC PGM=EXAMPLE2 00000010
0000080
./ ENDUP
/*
//

 Add records to member in partitioned dataset
//IEBUPDTE JOB (001),'IEBUPDTE-03',CLASS=A,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYS1.PARMLIB,DISP=OLD
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=OLD
//SYSIN DD DATA

./ CHANGE NAME=SAMPLE
//EXTRADD DD SYSOUT=A 00000015
./ ENDUP
/*
//

 Delete records from a member in a partitioned dataset
//IEBUPDTE JOB (001),'IEBUPDTE-04',CLASS=A,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYS1.PARMLIB,DISP=OLD
//SYSUT2 DD DSN=SYS1.PARMLIB,DISP=OLD
//SYSIN DD *
./ CHANGE NAME=SAMPLE
./ DELETE SEQ1=15,SEQ2=20
/*
//

 Create a partitioned dataset, input data contained solely in control dataset
//IEBUPDTE JOB (001),'IEBUPDTE-05',CLASS=A,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DSN=OUTLIB,UNIT=DISK,DISP=(NEW,KEEP),
// VOL=SER=111112,SPACE=(TRK,(50,,10)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DATA
./ ADD NAME=MEMB1,LEVEL=00,SOURCE=0
 (data statements with sequence numbers in columns 73 through 80)
./ ADD NAME=MEMB2,LEVEL=00,SOURCE=0
 (data statements with sequence numbers in columns 73 through 80)
./ ADD NAME=MEMB3,LEVEL=00,SOURCE=0
 (data statements with sequence numbers in columns 73 through 80)
./ ENDUP
/*
//

 Create a partitioned dataset, input data copied from existing dataset
//IEBUPDTE JOB (001),'IEBUPDTE-06',CLASS=A,MSGCLASS=X
//IEBUPDTE EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYS1.MACLIB,DISP=SHR
//SYSUT2 DD DSN=SYS9.MACLIB,UNIT=DISK,DISP=(NEW,KEEP),
// VOL=SER=111112,SPACE=(TRK,(50,,10)),
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DATA
./ REPRO NAME=ATTACH,LEVEL=00,SOURCE=1,LIST=ALL
./ REPRO NAME=DETACH,LEVEL=00,SOURCE=1,LIST=ALL
./ ADD NAME=EXIT,LEVEL=00,SOURCE=1,LIST=ALL
./ NUMBER NEW1=10,INCR=100
 (data statements for new EXIT member)
./ ENDUP
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEHDASDR [supplied by IBM, located in SYS1.LINKLIB]
Warning: If you have installed Jim Morrison's modifications to provide 3375/3380/3390 support under MVS, be

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

advised that IEHDASDR does not recognize these device types and will not function correctly, if at all, with volumes
of these types. As an alternative, I would suggest taking a look at ICKDSF for initializing DASD volumes and
DSSDUMP/DSSREST for backing up DASD datasets.

Used to prepare direct access volumes for use. In addition, IEHDASDR can be used to dump the entire contents or
portions of a direct access volume to a volume or volumes of the same direct access device type, or to a tape volume or
volumes. Data that is dumped to a tape volume is arranged so that it can subsequently be restored to its original
organization by IEHDASDR or IBCDMPRS (stand-alone restore program).

IEHDASDR requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHDASDR control statements.
• anyname - defines DASD volume to be used as input (DUMP) or output (RESTORE).
• anyname - defines tape volume to be used as input (RESTORE) or output (DUMP)
• anyname - defines source for IPL loader program

Control Statements
ANALYZE TODD=cuu

,VTOC=xxxxx

,EXTENT=xxxxx

,NEWVOLID=serial

[,IPLDD=ddname]

[,OWNERID=name]

[,PURGE={YES | NO}

The ANALYZE control statement prepares the volume to make it ready for use; writes label track and
creates Volume Table of Contents. The parameters are:

TODD=cuu

Specifies the channel and unit address of a direct access device containing an offline
volume to be initialized.

VTOC=xxxxx

Specifies a one to five byte decimal relative track address representing a primary
track on which the volume table of contents is to begin. The VTOC cannot occupy
track 0.

EXTENT=xxxxx

Specifies the decimal length of the VTOC in tracks.

NEWVOLID=serial

Specifies a one to six character serial number.

IPLDD=ddname

Specifies,the ddname of a DD statement defining the dataset containing the IPL
program. The IPL program can be defined as a sequential dataset or a member of a
partitioned dataset.

OWNERID=name

Specifies a one to ten character name or other identifying information to be placed
in the volume label record. OWNERID is specified as a character string of any
alphameric, national character, hyphen (-), slash (/), or period (.).

PURGE={YES | NO}

Specifies whether the ANALYZE operation is be terminated when an unexpired dataset is
encountered. These values can be coded:

• YES - Indicates that all unexpired datasets on the volume can be overwritten provided
that the operator signals his concurrence when the first unexpired dataset is
encountered. If PURGE=YES is coded and an unexpired dataset is encountered, the
operator is prompted. The operator replies are:

U - Which indicates that all unexpired datasets on this volume can be
overwritten.

T - Which indicates that this volume contains unexpired datasets that
must not be overwritten.

• NO - Specifies that the various operations are to be terminated if an unexpired dataset is
encountered.

The PURGE parameter does not apply to password-protected datasets; the operator must always
respond with the proper password for each password-protected dataset encountered. If he is
unable to do so, the operation is terminated.

LABEL TODD=cuu

,NEWVOLID=serial

[,OWNERID=name]

The LABEL control statement changes the volume serial number of a direct access volume and, optionally,
updates the owner field. The parameters are:

TODD=cuu

Specifies the channel and unit address of a direct access device
containing an offline volume to be labeled.

NEWVOLID=serial

Specifies a one to six character serial number.

OWNERID=name

Specifies a one to ten character name or other identifying information to
be placed in the volume label record. OWNERID is specified as a
character string of any alphameric, national character, hyphen (-), slash
(/), or period (.).

DUMP FROMDD=ddname

,TODD=ddname

[,CPYVOLID={YES | NO}]

[,BEGIN=cccchhhh]

[,END=cccchhhh]

The DUMP control statement dumps a single track, a group of tracks, or an entire direct access volume.
The parameters are:

FROMDD=ddname

Specifies the ddname of the DD statement defining the device containing the direct
access volume from which a copy is to be made.

TODD=ddname

Specifies the ddnames of the DD statement defining the device containing the tape
volume on which a copy is to be made.

CPYVOLID={YES | NO}

Specifies whether receiving direct access volumes are to be assigned the serial
number of the dumped volume. These values can be coded:

• YES - Specifies that all receiving direct access volumes are to be assigned
the serial number of the dumped volume.

• NO - Specifies that receiving volumes are to keep their own serial numbers.

BEGIN=cccchhhh

Specifies in hexadecimal a cylinder number, cccc and head number, hhhh, that
identify the first track to be dumped. If BEGIN is omitted, the dump operation
begins with track 0.

END=cccchhhh

Specifies in hexadecimal a cylinder number, cccc, and head number,hhhh, that
identify the last track to be dumped. If only one track is to be dumped, both BEGIN
and END specify that track address. Default: The last primary track of the volume
is the last track to be copied.

RESTORE TODD=ddname

,FROMDD=ddname

[,CPYVOLID={YES | NO}]

[,PURGE={YES | NO}]

The RESTORE control statement restores a previously dumped direct access volume to a direct access
device. The parameters are:

TODD=ddname

Specifies the ddname of the DD statement that identifies the volume serial number
of the output volume.

FROMDD=ddname

Specifies the ddname of the DD statement that defines the tape volume containing
the data to be restored.

CPYVOLID={YES | NO}

Specifies whether receiving direct access volumes are to be assigned the serial
number of the dumped volume. These values can be coded:

• YES - Specifies that all receiving direct access volumes are to be assigned
the serial number of the dumped volume.

• NO - Specifies that receiving volumes are to keep their own serial numbers.

PURGE={YES | NO}

Specifies whether the ANALYZE operation is be terminated when an unexpired
dataset is encountered. These values can be coded:

• YES - Indicates that all unexpired datasets on the volume can be overwritten
provided that the operator signals his concurrence when the first unexpired
dataset is encountered. If PURGE=YES is coded and an unexpired dataset is
encountered, the operator is prompted. The operator replies are:

U - Which indicates that all unexpired datasets on this volume
can be overwritten.

T - Which indicates that this volume contains unexpired datasets
that must not be overwritten.

• NO - Specifies that the various operations are to be terminated if an
unexpired dataset is encountered.

The PURGE parameter does not apply to password-protected datasets; the operator must always
respond with the proper password for each password-protected dataset encountered. If he is
unable to do so, the operation is terminated.

Examples
 Initialize 2314, 3330 (1 and 2), 3340, 3350 DASD volumes
//IEHDASDR JOB 1,'IEHDASDR-INIT',CLASS=S,MSGCLASS=X
//* *** *
//* * USE ONLY FOR 3350 | 3330 | 3340 | 2314 *
//* *** *
//*
//IEHDASDR EXEC PGM=IEHDASDR,REGION=4096K
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 ANALYZE TODD=127, C
 VTOC=50,EXTENT=10, C
 NEWVOLID=111111, C
 OWNERID=HERCULES
/*
//

 Dump DASD volume to tape
//IEHDASDR JOB 1,'IEHDASDR-DUMP',CLASS=S,MSGCLASS=X
//IEHDASDR EXEC PGM=IEHDASDR
//SYSPRINT DD SYSOUT=*
//DISK DD UNIT=2314,VOL=SER=DLIB01,DISP=OLD
//TAPE DD UNIT=TAPE,DSN=BACKUP.TAPE.DLIBS,DISP=(NEW,KEEP),
// VOL=SER=DBKD01,LABEL=(2,SL)
//SYSIN DD *
 DUMP FROMDD=DISK,TODD=TAPE
/*
//

 Restore DASD volume from backup
//IEHDASDR JOB 1,'IEHDASDR-RESTORE',CLASS=S,MSGCLASS=X
//IEHDASDR EXEC PGM=IEHDASDR
//SYSPRINT DD SYSOUT=*
//TAPE DD UNIT=BACKUP.TAPE.DLIBS,DSN=TAPE,DISP=OLD,
// VOL=SER=DBKD01,LABEL=(2,SL)
//DISK DD UNIT=2314,VOL=SER=111111,DISP=OLD
//SYSIN DD *
 RESTORE FROMDD=TAPE,TODD=DISK,PURGE=YES,CPYVOLID=YES
/*
//

 Alter Volume Serial on offline 2314
//IEHDASDR JOB 1,'IEHDASDR-RELABEL',CLASS=S,MSGCLASS=X
//IEHDASDR EXEC PGM=IEHDASDR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LABEL TODD=123,NEWVOLID=134134,OWNERID=HERCULES
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEHINITT [supplied by IBM, located in SYS1.LINKLIB]
Note: As the majority of the audience for this page is running MVS under Hercules, I will point out that there is a

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

Hercules' utility provided to initialize emulated tape images: hetinit. The hetinit utility may be run from a command
prompt (Windows) or terminal (Linux) or by using the Hercules' shell command (sh) from the Hercules' command
prompt. In addition, the COPYMODS program may be used to initialize multiple tapes per execution. There is little
use for the IBM IEHINITT utility, except for history.

Used to place IBM volume label sets written in EBCDIC onto any number of magnetic tapes mounted on one or more
tape units. Each volume label set created by the program contains:

• A standard volume label with user-specified serial number and owner identification.
• An 80-byte dummy header label. For IBM standard labels, this record consists of HDR1 followed by zeros.
• A tape mark.

IEHINITT requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHINITT control statements.
• anyname - defines a tape unit to be used in a labeling operation; more than one tape unit can be identified.

Control Statements
ddname INITT SER=xxxxxx

[,OWNER='cccccccccc']

[,NUMBTAPE = {n | 1]

,DISP= {REWIND I UNLOAD}

The INITT control statement provides control information for the IEHINITT program. Any number of
INITT utility control statements can be included for a given execution of the program. An identically
named DD statement must exist for each utility control statement in the job step. The parameters are:

ddname

Specifies a name that is identical to a ddname in the name field of a DD statement
defining a tape unit(s). This name must begin in column 1.

SER=xxxxxx

Specifies the volume serial number of the first, or only tape to be labeled. The
serial number cannot contain blanks, commas, apostrophes, equal signs, or special
characters other than periods or hyphens. A specified serial number is incremented
by one for each additional tape to be labeled. (Serial number 999999 is incremented
to 000000.) When processing multiple tapes, the volume serial number must be all
numeric.

OWNER='cccccccccccccc'

Specifies the owner's name or similar identification. The information is specified as
character constants, and can be up to 10 bytes in length. The delimiting apostrophes
can be omitted, if no blanks, commas, apostrophes, equal signs, or other special
characters (except periods or hyphens) are included. If an apostrophe is included
within the OWNER name field, it must be written as two consecutive apostrophes.

NUMBTAPE={n | 1}

Specifies the number of tapes to be labeled according to the specifications made in
this control statement. The value n represents a number from 1 to 255. If more than
one tape is specified, the serial number must be numeric.

DISP={REWIND | UNLOAD}

Specifies whether a tape is to be rewound or unloaded. These values can be coded:

• REWIND - Specifies that a tape is to be rewound (but not unloaded) after
the label has been written. If DISP=REWIND is not specified, the tape
volume is rewound and unloaded.

• UNLOAD - Specifies that a tape is to be unloaded after the label has been
written.

Message IEC701D will be displayed on the console to request the mounting of scratch tape(s) to be initialized. A
response of: r nn,M informs IEHINITT that the tape(s) have been mounted, so it will proceed.

Examples
 Initialize 3 tapes
//IEHINITT JOB (SYS),'LABEL TAPES',MSGCLASS=X,CLASS=S
//IEHINITT EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=*
//LABEL DD UNIT=(TAPE,,DEFER)
//SYSIN DD *
LABEL INITT SER=014020,NUMBTAPE=3,OWNER=HERCULES,DISP=UNLOAD
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEHLIST [supplied by IBM, located in SYS1.LINKLIB]
Used to list entries in a volume table of contents, entries in the directory of one or more partitioned datasets, or entries
in an OS catalog. I would also suggest taking a look at IEHMAP, SUPERLST, and VTOCLIST (for VTOCs) and
LISTPDS and MAPDISK (for Partitioned datasets).

IEHLIST requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHLIST control statements.
• anyname - defines a DASD volume for which the Volume Table of Contents is to be listed or on which a

Partitioned dataset resides for which the directory is to be listed.

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

Control Statements
LISTCTLG [VOL=device=serial]

[,NODE=name]

The LISTCTLG control statement requests a listing of all or part of an OS catalog (SYSCTLG). Note:
This is for listing OS CVOL catalogs; MVS uses VSAM catalogs (IDCAMS is the utility to list VSAM
catalog contents). The parameters are:

VOL=device=serial

Specifies the device type and volume serial number of the volume on which the
catalog resides.

NODE=name

Specifies a qualified name. All dataset entries whose names are qualified by this
name are listed. The CVOL must be defined in the VSAM Master Catalog as:
SYSTCTLG.VYYYYYY, where YYYYYY is the serial number of the CVOL.
Default: All dataset entries are listed.

LISTPDSDSNAME=dsname | (dsname[,dsname]...)

[,VOL=device=serial]

[,{DUMP | FORMAT}]

The LISTPDS control statement requests a directory listing of one or more partitioned datasets. The
parameters are:

DSNAME=dsname | (dsname[,dsname]...)

Specifies the fully qualified names of the partitioned datasets whose directories are
to be listed. A maximum of ten names is allowed. If the list consists of a single
name, the parentheses can be omitted. DSNAME may be abbreviated to DSN.

VOL=device=serial

Specifies the device type and volume serial number of the volume on which the
partitioned dataset resides.

DUMP | FORMAT

DUMP

Specifies that the listing is to be in unedited, hexadecimal form.

FORMAT

Specifies that the listing is to be edited for each directory entry.

 Default: If both DUMP and FORMAT are omitted, DUMP is the default used.

LISTVTOC [{DUMP | FORMAT}]

[,DATE=dddyy]

[,VOL=device=serial]

[,DSNAME=(name[,name]...)]

The LISTVTOC control statement requests a listing of all or part of a volume table of contents. The
parameters are:

DUMP | FORMAT

DUMP

Specifies that the listing is to be in unedited, hexadecimal form.
Default: If both DUMP and FORMAT are omitted, an abbreviated
edited format is generated.

FORMAT

Specifies that a comprehensive edited listing is to be generated.

 Default: If both DUMP and FORMAT are omitted, an abbreviated edited format is generated

DATE=dddyy

Specifies that each entry that expires before this date is to be flagged with an
asterisk (*) in the listing. This parameter applies only to the abbreviated edited
format. The date is represented by ddd, the day of the year, and yy, the last two
digits of the year. Default: No asterisks appear in the listing.

VOL=device=serial

Specifies the device type and volume serial number of the volume on which the
VTOC resides.

DSNAME=(name[,name]...)

Specifies the fully qualified names of the datasets whose entries are to be listed. A
maximum of ten names is allowed. If the list consists of a single name, the
parentheses can be omitted. DSNAME may be abbreviated to DSN.

Program Parameter (PARM= on EXEC statement)
Additional information can be coded in the PARM parameter of the EXEC statement, as follows:

PARM='LINECNT=nn'

Specifies the number of lines, nn, to be printed per page; nn is a decimal number
from 01 through 99. If LINECNT is not specified, 58 lines are printed per page.
The PARM field cannot contain embedded blanks, zeros, or any other PARM
keywords, or the default of 58 is used.

Examples
 List VTOC
//IEHLIST JOB (001),'IEHLIST-VTOC',CLASS=A,MSGCLASS=X
//IEHLIST EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=*
//VOL DD DISP=OLD,UNIT=SYSDA,VOL=SER=PUB000
//SYSIN DD *
 LISTVTOC FORMAT,VOL=SYSDA=PUB000
//
//

 List PDS
//IEHLIST JOB (001),'IEHLIST-PDS',CLASS=A,MSGCLASS=X
//IEHLIST EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=*
//VOL DD DISP=OLD,UNIT=SYSDA,VOL=SER=SYSCPK
//SYSIN DD *
 LISTPDS DSN=SYSC.PROCLIB,VOL=SYSDA=SYSCPK,FORMAT
//
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEHMAP [origin unknown, located in SYSC.LINKLIB]
Used to obtain a formatted listing of a VTOC, a dataset or a catalog. Even though the name of this utility suggests it is
an IBM utility, it is not. The source for several versions of IEHMAP may be found on the CBT Tape; the version that
runs under MVS 3.8 is located in File #83 on CBT Tape V129. Note: The catalog functions are for OS catalogs, not
MVS catalogs, which are VSAM, so the catalog functions of IEHMAP are not documented here.

IEHMAP requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHMAP control statements.
• DDNAME1 [through DDNAMEn] - defines the volume(s) on which IEHMAP is to operate.

Control Statements
NAME VOL=volid

[,OPT=NOPRINT]

[,OPT=AQUEUE]

The NAME control statement requests a report on all datasets on the volume, in addition to information

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

about the Volume Table Of Contents. The information reported is:

A) Information taken from the formats 4, 5, and 6:

description of the device type for DASD volume
description of the VTOC of volume
summary of available space on the volume
summary of split cylinder datasets (if applicable)

B) An alphabetical listing of each dataset on volume, including:

creation date as dd/mm/yy
expiration date as dd/mm/yy or change date as dd/mm/yy if OPT=AQUEUE
specified
volume created on or creation date as dd/mm/yy if OPT=AQUEUE specified
dataset sequence number or reference date as dd/mm/yy if OPT=AQUEUE
specified
DSORG, RECFM, BLKSIZE, LRECL, KEYLEN, OPTCD
tracks allocated
tracks actually used
number of extents
secondary allocation
allocation type

C) The number of datasets on the volume and the space they occupy.

D) A count of the DSCBï¿½s in the VTOC

E) Errors found in DSCBï¿½s counts

F) The number of different types of dataset organizations found.

G) The number of datasets by extents.

H) The allocation of datasets by tracks.

I) The number of contiguous available cylinders.

J) The number of contiguous available tracks.

The parameters for the NAME control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

OPT=NOPRINT

Specifies that detail information for the dataset(s) on the volume is to be
suppressed; only items A and C through J below are reported. This is provided to
give a quick summary of the VTOC.

OPT=AQUEUE

Specifies that the creation, reference and change dates be formatted in place of the
volume created on, the dataset sequence number, and the expiration date.

TRACKS VOL=volid

[,OPT=NOPRINT]

The TRACKS control statement requests a report on all track allocations on the volume, in addition to
information about the Volume Table Of Contents. The information reported is:

A) The allocation of each track on the volume in CCHHR order:

the starting cchh
the ending cchh
the name of the dataset it is assigned to
an indication that it is free space
an indication that it is assigned to "unaccounted space" (vtoc, etc.)
the extent number (if assigned to a dataset)
the number of tracks in the extent

B) A listing of any errors found in track allocation:

overlapping tracks
missing tracks
invalid extents

Note: If missing tracks are found, in place of the starting and ending CCHHï¿½s a hexadecimal
number will appear; this is the value that would have to be placed in a format 5 to recover this
space as available space.

C) A totaling of all tracks found

D) A totaling of all tracks missing (if applicable)

The parameters for the TRACKS control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

OPT=NOPRINT

Specifies that allocation information for the dataset(s) on the volume are to be
suppressed; only items B through D below are reported..

MAP VOL=volid

[,OPT=NOPRINT]

The MAP control statement requests a report that will include all of the information that is reported by the
NAME and TRACKS control statements (above).

The parameters for the MAP control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

OPT=NOPRINT

Specifies that detail information for the dataset(s) on the volume and allocation
information are to be suppressed.

DUMP {VOL=volid | dsname}

The DUMP control statement requests a report that will include all of the information that is reported by the
NAME and TRACKS control statements (above), plus a dump of the DSCBs associated with each dataset.
When listing a volume, it will also provide a hex dump of each DSCB in the format 4, 5, and 6 chains, and
the format 1 chain.

The parameters for the DUMP control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

dsname

Specifies the name of the dataset on which to report.

DUMP456 {VOL=volid | dsname}

THe DUMP456 control statement requests a report that will include all of the information that is reported
by the NAME control statement (above), plus a hex dump of the format 4, 5, and 6 chains, when listing a
volume, and the format 1 chain, when listing a dataset.

The parameters for the DUMP456 control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

dsname

Specifies the name of the dataset on which to report.

CCHHR {VOL=volid | dsname}

The CCHRR control statement requests a report that will include all of the information that is reported by
the DUMP control statement (above), however, the DSCBs will be dumped in CCHHR order; that is, they
will be dumped in the order they are in the VTOC, not alphabetically by dataset name. Also, the various
chains of DSCBs (the format 1 chain, the format 5 chain, and the format 6 chain) will not be dumped in

chain order. This is similar to the dump option of IEHLIST.

The parameters for the CCHRR control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

DSNAME dsname

The DSNAME control statement will report the same information as a NAME control statement for a single
dataset.

The parameters for the DSNAME control statement are:

dsname

Specifies the name of the dataset on which to report.

PDS {VOL=volid | dsname}

The PDS control statement will report the same information as a DSNAME control statement (above), but
will report only partitioned datasets (DSORG=PO). If a single dataset is requested, it will not be listed if it
is not a Partitioned dataset. It will also report a listing of the members from the directory in alphabetical
order, along with a dump of the directory information in hexadecimal, and a summary of the directory
space. Note: An 'A' after a member name indicates that it is an alias.

The parameters for the PDS control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

dsname

Specifies the name of the dataset on which to report.

TTR {VOL=volid | dsname}

The TTR control statement will report the same information as a PDS control statement (above), however,
the members from the directory will be listed in TTR order, not alphabetically. Alias names will be sorted
alphabetically after the true member name.

The parameters for the TTR control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

dsname

Specifies the name of the dataset on which to report.

ATTRIB {VOL=volid[,OPT=TTR] | dsname}

The ATTRIB control statement will report the same information as a DSNAME control statement (above),
but will report only partitioned datasets (DSORG=PO). If a single dataset is requested, it will not be listed
if it is not a Partitioned dataset. It will also give a listing of the members from the directory in alphabetical
order, and if the members are load modules, it will format the linkage editor data from the directory as
follows:

the member name
an indication that the member is an alias
the ttr where the member starts
the number of user ttrï¿½s
the ttr where the text records start
the os/vs linkage editor flags
the load module size (storage required)
the load module entry point
the setssi data (if present)
the setcode data (if present)
the true member name if an alias
the true entry point if an alias
the load modules linkage editor attributes:

REFR refreshable
RENT re-entrant
REUS reuseable
DC downward compatible
OL only loadable
OVLY overlay
NE not editable
NOTEX not executable

The parameters for the ATTRIB control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

OPT=TTR

 Specifies that the member names will be sorted in TTR order rather than
alphabetical.

dsname

Specifies the name of the dataset on which to report.

DIR {VOL=volid | dsname}

The DIR control statement will report the same informaiton as a NAME control statement, but will report

only partitioned datasets (DSORG=PO). If a single dataset is requested, it will not be listed if it is not a
Partitioned dataset. A summary of the directory space will also be reported.

The parameters for the DIR control statement are:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

dsname

Specifies the name of the dataset on which to report.

VERIFY VOL=volid

The VERIFY control statement will report the same information as a NAME control statement, plus a
verification of the format 4, 5, 6, and 1 chains is performed:

• all formats 5 are validated to be chained from the first format 5
• all formats 6 are validated to be chained from the format 4
• all formats 2 are validated to be chained from the format 1
• all formats 3 are validated to be chained from a format 1 or 2

Any errors, such as dangling (ie, non-chained) formats 2, 3, 5 or 6 are listed. If a second format 4 is found,
it will be listed. If the key of a format 0 DSCB is not 44 hex zeroes, it too will be listed. If an unknown
DSCB type (with an id higher than 6) is found, it will also be listed.

The parameter for the VERIFY control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

FREE VOL=volid

The FREE control statement will report a description of the VTOC and a summary of the available space.

The parameter for the FREE control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

OVERLAP VOL=volid

The OVERLAP control statement will check the VTOC of the volume for overlapping extents and list any
that are found.

The parameter for the OVERLAP control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

MISSING VOL=volid

The MISSING control statement will check the VTOC of the volume for missing tracks, and list any that
are found.

The parameter for the MISSING control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

AVAIL VOL=volid

The AVAIL control statement will list all available space on the volume in CCHHR order.

The parameter for the MISSING control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume on which to report.

The AVAIL Control statement will list all available space on the volume in CCHHR order.

FIXUP VOL=volid

The FIXUP control statement makes an attempt to recover missing tracks on the volume. This is done by
adding missing extents to the last format 5 in the format 5 chain, and in addition, one extra format 5 will be
built from a format 0. By this means, from 26 to 51 missing extents may be recovered.

The output of FIXUP is the same as two TRACKS control statements. The first output shows the missing
tracks that were found, and the action that IEHMAP took (replaced or not replaced). The second is a
normal TRACKS output showing what the VTOC looks like after the FIXUP operation.

The parameter for the FIXUP control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume to attempt corrections.

SORT VOL=volid

The SORT control statement makes a more encompassing attempt to recover missing tracks than a FIXUP
control statement. IEHMAP attempts to arrange the missing tracks in CCHHR order in the format 5 chain,
then the format 5 chain is rewritten. The output of a SORT operation is the same as a FIXUP; however, all

free space will be listed as missing, and the action IEHMAP took will be shown.

SORT should be used if the second output of a FIXUP shows that IEHMAP has created multiple
contiguous extents, and/or the volume has more than three formats 5. By multiple contiguous free extents
is meant two or more contiguous extents marked as 'AVAILABLE' on the second output of FIXUP.

The parameter for the SORT control statement is:

VOL=volid

Specifies the volume serial number for the DASD volume to attempt corrections.

Program Parameter (PARM= on EXEC statement)
Additional information can be coded in the PARM parameter of the EXEC statement, as follows:

PARM='[LINES=nnn][,MIN=mmm],[MAX=vvv][,TSO]'

The parameters are:

LINES=nnn

nnn specifies the number of lines to print per page. If specified, the
number may range 10 through 999; if a number is submitted outside this
range, the default will be used. The default line count is 56. LINES
may be abbreviated L.

MIN=mmm

mmm specifies the minimum value (in k-bytes) for the variable
conditional GETMAINï¿½s IEHMAP does to obtain the area for control
blocks, reading in DSCBï¿½s, etc. This will be rouanded to the next
higher 4-k boundary. The default is 64 (16 4-k pages).

MAX=vvv

vvv is the maximum value (in k-bytes) for the variable conditional
GETMAINï¿½s IEHMAP does to obtain the area for control blocks,
reading in DSCBï¿½s, etc. This will be rounded to the next higher 4-k
boundary. The value must be at least 1 (one) higher than the value of
the MIN= parameter (or its default); if it is not, it will be set to
mmm+4. The default value is 128 (32 4-k pages).

TSO

notifies IEHMAP that it is running under TSO, and, therefore, it is not
authorized. When running under TSO, it cannot ENQ upon the VTOC
or catalog; also, the FIXUP and SORT Control statements cannot be
specified.

Examples
 List all datasets on volume
//IEHMAP JOB (001),'IEHMAP',CLASS=A,MSGCLASS=X
//IEHMAP EXEC PGM=IEHMAP,REGION=4096K
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=SYSALLDA,VOL=SER=SYSP01,DISP=OLD
//SYSIN DD *
 NAME VOL=SYSP01,OPT=AQUEUE
*
* List all volume information and all datasets:
* NAME VOL=volid[,OPT=NOPRINT][OPT=AQUEUE]
* change/create/refer dates
* suppress dataset list
* List track summary and all allocations for datasets:
* TRACKS VOL=volid[,OPT=NOPRINT]
* suppress allocations for datasets
* List combined NAME & TRACK information with single command:
* MAP VOL=volid[,OPT=NOPRINT]
* suppress dataset & allocation detail
* List MAP information, plus hex dump of DSCBs:
* DUMP VOL=volid datasetname
* List NAME information, plus hex dump of DSCBs:
* DUMP456 VOL=volid datasetname
* List DUMP information,only in CCHHR order:
* CCHHR VOL=volid
* List NAME information for single dataset:
* DSNAME datasetname
* List NAME information, only include Partitioned datasets:
* PDS VOL=volid datasetname
* List PDS information, only in TTR order:
* TTR VOL=volid datasetname
* List DSNAME information, only include Partitioned datasets:
* ATTRIB VOL=volid[OPT=TTR]
* sort member names in TTR order
* List NAME information, plus directory information, only include
* Partitioned datasets:
* DIR VOL=volid dsname
* List NAME information, plus errors in DSCBs:
* VERIFY VOL=volid
* List VTOC and available space information:
* FREE VOL=volid
* List overlapping extents:
* OVERLAP VOL=volid
* List missing tracks:
* MISSING VOL=volid
* List available space in CCHHR order:
* AVAIL VOL=volid
/*
//

IEHMOVE [supplied by IBM, located in SYS1.LINKLIB]
Used to move or copy one or several datasets from one DASD volume to another. IEHMOVE can be used to move or
copy:

• A dataset residing on from one to five volumes, with the exception of ISAM datasets, and VSAM data spaces.
• A group of cataloged datasets.

• An OS catalog (CVOL) or portions of a CVOL.
• A volume of datasets.

In an IEHMOVE action, if the target device type is not capable of receiving a copy of the source dataset (i.e., source is
DASD and target is tape), IEHMOVE attempts to reorganize the data in order to create an unloaded copy of the source
dataset; if a subsequent IEHMOVE specifies the unloaded copy as source and a target that is capable of receiving the
original dataset format, IEHMOVE attempts to recreate the original format of the original source dataset.

IEHMOVE frequently gets bad reviews, and there are other utilities that may be used to do most of the functions it
provides, but I still find it useful when I am moving datasets from one DASD volume to another. I will not be
including Control statements that I have found not to work, or problematic, under MVS and VSAM catalogs. I would
also suggest taking a look at PDSUR, which is able to read (and process) IEHMOVE unloaded datasets as well
as create unloaded datasets in IEHMOVE format.

In the scope of this page, IEHMOVE's functions relating to OS catalogs (CVOLs) is not really applicable, since MVS
uses VSAM catalogs, so those functions will not be covered.

IEHMOVE requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHMOVE control statements.
• SYSUT1 - defines a DASD volume on which three required work datasets will be allocated.
• anyname1 - defines the source dataset.
• anyname2 - defines the target dataset.

Control Statements
Control statements for IEHMOVE follow the same rules as JCL; i.e., if a statement requires continuation onto a
following record, the operands on the record to be continued are stopped following a comma before reaching column
72, a non-blank character is placed in column 72, and the statement continues on the following record beginning in
column 16.

MOVE DSNAME=name

,FROM=device=serial

[,FROMDD=ddname]

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,RENAME=newname]

[,UNLOAD]

[,COPYAUTH]

The MOVE DSNAME control statement is used to move a dataset. The source dataset is scratched. The
parameters are:

DSNAME=name

Specifies the fully qualified name of the dataset to be moved.

FROM=device=serial

Specifies the device type and serial number of the volume on which the dataset
resides if it is not cataloged. If the dataset is cataloged, FROM should not be
specified.

FROMDD=ddname

Specifies the name of the DD statement from which DCB and LABEL information
(except dataset sequence number), for input datasets on tape volumes, can be
obtained. When FROMDD is used for a partitioned dataset, the tape dataset must
be an unloaded version of a partitioned dataset. The FROMDD operand can be
omitted, provided the dataset has standard labels
and resides on a 9-track tape volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
dataset is to be moved. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source dataset is to be removed.
This parameter should be used only if the source dataset is cataloged. If the
volume is identified by FROM, UNCATLG is ignored. Alias entries in VSAM
catalogs for the source datasets are lost and can be replaced with Access Method
Services if the datasets are later cataloged. For a MOVE operation, UNCATLG
inhibits cataloging of the output dataset.

RENAME=newname

Specifies that the dataset is to be renamed, and indicates the new name.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

MOVE PDS=name

,FROM=device=serial

[,FROMDD=ddname]

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,RENAME=newname]

[,UNLOAD]

[,EXPAND=nn]

[,COPYAUTH]

The MOVE PDS control statement is used to move partitioned datasets. When used in conjunction with
INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the MOVE PDS statement can be used to
merge selected members of several partitioned datasets or to delete members. If IEHMOVE is used to
allocate space for an output partitioned dataset, the MOVE PDS statement can be used to expand a
partitioned directory. If the receiving volume contains a partitioned dataset with the same name, the two
datasets are merged. The source dataset is scratched. The parameters are:

PDS=name

Specifies the fully qualified name of the partitioned dataset to be moved or copied.

FROM=device=serial

Specifies the device type and serial number of the volume on which the dataset
resides if it is not cataloged. If the dataset is cataloged, FROM should not be
specified.

FROMDD=ddname

Specifies the name of the DD statement from which DCB and LABEL information
(except dataset sequence number), for input datasets on tape volumes, can be
obtained. When FROMDD is used for a partitioned dataset, the tape dataset must
be an unloaded version of a partitioned dataset. The FROMDD operand can be
omitted, provided the dataset has standard labels
and resides on a 9-track tape volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
partitioned dataset is to be moved. If multiple datasets are to be written to the same
tape volume, code the enclose the serial parameter in parentheses and follow the
volume serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source partitioned dataset is to be
removed. This parameter should be used only if the source dataset is cataloged. If
the volume is identified by FROM, UNCATLG is ignored. Alias entries in VSAM
catalogs for the source datasets are lost and can be replaced with Access Method
Services if the datasets are later cataloged. For a MOVE operation,
UNCATLG inhibits cataloging of the output dataset.

RENAME=newname

Specifies that the dataset is to be renamed, and indicates the new name.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

EXPAND=nn

Specifies the number of 256-byte records (up to 99 decimal) to be added to the
directory of the specified partitioned dataset. EXPAND will be ignored if space is
previously allocated.

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

MOVE DSGROUP=name

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,UNLOAD]

[,COPYAUTH]

The MOVE DSGROUP control statement is used to move groups of datasets whose names are partially
qualified by one or more identical names. Source datasets are scratched. Dataset groups to be moved must
reside on direct access volumes. Only datasets that could be moved by MOVE DSNAME or MOVE PDS
can be moved by MOVE DSGROUP. Alias entries in VSAM catalogs for the datasets are lost and can be
replaced with Access Method Services. The parameters are:

DSGROUP=name

Specifies the cataloged dataset(s) to be moved. If name is a fully qualified dataset

name, that dataset is not moved. If name is one or more qualifiers, all datasets
whose names are qualified by name are moved.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
dataset(s) is to be moved. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source dataset(s) is to be removed.
This parameter should be used only if the source dataset(s) is cataloged. If the
volume is identified by FROM, UNCATLG is ignored. Alias entries in VSAM
catalogs for the source dataset(s) are lost and can be replaced with Access Method
Services if the dataset(s) are later cataloged. For a MOVE operation, UNCATLG
inhibits cataloging of the output dataset(s).

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

MOVE VOLUME=device=serial

,TO=device=serial

[,TODD=ddname]

[,UNLOAD]

[,COPYAUTH]

The MOVE VOLUME is used to move all the datasets residing on a specified volume. Datasets to be
moved must reside on direct access volumes. The parameters are:

VOLUME=device=serial

Specifies the device type and volume serial number of the source volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
datasets are to be moved. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

COPY DSNAME=name

,FROM=device=serial

[,FROMDD=ddname]

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,CATLG]

[,RENAME=newname]

[,UNLOAD]

[,COPYAUTH]

The COPY DSNAME is used to copy a dataset. The source dataset, if cataloged, remains cataloged unless
UNCATLG or CATLG is specified. The parameters are:

DSNAME=name

Specifies the fully qualified name of the dataset to be copied.

FROM=device=serial

Specifies the device type and serial number of the volume on which the dataset
resides if it is not cataloged. If the dataset is cataloged, FROM should not be
specified.

FROMDD=ddname

Specifies the name of the DD statement from which DCB and LABEL information
(except dataset sequence number), for input datasets on tape volumes, can be
obtained. When FROMDD is used for a partitioned dataset, the tape dataset must
be an unloaded version of a partitioned dataset. The FROMDD operand can be
omitted, provided the dataset has standard labels
and resides on a 9-track tape volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
dataset is to be copied. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source dataset is to be removed.
This parameter should be used only if the source dataset is cataloged. If the volume
is identified by FROM, UNCATLG is ignored. Alias entries in VSAM catalogs for
the source datasets are lost and can be replaced with Access Method Services if the
datasets are later cataloged.

CATLG

Specifies that the copied dataset(s) is to be cataloged. The cataloging is done in the
VSAM master/JOBCAT/STEPCAT catalog. If the RENAME and FROM
operands are omitted, the source dataset(s) is uncataloged to permit the copied
dataset(s) to be cataloged.

RENAME=newname

Specifies that the dataset is to be renamed, and indicates the new name.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

COPY PDS=name

,FROM=device=serial

[,FROMDD=ddname]

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,CATLG]

[,RENAME=newname]

[,EXPAND=nn]

[,COPYAUTH]

The COPY PDS control statement is used to copy partitioned datasets. When used in conjunction with
INCLUDE, EXCLUDE, REPLACE, or SELECT statements, the COpy PDS statement can be used to
merge selected members of several partitioned datasets or to delete members. If IEHMOVE is used to
allocate space for an output partitioned dataset, the COPY PDS statement can be used to expand a
partitioned directory. If the receiving volume already contains a partitioned dataset with the same name,
the two are merged. The parameters are:

PDS=name

Specifies the fully qualified name of the partitioned dataset to be moved or copied.

FROM=device=serial

Specifies the device type and serial number of the volume on which the dataset
resides if it is not cataloged. If the dataset is cataloged, FROM should not be
specified.

FROMDD=ddname

Specifies the name of the DD statement from which DCB and LABEL information
(except dataset sequence number), for input datasets on tape volumes, can be
obtained. When FROMDD is used for a partitioned dataset, the tape dataset must
be an unloaded version of a partitioned dataset. The FROMDD operand can be
omitted, provided the dataset has standard labels
and resides on a 9-track tape volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
partitioned dataset is to be copied.

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source partitioned dataset is to be
removed. This parameter should be used only if the source dataset is cataloged. If
the volume is identified by FROM, UNCATLG is ignored. Alias entries in VSAM
catalogs for the source datasets are lost and can be replaced with Access Method
Services if the datasets are later cataloged.

CATLG

Specifies that the copied dataset(s) is to be cataloged. The cataloging is done in the
VSAM master/JOBCAT/STEPCAT catalog. If the RENAME and FROM
operands are omitted, the source dataset(s) is uncataloged to permit the copied
dataset(s) to be cataloged.

RENAME=newname

Specifies that the dataset is to be renamed, and indicates the new name.

EXPAND=nn

Specifies the number of 256-byte records (up to 99 decimal) to be added to the
directory of the specified partitioned dataset. EXPAND cannot be specified if space
is previously allocated.

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

COPY DSGROUP=name

,TO=device=serial

[,TODD=ddname]

[,UNCATLG]

[,CATLG]

[,UNLOAD]

[,COPYAUTH]

The COPY DSGROUP is used to copy groups of datasets whose names are partially qualified by one or
more identical names. Only datasets that can be copied with COPY DSNAME or COPY PDS can be
copied with COPY DSGROUP. Dataset groups to be copied must reside on DASD volumes. The
parameters are:

DSGROUP=name

Specifies the cataloged dataset(s) to be copied. If name is a fully qualified dataset
name, that dataset is not copied. If name is one or more qualifiers, all datasets
whose names are qualified by name are copied.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
dataset(s) is to be copied. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

UNCATLG

Specifies that the catalog entry pertaining to the source dataset(s) is to be removed.
This parameter should be used only if the source dataset(s) is cataloged. If the
volume is identified by FROM, UNCATLG is ignored. Alias entries in VSAM
catalogs for the source dataset(s) are lost and can be replaced with Access Method
Services if the dataset(s) are later cataloged.

CATLG

Specifies that the copied dataset(s) is to be cataloged. The cataloging is done in the
VSAM master/JOBCAT/STEPCAT catalog.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

COPY VOLUME=device=serial

,TO=device=serial

[,TODD=ddname]

[,CATLG]

[,UNLOAD]

[,COPYAUTH]

The COPY VOLUME is used to copy all the datasets residing on a specified volume. Datasets to be copied
must reside on direct access volumes. The parameters are:

VOLUME=device=serial

Specifies the device type and volume serial number of the source volume.

TO=device=serial

Specifies the device type and volume serial number of the volume to which the
datasets are to be copied. If multiple datasets are to be written to the same tape
volume, code the enclose the serial parameter in parentheses and follow the volume
serial number with the label sequence number, separated by a comma:
TO=TAPE=(123456,1).

TODD=ddname

Specifies the name of a DD statement from which DCB (except RECFM, BLKSIZE
and LRECL) and LABEL (except dataset sequence number) information for output
datasets on tape volumes, can be obtained.

CATLG

Specifies that the copied dataset(s) is to be cataloged. The cataloging is done in the
VSAM master/JOBCAT/STEPCAT catalog. In my experience, under MVS,
CATLG will fail because the source dataset(s) are not uncataloged.

UNLOAD

Specifies that the dataset is to be unloaded to the receiving volume(s).

COPYAUTH

Specifies that the receiving dataset is to be given the same access list as the input
dataset, if the input dataset is RACF-protected.

Program Parameter (PARM= on EXEC statement)
The optional PARM values which may be specified are PARM='[POWER=n][,LINECNT=xx]'. The values
are:

POWER=n

Used to request that the normal amount of space allocated for work areas be
increased n times (1 to 999). The POWER parameter is used when 750 or more
members are being moved or copied. The progression for the value of n is:

• POWER=2 when 750 to 1,500 members are to be moved or copied.
• POWER=3 when 1,501 to 2,250 members are to be moved or copied.
• POWER=4 when 2,251 to 3,000 members are to be moved or copied.

If POWER = 2, the work space requirement on the SYSUT1 volume is two times
the basic requirement; if POWER=3, work space requirement is three times the
basic requirement, etc. For example, if POWER=2, three areas of 26, 26, and 52
contiguous tracks on a 2314 must be available. If a direct access device other than a
2314 is used, an equivalent amount of space must be available.

LINECNT=xx

Specifies the number of lines per page in the listing of the SYSPRINT dataset; xx is
a two-digit number in the range 04 through 99.

Examples
 Copy partitioned dataset from one DASD to another DASD, recataloging
//IEHMOVE JOB (001),'IEHMOVE-1',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDFROM DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//DDTO DD UNIT=3380,VOL=SER=MVS381,DISP=OLD
//SYSIN DD *
 COPY PDS=JAY01.FILE807.PDS,FROM=3380=MVS380,TO=3380=MVS381, C
 UNCATLG,CATLG
//

 Copy all datasets from one DASD volume to another DASD volume
//IEHMOVE JOB (001),'IEHMOVE-2',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDFROM DD UNIT=3380,VOL=SER=MVS381,DISP=OLD
//DDTO DD UNIT=3380,VOL=SER=SYSP01,DISP=OLD
//SYSIN DD *
 COPY VOLUME=3380=MVS380,TO=3380=SYSP01
//

 Move all datasets matching HLQ from one DASD to another DASD, recataloging
//IEHMOVE JOB (001),'IEHMOVE-3',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDFROM DD UNIT=3380,VOL=SER=PUB000,DISP=OLD
//DDTO DD UNIT=3380,VOL=SER=MVS381,DISP=OLD
//SYSIN DD *
 MOVE DSGROUP=HMVS01.PROJECT1, C
 FROM=3380=PUB000,TO=3380=MVS381
//

 Unload all datasets matching HLQ from DASD to tape
//IEHMOVE JOB (001),'IEHMOVE-4',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDFROM DD UNIT=3380,VOL=SER=PUB000,DISP=OLD
//DDTO DD UNIT=TAPE,VOL=SER=22005M,DISP=(NEW,KEEP),LABEL=(1,SL)
//SYSIN DD *
 COPY DSGROUP=HMVS01, C
 FROM=3380=PUB000,TO=TAPE=22005M,UNLOAD
//

 Reload partitioned dataset from tape to DASD
//IEHMOVE JOB (001),'IEHMOVE-5',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*

//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDIN DD UNIT=TAPE,DSN=HMVS01.FILE046.PDS,DISP=OLD,
// VOL=SER=22005M,LABEL=(4,SL)
//DDOUT DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 COPY DSNAME=HMVS01.FILE046.PDS, C
 FROM=TAPE=(22005M,4),TO=3380=MVS380
//

 Unload multiple datasets from DASD to tape
//IEHMOVE JOB (001),'IEHMOVE-6',CLASS=A,MSGCLASS=X
//IEHMOVE EXEC PGM=IEHMOVE,REGION=4096K,PARM='POWER=9'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=3390,VOL=SER=PUB001,DISP=OLD
//DDFROM DD DISP=OLD,UNIT=SYSDA,VOL=SER=MVS000
//DDOUT DD UNIT=TAPE,VOL=SER=24128B,DISP=(NEW,KEEP),LABEL=(1,SL)
//SYSIN DD *
 COPY DSNAME=SYS2.CMDLIB,FROM=3350=MVS000,TO=TAPE=(24128B,1),UNLOAD
 COPY DSNAME=SYS2.HELP,FROM=3350=MVS000,TO=TAPE=(24128B,2),UNLOAD
 COPY DSNAME=SYS2.LINKLIB,FROM=3350=MVS000,TO=TAPE=(24128B,3),UNLOAD
 COPY DSNAME=SYS2.PROCLIB,FROM=3350=MVS000,TO=TAPE=(24128B,4),UNLOAD
 COPY DSNAME=SYS2.CONTROL,FROM=3350=MVS000,TO=TAPE=(24128B,5),UNLOAD
/*
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

IEHPROGM [supplied by IBM, located in SYS1.LINKLIB]
Used to modify system control data and to maintain datasets at an organizational level. IEHPROGM can be used to:

• Scratch a dataset or a member.
• Rename a dataset or a member.
• Catalog or uncatalog a non-VSAM dataset.
• Maintain dataset passwords.

IEHPROGM requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains IEHPROGM control statements.
• anyname1 - defines the DASD volume on which affected datasets reside.

Control Statements
Control statements for IEHPROGM follow the same rules as JCL; i.e., if a statement requires continuation onto a
following record, the operands on the record to be continued are stopped following a comma before reaching column
72, a non-blank character is placed in column 72, and the statement continues on the following record beginning in
column 16.

SCRATCH {DSNAME=name | VTOC}

[,VOL=device=list]

[,PURGE]

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

[,MEMBER=name]

[,SYS]

The SCRATCH control statement is used to scratch a dataset or member from a DASD volume. A dataset
or member is scratched only from the volumes designated in the SCRATCH statement. This function does
not uncatalog scratched datasets. The parameters are:

DSNAME=name | VTOC

DSNAME=name

Specifies the fully qualified name of either the dataset to be scratched or
the partitioned dataset that contains the member to be scratched. The
qualified name must not exceed 44 characters, including delimiters.

VTOC

Specifies that all datasets on the specified volume, except those
protected by a password or those whose expiration dates have not
expired, are to be scratched. Password-protected datasets are scratched
if the correct password is provided. The effect of VTOC is modified
when it is used with PURGE or SYS. Extreme caution is advised
when specifying VTOC and PURGE together; the result will be the
removal of all datasets on the volume with no warning given nor
confirmation required.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

If VTOC or MEMBER is specified, VOL cannot specify more than one volume.
Caution should be used when specifying VTOC if VOL specifies the system
residence volume.

PURGE

Specifies that each dataset specified by DSNAME or VTOC be scratched, even if its
expiration date has not elapsed. Default: The specified datasets are scratched only
if their expiration dates have elapsed.

MEMBER=name

Specifies a member name or alias of a member (in the named dataset) to be
removed from the directory of a partitioned dataset. This name is not validity-
checked because all members must be accessible, whether the name is valid or not.

SYS

Specifies that datasets that have names that begin with
"AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA." or "SYSnnnnn.T"
and "P" or "V" in position 19 are to be scratched. These are names
assigned to datasets by the operating system. This parameter is valid only when

VTOC is specified. If the name of the dataset to be scratched begins with SYS,
nnnnn is the date.

RENAME DSNAME=name

,VOL=device=list

,NEWNAME=name

[,MEMBER=name]

The RENAME control statement is used to change the name or alias of a dataset or member residing on a
DASD volume. The name is changed only on the designated volume(s). The rename operation does not
update the catalog. The parameters are:

DSNAME=name

Specifies the fully qualified name of either the dataset to be renamed or the
partitioned dataset that contains the member to be renamed. The qualified name
must not exceed 44 characters, including delimiters.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

If MEMBER is specified, VOL cannot specify more than one volume.

NEWNAME=name

Specifies the new fully qualified name for the dataset, or the new member or alias.

MEMBER=name

Specifies a member name or alias of a member (in the named dataset) to be
renamed. This name is not validity-checked because all members must be
accessible, whether the name is valid or not.

CATLG DSNAME=name

,VOL=device=list

The CATLG control statement is used to add an entry for a non-VSAM dataset to a catalog. The
parameters are:

DSNAME=name

Specifies the fully qualified name of either the dataset to be cataloged. The
qualified name must not exceed 44 characters, including delimiters.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

The volume serial numbers must appear in the same order in which they were
originally encountered (in DD statements within the input stream) when the dataset
was created.

UNCATLG DSNAME=name

The UNCATLG control statemetn is used to remove an entry for a non-VSAM dataset from a catalog. The
parameter is:

DSNAME=name

Specifies the fully qualified name of either the dataset to be uncataloged. The
qualified name must not exceed 44 characters, including delimiters.

ADD DSNAME=name

[,PASWORD2=new-password]

[,CPASWORD=control-password]

[,TYPE=code]

[,VOL=device=list]

[,DATA='user-data']

The ADD control statement is used to add a password entry in the PASSWORD dataset. When the control
entry for a direct access, online dataset is added, the indicated protection status of the dataset is set in the
DSCB; when a secondary entry is added, the protection status in the DSCB is not changed. The parameters
are:

DSNAME=name

Specifies the fully qualified name of either the dataset whose password entry is to
be assigned. The qualified name must not exceed 44 characters, including
delimiters.

PASWORD1=current-password

PASWORD2=new-password

Specifies the new password to be added or assigned to the entry. If the password is
not to be changed, the current password must also be specified as the new
password. The password can consist of one to eight alphameric characters.
Default: The operator is prompted for a new password.

CPASWORD=control-password

Specifies the control password for the dataset. CPASWORD must be specified

unless this is the first password assigned to the dataset, in which case PASWORD2
specifies the password to be added.

TYPE=code

Specifies the protection code of the password, and if a control password entry is to
be changed for or assigned to a direct access, online dataset, specifies the protection
status of the dataset. The values that can be specified for code are:

• 1 - Specifies that the password is to allow both read and write access to the
dataset; if a control password is being assigned or changed, read/write
protection is set in the DSCB.

• 2 - Specifies that the password is to allow only read access to the dataset; if
control password is assigned or changed, read/write protection is set in the
DSCB.

• 3 - Specifies that the password is to allow b0th read and write access to the
dataset; if a control password is being assigned or changed, read-without-
password protection is set in the DSCB.

Default: For ADD, if this parameter is omitted the new password is assigned the
same protection code as the control password for the dataset. If a control password
is being "added," TYPE=3 is the default.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

If omitted, the protection status in the DSCB is not set or changed, unless the
dataset is cataloged. This parameter is not necessary for secondary password
entries, or if the desired protection status in the DSCB is already set or is not to be
changed by ADD or REPLACE.

DATA='user-data'

Specifies the user data is to be placed in the password entry. The user data has a
maximum length of 77 bytes and must be enclosed in apostrophes. If DATA is
omitted from an ADD operation, 77 blanks are used. If DATA is omitted from a
REPLACE operation, current user data is not changed.

REPLACE DSNAME=name

[,PASWORD1=current-password]

[,PASWORD2= new-password]

[,CPASWORD=control-password]

[,TYPE=code]

[,VOL=device=list]

[,DATA='user-data']
The REPLACE control statement is used to replace any or all of the following information in a password

entry: the password name, protection mode (read/write or read only) of the password, and user data. When
the control entry for a direct access, online dataset is replaced, the protection status of the dataset is changed
in the DSCB if necessary; when a secondary entry is replaced, the protection status in the DSCB is not
changed. The parameters are:

DSNAME=name

Specifies the fully qualified name of either the dataset whose password entry is to
be changed. The qualified name must not exceed 44 characters, including
delimiters.

PASWORD1=current-password

Specifies the password in the entry to be changed. Default: The operator is
prompted for the current password.

PASWORD2=new-password

Specifies the new password to be added or assigned to the entry. If the password is
not to be changed, the current password must also be specified as the new
password. The password can consist of one to eight alphameric characters.
Default: The operator is prompted for a new password.

CPASWORD=control-password

Specifies the control password for the dataset. CPASWORD must be specified
unless the control entry is being changed or deleted, in which case PASWORD1
specifies the control password.

TYPE=code

Specifies the protection code of the password, and if a control password entry is to
be changed for or assigned to a direct access, online dataset, specifies the protection
status of the dataset. The values that can be specified for code are:

• 1 - Specifies that the password is to allow both read and write access to the
dataset; if a control password is being assigned or changed, read/write
protection is set in the DSCB.

• 2 - Specifies that the password is to allow only read access to the dataset; if
control password is assigned or changed, read/write protection is set in the
DSCB.

• 3 - Specifies that the password is to allow b0th read and write access to the
dataset; if a control password is being assigned or changed, read-without-
password protection is set in the DSCB.

Default: For REPLACE, the protection is not changed.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

If omitted, the protection status in the DSCB is not set or changed, unless the
dataset is cataloged. This parameter is not necessary for secondary password

entries, or if the desired protection status in the DSCB is already set or is not to be
changed by ADD or REPLACE.

DATA='user-data'

Specifies the user data is to be placed in the password entry. The user data has a
maximum length of 77 bytes and must be enclosed in apostrophes. If DATA is
omitted from a REPLACE operation, current user data is not changed.

DELETEP DSNAME=name

[,PASWORD1=current-password]

[,CPASWORD=control-password]

[,VOL=device=list]

The DELETEP control statement is used to delete an entry in the PASSWORD dataset. If a control entry is
deleted, all the secondary entries for that dataset are also deleted. If a secondary entry is deleted, only that
entry is deleted. When the control entry for a direct access, online dataset is deleted, the protection status in
the DSCB is set to indicate that the dataset is no longer protected. The parameters are:

DSNAME=name

Specifies the fully qualified name of either the dataset whose password entry is to
be deleted. The qualified name must not exceed 44 characters, including delimiters.

PASWORD1=current-password

Specifies the password in the entry to be deleted. Default: The operator is prompted
for the current password.

CPASWORD=control-password

Specifies the control password for the dataset. CPASWORD must be specified
unless the control entry is being changed or deleted, in which case PASWORD1
specifies the control password.

VOL=device=list

Specifies the device type and serial number(s) of the volume(s), limited to 50, that
contain the dataset(s).

If omitted, the protection status in the DSCB is not set or changed, unless the
dataset is cataloged. This parameter is not necessary for secondary password
entries, or if the desired protection status in the DSCB is already set or is not to be
changed by ADD or REPLACE.

LIST DSNAME=name

,PASWORD1=current-password

The LIST control statement is used to format and print information from a password entry. The parameters
are:

DSNAME=name

Specifies the fully qualified name of the dataset whose password entry is to be
listed. The qualified name must not exceed 44 characters, including delimiters.

PASWORD1=current-password

Specifies the password in the entry to be listed. Default: The operator is prompted
for the current password.

Examples
 Scratch all expired datasets, including SYS datasets
//IEHPROGM JOB (001),'IEHPROGM-1',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3350,VOL=SER=WORK00,DISP=OLD
//SYSIN DD *
 SCRATCH VTOC,VOL=3350=WORK00
//

 Remove all datasets on volume, regardless of expiration status
//IEHPROGM JOB (001),'IEHPROGM-2',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 SCRATCH VTOC,PURGE,VOL=3380=MVS380
//

 Scratch and uncatalog two datasets
//IEHPROGM JOB (001),'IEHPROGM-3',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 UNCATLG DSNAME=JAY01.CUSTOMER.MASTER
 SCRATCH DSNAME=JAY01.CUSTOMER.MASTER,VOL=3380=MVS380
 UNCATLG DSNAME=JAY01.FILE807.PDS
 SCRATCH DSNAME=JAY01.FILE807.PDS,VOL=3380=MVS380
//

 Rename and recatalog a dataset
//IEHPROGM JOB (001),'IEHPROGM-4',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 RENAME DSNAME=JAY01.SIMULAO.LINKLIB,NEWNAME=JAY01.SIMULAN.LINKLIB, C
 VOL=3380=MVS380
 UNCATLG DSNAME=JAY01.SIMULAO.LINKLIB
 CATLG DSNAME=JAY01.SIMULAN.LINKLIB

//

 Add passwords to a dataset
//IEHPROGM JOB (001),'IEHPROGM-5',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 ADD DSNAME=JAY01.STUDENT.MASTER,PASWORD2=KEY,TYPE=1, C
 DATA='SECONDARY IS READ'
 ADD DSNAME=JAY01.STUDENT.MASTER,CPASWORD=KEY,TYPE=2, C
 PASWORD2=READ,DATA='ASSIGNED TO J.DOE'
//

 List passwords for a dataset
//IEHPROGM JOB (001),'IEHPROGM-6',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS380,DISP=OLD
//SYSIN DD *
 LIST DSNAME=JAY01.STUDENT.MASTER,PASWORD1=KEY
//

 Rename a member of a Partitioned dataset
//IEHPROGM JOB (001),'IEHPROGM-7',CLASS=S,MSGCLASS=X
//PROGM EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=*
//DD1 DD UNIT=3380,VOL=SER=MVS381,DISP=OLD
//SYSIN DD *
 RENAME DSNAME=JAY01.ISAM.COBOL,VOL=3380=MVS381,MEMBER=ISREPT, C
 NEWNAME=ISREPT1
//

Source: GC26-3902-1 OS/VS2 MVS Utilities Release 3.8

LISTPDS [written by Gene Czarcinski, located in SYSC.LINKLIB]
Used for listing and/or punching source libraries or datasets. LISTPDS generates formatted listings of a PDS directory,
the contents of processed members or sequential files, as well as (optionally) punching processed members and/or
sequential datasets. Records may be generated which allow the output to be used in conjunction with the IBM utility
IEBUPDTE.

LISTPDS is located in File #316 of the CBT tape and was developed by Gene Czarcinski at the NASA/Goddard Space
Flight Center. LISTPDS requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSLIST - defines a sequential output dataset. Will contain the listing of the requested datasest. Required

when the LIST option is used.
• SYSPUNCH - defines a sequential output dataset. Required when either DECK or UPDTE options are used.
• SYSLIB - defines the Partitioned or sequential dataset(s) to be processed.
• SYSIN - defines a sequential input dataset that contains statements used to specify individual members to

process. Only the first partitioned dataset of SYSLIB will be used. When SYSIN is empty, DUMMY, or not
included, all members of SYSLIB are processed. If the EXCLUDE option is specified, all members other than
those specified in the SYSIN file will be listed. The EXCLUDE/SELECT option is ignored if SYSIN is a null

http://bitsavers.trailing-edge.com/pdf/ibm/370/OS_VS2/Release_3.8_1978/GC26-3902-1_OS_VS2_MVS_Utilities_Rel_3.8_Sep83.pdf

dataset or if the NOSEL option is specified.

Program Parameter (PARM= on EXEC statement)
The execution of LISTPDS and which options are used are entered as keywords in the parameter field. The
keywords, their function and defaults are:

LIST | NOLIST

• LIST - Produce a listing of the contents of the datasets in the SYSLIB file on SYSLIST.
The DD statement SYSLIST is required. The default is LIST.

• NOLIST - Do not produce a listing of datasets and/or members.

DECK | NODECK

• DECK - Reproduce card images of the contents of the members in the SYSLIB file on
SYSPUNCH. The SYSPUNCH DD statement is required.

• NODECK - Do not reproduce card images. The default is NODECK.

LISTDIR

• Produces only a listing of the directory entries for the members. No record count is
given and less I/O time is required. The default is no directory listing.

UPDTE | NOUPDTE

• UPDTE - IEBUPDTE utility ADD statements will be produced on SYSPUNCH. When
DECK is also specified they will precede each member. If a member contains
IEBUPDTE statements, the './' statements within the member will be written with '><' in
place of the './' characters. The SYSPUNCH DD statement is required.

• NOUPDTE - IEBUPDTE utility ADD statements will not be produced. The default is
NOUPDTE.

SSI | NOSSI

• SSI - The system status information is included on the IEBUPDTE ADD statements.
• NOSSI - The system status information is not placed on the IEBUPDTE ADD

statements. The default is NOSSI.

SPF | NOSPF

• SPF - If ISPF statistics exist, they are included on the IEBUPDTE ADD statements.
The default is SPF.

• NOSPF - ISPF statistics are not included on the IEBUPDTE ADD statements.

TRUNC | NOTRUNC

• TRUNC - For partitioned datasets with records longer than 100 bytes, only the first 100
bytes are listed on SYSLIST. The default is TRUNC.

• NOTRUNC - For partitioned datasets with records longer than 100 bytes, the entire
record is listed on SYSLIST. This will require more than on line per record listed.

LINECNT=nn

• The number of lines printed per page for SYSPRINT and SYSLIST is specified by nn.
The default value is 60. This should be changed to 58 for devices which allow a
maximum of 66 lines per page, such as a XEROX 1200 printer.

RITS | CRBE | CRJE

• Used to inform LISTPDS special processing is required due to 88-byte logical records.
The default is to treat Partitioned datasets as not being either a RITS, CRBE or CRJE
library.

HEXOUT | NOHEXOUT

• HEXOUT - Prints the records on SYSLIST in hexadecimal format. This is useful for
non-source members. The default is NOHEXOUT.

• NOHEXOUT - Prints the records on SYSLIST as they exist; unprintable characters (not
in the 64 character set) will be printed as blanks. The default is NOHEXOUT.

NUM | NONUM

• NUM - Prints the record number on the left margin followed by a space and then the
remainder of the record image. Datasets with record format F, FB, or U are assumed to
have the record number in the last 8 bytes of each record. Datasets with record format V
or VB, are assumed to have the record number in the first 8 bytes of each record. This
applies to both partitioned and sequential organization datasets.

• NONUM - Prints each record as they exist. The default for this option is NONUM.

XLATE | TEXT | NOXLATE | NOTEXT

• XLATE and TEXT - Lower case characters are translated to upper case before printing.
The default is TEXT.

• NOXLATE and NOTEXT - Records are printed as they exist.

EJECT | NOEJECT

• EJECT - Each member begins on a new page. The default is EJECT.
• NOEJECT - Triple spacing is used to separate members.

SELECT | NOSEL | EXCLUDE

• SELECT - Only the member names specified in SYSIN will be processed. If a SYSIN
DD is supplied, this option is assumed to be in effect, unless NOSEL is specified.

• NOSEL - All members are processed.
• EXCLUDE - The member names specified in SYSIN file will NOT be printed if this

option is specified. All other members will be printed.

EROPT={TERM | ACC}

• TERM - Processing will be terminated if an I/O error occurs while reading SYSLIB.
• ACC - Processing will continue after an I/O error is encountered while reading

SYSLIB. The bad records are ignored. The default is EROPT=ACC.

MAXLIST=nn

• The number specified will limit printing on SYSLIST to the first nn lines of each
member. The default is print all records for each member.

Control Statements
There are no control statements. If specific members of a partitioned dataset are to be selected or excluded,
their names are included in SYSIN. The names specified are separated by commas. As many statements as
are required may be included in a single execution.

Examples
 Print the directory of a partitioned dataset
//LISTPDS JOB (1),'LISTPDS-1',CLASS=A,MSGCLASS=X
//LISTPDS EXEC PGM=LISTPDS,PARM='NOLIST'
//SYSPRINT DD SYSOUT=*
//SYSLIST DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.PROCLIB
//SYSPUNCH DD SYSOUT=B
//

 Print all members of a partitioned dataset
//LISTPDS JOB (1),'LISTPDS-2',CLASS=A,MSGCLASS=X
//LISTPDS EXEC PGM=LISTPDS,PARM='LIST'
//SYSPRINT DD SYSOUT=*
//SYSLIST DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.PROCLIB
//SYSPUNCH DD SYSOUT=B
//

 Punch selected members of a partitioned dataset
//LISTPDS JOB (1),'LISTPDS-3',CLASS=A,MSGCLASS=X
//LISTPDS EXEC PGM=LISTPDS,PARM='NOLIST,DECK'
//SYSPRINT DD SYSOUT=*
//SYSLIST DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSC.PROCLIB
//SYSPUNCH DD SYSOUT=B
//SYSIN DD *
ASMGC,ASMGCL,ASMGCLG
COBUC,COBUCG,COBUCL,COBUCLG
//

 Punch selected members of a partitioned dataset with IEBUPDTE cards
//LISTPDS JOB (1),'LISTPDS-4',CLASS=A,MSGCLASS=X
//LISTPDS EXEC PGM=LISTPDS,PARM='NOLIST,DECK,UPDTE,SPF'
//SYSPRINT DD SYSOUT=*
//SYSLIST DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=JAY01.ISAM.COBOL
//SYSPUNCH DD SYSOUT=B
//SYSIN DD *
ISREPT1,ISREPT2
//

 Punch and print sequential dataset
//LISTPDS JOB (1),'LISTPDS-5',CLASS=A,MSGCLASS=X

//LISTPDS EXEC PGM=LISTPDS,PARM='LIST,DECK'
//SYSPRINT DD SYSOUT=*
//SYSLIST DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=JAY01.CBLPATCH.ZAPS
//SYSPUNCH DD SYSOUT=B
//

MINIUNZ [distributed by Greg Price, located in SYSC.LINKLIB]
Used for uncompressing the contents of datasets created by compression utilities commonly used on PCs and by the
companion program MINIZIP.

MINIUNZ was written in the C-language and has been ported to MVS using the compiler JCC, from Jason Winter,
which produces Assembler language output and requires no runtime libraries. This version is from File #135 of the
CBT tape (version 502, 11/2021).

MINIUNZ requires the following DD statements:

• STDOUT - defines a sequential output message dataset.
• inputDD - defines the sequential input dataset containing the compressed data records.
• outputDD - defines the output partitioned or sequential dataset that will contain the extracted data records.

Program Parameter (PARM= on EXEC statement)
The parameter field is used to specify DD names to use for the extraction and may also be used to specify
what data is to be extracted from the compressed archive. The format of the parameter field is:

[{-L | -V}] inputDD outputDD [name]

The values and their function are:

[{-L | -V}]

If one of these options is specified, a list of the archive contents is produced, but no
datasets are extracted. The inputDD is required, but the outputDD may point to a
DUMMY DD statement. Both options will list the contents of the archive, -V will
also include the comment that is added when an archive is created under MVS, by
the program MINIZIP; the comment indicates whether the data was stored as
EBCDIC or converted to ASCII, plus the RECFM and LRECL of the data records.

inputDD

Specifies the name of the DD statement to be used to read the compressed archive.

outputDD

Specifies the name of the DD statement to be used to write the extracted records. If
the -L or -V option is used, this DD may be specified as DUMMY. If the [name]
parameter is omitted, the DD must specify a partitioned dataset, into which all
members of the archive are extracted. If the [name] parameter is specified, the DD
must specify a sequential dataset, into which only the single member is extracted.

[name]

Specifies the single member to be extracted from the archive.

Control Statements
There are no control statements for MINIUNZ.

Examples
 List contents of archive
//UNZIP JOB 1,'MINI UNZIP 1',CLASS=A,MSGCLASS=X
//MINIUNZ EXEC PGM=MINIUNZ,REGION=7M,
// PARM='-L ZIPFILE PDSOUT'
//STDOUT DD SYSOUT=*
//ZIPFILE DD DISP=SHR,DSN=JAY01.ISAMCOB.ZIP
//PDSOUT DD DUMMY
//

 Extract entire contents of archive to a partitioned dataset
//UNZIP JOB 1,'MINI UNZIP 2',CLASS=A,MSGCLASS=X
//MINIUNZ EXEC PGM=MINIUNZ,REGION=7M,
// PARM='ZIPFILE PDSOUT'
//STDOUT DD SYSOUT=*
//ZIPFILE DD DISP=SHR,DSN=JAY01.ISAMCOB.ZIP
//PDSOUT DD DISP=(,CATLG,DELETE),DSN=JAY01.ISAMCO.UNZIP2,
// UNIT=SYSDA,VOL=SER=MVS381,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440),
// SPACE=(CYL,(10,1,50),RLSE)
//

 Extract a single member from an archive to a sequential dataset
//UNZIP JOB 1,'MINI UNZIP 3',CLASS=A,MSGCLASS=X
//MINIUNZ EXEC PGM=MINIUNZ,REGION=7M,
// PARM='ZIPFILE SEQOUT SORTNAME'
//STDOUT DD SYSOUT=*
//ZIPFILE DD DISP=SHR,DSN=JAY01.ISAMCOB.ZIP
//SEQOUT DD DISP=(,CATLG,DELETE),DSN=JAY01.ISAMCO.SORTNAME.COBOL,
// UNIT=SYSDA,VOL=SER=MVS381,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440),
// SPACE=(CYL,(10,1),RLSE)
//

MINIZIP [distributed by Greg Price, located in SYSC.LINKLIB]
Used for compressing the contents of: 1) one or more sequential datasets or members of partitioned datasets; or 2) all
the members of a one or more partitioned datasets, to create a smaller, portable copy of the original data. Datasets
created by MINIZIP may be processed by compression utilities commonly used on PCs and by the companion program
MINIUNZ to reconstruct the original datasets.

Note: Datasets created by MINIZIP may be viewed with REVIEW's Browse function, which will expand the

compressed output an present it in a viewable format.

MINIZIP was written in the C-language and has been ported to MVS using the compiler JCC, from Jason Winter,
which produces Assembler language output and requires no runtime libraries. This version is from File #135 of the
CBT tape (version 502, 11/2021).

MINIZIP requires the following DD statements:

• STDOUT - defines a sequential output message dataset.
• SYSUT1 - defines a work dataset.
• inputDD - defines the partitioned or sequential input dataset containing the data records to be compressed.
• outputDD - defines the sequential output dataset that will contain the compressed data records.

Program Parameter (PARM= on EXEC statement)
The parameter field is used to specify DD names to use for the compression. The format of the parameter
field is:

[-O] outputDD inputDD[inputDD...]

The values and their function are:

[-O]

Specifies that all inputDD statements refer to partitioned datasets and all members of each
dataset are to be added to the archive.

outputDD

Specifies the name of the DD statement to be used to write the compressed archive.

inputDD[inputDD...]

Specifies the names of one or more DD statements from which data records are to be read and
placed into the archive.

Control Statements
There are no control statements for MINIZIP.

Examples
 Compress all members of a partitioned dataset to archive
//ZIP JOB 1,'MINI ZIP 1',CLASS=A,MSGCLASS=X
//MINIZIP EXEC PGM=MINIZIP,REGION=7M,
// PARM='-o ZIPFILE PDSIN'
//STDOUT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//ZIPFILE DD DISP=(NEW,CATLG,DELETE),DSN=JAY01.ISAMCOB.ZIP,

// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(TRK,(60,15),RLSE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=27920)
//PDSIN DD DISP=SHR,DSN=JAY01.ISAM.COBOL
//

 Compress all members of three partitioned datasets to archive
//ZIP JOB 1,'MINI ZIP 2',CLASS=A,MSGCLASS=X
//MINIZIP EXEC PGM=MINIZIP,REGION=7M,
// PARM='-o ZIPFILE PDSIN1 PDSIN2 PDSIN3'
//STDOUT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//ZIPFILE DD DISP=(NEW,CATLG,DELETE),DSN=JAY01.BASE.ZIP,
// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(TRK,(60,15),RLSE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=27920)
//PDSIN1 DD DISP=SHR,DSN=JAY01.CLIST
//PDSIN2 DD DISP=SHR,DSN=JAY01.CNTL
//PDSIN3 DD DISP=SHR,DSN=JAY01.EXEC
//

 Compress three sequential datasets to archive
//ZIP JOB 1,'MINI ZIP 3',CLASS=A,MSGCLASS=X
//MINIZIP EXEC PGM=MINIZIP,REGION=7M,
// PARM='ZIPFILE SEQIN1 SEQIN2 SEQIN3'
//STDOUT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//ZIPFILE DD DISP=(NEW,CATLG,DELETE),DSN=JAY01.IERAM1.ZIP,
// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(TRK,(60,15),RLSE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=27920)
//SEQIN1 DD DISP=SHR,DSN=SYSP.MVT.IERAM1.CNTL
//SEQIN2 DD DISP=SHR,DSN=SYSP.MVT.IERAM1.OBJECT
//SEQIN3 DD DISP=SHR,DSN=SYSP.MVT.IERCMZ.CNTL
//

 Compress four members of a partitioned dataset to archive
//ZIP JOB 1,'MINI ZIP 4',CLASS=A,MSGCLASS=X
//MINIZIP EXEC PGM=MINIZIP,REGION=7M,
// PARM='ZIPFILE PDSIN1 PDSIN2 PDSIN3 PDSIN4'
//STDOUT DD SYSOUT=*
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
//ZIPFILE DD DISP=(NEW,CATLG,DELETE),DSN=JAY01.RESTORE.ZIP,
// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(TRK,(60,15),RLSE),
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=27920)
//PDSIN1 DD DISP=SHR,DSN=SYSP.RESTORE.LOCAL.CNTL(UCSYSP01)
//PDSIN2 DD DISP=SHR,DSN=SYSP.RESTORE.LOCAL.CNTL(ADDUSERS)
//PDSIN3 DD DISP=SHR,DSN=SYSP.RESTORE.LOCAL.CNTL(S3LLIB)
//PDSIN4 DD DISP=SHR,DSN=SYSP.RESTORE.LOCAL.CNTL(RESTORE)
//

OFFLOAD [written by David B. Cole, located in SYSC.LINKLIB]
Used for sequentializing a partitioned dataset. Either all or a specified subset of the members of a partitioned dataset

are used to create a sequential dataset; each member is preceded by an ADD control statement. The resulting file may
then be input to PDSLOAD to construct a new partitioned dataset containing the offloaded members. This is a batch
implementation of the Offload function provided in Greg Price's REVIEW.

The most recent version of OFFLOAD is located in File #093 of the CBT tape. The program was originally written by
David B. Cole. OFFLOAD requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains control statements.
• anyname1 - defines the input partitioned dataset.
• anyname2 - defines the output sequential dataset.

I would also suggest taking a look at UNUPDTE.

Control Statements
The control statements are modeled after the control statements for the IEBCOPY utility program. There
are three control statements; the control statement function, as well as all of the operands, may identified by
the minimal possible abbreviation, one character: O for Offload, S for Select and E for Exclude.

The Offload control statement has three sub-operands: I for Input ddname, O for Output ddname, and T for
Type.

Both the Select and Exclude control statements each have a single sub-operand: M for Member.

O I=ddname

,O=ddname

,T={IEBUPDTE | IEBUPDAT}

The Offload control statement specifies the input and output DD names and the type of ADD control
statement to insert ahead of each members data records. The operands are:

I=ddname

Specifies the DD name from which the partitioned dataset is read.

O=ddname

Specifies the DD name to which the sequential dataset is written.

T={IEBUPDTE | IEBUPDAT}

Specifies that an ADD control statement is to be written preceding each members
data records. If this sub-operand is omitted, no ADD statement will be written. The
values that may be specified for T are:

• IEBUPDTE - Specifies the ADD control statements are to be in IEBUPDTE
format.

• IEBUPDAT - Specifies the ADD control statements are to be in IEBUPDAT
format.

SM={membername | (membername1[,membername2]...)}

The Select control statement specifies that only these named members are to be processed - Selected - from
the partitioned dataset. As many Select control statements may be used as necessary; subsequent control
statements are processed as a continuation of the initial control statement.

M={membername | (membername1[,membername2]...)}

Specifies one or a list of names of members to be processed. If only a single
member name is used, it need not be enclosed in parentheses.

EM={membername | (membername1[,membername2]...)}

The Exclude control statement specifies that these named members are not to be processed - Excluded - and
all other members are processed from the partitioned dataset. As many Exclude control statements may be
used as necessary; subsequent control statements are processed as a continuation of the initial control
statement.

M={membername | (membername1[,membername2]...)}

Specifies one or a list of names of members to be excluded. If only a
single member name is used, it need not be enclosed in parentheses.

If no Select or Exclude control statements are provided, all members of the partitioned dataset are
processed.

The Select and Exclude control statements are mutually exclusive; only one may be used in a single
execution of OFFLOAD.

Examples
 Offload selected members of a partitioned dataset
//OFFLOAD JOB (01),'OFFLOAD PO',CLASS=S,MSGCLASS=X
//OFFLOAD EXEC PGM=OFFLOAD
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=SYSC.VSAMIOP.SOURCE
//SYSUT2 DD DISP=(,CATLG,DELETE),DSN=JAY01.VSAMIOP.OFFLOAD,
// UNIT=SYSDA,SPACE=(CYL,(5,2),RLSE),VOL=SER=PUB001,
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSIN DD *
 O I=SYSUT1,O=SYSUT2,T=IEBUPDTE
 S M=(ESDSADDT,ESDSLOAD,ESDSREAD,ESDSUPDT,KSDSLOAD,KSDSRAND)
 S M=(KSDSREAD,KSDSSSEQ,KSDSUPDT,RRDSLODR,RRDSLODS,RRDSRAND)
 S M=(RRDSREAD,RRDSSSEQ,RRDSUPDT)
/*
//

 Offload all but excluded member of a partitioned dataset
//OFFLOAD JOB (01),'OFFLOAD PO',CLASS=S,MSGCLASS=X
//OFFLOAD EXEC PGM=OFFLOAD
//SYSPRINT DD SYSOUT=*

//SYSUT1 DD DISP=SHR,DSN=SYSC.VSAMIOP.SOURCE
//SYSUT2 DD DISP=(,CATLG,DELETE),DSN=JAY01.VSAMIOP.OFFLOAD,
// UNIT=SYSDA,SPACE=(CYL,(5,2),RLSE),VOL=SER=PUB001,
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSIN DD *
 O I=SYSUT1,O=SYSUT2,T=IEBUPDTE
 E M=$INDEX
/*
//

 Offload all members of a partitioned dataset
//OFFLOAD JOB (01),'OFFLOAD PO',CLASS=S,MSGCLASS=X
//OFFLOAD EXEC PGM=OFFLOAD
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=JAY01.ISAM.COBOL
//SYSUT2 DD DISP=(,CATLG,DELETE),DSN=JAY01.ISAMCOB.OFFLOAD,
// UNIT=SYSDA,SPACE=(CYL,(5,2),RLSE),VOL=SER=PUB001,
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=3120)
//SYSIN DD *
 O I=SYSUT1,O=SYSUT2,T=IEBUPDTE
/*
//

PDSLOAD [written by Bill Godfrey, located in SYSC.LINKLIB]
Used for recreating a partitioned dataset from a sequential dataset that contains control statements interspersed with
data records.

The most recent version of PDSLOAD is located in File #093 of the CBT tape. The program was originally written by
Bill Godfrey. PDSLOAD requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines a sequential input dataset that contains control statements and data when PARM=NEW.
• SYSUT1 - defines the input sequential dataset.
• SYSUT2 - defines the output partitioned dataset.

I would also suggest taking a look at UPDTE.

Program Parameter (PARM= on EXEC statement)
The operation of PDSLOAD is controlled by options which are entered as keywords in the parameter field.
The keywords and their function are:

NEW

If specified, SYSUT1 is not opened and SYSIN is assumed to specify the input file.
NEW must be the first or only option in the PARM field.

SPF

Specifies that SPF statistics are to be generated for the members of the partitioned
dataset.

S(namemask)

Specifies that only the members matching namemask will be written to the
partitioned dataset. In namemask, the characters '*', '%', and '?' are treated the same
and match any character.

UPDTE(xx)

Specifies that all occurrences of the two characters in parentheses, if found in
columns 1-2 of the data records within the members, will be changed to './' before
being written to the partitioned dataset. This is used in conjunction with
OFFLOAD, which changes all occurrences of './' in columns 1-2 of the data records
within the members to another constant so that IEBUPDTE and this program will
not treat the data records as control statements. IEBUPDTE does not change the
data back, but PDSLOAD does.

CTL(xx)

Specifies that all occurrences of the two characters in parentheses will be used to
search for the ADD and ALIAS control statements.

NAME={CHK | ASIS | IBM}

Specifies validation of member names. The values that may be coded are:

• CHK - Allows all printable characters, except comma, using CODEPAGE
037.

• ASIS - Bypass all checks. The default is ASIS.
• IBM - Enforce strict IBM JCL standards. 'JCL' is a synonym for IBM.

CK3

When UPDTE(xx) is specified, verifies that column three is blank before changing
the specified characters to './'.

If SPF is specified, it must be the first parameter, unless NEW is specified, then it must be the second
parameter..

If UPDTE(><) is specified, it must be the last parameter.

Control Statements
There are no control statements. If specific members of a partitioned dataset are to be selected or excluded,
their names are included in SYSIN. The names specified are separated by commas. As many statements as
are required may be included in a single execution.

Examples
 Load partitioned dataset from OFFLOADed dataset

//PDSLOAD JOB (SYS),'PDSLOAD-1',CLASS=A,MSGCLASS=X
//PDSLOAD EXEC PGM=PDSLOAD,PARM='NEW,SPF'
//SYSPRINT DD SYSOUT=*
//SYSIN DD DISP=SHR,DSN=HMVS01.VSAMIO.OFFLOAD,
//SYSUT2 DD DISP=(,CATLG,DELETE),DSN=HMVS02.VSAMIO.SOURCE
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=23440),
// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(CYL,(2,1,15),RLSE)
//

 Load partitioned dataset using mask to select members
//PDSLOAD JOB (SYS),'PDSLOAD-2',CLASS=A,MSGCLASS=X
//PDSLOAD EXEC PGM=PDSLOAD,PARM='NEW,SPF,S(%%DS%%%%)'
//SYSPRINT DD SYSOUT=*
//SYSIN DD DISP=SHR,DSN=HMVS01.VSAMIO.OFFLOAD
//SYSUT2 DD DISP=(,CATLG,DELETE),DSN=HMVS02.VSAMIO.COBOL,
// DCB=(DSORG=PO,RECFM=FB,LRECL=80,BLKSIZE=23440),
// UNIT=SYSDA,VOL=SER=MVS381,
// SPACE=(CYL,(2,1,15))
//

 Add members to partitioned dataset from OFFLOADed dataset
//PDSLOAD JOB (SYS),'PDSLOAD-3',CLASS=A,MSGCLASS=X
//PDSLOAD EXEC PGM=PDSLOAD,PARM='SPF,S(VSAMIO%%)'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=HMVS01.VSAMIO.OFFLOAD
//SYSUT2 DD DISP=MOD,DSN=HMVS02.VSAMIO.COBOL
//

PDSMATCH [written by Bill Godfrey, updated by Carl Hafner, located in SYSC.LINKLIB]
Used for comparing two partitioned datasets. PDSMATCH compares the directories of the two datasets and prints a
report showing which members match, which members do not match, or members that are not present in both
directories.

The most recent version of PDSMATCH is located in File #357 of the CBT tape. This version of the program was
modified by Carl Hafner; Steli, Inc. PDSMATCH requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSLIB1 - defines the first partitioned dataset.
• SYSLIB2 - defines the second partitioned dataset.

Program Parameter (PARM= on EXEC statement)
The operation of PDSMATCH is controlled by options which are entered as keywords in the parameter
field. The keywords and their function are:

EQO

Specifies that only members that match are to be listed.

NEO

Specifies that only members that do not match are to be listed.

USER

Specifies that members match only if they have the same name and all the statistics
match. Statistics of up to 62 bytes of data in the directory entry are compared. This
includes data placed in the directory entry linkage editor, SPF edit, etc. Note: If
two members have the same name and neither has any userdata, they are treated as
unequal.

DATA

Specifies that members match only if all their data records are the same. Note: If
two members have the same name and both are empty, they are treated as unequal.

If no PARM is supplied, only the directories are compared to report members present in both, or only one,
of the datasets.

Control Statements
There are no control statements. If specific members of a partitioned dataset are to be selected or excluded,
their names are included in SYSIN. The names specified are separated by commas. As many statements as
are required may be included in a single execution.

Examples
 Compare two partitioned datasets, names only
//PDSMATCH JOB (1),'PDSMATCH-1',CLASS=A,MSGCLASS=X
//PDSMATCH EXEC PGM=PDSMATCH,REGION=4M,
// PARM=''
//SYSPRINT DD SYSOUT=*
//SYSLIB1 DD DISP=SHR,DSN=HMVS02.VSAMIO.COBOL
//SYSLIB2 DD DISP=SHR,DSN=HMVS01.VSAMIO.SOURCE
//

 Compare two partitioned datasets, names and userdata
//PDSMATCH JOB (1),'PDSMATCH-2',CLASS=A,MSGCLASS=X
//PDSMATCH EXEC PGM=PDSMATCH,REGION=4M,
// PARM='NEO,USER'
//SYSPRINT DD SYSOUT=*
//SYSLIB1 DD DISP=SHR,DSN=SYS2.LINKLIB
//SYSLIB2 DD DISP=SHR,DSN=SYSC.LINKLIB
//

 Compare two partitioned datasets, names and actual data records
//PDSMATCH JOB (1),'PDSMATCH-1',CLASS=A,MSGCLASS=X
//PDSMATCH EXEC PGM=PDSMATCH,REGION=4M,
// PARM='NEO,DATA'
//SYSPRINT DD SYSOUT=*
//SYSLIB1 DD DISP=SHR,DSN=JAY01.OLD.PTFS
//SYSLIB2 DD DISP=SHR,DSN=JAY01.NEW.PTFS
//

PDSPRINT [written by Jim Marshall, located in SYSC.LINKLIB]
Used for printing or punching members from a partitioned dataset.

PDSPRINT is located in File #316 of the CBT tape. PDSPRINT requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the optional sequential input dataset that contains PDSPRINT control statements.
• SYSUT1 - defines the input partitioned dataset.
• SYSUT2 - defines the sequential output dataset.

Program Parameter (PARM= on EXEC statement)
A program parameter may be supplied to PRINT or PUNCH an entire dataset, in which case it is not
necessary to supply control statements and the SYSIN DD may be omitted or DUMMY. If SYSIN is
provided, the PARM is ignored. The keywords and their function are:

PRINT

Specifies that all members of the dataset are to be printed.

PUNCH

Specifies that all members of the dataset are to be punched. The data records for
each member are preceded by an IEBUPDTE ADD control statement.

Control Statements
PRINT MEMBER=(name[,name]...) | SCAN=(namemask)

The PRINT control statement specifies that members are to be selected and printed. The mutually
exclusive parameters are:

MEMBER=(name[,name]...)

Specifies that the named members are to be selected. The list of names is enclosed
in parentheses and separated by commas. The list may be continued to as many
cards as required by stopping with a comma before column 72 and continuing the
list on a subsequent card in any column before 72.

SCAN(namemask)

Specifies that the directory names will be compared with the mask supplied and any
matching member will be selected.

PUNCH MEMBER=(name[,name]...) | SCAN=(namemask)

The PUNCH control statement specifies that members are to be selected and punched. The data records for
each member are preceded by an IEBUPDTE ADD control statement. The mutually exclusive parameters
are:

MEMBER=(name[,name]...)

Specifies that the named members are to be selected. The list of names is enclosed
in parentheses and separated by commas. The list may be continued to as many
cards as required by stopping with a comma before column 72 and continuing the
list on a subsequent card in any column before 72.

SCAN(namemask)

Specifies that the directory names will be compared with the mask supplied and any
matching member will be selected.

Examples
 Punch all members with IEBUPDTE ADD cards
//PDSPRINT JOB (001),'PDSPRINT-1',CLASS=A,MSGCLASS=X
//PDSPRINT EXEC PGM=PDSPRINT,REGION=256K,PARM='PUNCH'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYSC.PROCLIB,DISP=SHR
//SYSUT2 DD SYSOUT=B
//

 Print selected members
//PDSPRINT JOB (001),'PDSPRINT-2',CLASS=A,MSGCLASS=X
//PDSPRINT EXEC PGM=PDSPRINT,REGION=256K,PARM=''
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SYSC.PROCLIB,DISP=SHR
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
 PRINT MEMBER=(ASMXC,ASMXCL)
//

 Punch long list of selected members
//PDSPRINT JOB (001),'PDSPRINT-3',CLASS=A,MSGCLASS=X
//PDSPRINT EXEC PGM=PDSPRINT,REGION=256K,PARM=''
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=SYSC.VSAMIO.SOURCE
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
 PUNCH MEMBER=(ESDSADDT,ESDSLOAD,ESDSUPDT,ESDSREAD,
 KSDSMULT,KSDSLVAR,KSDSRAND,KSDSREAD,KSDSSSEQ,KSDSUPDT)
//

 Print members selected with name pattern
//PDSPRINT JOB (001),'PDSPRINT-4',CLASS=A,MSGCLASS=X
//PDSPRINT EXEC PGM=PDSPRINT,REGION=256K,PARM=''
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=SYSC.PROCLIB
//SYSUT2 DD SYSOUT=*
//SYSIN DD *
 PRINT SCAN=(PL1)

//

PDSPROGM [written by Bill Godfrey, located in SYSC.LINKLIB]
Used for maintenance on partitioned datasets. PDSPROGM can be used to:

• Delete a member.
• Rename a member.
• Create an alias for a member.

PDSPROGM is located in File #316 of the CBT tape. PDSPROGM requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the sequential input dataset that contains PDSPROGM control statements.
• SYSLIB - defines the partitioned dataset.
• anyname - may be used to define the partitioned dataset when the FILE control statement is used.

Program Parameter (PARM= on EXEC statement)
A program parameter may be supplied to modify overall operation of PDSPROGM. The keywords and
their function are:

NL

Specifies that control statements will not be logged to SYSPRINT.

NM

Specifies that normal messages will not be logged to SYSPRINT, only errors.

NF

Specifies that encountering an error will not cause flushing of SYSIN.

NR

Specifies that there will be no enforcement of characters used in a new member
name.

NC

Specifies that no capitalization will be done on new member names.

Control Statements
DELETE membername

The DELETE control statement specifies that the named member is to be deleted. DELETE

may be abbreviated DEL or D, and has the synonyms SCRATCH and SCR.

RENAME membername

newname

The RENAME control statement specifies that the named member is to be renamed. RENAME
may be abbreviated REN or R.

ALIAS membername

newname

The ALIAS control statement specifies that an alias is to be created for the named member.
ALIAS may be abbreviated ALI or A.

OPTION [{LOG | NOLOG}]

[{MSG | NOMSG}]

[FLUSH | NOFLUSH}]

The OPTION control statement specifies options that modify PDSPROGM operations. The
parameters are:

LOG | NOLOG

• LOG - Specifies that control statements will be logged to SYSPRINT. The
default is LOG.

• NOLOG - Specifies that control statements will not be logged to
SYSPRINT.

MSG | NOMSG

• MSG - Specifies that normal messages will not be logged to SYSPRINT,
only errors. The default is MSG.

• NOMSG - Specifies that normal messages will not be logged to SYSPRINT,
only errors.

FLUSH | NOFLUSH

• FLUSH - Specifies that encountering an error will cause flushing of SYSIN.
The default is FLUSH.

• NOFLUSH - Specifies that encountering an error will not cause flushing of
SYSIN.

FILE ddname

The FILE control statement specifies that any subsequent operations are to be performed

against the dataset referenced by ddname. This allows multiple partitioned datasets to be
processed in a single execution. FILE may be abbreviated FIL or F.

Examples
 Partitioned dataset maintenance
//PDSPROGM JOB (001),'PDSPROGM-1',CLASS=S,MSGCLASS=X
//PDSPROGM EXEC PGM=PDSPROGM
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYSP.VSAMIO.SOURCE
//SYSLIB2 DD DISP=SHR,DSN=SYSP.VSAMIOP.SOURCE
//SYSIN DD *
 OPTION NOFLUSH
 ALIAS KSDSLVAR KSDSVARL
 DELETE $INDEX
 RENAME ESDSUPDT ESDSUPDA
 FILE SYSLIB2
 RENAME ESDSUPDT ESDSUPDA <- this statement will be applied to the dataset specified by the SYSLIB2 DD
//

PDSSCAN [written by Rick Fochtman, located in SYSC.LINKLIB]
Used to scan all members of one or more partitioned datasets, searching for specified strings. Note: Does not update
partitioned datasets, only reports datasets/members where strings are found. PDSSCAN is located in File #684 of the
CBT tape. PDSSCAN requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the sequential input dataset that contains strings to scan for.
• @anyname - defines the partitioned dataset(s) to be scanned.

The number of DD statements may be from one to the MVS limit for a step. Any name is allowed, as long
as the name begins with '@'.

 I would also suggest taking a look at PDSUPDTE.

Program Parameter (PARM= on EXEC statement)
If any parameter is supplied, PDSSCAN will print a brief description of the program use instructions.

Control Statements
The control statements are simply the list of strings to be searched for in each partitioned dataset. Each
statement read from SYSIN may contain a single string. A string begins at the first non-blank character and
is terminated by the first blank; i.e., no embedded blanks are allowed.

Examples
 Scan two partitioned datasets searching for strings
//PDSSCAN JOB 1,'SCAN PDS',CLASS=A,MSGCLASS=X
//PDSSCAN EXEC PGM=PDSSCAN,REGION=1024K
//SYSPRINT DD SYSOUT=*
//@DD1 DD DISP=SHR,DSN=SYSP.SETUP.LOCAL.CNTL
//@DD2 DD DISP=SHR,DSN=SYSC.CBT.SOURCE
//SYSIN DD *
 SYS2.LINKLIB
 SYSC.LINKLIB
//

PDSUPDTE [located in SYSC.LINKLIB]

Used to scan all members of one or more partitioned datasets, searching for specified strings. If a string is found and
operating mode is UPDATE, each string that is found is changed to the supplied second string. PDSUPDTE was
created by disassembling IPOUPDTE, an IBM installation aid. PDSUPDTE is located in File #065 of the CBT
Overflow tape. PDSUPDTE requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the sequential input dataset that contains strings to scan for.
• @anyname - defines the partitioned dataset(s) to be scanned.

The number of DD statements may be from one to the MVS limit for a step. Any name is allowed, as long
as the name begins with '@'.

 I would also suggest taking a look at PDSSCAN. There is a detailed user's guide for PDSUPDTE available for
download from this site at: ../downloads/pdf/pdsupdte.pdf.

Program Parameter (PARM= on EXEC statement)
A keyword supplied in the PARM determines the operating mode of PDSUPDTE:

CHECK

Specifies that the report will be produced showing all successful searches for strings
and what the updated data record would be, but no updates are written to the
partitioned dataset(s).

UPDATE

Specifies that all changes will be written to the partitioned dataset(s).

Control Statements
The control statements supply the string to search for and the string to replace. The format is:

../downloads/pdf/pdsupdte.pdf

search<replace<[limiter<]

The delimiter for each string value is the less than symbol '<'.

The optional third string, shown as limiter above, allows the specification of a second search value, which
must be present in the unmodified data record where the search string is found before the replacement will
be made.

Comments are allowed following the search/replace strings; comments must be separated from strings by at
least one blank.

Examples
 Scan two partitioned datasets searching for strings, check only
//PDSUPDTE JOB 1,'PDSUPDTE-1',CLASS=A,MSGCLASS=X
//PDSUPDTE EXEC PGM=PDSUPDTE,REGION=1024K,PARM=CHECK
//SYSPRINT DD SYSOUT=*
//@DD1 DD DISP=SHR,DSN=SYSP.SETUP.LOCAL.CNTL
//@DD2 DD DISP=SHR,DSN=SYSC.CBT.SOURCE
//SYSIN DD *
SYS2.LINKLIB<SYSC.LINKLIB< Change target library
//

 Scan a partitioned dataset, two matchings strings required, update if found
//PDSUPDTE JOB 1,'PDSUPDTE-2',CLASS=A,MSGCLASS=X
//PDSUPDTE EXEC PGM=PDSUPDTE,REGION=1024K,PARM=UPDATE
//SYSPRINT DD SYSOUT=*
//@DD1 DD DISP=SHR,DSN=HMVS01.VSAMIO.SOURCE
//SYSIN DD *
PUB001<MVS380<GO< Change volser on GO steps
//

PDSUR [written by Gene Czarcinski, located in SYSC.LINKLIB]
Used to copy partitioned datasets from DASD to tape (unload) and from tape to DASD (reload); the tape datasets are in
IEHMOVE format and PDSUR will restore tapes created with IEHMOVE. PDSUPDTE was written by Gene
Czarcinski and is located in File #949 of the CBT tape. PDSUPDTE requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the sequential input dataset that contains PDSUR Control statements.
• anyname - defines the partitioned dataset.
• anyname - defines the tape dataset.

Control Statements
UNLOAD FROMDD=ddname

,TODD=ddnamel

[,SELECT]

[,EXCLUDE]

The UNLOAD control statement specifies that an unload (backup creation) operation is to be performed.
UNLOAD may be abbreviated U. The parameters are:

FROMDD=ddname

Specifies the ddname of the partitioned dataset. FROMDD may be
abbreviated F.

TODD=ddname

Specifies the ddname of the tape dataset. TODD may be abbreviated T.

SELECT

Specifies that only the members named on the following MEMBER
control statements are to be processed. SELECT may be abbreviated S.

EXCLUDE

Specifies that all members in the partitioned dataset, except for the
members named on the following MEMBER control statements, are to
be processed. EXCLUDE may be abbreviated E.

RELOAD FROMDD=ddname

,TODD=ddname

[,SELECT]

[,EXCLUDE]

[,REPLACE]

[,LEAVE]

The RELOAD control statement specifies that a reload (restore from backup) operation is to be performed.
RELOAD may be abbreviated R. The parameters are:

FROMDD

Specifies the ddname of the tape dataset. FROMDD may be
abbreviated F.

TODD

Specifies the ddname of the partitioned dataset. TODD may be
abbreviated T.

SELECT

Specifies that only the members named on the following MEMBER
control statements are to be restored. SELECT may be abbreviated S.

EXCLUDE

Specifies that all members in the partitioned dataset, except for the
members named on the following MEMBER control statements, are to
be restored. EXCLUDE may be abbreviated E.

REPLACE

Specifies that if a member being restored already exists in the
partitioned dataset, it is to be replaced with the member from the
backup.

LEAVE

Specifies that at the end of the specified operation the tape file is closed
and left mounted, even if DISP=(OLD,KEEP) is specified.

LIST FROMDD=ddname

[,LEAVE]

The LIST control statement specifies that the contents of an unloaded dataset are to be read and listed. The
parameters are:

FROMDD

Specifies the ddname of the tape dataset. FROMDD may be
abbreviated F.

LEAVE

Specifies that at the end of the specified operation the tape file is closed
and left mounted, even if DISP=(OLD,KEEP) is specified.

MEMBER membername[,membername...]

The MEMBER control statement specifies member names for the SELECT or EXCLUDE option specified
on the previous UNLOAD or RELOAD control statement. More than one member control statement may
follow an UNLOAD or RELOAD statement, so that many names can be specified. The operand field must
contain one or more member names separated by commas.

Examples
 Unload two partitioned datasets
//PDSUR JOB (1),'PDSUR-1',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=4M

//PDSUR EXEC PGM=PDSUR,REGION=®
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DISK,TODD=TAPE
U F=D2,T=T2
//DISK DD DISP=SHR,DSN=SYS2.PROCLIB
//D2 DD DISP=SHR,DSN=SYS2.LINKLIB
//TAPE DD DISP=(,KEEP),DSN=A,LABEL=1,UNIT=TAPE,
// VOL=SER=22007A
//T2 DD DISP=(,KEEP),DSN=B,LABEL=2,VOL=REF=*.TAPE
//

 Reload a partitioned dataset
//PDSUR JOB (1),'PDSUR-2',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=50K
//PDSUR EXEC PGM=PDSUR,REGION=®
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
RELOAD FROMDD=DD1,T=DD2,R
//DD1 DD UNIT=TAPE,DISP=OLD,DSN=HMVS01.A,VOL=SER=22007B
//DD2 DD DISP=(NEW,KEEP),DSN=HMVS01.CNTL.R,
// UNIT=SYSDA,VOL=SER=MVS380,
// DCB=(HMVS01.CNTL),
// SPACE=(CYL,(1,1,5))
//

 Unload and reload a partitioned dataset in one step
//PDSUR JOB (1),'PDSUR-3',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=50K
//PDSUR EXEC PGM=PDSUR,REGION=®
//STEPLIB DD DISP=SHR,DSN= ... (POINT AT LIBRARY FOR PDSUR PGM)
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DD1,TODD=DD2
RELOAD FROMDD=DD3,TODD=DD1
//DD1 DD DISP=OLD,DSN=M2.USRID.LINKLIB
//DD2 DD DISP=(,KEEP),DSN=M2.USRID.BAKUP,LABEL=3,
// UNIT=TAPE,VOL=SER=22007C
//DD3 DD DISP=OLD,DSN=M2.USRID.OLDTAP,LABEL=10,
// UNIT=TAPE,VOL=SER=21250C
//

 List three unloaded partitioned datasets
//PDSUR JOB (1),'PDSUR-4',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=50K
//PDSUR EXEC PGM=PDSUR,REGION=®
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
LIST FROMDD=DD1,LEAVE
LIST F=DD2,LEAVE
L FROMDD=DD3,L

//DD1 DD DISP=OLD,DSN=A,LABEL=1,UNIT=TAPE,
// VOL=SER=22007D
//DD2 DD DISP=OLD,DSN=E,LABEL=5,VOL=REF=*.DD1
//DD3 DD DISP=OLD,DSN=I,LABEL=9,VOL=REF=*.DD1
//

 Unload with selects and excludes
//PDSUR JOB (1),'PDSUR-5',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=50K
//PDSUR EXEC PGM=PDSUR,REGION=®
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DD1,TODD=DD2,S
MEMBER ASMGASM,BASIC360,PASCAL
UNLOAD FROMDD=DD1,TODD=DD3,E
MEMBER ASMGASM,BASIC360,PASCAL
//DD1 DD DISP=SHR,DSN=SYSC.LINKLIB
//DD2 DD DISP=(,KEEP),DSN=USRID.X1,LABEL=1,UNIT=TAPE,
// VOL=(PRIVATE,RETAIN,SER=22007E)
//DD3 DD DISP=(,KEEP),DSN=USRID.X2,LABEL=2,VOL=REF=*.DD2
//

 Reload with selects and excludes
//PDSUR JOB (1),'PDSUR-6',CLASS=A,MSGCLASS=X
//PDSUR PROC OUT=A,BLK=3509,REG=50K
//PDSUR EXEC PGM=PDSUR,REGION=®
//SYSPRINT DD SYSOUT=&OUT,DCB=BLKSIZE=&BLK
//SYSIN DD DCB=(BLKSIZE=800,BUFNO=1)
// PEND
// EXEC PDSUR
//SYSIN DD *
RELOAD FROMDD=DD1,TODD=DD2,LEAVE,S
MEMBER PROG1,PROG2
RELOAD FROMDD=DD1,TODD=DD3,EXCLUDE
MEMBER PROG3,PROG4
MEMBER PROG5,PROGA
//DD1 DD DISP=OLD,DSN=M2.USRID.T,LABEL=5,UNIT=2400-4,
// VOL=SER=BKPTAP
//DD2 DD DISP=OLD,DSN=M2.USRID.LIB1
//DD3 DD DISP=OLD,DSN=M2.USRID.LIB2
//

RECV370 [written by Jim Morrison, located in SYSC.LINKLIB]
Used to process XMIT files produced by either the TSO/E TRANSMIT command processor, the XMIT370 batch
program, or a similar facility. RECV370 was written by Jim Morrison and is located in File #571 of the CBT tape.
RECV370 requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset (IEBCOPY messages).
• RECVLOG - defines a sequential output message dataset (RECV370 messages).
• SYSIN - unused, but required by IEBCOPY.
• SYSUT1 - work dataset.
• SYSUT2 - defines the output dataset.
• XMITIN - defines sequential input dataset, BLKSIZE must be 80 (XMIT file).

Control Statements
RECV370 uses no control statements.

Examples
 Unpack XMIT to create PDS
//RECV370 JOB (001),'RECV370',CLASS=A,MSGCLASS=X
//RECV370 PROC
//RECV370 EXEC PGM=RECV370,REGION=1024K
//RECVLOG DD SYSOUT=* RECV370 OUTPUT MESSAGES
//SYSPRINT DD SYSOUT=* IEBCOPY OUTPUT MESSAGES
//SYSIN DD DUMMY IEBCOPY REQUIRES
//SYSUT1 DD UNIT=SYSDA, WORK DATASET
// SPACE=(CYL,(10,10)),
// DCB=BLKSIZE=5600
//XMITIN DD DDNAME=XMITIN INPUT DATASET
//SYSUT2 DD DDNAME=XMITOUT OUTPUT DATASET
// PEND
//RECV1 EXEC RECV370
//XMITIN DD UNIT=01C,DCB=BLKSIZE=80 <- INPUT
//SYSUT2 DD DSN=HMVS01.FILE571.PDS, <- OUTPUT
// VOL=SER=PUB001,UNIT=SYSDA,
// SPACE=(TRK,(200,,40),RLSE),
// DISP=(,CATLG)
//

RESETDS [author unknown, located in SYSC.LINKLIB]
Used to reset to empty status partitioned or sequential datasets in preparation for a reload. The dataset will appear as
though it had been scratched and reallocated, however, the overhead of scratch/allocate and uncatalog/catalog is
avoided; additionally, the dataset will reside in the original location on the volume. The author of RESETDS is
unknown; the source was NASPA 1986. RESETDS requires the following DD statements:

• RESET??? - defines a sequential or partitioned dataset.

Any number of DD statements may be provided, as long as the name begins with 'RESET'. RESETDS will
process all DD names in a single execution.

Control Statements
RESETDS uses no control statements.

Examples
 Reset datasets to empty
//RESETDS JOB (1),'RESET PDS/PS EMPTY',CLASS=A,MSGCLASS=X
//RESET EXEC PGM=RESETDS
//STEPLIB DD DSN=SYSC.LINKLIB,DISP=SHR
//RESET1 DD DISP=OLD,DSN=PDS.DATASET1

//RESETSEQ DD DISP=OLD,DSN=SEQ.DATASET
//RESET02 DD DISP=OLD,DSN=PDS.DATASET2
//RESET003 DD DISP=OLD,DSN=PDS.DATASET3
//

REVLMOD [written by Greg Price, located in SYSC.LINKLIB]
Used to reload load modules that have been offloaded with REVIEW's OFFLOAD command. REVLMOD was written
by Greg Price and is located in File #134 of the CBT tape. REVLMOD requires the following DD statements:

• SYSIN - defines a sequential dataset containing the offloaded load module.
• SYSUT2 - defines a load library.

Control Statements
REVLMOD uses no control statements.

Examples
 Reload load module from sequential dataset
////REVLMOD JOB (001),REVLMOD,CLASS=S,MSGCLASS=X
//REVLMOD EXEC PGM=REVLMOD,REGION=1M
//SYSUT2 DD DISP=MOD,DSN=SYS2.LINKLIB
//SYSIN DD DISP=SHR,DSN=HMVS01.ISAMLOAD.OFFLOAD
//

SORT [written by Tom Armstrong, located in SYSC.LINKLIB] Updated 03/2024
Used for sorting data records from one or more sequential datasets.

Tom Armstrong rewrote this IBM program, which originated with OS Release 21.8, expanding it to allow the use of
datasets on any DASD device type supported by the Operating System. The original program only allowed DASD
datasets on the 2311 and 2314 unit types. He also expanded some of the control statement specifications and the
corresponding functions of the Sort/Merge Program.

SORT requires the following DD statements:

• SYSIN - defines a sequential input dataset that contains SORT/MERGE control statements.
• SYSOUT - defines a sequential output message dataset (output from MSG=AP or MSG=CP).
• SORTLIB - defines the partitioned input dataset containing the Sort/Merge external modules.
• SORTIN - defines the data records to be sorted.

When using the SORT control statement, SORTIN is the DD name. When using the MERGE control
statement, SORTIN01 through SORTIN16 are the DD names to use.

• SORTOUT - defines the sequential output dataset.
• SORTWKnn - defines external work datasets (nn ranges from 01 through 32); used only when using the SORT

control statement. With Tom Armstrong's rewrite, the use of DD statements to allocate work datasets is
optional, as the program will dynamically allocate the required work datasets.

• SORTCNTL - defines the optional control statement override stream for program invoked sorting jobs. The
format of the control statements are described in Chapter 2: How to Use the Sort/Merge Program in OS/360
Sort/Merge for MVS 3.8 Application Programming Guide Version 1.01.

• SORTCKPT - defines a dataset for checkpoint records. If you are not using the checkpoint facility this
statement is not required.

• SYSLMOD - defines the linkage editor load module output dataset. Used to store the user exit load modules.
This statement is only required when user-provided exit routines that require link editing are included in the
Sort/Merge job.

• SORTMODS - defines a temporary partitioned dataset large enough to contain all of the modification routines
that appear in the input stream for a given application. If the routines are not in the input stream, this statement
is not required. If the routines are in libraries, then the DD statements defining the libraries must be included.

• SYSUT1 - defines the linkage editor work dataset. This statement is only required when user-provided exit
routines that require link editing are included in the Sort/Merge job.

• SYSPRINT - defines the sequential output message dataset used by the linkage editor. This statement is only
required when user-provided exit routines that require link editing are included in the Sort/Merge job.

• IERPARM - defines the optional control statement stream to override all previously provided control
statements. The format of the control statements are described in Chapter 2: How to Use the Sort/Merge
Program in OS/360 Sort/Merge for MVS 3.8 Application Programming Guide Version 1.01.

• SORTDIAG - defines the output message dataset for all diagnostic messages. Not for general use. More fully
described in the document OS/360 Sort/Merge for MVS 3.8 Installation, Customization and Diagnosis Guide.

Control Statements

SORT FIELDS={(p1,m1,f1,s1...p64,m64,f64,s64) |
(p1,m1,s1...p64,m64,s64),FORMAT=xx}

[,CKPT]

[,DYNALLOC={d | (,n) | (d,n) | {OFF | NO}}]

[,{FILESZ={x | Ex}} | {SIZE={y | Ey}}]

[,SKIPREC=z]

[,STOPAFT=w]

The SORT control statement specifies a SORT operation. The parameters are:

FIELDS=(p1,m1,f1,s1...p64,m64,f64,s64) or
FIELDS=(p1,m1,s1...p64,m64,s64),FORMAT=xx

p1 (...p64) - specifies the beginning (high-order location) of a control field
relative to the beginning of the record which contains the control field. (For
variable-length records, the logical record includes the four-byte record length
indicator, so record offsets must include those four bytes in the offset position
used.) The first (high-order) byte in a record is byte 1, the second is byte 2, etc.
All control fields, except binary, must begin on a byte boundary.

m1 (...m64) - specifies the length of the control field. All control fields except
binary must be a whole number of bytes long.

f1 (...f64) - specifies the format of the data in the control field. The valid two-
character abbreviations are:

• CH - character, 1 to 256 bytes
• ZD - zoned decimal, 1 to 16 bytes
• PD - packed decimal, 1 to 16 bytes
• FI - fixed-point, 1 to 256 bytes
• BI - binary, 1 bit to 256 bytes
• FL - floating point, 1 to 256 bytes

If all the control fields contain the same type of data, you can omit the f
parameters and use the optional FORMAT=xx operand.

CKPT

Specifies that the sort/merge program is to activate the checkpoint facility of the
operating system. The program takes checkpoints at various points in the sort or
merge operation. You can have the program restart from the last checkpoint taken.

DYNALLOC={d | (,n) | (d,n) | {OFF | NO}}

Specifies type and estimated amount of DASD storage to dynamically allocate for
intermediate storage.

d - specifies the device type for the allocation. All DASD unity types
supported by the Operating System can be specified. Allocation across
different DASD unity types for a specific sorting operation is not supported.
If d is not provided or omitted then the default device name set at installation
customization time will be used.

n - specifies the number of work datasets to be allocated.

OFF or NO - no intermediate DASD datasets will be allocated.

FILESIZE={x | Ex} or SIZE={y | Ey}

Specifies the number of records in the input dataset. The value x or y specifies
the actual dataset size; Ex or Ey specifies an estimate of the size. If you give an
actual dataset size, do not include any records inserted in the input dataset by
one of your routines. If the number of records in the input dataset, as counted
by the sort/merge program, does not agree with the value of the SIZE
parameter, the sort terminates. The value specified in the SIZE parameter is
placed in the IN field of message IER047A or IER054I.

If either FILESZ or SIZE is specified, the values given are utilized to calculate
DASD intermediate storage requirements.

SKIPREC=z

Specifies the number of records to be skipped when reading SORTIN. If you
want the sort to skip a certain number of records before starting to process the
input dataset, substitute the number of records you want skipped for z.

STOPAFT=w

Specifies a limit to the number of records read from the input dataset for sorting. Only
applies to records read from SORTIN and not records provided by user exit routines.

MERGE FIELDS={(p1,m1,f1,s1...p64,m64,f64,s64) |
(p1,m1,s1...p64,m64,s64),FORMAT=xx}

[,{FILESZ={x | Ex}} | {SIZE={y | Ey}}]

The MERGE control statement specifies a MERGE operation. The parameters are:

FIELDS=(p1,m1,f1,s1...p64,m64,f64,s64) or
FIELDS=(p1,m1,s1...p64,m64,s64),FORMAT=xx

p1 (...p64) - specifies the beginning (high-order location) of a control field

relative to the beginning of the record which contains the control field. (For
variable-length records, the logical record includes the four-byte record length
indicator, so record offsets must include those four bytes in the offset position
used.) The first (high-order) byte in a record is byte 1, the second is byte 2,
etc. All control fields, except binary, must begin on a byte boundary.

m1 (...m64) - specifies the length of the control field. All control fields except
binary must be a whole number of bytes long.

f1 (...f64) - specifies the format of the data in the control field. The valid two-
character abbreviations are:

• CH - character, 1 to 256 bytes
• ZD - zoned decimal, 1 to 16 bytes
• PD - packed decimal, 1 to 16 bytes
• FI - fixed-point, 1 to 256 bytes
• BI - binary, 1 bit to 256 bytes
• FL - floating point, 1 to 256 bytes

If all the control fields contain the same type of data, you can omit the f
parameters and use the optional FORMAT=xx operand.

FILESZ={x | Ex} or SIZE={y | Ey}

Specifies the number of records in the input dataset. The value x or y specifies
the actual dataset size; Ex or Ey specifies an estimate of the size. If you give an
actual dataset size, do not include any records inserted in the input dataset by
one of your routines. If the number of records in the input dataset, as counted
by the sort/merge program, does not agree with the value of the SIZE
parameter, the sort terminates. The value specified in the SIZE parameter is
placed in the IN field of message IER047A or IER054I.

If either FILESZ or SIZE is specified, the values given are utilized to calculate
DASD intermediate storage requirements.

RECORD {TYPE=F,LENGTH=l1,l2,l3 | TYPE=V,LENGTH=l1,l2,l3,
[l4,l5]}

The RECORD control statement is required only when your routines change record lengths during a
sort/merge program run. The control statement statement describes the format and lengths of the records
being sorted or merged. The parameters are:

TYPE={F | V}

• F - indicates fixed-length records.
• V - indicates variable-length records.

LENGTH=l1,l2,l3[,l4,l5]

If your input records are fixed-length, use l1, l2, and l3 as follows:

l1 is the length of each record in the input dataset. If you use the RECORD control
statement, you must include this value. The value should be the same as the value
you specified in the LRECL subparameter of the DCB parameter on the SORTIN
DD statement. If the values are not the same, sort/merge uses the value specified on
the DD statement.

l2 is the length of each record handled by the sort phase. If you do not specify a
value for l2 , the program assumes that it is equal to l1 as it is specified on the
record card. If you are going to change record lengths in the sort phase, you must
include a value for l2; you do not need l2 for a merging application.

l3 is the length of each record in the output dataset. If you do not specify a value for
l3, the program assumes that l3=l2 for a sorting application and that l3=l1 for a
merging application. If your routines change record lengths during the final merge
phase of the program, you must specify a value for l3. This value should be the
same as the value you specified for the LRECL subparameter of the DCB parameter
on the SORTOUT DD statement. If the values are different, the sort/merge
program uses the value given on the DD statement.

If your input records are variable-length, use l1,ll2, l3, l4, and l5 as follows:

l1 is the maximum length of the records in the input dataset. If you use the
RECORD statement, you must specify a value for l1. The value should be the same
as the value you specified in the LRECL subparameter of the DCB parameter on the
SORTIN DD statement. If the values are not the same, the program uses the
LRECL value.

l2 is the maximum length of the records handled by the sort phase. If you do not
specify a value for l2, the program assumes it is equal to l1 as it is specified on the
record card. If you change record lengths in the sort phase, you must provide a
value for l2. You do not need l2 for a merging application.

l3 is the maximum length of each record in the output dataset. If you do not specify
a value for l3, the program assumes l3=l2 for a sort and l3=l1 for a merge. If you
include a routine that changes record lengths in the final merge phase, you must
specify a value for l3. The value should be the same as the value you provided for
the LRECL subparameter of the DCB parameter on the SORTOUT DD statement.
If it is not, the program uses the LRECL value.

l4 is the minimum length of records in the input dataset. If you do not specify a
value for l4, the program assumes it is equal to the minimum record size necessary
to contain the control fields defined on the SORT or MERGE control statement, or
the minimum record length allowed by the operating system, whichever is greater.
You need not specify this value for a merge.

l5 is the record length that occurs most frequently in the input dataset (modal
length). You should use this value to help define a dataset biased toward a
particular length. If you do not specify a value for l5, the program assumes it is
equal to the average of the maximum and minimum record lengths in the input
dataset. If, for example, your dataset contains mostly small records and just a few
long records, the program would assume a high modal length and would allocate a
larger record storage area than necessary. Conversely, if your dataset contains just a
few short records and many long records, the program would assume a low modal
length and might not allocate a large enough record storage area to sort your data.

OPTION [{CHECK | NOCHECK}]

[,CKPT]

[,DYNALLOC={d | (,n) | (d,n) | {OFF | NO}}]

[,DYNAPCT=p]

[,DYNSPC=n]

[,{FILESZ={x | Ex}} | {SIZE={y | Ey}}]

[,{LIST | NOLIST}]

[,MAINSIZE={n | nK | nM | MAX}]

[,MSGDDN=ddname]s

[,{MSGPRT= | PRINT=}{ALL | NONE | CRITICAL}]

[,RESALL={n | nK | nM}]

[,RESINV={n | nK | nM}]

[,SKIPREC=z]

[,SORTDD=cccc]

[,STOPAFT=w]

[,{VERIFY | NOVERIFY}]

The OPTION control statement provides the ability to override some of the customization options set when the
Sort/Merge program was installed. Some of the OPTION control statement parameters can also be specified on the
SORT or the MERGE control statement. The parameters are:

CHECK | NOCHECK

Overrides the installation customization setting. Use the CHECK option to specify that the
record count check should apply for sorting operations that only use the E35 exit to receive
records without a SORTOUT dataset. Specify NOCHECK to bypass the record count check.

CKPT

Specifies that the sort/merge program is to activate the checkpoint facility of the operating
system. The program takes checkpoints at various points in the sort or merge operation. You
can have the program restart from the last checkpoint taken.

DYNALLOC={d | (,n) | (d,n) | {OFF | NO}}

Specifies type and estimated amount of DASD storage to dynamically allocate for intermediate
storage.

• d - specifies the device type for the allocation. All DASD unity types supported by the

Operating System can be specified. Allocation across different DASD unity types for a
specific sorting operation is not supported. If d is not provided or omitted then the
default device name set at installation customization time will be used.

• n - specifies the number of work datasets to be allocated.
• OFF or NO - no intermediate DASD datasets will be allocated.

DYNAPCT=p

Provides a percentage uplift to the default value, or the value calculated, for the amount of
intermediate storage to be allocated for this sorting operation. This parameter can be used for
variable-length record sorting when the calculated median record length value is less than the
actual value, resulting in insufficient intermediate storage being dynamically allocated.

DYNSPC=n

Can be used to override the DYNSPC installation customization setting. When the dynamic
allocation feature is used this parameter specifies, in megabytes, the total amount of
intermediate storage to be allocated for work datasets. This value is only used when the input
record count or FILESZ is not provided and the input dataset is not resident on DASD. This
situation is most likely to occur when an E15 user exit is used to provide all the input records
for sorting.

FILESZ={x | Ex} or SIZE={y | Ey}

Specifies the number of records in the input dataset. The value x or y specifies the actual
dataset size; Ex or Ey specifies an estimate of the size. If you give an actual dataset size, do not
include any records inserted in the input dataset by one of your routines. If the number of
records in the input dataset, as counted by the sort/merge program, does not agree with the
value of the SIZE parameter, the sort terminates. The value specified in the SIZE parameter is
placed in the IN field of message IER047A or IER054I.

If provided, either the actual or estimated number of records, is used by the dynamic allocation
facility to calculate the amount of DASD space required for intermediate storage.

If omitted, the Sort/Merge Program assumes that:

• If intermediate storage is tape, the input dataset can be contained on one volume at the
blocking factor used by the Sort/Merge Program.

• If intermediate storage is DASD, all the records in the input dataset will fit into the
space allocated for intermediate storage.

LIST or NOLIST

May be used to override the LIST/NOLIST installation customization stetting. If LIST is
specified then all input control statements, including control statements passed by program
invoked sorts, will be written to the selected message output stream.

MAINSIZE={n | nK | nM | MAX}

Provides an override to the SIZE installation customization setting. MAINSIZE sets the limit
for the amount of storage used by the sorting operation. The MAINSIZE value cannot exceed
the limit set by MAXLIM or be less than the value set for MINLIM installation customization
settings. For compatibility with previous versions CORE can be used instead of MAINSIZE.

• n - specifies the maximum storage to be used in bytes.
• nK - specifies the maximum storage to be used as a number of kilobytes
• nM - specifies the maximum storage to be used as a number of megabytes
• MAX - specifies that the maximum amount of storage, up to the limit set by the

MAXLIM installation customization setting, will be used for this sorting operation.

MSGDDN=ddname

Provides an override to the MSGDDN installation customization setting. The sort message
stream will be written to the selected ddname. Care should be taken in selecting a ddname to
avoid conflict with a ddname that can be used for input, output, or work datasets.

MSGPRINT or PRINT

Provides an override to the MSGPRT installation customization setting. This option provides a
filter on the flow of messages to the message dataset.

• ALL - all messages except diagnostic messages will be written to the messages dataset.
Control statements input to the Sort/Merge Program will only be listed if the LIST
option has been specified.

• CRITICAL - only messages critical to the operation of the Sort/Merge Program will be
written to the message dataset.

• NONE - no messages will be written to the message dataset. This option is not
recommended because if the sorting operation is not successful, then there would be no
indication of why the sorting operation failed.

RESALL={n | nK | nM}

Provides an override to the RESALL installation customization setting. The RESALL option is
only in effect when the Sort/Merge Program has been invoked with JCL statements and the
MAINSIZE=MAX option is in effect.

When MAINSIZE=MAX is in effect, all available storage up to the limit specified in the
MAXLIM installation customization setting is used by the Sort/Merge Program. The RESALL
parameter value sets the number of bytes to be reserved for system user by reducing the total
storage used by the Sort/Merge Program.

• n - specifies the maximum storage to be used in bytes.
• nK - specifies the maximum storage to be used as a number of kilobytes.
• nM - specifies the maximum storage to be used as a number of megabytes.

RESINV={n | nK | nM}

Provides an override to the RESINV installation customization setting. The RESINV option is
only in effect when the Sort/Merge Program has been dynamically invoked by another program
and the MAINSIZE=MAX optino is in effect.

When MAINSIZE=MAX is in effect, all available storage, up to the limit specified in the
MAXLIM installation customization setting, is used by the Sort/Merge Program. The RESINV
parameter value sets the number of bytes to be reserved for system use by reducing the total
storage used by the Sort/Merge Program.

• n - specifies the maximum storage to be used in bytes.
• nK - specifies the maximum storage to be used as a number of kilobytes.

• nM - specifies the maximum storage to be used as a number of megabytes.

SKIPREC=z

Specifies the number of records to be skipped when reading SORTIN. If you want the sort to
skip a certain number of records before starting to process the input dataset, substitute the
number of records you want skipped for z.

SORTDD=cccc

Specifies the four character prefix for ddnames used by the Sort/Merge Program. The four
characters replace the default SORTDD installation customization setting. The four characters
specified replace the first four characters in the following ddnames: SORTIN, SORTOUT,
SORTINnn, SORTWKnn, and SORTCNTL. This parameter does not apply to the ddname used
for the message dataset.

STOPAFT=w

Specifies a limit to the number of records read from the input dataset for sorting. Only applies
to records read from SORTIN and not records provided by user exit routines.

VERIFY or NOVERIFY

Provides an override to the VERIFY/NOVERIFY installation customization setting. This
parameter determines if the Sort/Merge Program is to perform a sequence check on the final
output of records from the sorting operation.

• VERIFY - sequence checking is performed
• NOVERIFY - sequence checking is not performed

MODS

The MODS control statement is required only if you want the sort/merge program to transfer control to
your routine (s) at various points during sort/merge execution. The statement associates your routines with
specific exits in the sort/merge program and provides the program with basic descriptions of your routines.
For details about exits in the sort/merge program and how to use them, refer to Chapter 5: Using Exit
Routines in OS/360 Sort/Merge for MVS 3.8 Application Programming Guide Version 1.01.

END

The END control statement marks the end of all sort/merge control statements and continuation statements
for a particular sort/merge run.

Program Parameter (PARM= on EXEC statement)
The PARM parameter on the EXEC statement is used to supply optional parameters to the SORT program.
The parameters are:

[{BALN | OSCL | POLY | CRCX}]

Specifies the sequence distribution technique to be used. For the majority of
cases, this should be left for the program to determine the optimum setting.
You should be extremely cautious when forcing the sort/merge program to use a
specific technique. The program tries to select the most efficient technique for a
given application. If it is forced to use another, performance may not be as efficient.

BALN - balanced tape technique. If six or less work datasets are
provided, this is the technique used.

OSCL - Oscillating tape technique.

POLY - polyphase tape technique.

CRCX - crisscross direct access technique. If more than six work
datasets are provided, this is the technique used.

[,{MAIN | MAINSIZE | CORE}={n | nK | nM | MAX}]

An optional main storage value which will override the storage allocation set up
when the sort/merge program was installed.

• n - specifies the maximum storage to be used in bytes.
• nK - specifies the maximum storage to be used as a number of kilobytes
• nM - specifies the maximum storage to be used as a number of megabytes
• MAX - specifies that the maximum amount of storage, up to the limit set by the MAXLIM

installation customization setting, will be used for this sorting operation.

[,MSG={NO | CC | CP | CB | AC | AP | AB}]

Message output option:

• NO - no messages are printed.
• CC - critical messages only are printed. They appear on the console.
• CP - critical messages only are printed. They appear on the printer

(SYSOUT message dataset).
• CB - critical messages only are printed. They appear on both the console

and the printer (SYSOUT message dataset).
• AC - all messages are printed. They appear on the console.
• AP - all messages are printed. They appear on the printer (SYSOUT

message dataset).
• AB - all messages are printed. They appear on both the console and the

printer (SYSOUT message dataset).
•

Examples
 Sort 1 tape dataset, creating a disk dataset
//SORT JOB 1,'SORT-1',CLASS=A,MSGCLASS=X
//SORT EXEC PGM=SORT,REGION=4M
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYSC.SORTLIB,DISP=SHR
//SORTIN DD DSN=STATIS.DMTD,UNIT=TAPE,VOL=SER=018352,LABEL=(1,SL),
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=1350)
//SORTOUT DD DISP=(,CATLG,DELETE),DSN=HMVS01.STATIS.DATA,
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=23355),
// SPACE=(CYL,(3),RLSE),UNIT=SYSDA,VOL=SER=MVS381
//SYSIN DD *
 SORT FIELDS=(1,8,ZD,A)
 RECORD TYPE=F,LENGTH=(135)
 OPTION DYNALLOC=(3350,3),PRINT=ALL
 END
/*
//

 Sort 2 tape datasets (implicit merge), creating a disk dataset
//SORT JOB 1,'SORT-2',CLASS=A,MSGCLASS=X
//SORT EXEC PGM=SORT,REGION=4M
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYSC.SORTLIB,DISP=SHR
//SORTIN DD DSN=STATIS.DMTD.PH1,UNIT=TAPE,VOL=SER=025972, IN1
// LABEL=(1,SL),
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=1350)
// DD DSN=STATIS.DMTD.PH2,UNIT=TAPE,VOL=SER=010877, IN2
// LABEL=(1,SL),
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=1350)
//SORTOUT DD DISP=(,CATLG,DELETE),DSN=HMVS02.STATIS.DATA,
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=23355),
// SPACE=(CYL,(6),RLSE),UNIT=SYSDA,VOL=SER=MVS381
//SYSIN DD *
 SORT FIELDS=(1,8,ZD,A)
 RECORD TYPE=F,LENGTH=(135)
 OPTION DYNALLOC=(3390,6),PRINT=ALL,VERIFY
 END
/*
//

 Merge 2 disk datasets, creating a disk dataset
//SORT JOB 1,'SORT-3',CLASS=A,MSGCLASS=X

//SORT EXEC PGM=SORT,REGION=4M
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYSC.SORTLIB,DISP=SHR
//SORTIN01 DD DSN=HMVS02.STATIS.DATA.BL1,DISP=SHR
//SORTIN02 DD DSN=HMVS02.STATIS.DATA.BL2,DISP=SHR
//SORTOUT DD DISP=(,CATLG,DELETE),DSN=HMVS02.STATIS.DATA,
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=23355),
// SPACE=(CYL,(12),RLSE),UNIT=SYSDA,VOL=SER=MVS381
//SYSIN DD *
 MERGE FIELDS=(50,15,A),FORMAT=CH
 RECORD TYPE=F,LENGTH=(135)
 OPTION PRINT=ALL,VERIFY
 END
/*
//

 Sort disk dataset on split sequence field

//SORT JOB 1,'SORT-4',CLASS=A,MSGCLASS=X

//SORT EXEC PGM=SORT,REGION=4M
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYSC.SORTLIB,DISP=SHR
//SORTIN DD DSN=HMVS02.STATIS.DATA,DISP=SHR
//SORTOUT DD DISP=(,CATLG,DELETE),DSN=HMVS02.STATIS.RVI01,
// DCB=(RECFM=FB,LRECL=135,BLKSIZE=23355),
// SPACE=(CYL,(12),RLSE),UNIT=SYSDA,VOL=SER=MVS381
//SYSIN DD *
 SORT FIELDS=(80,5,CH,D,1,8,ZD,A)
 RECORD TYPE=F,LENGTH=(135)
 OPTION DYNALLOC=(3390,3),PRINT=ALL
 END
/*
//

 Sort disk dataset on split sequence field, all CH data
//SORT JOB 1,'SORT-5',CLASS=A,MSGCLASS=X
//SORT EXEC PGM=SORT,REGION=4M
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYSC.SORTLIB,DISP=SHR
//SORTIN DD DISP=SHR,DSN=HMVS01.DF125A5
//SORTOUT DD DISP=(,CATLG,DELETE),DSN=HMVS01.DF125A5.SORTED,
// DCB=(RECFM=FB,LRECL=125,BLKSIZE=23375),
// SPACE=(CYL,(15),RLSE),UNIT=SYSDA,VOL=SER=MVS380
//SYSIN DD *
 SORT FIELDS=(80,5,A,2,5,D),FORMAT=CH <- both fields are CH, so able to use alternate format SORT statement
 RECORD TYPE=F,LENGTH=(125)
 OPTION DYNALLOC=(3350,6),PRINT=ALL
 END
/*
//

Source: OS/360 Sort/Merge for MVS 3.8 Application Programming Guide Version 1.01

SUPERLST [written by R. F. Morse, located in SYSC.LINKLIB]
Used to provide VTOC listing, with optional Partitioned dataset directory information and volume allocation map.
SUPERLST was originally written by R. F. Morse and is now maintained by Greg Price and is located in File #134 of
the CBT tape. SUPERLST requires the following DD statements:

• SYSPRINT - defines a sequential output dataset.
• VOL????? - defines the DASD volume to be listed.

Any number of DD statements may be provided, as long as the name begins with 'VOL'. SUPERLST will
process all DD names in a single execution.

Program Parameter (PARM= on EXEC statement)
The PARM parameter on the EXEC statement is used to supply optional parameters to the SUPERLST
program. The parameters are:

MAP

Specifies that after the dataset name and attribute list (in collating sequence order) a
volume space (allocation) map is to be produced.

PDS

Specifies that the directories of all Partitioned datasets found on the volume are to
be opened and read. Statistics such as member and directory block counts are
reported. If DUMP was also specified then the contents of the directories are also
dumped.

DUMP

Specifies that the report is to also include a hex dump of each VTOC entry.

Control Statements
SUPERLST uses no control statements.

Examples
 List VTOCs and PDS directories on two volumes
//SUPERLST JOB (0001),SUPERLST,CLASS=S,MSGCLASS=X
//SUPERLST EXEC PGM=SUPERLST,REGION=2048K,PARM='' PDS/MAP/DUMP
//SYSPRINT DD SYSOUT=*
//VOLUME1 DD DISP=SHR,UNIT=SYSALLDA,VOL=SER=PUB001
//VOLUME2 DD DISP=SHR,UNIT=SYSALLDA,VOL=SER=PUB000
//

SYSREPRO [written by Bill Godfrey, located in SYSC.LINKLIB]
Used for copying data records from a sequential dataset or member of a partitioned dataset to another sequential dataset
or member. It is faster than IEBGENER and prints a summary of the copy operation including the record counts. If the
output DD does not have DCB attributes supplied, the attributes will be copied from the input dataset. If the BLKSIZE
is omitted, the system determined BLKSIZE will be used. The program was written by Bill Godfrey and the source
may be found in File #316 of the CBT Tape. SYSREPRO requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSUT1 - defines the input sequential dataset or partitioned dataset member.
• SYSUT2 - defines the output sequential dataset or partitioned dataset member.

Program Parameter (PARM= on EXEC statement)
The optional PARM is used to modify the operation of SYSREPRO. The values and their function are:

n1,n2,n3,n4

If n1 is specified, that number of records will be copied from the input dataset to the
output dataset.

If n2 is specified, that number of records will be skipped before copying begins

If n3 and n4 are specified, only n4 out of every n3 records are to be copied.

Control Statements
SYSREPRO uses no control statements.

Examples
 Print a card dataset
//SYSREPRO JOB (001),'SYSREPRO-1',CLASS=A,MSGCLASS=X
//SYSREPRO EXEC PGM=SYSREPRO,REGION=512K
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=01C,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80)
//SYSUT2 DD SYSOUT=*
//

 Copy a sequential dataset, disk to disk
//SYSREPRO JOB (001),'SYSREPRO-2',CLASS=A,MSGCLASS=X
//SYSREPRO EXEC PGM=SYSREPRO,REGION=512K
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=HMVS01.SORTDATA.TRE
//SYSUT2 DD DISP=(,CATLG),DSN=HMVS01.SORTDATA.QUATRO,
// UNIT=SYSDA,VOL=SER=PUB000,
// DCB=(JAY01.SORTDATA.TRE),
// SPACE=(CYL,(12),RLSE)
//

 Copy a tape dataset to disk
//SYSREPRO JOB (001),'SYSREPRO-3',CLASS=A,MSGCLASS=X
//SYSREPRO EXEC PGM=SYSREPRO,REGION=512K
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,DSN=TEST.D0135.ONE,
// UNIT=TAPE,VOL=SER=22008C,LABEL=(1,SL)
//SYSUT2 DD DISP=(,CATLG),DSN=JAY01.SORTTEST.DATA,
// UNIT=SYSDA,VOL=SER=PUB000,
// SPACE=(CYL,(12),RLSE),
// DCB=(JAY01.POLICY.ONE)
//

 Add member to existing partitioned dataset from cards
//SYSREPRO JOB (001),'SYSREPRO-4',CLASS=A,MSGCLASS=X
//SYSREPRO EXEC PGM=SYSREPRO,REGION=512K
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=01C,DCB=BLKSIZE=80
//SYSUT2 DD DISP=MOD,DSN=JAY01.VSAMIO.SOURCE(NEWPROG)
//

TAPEMAP [originally from UCLA, last modified by Sam Golob, located in SYSC.LINKLIB]
Used to read a tape volume and report everything it contains, including detailed information about file contents when
the creation program is recognized. The version currently installed is 2.5 and the source may be found on File #299 of
the CBT Tape. TAPEMAP requires the following DD statements:

• SYSPRINT - defines a sequential output dataset (list of files found on tape).
• SYSPRNT2 - defines a sequential output dataset (detailed information about individual files).
• SYSUT1 - defines the tape volume to be mapped.

Control Statements
TAPEMAP uses no control statements.

Examples
 Analyze tape and report on files and their contents
//TAPEMAP JOB (001),'TAPEMAP',CLASS=A,MSGCLASS=X
//TAPEMAP EXEC PGM=TAPEMAP,REGION=512K,PARM='TEST'
//SYSPRINT DD SYSOUT=*
//SYSPRNT2 DD SYSOUT=*
//SYSUT1 DD DSN=T000001,
// VOL=SER=000001,
// DISP=(OLD,KEEP),
// LABEL=(1,BLP),
// UNIT=(TAPE,,DEFER)
//

TAPESCAN [written by Will Daland, located in SYSC.LINKLIB]
Used to read a tape volume and report an overview of the datasets on a tape, copy files and recover data past the first
end of volume indicator. Information includes record and byte count, length estimate, display fo the first 100 bytes of
the first records of each dataset, and the physical tape file number. Original author was Will Daland, but modified by
others; the source may be found on File #102 of the CBT Tape. I would suggest taking a look at COPYMODS.

TAPESCAN requires the following DD statements:

• SYSPRINT - defines a sequential output dataset (list of files found on tape).
• INPUT - defines the tape volume to be read.
• OUTPUT - optionally defines a tape volume to receive copy of input tape volume.

Program Parameter (PARM= on EXEC statement)
The PARM is used to supply all parameters to TAPESCAN. The parameter values are:

COPY

Create a copy of the input datasets, labels, and tape marks on OUTPUT DD.

NOCOUNT may not be specified when COPY is specified. The default is COPY
off.

EOVMOD

Places the INPUT data to be copied after the last dataset on OUTPUT. This
parameter implies COPY. NOCOUNT may not be specified when EOVMOD is
specified. The default is EOVMOD off.

ERRLIMn

The maximum number of I/O errors allowed before processing is terminated is
specified by n. The default is ERRLIM50.

LISTn

The number of blocks from each dataset which have records printed is specified by
n. The default is 4.

MAXEOVn

Processing will continue until n end of volume indicators have been found.
Processing will stop when either MAXTMn or MAXEOVn is exceeded. If
SKIPEOVn is used, then MAXEOVn must be one greater than SKIPEOVn. The
default value is 1.

MAXTMn

Stop processing after n tape marks have been encountered. This will not continue
beyond MAXEOVn. The default is to process until MAXEOVn is reached.

NOCOUNT

To save I/O time, the counting feature may be turned off with NOCOUNT. The
number of physical blocks, the maximum, average, and minimum block sizes, the
length and the total number of bytes processed will not be reported. This parameter
may not be used with COPY or EOVMOD. The default is NOCOUNT off.

NOHEX

The hexadecimal equivalent of the blocks printed from each record will not be
produced. The default is NOHEX off.

NOLIST

The content of data records will not be printed. The default is NOLIST off.

NOSUMMARY

The summary of datasets for Standard Label tape will not be printed. The default is
NOSUMMARY off.

NOVOLSER

During a COPY operation between two Standard Label tapes, the volume header
label will not be copied. The default is NOVOLSER off.

SKIPEOVn

Processing will start after n number of end of volume indicators have been
encountered. Ensure that MAXEOVn is at least one greater than SKIPEOVn. The
default is 0.

SKIPTMn

Start processing after n tape marks have been encountered. Processing will not start
past the MAXEOVn. When both SKIPTMn and SKIPEOVn are specified the
maximum amount of skipping is done. The default is 0.

VTOC

For a Standard Label tape, produce only the VTOC report.

Control Statements
TAPESCAN uses no control statements.

Examples
 Print dataset VTOC for SL tape
//TAPESCAN JOB 1,'TAPESCAN-1',CLASS=A,MSGCLASS=X
//TAPESCAN EXEC PGM=TAPESCAN,REGION=1024K,
// PARM='VTOC'
//SYSPRINT DD SYSOUT=*
//INPUT DD DSN=DUMP.JAY01,
// UNIT=(TAPE,,DEFER),DISP=OLD,VOL=SER=22003A,
// DCB=(EROPT=ACC),LABEL=(,SL)
//

 Copy 4th and 5th datasets to second tape
//TAPESCAN JOB 1,'TAPESCAN-2',CLASS=A,MSGCLASS=X
//*
//* Copy the 4th and 5th files of a SL tape to the 2nd and 3rd
//* files to a tape which already contains 1 file. Do not copy
//* the volume header record or produce the hex output. List
//* the first 20 records of the input datasets. Stop processing
//* after 5 I/O errors.
//*
//TAPESCAN EXEC PGM=TAPESCAN,REGION=1024K,
// PARM='COPY,NOVOLSER,EOVMOD,SKIPTM10,MAXTM16,LIST20,NOHEX'
//SYSPRINT DD SYSOUT=*
//INPUT DD UNIT=2400-7,DISP=OLD,
// DCB=(TRTCH=ET,DEN=1,ERROPT=ACC),VOL=SER=TRACK7
//OUTPUT DD UNIT=2400-4,LABEL=2,VOL=SER=OTPTTP
//

UNUPDTE [originally from SPLA PL1 MODs tape, located in SYSC.LINKLIB]
Used for sequentializing a partitioned dataset. All members of a partitioned dataset are used to create a sequential
dataset; each member is preceded by an ADD control statement. UNUPDTE will process Fixed or Variable length
records, with any LRECL allowed by MVS. The resulting file may then be input to UPDTE, IEBUPDTE, or
PDSLOAD to construct a new partitioned dataset containing the offloaded members. The most recent version of
UNUPDTE is located in File #093 of the CBT tape. The program was updated by Art Tansky. UNUPDTE requires
the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSUT1 - defines the input partitioned dataset.
• SYSUT2 - defines the output sequential dataset.

I would also suggest taking a look at OFFLOAD.

Control Statements
UNUPDTE uses no control statements.

Examples
 Offload members of a partitioned dataset to sequential dataset
//UNUPDTE JOB (01),'UNUPDTE-1',CLASS=S,MSGCLASS=X
//UNUPDTE EXEC PGM=UNUPDTE,REGION=1024K
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=SYSC.VSAMIO.SOURCE
//SYSUT2 DD DISP=NEW,DSN=SYSC.VSAMIO.SOURCE,
// UNIT=TAPE,VOL=SER=SCRTCH,
// DCB=(DSORG=PS,RECFM=FB,LRECL=80,BLKSIZE=3120,DEN=3)
//

UPDTE [originally from SPLA PL1 MODs tape, located in SYSC.LINKLIB]
Used for recreating a partitioned dataset from a sequential dataset that contains ADD control statements interspersed
with data records. UPDTE will process Fixed or Variable length records, with any LRECL allowed by MVS. The
most recent version of UPDTE is located in File #093 of the CBT tape. The program was last updated by R. E. Styma.
UPDTE requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the input sequential dataset.
• SYSUT2 - defines the output partitioned dataset.

I would also suggest taking a look at PDSLOAD.

Control Statements
UPDTE uses no control statements.

Examples
 Load partitioned dataset from sequential dataset
//UPDTE JOB (SYS),'UPDTE-1',CLASS=S,MSGCLASS=X
//UPDTE EXEC PGM=UPDTE,REGION=1024K
//SYSPRINT DD SYSOUT=*
//SYSIN DD DISP=OLD,DSN=SYSC.VSAMIO.SOURCE,
// UNIT=TAPE,VOL=SER=22009A,LABEL=(,SL)
//SYSUT2 DD DISP=(,KEEP,DELETE),DSN=HMVS02.VSAMIO.SOURCE,
// UNIT=SYSDA,VOL=SER=TST380,
// SPACE=(TRK,(180,,30),RLSE),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=23440)
//

VTOCLIST [written by P. E. Havercan, located in SYSC.LINKLIB]
Used to provide formatted VTOC listing. The most recent version of VTOCLIST is located in File #343 of the CBT
Overflow tape. The program was last updated by John Kalinich. VTOCLIST requires the following DD statements:

• SYSPRINT - defines a sequential output dataset.
• SYSUT1 - defines the DASD volume to be listed.

I would also suggest taking a look at SUPERLST.

Program Parameter (PARM= on EXEC statement)
The PARM parameter on the EXEC statement may be used to supply an optional parameter to the
VTOCLIST program. The parameter is:

PDS

Specifies that the creation date and last reference date will be replaced with
directory blocks allocated and used. Use of the PDS parameter may cause waits for
datasets reserved/in use by other programs.

Control Statements
VTOCLIST uses no control statements.

Examples
 List VTOC for DASD volume
//VTOCLIST JOB (1),VTOCLIST,CLASS=A,MSGCLASS=X
//VTOCLIST EXEC PGM=VTOCLIST'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,UNIT=SYSALLDA,VOL=SER=MVSRES
//

 List VTOC for DASD volume with PDS directory information
//VTOCLIST JOB (1),VTOCLIST,CLASS=A,MSGCLASS=X
//VTOCLIST EXEC PGM=VTOCLIST,PARM='PDS'
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=OLD,UNIT=SYSALLDA,VOL=SER=PUB000
//

XMIT370 [written by Jim Morrison, located in SYSC.LINKLIB]
Used to read partitioned datasets to produce XMIT files equivalent to the TSO/E TRANSMIT command processor or a
similar facility. The resulting XMIT dataset can be processed using the TSO/E RECEIVE command processor,
Hercules dasdload, RECV370, or any of the other UnXmit programs as detailed at http://planetmvs.com on the UnXmit
Information Exchange page. XMIT370 was written by Jim Morrison and is located in File #571 of the CBT tape.
RECV370 requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset (IEBCOPY messages).
• XMITLOG - defines a sequential output message dataset (XMIT370 messages).
• SYSIN - unused, but required by IEBCOPY.
• SYSUT1 - defines partitioned input dataset.
• SYSUT2 - work dataset.
• XMITOUT - defines sequential output dataset (XMIT).

Control Statements
XMIT370 uses no control statements.

Examples
 Pack partitioned dataset into XMIT
//XMIT370 JOB (001),'XMIT370',CLASS=A,MSGCLASS=X
//XMIT370 PROC
//XMIT370 EXEC PGM=XMIT370,REGION=1024K
//XMITLOG DD SYSOUT=* XMIT370 OUTPUT MESSAGES
//SYSPRINT DD SYSOUT=* IEBCOPY OUTPUT MESSAGES
//SYSIN DD DUMMY IEBCOPY REQUIRES
//SYSUT1 DD DDNAME=XMITIN INPUT DATASET
//SYSUT2 DD UNIT=SYSDA, WORK DATASET
// SPACE=(CYL,(10,10)),
// DCB=BLKSIZE=5600

http://planetmvs.com/

//XMITOUT DD DDNAME=XMITOUT OUTPUT DATASET
// PEND
//XMIT1 EXEC XMIT370
//XMITIN DD DISP=SHR,DSN=JAY01.COBOL.XMIT <- INPUT
//SYSUT2 DD DSN=HMVS01.MVTCOBOL.SOURCE, <- OUTPUT
// VOL=SER=MVS381,UNIT=SYSDA,
// SPACE=(CYL,(5,,15),RLSE),
// DISP=(,CATLG)
//

ZAPDSCB [written by Dave Phillips, located in SYSC.LINKLIB]
Used to update DSCBs for specified datasets with values supplied on DD statements. The DSCB is updated without
regard to the actual dataset format. ZAPDSCB was written by Dave Phillips and is located in File #163 of the CBT
tape. ZAPDSCB requires the following DD statements:

• SNAP - defines a sequential output dataset to receive a snap dump if an I/O error occurs.
• ZAP????? - defines datasets whose DSCBs are to be modified.

Any number of DD statements may be provided, as long as the name begins with 'ZAP'.

The values which may be changed are:

• Expiration date - can be set to zero via RETPD=0
• ASM2 use count - can be set to zero via FCB=ZUSE
• Secondary space amount - set via SPACE=(TRK,(0,##))
• DSORG
• RECFM
• BLKSIZE
• LRECL
• KEYLEN
• RKP
• OPTCD
• Password protection - can be removed via FCB=NOPW or set via LABEL=(,,PASSWORD) and

LABEL=(,,NOPWREAD)

I would also suggest taking a look at FIXDSCB.

Control Statements
ZAPDSCB uses no control statements.

Examples
 Modify DSCB fields for dataset
//ZAPDSCB JOB (001),'ZAPDSCB',CLASS=A,MSGCLASS=X
//ZAPDSCB EXEC PGM=ZAPDSCB
//SNAP DD SYSOUT=* SNAP DUMP WHEN I/O ERROR
//SYSUDUMP DD SYSOUT=* ABEND DUMP OTHER ERRORS

//ZAP0000 DD UNIT=3350,VOL=SER=SRC000,DISP=SHR,
// DSN=MVSSRC.EREPSY.F01,DCB=DSORG=PS
//

ZTDUMPTP [written by Jim Marshall, located in SYSC.LINKLIB]
Used to print data records from datasets on tape. ZTDUMPTP was written by Jim Marshall and is located in File #316
of the CBT tape. ZTDUMPTP requires the following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSIN - defines the sequential input dataset that contains ZTDUMPTP Control statements.
• FILE - defines the tape volume.

Control Statements
FILES=n

The FILES control statement specifies the number of consecutive files to dump. The default value is 1.

REC=n

The REC control statement specifies the number of consecutive records to dump. The default value is
ALL.

SKPFIL=n

The SKPFIL control statement specifies the number of consecutive files to skip. The default value is 0.

SKPREC=n

The SKPREC control statement specifies the number of consecutive records to skip. The default value is 0.

PRINT=YES

The PRINT control statement specifies character format of data record is to be printed alongside hex dump.
The default is NO.

RUN=YES

The RUN control statement specifies the tape is to be rewound and unloaded before processing next control
card. The default is NO. Allows for processing multiple tapes in a single execution.

REDUN=NO

The REDUN control statement specifies exit to end of job on redundant record. The default is NO. When
set to YES, all redundant records are indicated.

MODE=nn

The MODE control statement specifies the tape drive mode set command code.

Examples
 Dump and print first 20 records from first 5 files on tape
//ZTDUMPTP JOB (1),'ZTDUMPTP',CLASS=A,MSGCLASS=X
//ZTDUMPTP EXEC PGM=ZTDUMPTP
//FILE DD UNIT=TAPE,DSN=ANYTAPE,VOL=SER=000000,LABEL=(1,BLP)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 FILES=5,REC=20,PRINT=YES
//

ZZRELINK [written by J. Scullion, located in SYSC.LINKLIB]

Used to re-link-edit one or more existing load modules. ZZRELINK was written by J. Scullion and has been updated
by Gerhard Postpischil. The source may be found on CBT Tape File #860 (original in #316). ZZRELINK requires the
following DD statements:

• SYSPRINT - defines a sequential output message dataset.
• SYSPUNCH - (optional, required to produce JCL for Link Editor job) defines a sequential output dataset.
• SYSLOUT - (optional, required when Link Editor invoked directly) defines a sequential output dataset.
• SYSUT1 - work dataset
• SYSUT2 - work dataset
• SYSUT3 - work dataset
• SYSIN - defines a sequential input dataset that contains ZZRELINK control statements.

Note: If SYSPUNCH is provided, the JCL is created and punched that will perform the re-link-edit of the modules
specified for selection. If SYSPUNCH is not provided, the Link Editor is loaded dynamically by ZZRELINK and the
modules specified for selection will be re-link-edited immediately.

Control Statements
LINKOUTDD=ddname

,INDD={ddname | (ddname1[,ddname2]...)}

The LINK control statement specifies the DD names to be used for the target library to receive the re-link-

edited load modules and to specify the library, or libraries, containing source load modules. The
parameters are:

OUTDD=ddname,

Specifies the DD name for the output dataset.

INDD={ddname | (ddname1[,ddname2]...)}

Specifies one or more DD names for the input dataset(s). If more than one ddname
is specified, they must be enclosed in parentheses and separated by commas.

If a load module would duplicate one already in the target load library, the existing
load module will not be replaced, unless the replace option is specified. To replace
any duplicate members encountered, enclose the ddname for which the replace
option is to be used in an additional pair of parentheses and follow the ddname with
a comma followed by R:

INDD=(ddname1,(ddname2,R),ddname3)

will result in any members in ddname2 that have the same
name as a load module already present in the target load
library to replace the load module already existing in the
target library.

SELECT MEMBER={name | (name1[,name2]...) | ((name,newname)[,(name2,newname2)...)}

The SELECT control statement specifies individual members to be copied from the input dataset(s). If
more than one member name is specified, they must be enclosed in parentheses and separated by commas.
Multiple SELECT statements may be specified, in which case the subsequent statements are processed as a
continuation of the first. In order to rename a member, the name must be enclosed in an additional set of
parentheses and followed by a comma and the newname.

If no SELECT statement is provided, all members of the input load library will be selected for re-link-edit
to the target library.

Examples
 Create (on SYSPUNCH) JCL for job to relink a load module
//ZZRELINK JOB (001),'ZZRELINK-1',CLASS=A,MSGCLASS=X
//ZZRELINK EXEC PGM=ZZRELINK,REGION=4096K
//SYSPRINT DD SYSOUT=*
//OUTLIB DD DISP=MOD,DSN=JAY01.RELINK.LOADLIB
//INLIB DD DISP=SHR,DSN=SYS2.LINKLIB
//SYSPUNCH DD SYSOUT=*,DCB=(BLKSIZE=80,RECFM=F)
//SYSUT1 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT2 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT3 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSLOUT DD SYSOUT=*
//SYSIN DD *
 LINK INDD=INLIB,OUTDD=OUTLIB
 SELECT MEMBER=VSIOMODT

/*
//

 Re-link-edit all members of a load library to a new library
//ZZRELINK JOB (001),'ZZRELINK-2',CLASS=A,MSGCLASS=X
//ZZRELINK EXEC PGM=ZZRELINK,REGION=4096K
//SYSPRINT DD SYSOUT=*
//OUTLIB DD DISP=(,CATLG),DSN=HMVS02.LOAD
//INLIB DD DISP=SHR,DSN=HMVS01.LOAD
//SYSUT1 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT2 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT3 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSLOUT DD SYSOUT=*
//SYSIN DD *
 LINK INDD=INLIB,OUTDD=OUTLIB
/*
//

 Re-link-edit a load module, renaming it into the input library
//ZZRELINK JOB (001),'ZZRELINK-3',CLASS=A,MSGCLASS=X
//ZZRELINK EXEC PGM=ZZRELINK,REGION=4096K
//SYSPRINT DD SYSOUT=*
//OUTLIB DD DISP=MOD,DSN=HMVS01 <- target and
//INLIB DD DISP=SHR,DSN=HMVS01 <- source library the same
//SYSUT1 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT2 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT3 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSLOUT DD SYSOUT=*
//SYSIN DD *
 LINK INDD=INLIB,OUTDD=OUTLIB
 SELECT MEMBER=((VSIOMODX,VSIOMODT))
/*
//

 Re-link-edit a group of modules to a new library, replacing duplicates
//ZZRELINK JOB (001),'ZZRELINK-4',CLASS=A,MSGCLASS=X
//ZZRELINK EXEC PGM=ZZRELINK,REGION=4096K
//SYSPRINT DD SYSOUT=*
//OUTLIB DD DISP=MOD,DSN=HMVS02
//INLIB DD DISP=SHR,DSN=SYS2.LINKLIB
//SYSUT1 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT2 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSUT3 DD UNIT=VIO,SPACE=(80,(320,90))
//SYSLOUT DD SYSOUT=*
//SYSIN DD *
 LINK INDD=(INLIB,R),OUTDD=OUTLIB
 SELECT MEMBER=(UPDMAIN,UPDTSUB1,UPDTSUB2)
 SELECT MEMBER=(UPDSUB3,UPDTSUB4,UPDTSUB5)
/*
//

Source: http://www.jaymoseley.com/hercules/os_utilities/mvs_utilities.html
Document created: February 8, 2022
Document updated: May 7, 2024

http://www.jaymoseley.com/hercules/os_utilities/mvs_utilities.html

	MVS Utility Programs - IBM and User Written
	January, 2022

	Index of Programs With Control Statements and Example JCL
	AMASPZAP
	AMBLIST
	CMPRSEQ
	COPYMODS
	DSSDUMP
	DSSREST
	FIXDSCB
	ICKDSF
	IEBCOMPR
	IEBCOPY
	IEBGENER
	IEBISAM
	IEBPTPCH
	IEBUPDTE
	IEHDASDR
	IEHINITT
	IEHLIST
	IEHMAP
	IEHMOVE
	IEHPROGM
	LISTPDS
	MINIUNZ
	MINIZIP
	OFFLOAD
	PDSLOAD
	PDSMATCH
	PDSPRINT
	PDSPROGM
	PDSSCAN
	PDSUPDTE
	PDSUR
	RECV370
	RESETDS
	REVLMOD
	SORT
	SUPERLST
	SYSREPRO
	TAPEMAP
	TAPESCAN
	UNUPDTE
	UPDTE
	VTOCLIST
	XMIT370
	ZAPDSCB
	ZTDUMPTP
	ZZRELINK
	AMASPZAP [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	AMBLIST [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	CMPRSEQ [written by David B. Cole, located in SYSC.LINKLIB]
	
	Completion Codes
	
	Program Parameter (PARM= on EXEC statement)
	
	Control Statements
	
	Examples

	COPYMODS [written by Paul Tokheim, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	DSSDUMP [written by Gerhard Postpischil, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	DSSREST [written by Charlie Brint, located in SYSC.LINKLIB]
	
	Control Statements
	
	Program Parameter (PARM= on EXEC statement)
	
	Examples

	FIXDSCB [written by David Alan Weaver, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	ICKDSF [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEBCOMPR [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEBCOPY [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEBGENER [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEBISAM [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Program Parameter (PARM= on EXEC statement)
	
	Examples

	IEBPTPCH [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEBUPDTE [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Program Parameter (PARM= on EXEC statement)
	
	Examples

	IEHDASDR [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEHINITT [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Examples

	IEHLIST [supplied by IBM, located in SYS1.LINKLIB]
	
	Control Statements
	
	Program Parameter (PARM= on EXEC statement)
	
	Examples

	IEHMAP [origin unknown, located in SYSC.LINKLIB]
	
	Control Statements
	Program Parameter (PARM= on EXEC statement)
	
	Examples

	IEHMOVE [supplied by IBM, located in SYS1.LINKLIB]
	Control Statements
	Program Parameter (PARM= on EXEC statement)
	Examples

	IEHPROGM [supplied by IBM, located in SYS1.LINKLIB]
	Control Statements
	
	Examples

	LISTPDS [written by Gene Czarcinski, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	MINIUNZ [distributed by Greg Price, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	MINIZIP [distributed by Greg Price, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	OFFLOAD [written by David B. Cole, located in SYSC.LINKLIB]
	I would also suggest taking a look at UNUPDTE.
	Control Statements
	
	Examples

	PDSLOAD [written by Bill Godfrey, located in SYSC.LINKLIB]
	I would also suggest taking a look at UPDTE.
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	PDSMATCH [written by Bill Godfrey, updated by Carl Hafner, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	PDSPRINT [written by Jim Marshall, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	PDSPROGM [written by Bill Godfrey, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	PDSSCAN [written by Rick Fochtman, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	PDSUPDTE [located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	PDSUR [written by Gene Czarcinski, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	RECV370 [written by Jim Morrison, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	RESETDS [author unknown, located in SYSC.LINKLIB]
	Control Statements
	Examples

	REVLMOD [written by Greg Price, located in SYSC.LINKLIB]
	
	Control Statements
	Examples

	SORT [written by Tom Armstrong, located in SYSC.LINKLIB] Updated 03/2024
	Control Statements
	
	Program Parameter (PARM= on EXEC statement)
	Examples

	SUPERLST [written by R. F. Morse, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	
	Control Statements
	Examples

	SYSREPRO [written by Bill Godfrey, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	
	Examples

	TAPEMAP [originally from UCLA, last modified by Sam Golob, located in SYSC.LINKLIB]
	
	Control Statements
	Examples

	TAPESCAN [written by Will Daland, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	Control Statements
	Examples

	UNUPDTE [originally from SPLA PL1 MODs tape, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	UPDTE [originally from SPLA PL1 MODs tape, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	VTOCLIST [written by P. E. Havercan, located in SYSC.LINKLIB]
	
	Program Parameter (PARM= on EXEC statement)
	
	Control Statements
	Examples

	XMIT370 [written by Jim Morrison, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	ZAPDSCB [written by Dave Phillips, located in SYSC.LINKLIB]
	Control Statements
	
	Examples

	ZTDUMPTP [written by Jim Marshall, located in SYSC.LINKLIB]
	
	Control Statements
	
	Examples

	ZZRELINK [written by J. Scullion, located in SYSC.LINKLIB]
	Control Statements
	
	Examples

